Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Battery Thermal Management System Design Modeling (Presentation)  

DOE Green Energy (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

2

Lighting system with thermal management system  

DOE Patents (OSTI)

Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

2013-05-07T23:59:59.000Z

3

Efficient thermal management for multiprocessor systems  

E-Print Network (OSTI)

2.2.4 Thermal Modeling . . . . . . . .63 Table 4.3: Thermal Hot Spots . . . . . . . . . . . . . .Performance-Efficient Thermal Management . . . . . . . . . .

Co?kun, Ay?e K?v?lc?m

2009-01-01T23:59:59.000Z

4

THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE OF MANAGED WINDOW SYSTEMS S. E. Selkowitz and V.York, N.Y. , (1971). Windows for Energy Efficient Buildings,thermal performance of a window system are its overall heat

Selkowitz, S. E.

2011-01-01T23:59:59.000Z

5

Dynamic thermal management in chip multiprocessor systems  

E-Print Network (OSTI)

Recently, processor power density has been increasing at an alarming rate result- ing in high on-chip temperature. Higher temperature increases current leakage and causes poor reliability. In our research, we ¯rst propose a Predictive Dynamic Ther- mal Management (PDTM) based on Application-based Thermal Model (ABTM) and Core-based Thermal Model (CBTM) in the multicore systems. Based on predicted temperature from ABTM and CBTM, the proposed PDTM can maintain the system temperature below a desired level by moving the running application from the possi- ble overheated core to the future coolest core (migration) and reducing the processor resources (priority scheduling) within multicore systems. Furthermore, we present the Thermal Correlative Thermal Management (TCDTM), which incorporates three main components: Statistical Workload Estimation (SWE), Future Temperature Estima- tion Model (FTEM) and Temperature-Aware Thread Controller (TATC), to model the thermal correlation e®ect and distinguish the thermal contributions from appli- cations with di®erent workload behaviors at run time in the CMP systems. The pro- posed PDTM and TCDTM enable the exploration of the tradeo® between throughput and fairness in temperature-constrained multicore systems.

Liu, Chih-Chun

2008-08-01T23:59:59.000Z

6

Battery Thermal Management System Design Modeling  

SciTech Connect

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

7

Total Thermal Management System for Hybrid and Full Electric Vehicles  

Total Thermal Management System for Hybrid and Full Electric Vehicles Note: The technology described above is an early stage opportunity. Licensing rights to this ...

8

Thermal Management of Onboard Cryogenic Hydrogen Storage Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan: (A) System Weight and Volume (C) Efficiency (E) ChargingDischarging Rates (J) Thermal Management Technical Targets In this project, studies are being conducted to develop...

9

Dynamic Thermal Management for High-Performance Storage Systems  

Science Conference Proceedings (OSTI)

Thermal-aware design of disk drives is important because high temperatures can cause reliability problems. Dynamic Thermal Management (DTM) techniques have been proposed to operate the disk at the average case temperature, rather than at the worse case by modulating the activities to avoid thermal emergencies. The thermal emergencies can be caused by unexpected events, such as fan-breaks, increased inlet air temperature, etc. One of the DTM techniques is a delay-based approach that adjusts the disk seek activities, cooling down the disk drives. Even if such a DTM approach could overcome thermal emergencies without stopping disk activity, it suffers from long delays when servicing the requests. Thus, in this chapter, we investigate the possibility of using a multispeed disk-drive (called dynamic rotations per minute (DRPM)) that dynamically modulates the rotational speed of the platter for implementing the DTM technique. Using a detailed performance and thermal simulator of a storage system, we evaluate two possible DTM policies (- time-based and watermark-based) with a DRPM disk-drive and observe that dynamic RPM modulation is effective in avoiding thermal emergencies. However, we find that the time taken to transition between different rotational speeds of the disk is critical for the effectiveness of the DRPM based DTM techniques.

Kim, Youngjae [ORNL; Gurumurthi, Dr Sudhanva [University of Virginia; Sivasubramaniam, Anand [Pennsylvania State University

2012-01-01T23:59:59.000Z

10

Thermal management of long-length HTS cable systems  

Science Conference Proceedings (OSTI)

Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

Demko, Jonathan A [ORNL; Hassenzahl, William V [ORNL

2011-01-01T23:59:59.000Z

11

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Heat Exchangers,” Applied Thermal Engineering, 25 (1), pp.Raad P. E. , 2008, “Thermal Challenges in Next-GenerationAssessment of High-Heat-Flux Thermal Management Schemes,”

Coso, Dusan

2013-01-01T23:59:59.000Z

12

Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems  

DOE Green Energy (OSTI)

PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to improve system efficiency and reduce packaging size.

Mark K. Gee

2008-10-01T23:59:59.000Z

13

ThermOS: system support for dynamic thermal management of chip multi-processors  

Science Conference Proceedings (OSTI)

Constraining the temperature of computing systems has become a dominant aspect in the design of integrated circuits. The supply voltage decrease has lost its pace even though the feature size is shrinking constantly. This results in an increased number ... Keywords: CMP, DTM, OS, chip multi-processor, chip-multiprocessor, dynamic thermal management, multi-core, multicore, operating system

Filippo Sironi, Martina Maggio, Riccardo Cattaneo, Giovanni Francesco Del Nero, Donatella Sciuto, Marco Domenico Santambrogio

2013-10-01T23:59:59.000Z

14

Method and apparatus for thermal management of vehicle exhaust systems  

DOE Patents (OSTI)

A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1995-01-01T23:59:59.000Z

15

Method and apparatus for thermal management of vehicle exhaust systems  

DOE Patents (OSTI)

A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.

Benson, D.K.; Potter, T.F.

1995-12-26T23:59:59.000Z

16

Thermal Management of Solar Cells  

E-Print Network (OSTI)

phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

17

Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell  

DOE Green Energy (OSTI)

This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

Zia Mirza, Program Manager

2011-12-06T23:59:59.000Z

18

Thermal Management of Solar Cells  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA RIVERSIDE Thermal Management ofUniversity of California, Riverside Acknowledgments First, I

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

19

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

a working molecular solar energy conversion system where noEnergy Storage and Conversion System ..74Thermal (MOST) Energy Storage and Conversion System In this

Coso, Dusan

2013-01-01T23:59:59.000Z

20

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

of Photochemical and Photovoltaic Solar Energy Converters,”of solar energy in either photovoltaic or solar thermalphotovoltaic (PV) systems,[13,82,83] and solar thermal systems (energy

Coso, Dusan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermal Resources for Load Management: Understanding Variable Capacity HVAC Systems as a Load Management Resource  

Science Conference Proceedings (OSTI)

Space conditioning accounts for a major portion of the energy consumption in U.S. residences and commercial buildings and is a primary driver of summer and winter peak demand for electric utility companies. The most common type of space conditioning system in the U.S. is some form of an air-source, fixed speed, direct expansion system. For several decades utilities have implemented efficiency and demand response programs involving fixed speed air conditioning. Over the years, there has been a steady rise ..

2013-12-17T23:59:59.000Z

22

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

2009, “Solar Thermal Power Plants,” The European PhysicalThermal Energy Storage for Parabolic Trough Power Plants,”fuel based power plants, and most nuclear and solar thermal

Coso, Dusan

2013-01-01T23:59:59.000Z

23

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Review on Sustainable thermal Energy Storage Technologies,D. , 2009, “Review on Thermal Energy Storage with PhaseW. , 2002, “Survey of Thermal Energy Storage for Parabolic

Coso, Dusan

2013-01-01T23:59:59.000Z

24

Underhood Thermal Management [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Underhood Thermal Underhood Thermal Management Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Underhood Thermal Management Hybrid Vehicle Underhood Thermal Analysis Hybrid Vehicle Underhood Thermal Analysis. Click on image to view larger image. In addition to nuclear system applications, the section applies its

25

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

R. a. , 2012, “Molecular Solar Thermal (MOST) Energy Storageand Nocera D. G. , 2010, “Solar Energy Supply and Storage20] Kalogirou S. a. , 2004, “Solar Thermal Collectors and

Coso, Dusan

2013-01-01T23:59:59.000Z

26

Carbonate fuel cell system with integrated carbon dioxide/thermal management  

DOE Green Energy (OSTI)

Upon successful completion of Phase 1, the Phase 2 activities were initiated in July 1994 to define the stack design and system requirements for a commercial-scale burnerless carbonate fuel cell stack with an integrated carbon dioxide management system. The major goals of this program are to define the stack design and the system requirements of the integrated design. The approach taken was to maximize the similarities of this stack with ERC`s proven baseline stack design and power plant system. Recent accomplishments include a detailed stack design which retains all the essential elements of the baseline stack as well as the power plant system designs. All the auxiliary hardware and external flow patterns remain unchanged, only the internal flow configurations are modified.

Paetsch, L.; Ding, J.; Hunt, J.

1995-12-31T23:59:59.000Z

27

Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation  

E-Print Network (OSTI)

We present a dynamic multistage stochastic programming model for the cost-optimal generation of electric power in a hydro-thermal system under uncertainty in load, inflow to reservoirs and prices for fuel and delivery contracts. The stochastic load process is approximated by a scenario tree obtained by adapting a SARIMA model to historical data, using empirical means and variances of simulated scenarios to construct an initial tree, and reducing it by a scenario deletion procedure based on a suitable probability distance. Our model involves many mixed-integer variables and individual power unit constraints, but relatively few coupling constraints. Hence we employstochastic Lagrangian relaxation that assigns stochastic multipliers to the coupling constraints. Solving the Lagrangian dual by a proximal bundle method leads to successive decomposition into single thermal and hydro unit subproblems that are solved by dynamic programming and a specialized descent algorithm, respectively. The optimal stochastic multipliers are used in Lagrangian heuristics to construct approximately optimal first stage decisions. Numerical results are presented for realistic data from a German power utility, with a time horizon of one week and scenario numbers ranging from 5 to 100. The corresponding optimization problems have up to 200,000 binary and 350,000 continuous variables, and more than 500,000 constraints.

Nicole Gröwe-Kuska; Krzysztof C. Kiwiel; Matthias P. Nowak; Werner Römisch; Isabel Wegner

2002-01-01T23:59:59.000Z

28

Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)  

SciTech Connect

This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

Rugh, J. P.; Pesaran, A.; Smith, K.

2013-07-01T23:59:59.000Z

29

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Techniques,” Energy Conversion and Management, 39 (11),Applications,” Energy Conversion and Management, 45 , pp.2011, “Low-grade Heat Conversion into Power Using Organic

Coso, Dusan

2013-01-01T23:59:59.000Z

30

Energy Efficient Proactive Thermal Management in Memory Subsystem  

E-Print Network (OSTI)

Energy Efficient Proactive Thermal Management in Memory Subsystem Raid Ayoub rayoub management of memory subsystem is challenging due to performance and thermal constraints. Big energy gains appreciable energy savings in memory sub-system and mini- mize thermal problems. We adopt the consolidation

Simunic, Tajana

31

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

32

Proactive thermal management in green datacenters  

Science Conference Proceedings (OSTI)

The increasing demand for faster computing and high storage capacity has resulted in an increase in energy consumption and heat generation in datacenters. Because of the increase in heat generation, cooling requirements have become a critical concern, ... Keywords: Air cooling system, Data center, Modeling, Proactive approach, Thermal management

Eun Kyung Lee; Indraneel Kulkarni; Dario Pompili; Manish Parashar

2012-05-01T23:59:59.000Z

33

Thermal management system and method for a solid-state energy storing device  

DOE Patents (OSTI)

An improved electrochemical energy storing device includes a number of thin-film electrochemical cells which are maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of each electrochemical cell, conducts current into and out of the electrochemical cells and also conducts thermal energy between the electrochemical cells and thermally conductive material disposed on a wall structure adjacent the conductors. The wall structure includes electrically resistive material, such as an anodized coating or a thin film of plastic. The thermal conductors are fabricated to include a spring mechanism which expands and contacts to maintain mechanical contact between the electrochemical cells and the thermally conductive material in the presence of relative movement between the electrochemical cells and the wall structure. An active cooling apparatus may be employed external to a hermetically sealed housing containing the electrochemical cells to enhance the transfer of thermal energy into and out of the electrochemical cells. An integrated interconnect board may be disposed within the housing onto which a number of electrical and electro-mechanical components are mounted. Heat generated by the components is conducted from the interconnect board to the housing using the thermal conductors.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Gauthier, Michel (La Prairie, CA); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Rouillard, Jean (Saint-Luc, CA); Shiota, Toshimi (St. Bruno, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2000-01-01T23:59:59.000Z

34

Environmental Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Community, Environment Environmental Stewardship Environmental Protection Environmental Management System Environmental Management System An Environmental...

35

Thermo-Mechanical Evaluation of High-Temperature Refractory Foams Used in Thermal Management Systems  

Science Conference Proceedings (OSTI)

Modeling and Simulations / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

D. L. Youchison; J. M. Garde

36

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

Not Available

2012-03-01T23:59:59.000Z

37

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)  

SciTech Connect

Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

2012-03-01T23:59:59.000Z

38

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Energy Storage for Power Generation. Part 1—Concepts,effectively. Thus, in power generation systems, phase changeIn addition to power generation, phase change heat transfer

Coso, Dusan

2013-01-01T23:59:59.000Z

39

Multilayer thermal barrier coating systems  

DOE Patents (OSTI)

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

40

TURBINE THERMAL MANAGEMENT NETL Team Technical Coordinator: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

TURBINE THERMAL MANAGEMENT NETL Team Technical Coordinator: Maryanne Alvin Name Project Role Affiliation University Project Title Gleeson, Brian M PI Pitt Bond Coat and Extreme...

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Quality System Documentation Management  

Science Conference Proceedings (OSTI)

Quality System Documentation Management. ... Minutes, summaries, or notes from Management Meetings of significance are archived here. ...

2012-08-21T23:59:59.000Z

42

Thermal Insulation Systems  

E-Print Network (OSTI)

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy cost reduction programs. One of the best places to start with energy conservation is to employ proper insulation systems. This article discusses the significant properties of thermal insulation materials primarily for industrial application. Some of the information is applicable to commercial and residential insulation. Only hot service conditions will be covered.

Stanley, T. F.

1982-01-01T23:59:59.000Z

43

Environmental Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Management Systems Technical Assistance Tools Technical Assistance Tool: Integrating Sustainable Practices into Environmental Management Systems , November 2009...

44

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

45

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

46

Power Electronics and Thermal Management Breakout Sessions  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER ELECTRONICS AND THERMAL POWER ELECTRONICS AND THERMAL MANAGEMENT EV Everywhere Workshop July 24, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Performance: Is achievable with these assumptions * Production Cost: $8/KW is achievable for PHEV40 and BEV300, $14/KW is okay for BEV100 * Production Efficiency: 95% system efficiency might be achievable * It is easier to achieve performance than cost targets * Integration of the different functionalities can help with achieving the targets * What is efficiency worth? What price do we place on it? Barriers Interfering with Reaching the Targets * Capacitors and magnetics (materials, performance, temperature, size, frequency, packaging) * Material cost, capacitors and magnetics are the priority

47

Repository Reference Disposal Concepts and Thermal Load Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists...

48

Thermal Management of Solar Cells  

E-Print Network (OSTI)

as a source of photovoltaic energy is rapidly increasingphotovoltaic cells under concentrated illumination: a critical review," Solar Energyphotovoltaic/thermal collector, PV/T, and it utilizes both electrical and heat energies

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

49

Laboratory Management (Quality) Systems  

Science Conference Proceedings (OSTI)

Laboratory Management (Quality) Systems. NISTIR 7028 Type Evaluation Quality Manual Template. This NISTIR has been ...

2012-05-02T23:59:59.000Z

50

Thermally activated miniaturized cooling system.  

E-Print Network (OSTI)

??A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test… (more)

Determan, Matthew Delos

2008-01-01T23:59:59.000Z

51

Environmental Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Management System Management System Environmental Management System An Environmental Management System is a systematic method for assessing mission activities, determining the environmental impacts of those activities, prioritizing improvements, and measuring results. May 30, 2012 The continuous improvement cycle Our Environmental Management System encourages continuous improvement of our environmental performance. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Managing our effects on the environment We are committed to protecting the environment while conducting our national security and energy-related missions. Laboratory Environmental Governing Policy What is the Environmental Management System? It covers every program in the Laboratory

52

Environmental Management System Plan  

E-Print Network (OSTI)

3) environmental management programs, (4) training, (5)Management Programs3-5 Structure and Responsibility.3-6 Training,Management System Plan Program Elements Additional information regarding EMS training

Fox, Robert

2009-01-01T23:59:59.000Z

53

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

72 5.1.2 Memory thermal and cooling model . . . . . . . . 75Energy, Thermal and Cooling Management . . . . . . . .Conclusion . . Chapter 4 Thermal and Cooling Management in

Ayoub, Raid

2011-01-01T23:59:59.000Z

54

Environmental Management System Plan  

E-Print Network (OSTI)

offices, the EMS Program Program Elements Environmental ManagementOffice of Institutional Assurance as stated in the OQMP. 3-7 • Environmental ManagementEnvironmental Management System Fiscal Year Improve (EMP classification) Integrated Safety Management System International Organization for Standardization Lawrence Berkeley National Laboratory Office

Fox, Robert

2009-01-01T23:59:59.000Z

55

Training Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Time ESAF Contacts Calendars User Community Scientific Access Site AccessVisit Training Training Management System Argonne system used to track training requirements and...

56

Power Electronics and Thermal Management Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER ELECTRONICS AND POWER ELECTRONICS AND THERMAL MANAGEMENT BREAKOUT SESSION July 24, 2012 EV Everywhere Grand Challenge Burak Ozpineci Oak Ridge National Laboratory Facilitator Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Key DOE Technical Targets Power Electronics ($/kW) (kW/kg) (kW/l) 7.9 10.8 8.7 7 11.2 10 5 12 12 3.3 14.1 13.4 Electric Motors ($/kW) (kW/kg) (kW/l) 11.1 1.2 3.7 10 1.24 4 7 1.3 5 4.7 1.6 5.7 Traction Drive System Impacts  Reduce Cost Reduce Weight Reduce Volume Reduce Energy Storage Requirements Year Cost ($/kW) Specific Power (kW/kg) Power Density (kW/l) Efficiency 2010* 19 1.08 2.60 >90% 2012 17 1.12 2.86 >91% 2015 12 1.17 3.53 >93% 2020 8 1.44 4.00 >94%

57

Balance of Power: Dynamic Thermal Management for Internet Data Centers  

Science Conference Proceedings (OSTI)

The advent of Internet-based applications and their resulting multitier distributed architecture has changed the focus of design for large-scale Internet computing. Internet server applications execute in a horizontally scalable topology across hundreds ... Keywords: dynamic thermal management, thermal-load balancing, Internet data center, row-wise and regional thermal management, thermal policies

Ratnesh K. Sharma; Cullen E. Bash; Chandrakant D. Patel; Richard J. Friedrich; Jeffrey S. Chase

2005-01-01T23:59:59.000Z

58

System and Network Management  

Science Conference Proceedings (OSTI)

This document covers Systems and Network Management Requirements and is the first deliverable in a joint EPRI and Utility User Project to develop Network Management capability for Electric Utility Automation Systems (UAS) using international communication standards such as IEC 61850. The management of substation automation systems is critical since tools are now based, for the most part, on proprietary hardware and software. In modern state-of-the art substations, traditional network management has ...

2012-12-20T23:59:59.000Z

59

Thermal Hydraulic Optimization of Nuclear Systems [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Hydraulic Thermal Hydraulic Optimization of Nuclear Systems Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Thermal Hydraulic Optimization of Nuclear Systems Accelerator Driven Test Facility Target Accelerator Driven Test Facility Target. Click on image to view larger

60

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

Morman, James A. (Woodridge, IL); Wei, Thomas Y. C. (Downers Grove, IL); Reifman, Jaques (Western Springs, IL)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

Morman, J.A.; Wei, T.Y.C.; Reifman, J.

1999-07-27T23:59:59.000Z

62

A combined sensor placement and convex optimization approach for thermal management in 3D-MPSoC with liquid cooling  

Science Conference Proceedings (OSTI)

Modern high-performance processors employ thermal management systems, which rely on accurate readings of on-die thermal sensors. Systematic tools for analysis and determination of best allocation and placement of thermal sensors is therefore a highly ... Keywords: 3D, Cooling, Liquid, MPSoC, Management, Placement, Thermal

Francesco Zanini; David Atienza; Giovanni De Micheli

2013-01-01T23:59:59.000Z

63

Thermal management concepts for higher efficiency heavy vehicles.  

DOE Green Energy (OSTI)

Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

Wambsganss, M. W.

1999-05-19T23:59:59.000Z

64

Thermal Storage with Conventional Cooling Systems  

E-Print Network (OSTI)

The newly opened Pennsylvania Convention Center in Philadelphia, PA; Exxon's Computer Facility at Florham Park, NJ; The Center Square Building in Philadelphia, are success stories for demand shifting through thermal storage. These buildings employ a simple thermal energy storage system that already exists in almost every structure - concrete. Thermal storage calculations simulate sub-cooling of a building's structure during unoccupied times. During occupied times, the sub-cooled concrete reduces peak cooling demand, thereby lowering demand and saving money. In addition, significant savings are possible in the first cost of chilled water equipment, and the smaller chillers run at peak capacity and efficiency during a greater portion of their run time. The building, controlled by an Energy Management and Control System (EMCS), "learns" from past experience how to run the building efficiently. The result is an optimized balance between energy cost and comfort.

Kieninger, R. T.

1994-01-01T23:59:59.000Z

65

Identity Management Systems Program Homepage  

Science Conference Proceedings (OSTI)

Identity Management Systems Program. ... Identity management systems are responsible for the creation, use, and termination of electronic identities. ...

2010-10-05T23:59:59.000Z

66

Energy Management Systems  

E-Print Network (OSTI)

This presentation will address results from a pilot project with 10 chemical plants on energy management systems and the development of an energy efficiency plant certification program.

Ferland, K.

2007-01-01T23:59:59.000Z

67

Business System Management Review  

NLE Websites -- All DOE Office Websites (Extended Search)

P-004 Business System Management Review Process 11_0304Page 1 of 7 P-004 Business System Management Review Process 11_0304Page 1 of 7 EOTA - Business Process Document Title: Business System Management Review Process Document Number: P-004 Rev 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-009, Business System Management Review Template P-004 Business System Management Review Process 11_0304Page 2 of 7 Revision History: Rev. Description of Change A Initial Release 08_0414 Corrective Actions, Preventive Actions, and Improvement Opportunity 09_1124 Edited document for clarity and to better fit the process in use. Added requirement to provide management with

68

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system for a nuclear, chemical or other process is effective following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. The search process is based upon mass, momentum and energy conservation principles so that qualitative thermal-hydraulic fundamental principles are satisfied for new system configurations. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

Morman, James A.; Wei, Thomas Y.C.; Reifman, Jaques

1997-12-01T23:59:59.000Z

69

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

70

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

78 5.2 Combined Energy, Thermal and CoolingOne reason for thermal and energy variations betweenWe propose a combined energy, thermal and cooling management

Ayoub, Raid

2011-01-01T23:59:59.000Z

71

Ocean Thermal Energy Conversion Program Management Plan  

DOE Green Energy (OSTI)

The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

Combs, R E

1980-01-01T23:59:59.000Z

72

Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan  

DOE Green Energy (OSTI)

Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

Goff, F.; Nielson, D.L. (eds.)

1986-05-01T23:59:59.000Z

73

Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint  

DOE Green Energy (OSTI)

Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

Bennion, K.; Kelly, K.

2009-08-01T23:59:59.000Z

74

First Diode for Thermal Management of Micro and Macro Devices ...  

Controlling the direction of heat flow could lead to radical improvements in thermal management across a range of products. ... solar cells, and buildings.

75

Report on Toyota Prius Motor Thermal Management  

DOE Green Energy (OSTI)

In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

Hsu, J.S.

2005-02-11T23:59:59.000Z

76

Integrating Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Execution by Mission Execution by Integrating our Management Systems Integrating our Management Systems 1 W e e k l y O p e r a t i o n s M e e t i n g N o v e m b e r 1 , 2 0 1 1 M i c h a e l J . W e i s Pulling the Pieces Together for Improving DOE Management to Enable Mission Execution 2 ï‚— Process changes Process changes ï‚— Behavioral changes Behavioral changes ï‚— System changes System changes Process Change Approach Strengthening and Expediting Decision Making 3 Proposed Outcomes Horizontal Integration Incoming DOE Business Crosscutting Issues (i.e. NLDC input) Hi-level Roadblocks Operations Management Council Associate Deputy Secretary Collaborative Action Process Chief Operating Officer Weekly Operations Council (OMC) Super 8 Secretary (ADS) (CAP) Board (COOB) p Meeting Endorsement / Commitment Super 8 US Meetings COO Meetings

77

Environmental Management System Plan  

E-Print Network (OSTI)

Protection Program, DOE Order 450.1A (June 4, 3. DOE Oand Health Reporting, DOE Order 231.1A (1995, as amended).Emergency Management System, DOE Order 151.1B (October 29,

Fox, Robert

2009-01-01T23:59:59.000Z

78

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Thermal Efficiency and Maximizing Thermal Efficiency and Optimizing Energy Management Scientists at this living laboratory develop optimal solutions for managing energy flows within buildings and transportation systems. The built environment is stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more effective energy management and development of efficiency technologies. Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing this opportunity. Through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems,

79

Graphite Foam Heat Exchangers for Thermal Management  

Science Conference Proceedings (OSTI)

Improved thermal management is needed to increase the power density of electronic and more effectively cool electronic enclosures that are envisioned in future aircraft, spacecraft and surface ships. Typically, heat exchanger cores must increase in size to more effectively dissipate increased heat loads, this would be impossible in many cases, thus improved heat exchanger cores will be required. In this Phase I investigation, MRi aimed to demonstrate improved thermal management using graphite foam (Gr-foam) core heat exchangers. The proposed design was to combine Gr-foams from POCO with MRi's innovative low temperature, active metal joining process (S-Bond{trademark}) to bond Gr-foam to aluminum, copper and aluminum/SiC composite faceplates. The results were very favorable, so a Phase II SBIR with the MDA was initiated. This had primarily 5 tasks: (1) bonding, (2) thermal modeling, (3) cooling chip scale packages, (4) evaporative cooling techniques and (5) IGBT cold plate development. The bonding tests showed that the ''reflow'' technique with S-Bond{reg_sign}-220 resulted in the best and most consistent bond. Then, thermal modeling was used to design different chip scale packages and IGBT cold plates. These designs were used to fabricate many finned graphite foam heat sinks specifically for two standard type IC packages, the 423 and 478 pin chips. These results demonstrated several advantages with the foam. First, the heat sinks with the foam were lighter than the copper/aluminum sinks used as standards. The sinks for the 423 design made from foam were not as good as the standard sinks. However, the sinks made from foam for the 478 pin chips were better than the standard heat sinks used today. However, this improvement was marginal (in the 10-20% better regime). However, another important note was that the epoxy bonding technique resulted in heat sinks with similar results as that with the S-bond{reg_sign}, slightly worse than the S-bond{reg_sign}, but still better than the standard heat sinks. Next, work with evaporative cooling techniques, such as heat pipes, demonstrated some unique behavior with the foam that is not seen with standard wick materials. This was that as the thickness of the foam increased, the performance got better, where with standard wick materials, as the thickness increases, the performance decreases. This is yet to be completely explained. Last, the designs from the thermal model were used to fabricate a series of cold plates with the graphite foam and compare them to similar designs using high performance folded fin aluminum sinks (considered standard in the industry). It was shown that by corrugating the foam parallel to fluid flow, the pressure drop can be reduced significantly while maintaining the same heat transfer as that in the folded fin heat sink. In fact, the results show that the graphite foam heat sink can utilized 5% the pumping power as that required with the folded fin aluminum heat sink, yet remove the same amount of heat.

Klett, J.W.

2004-06-07T23:59:59.000Z

80

Performance-aware thermal management via task scheduling  

Science Conference Proceedings (OSTI)

High on-chip temperature impairs the processor's reliability and reduces its lifetime. Hardware-level dynamic thermal management (DTM) techniques can effectively constrain the chip temperature, but degrades the performance. We propose an OS-level technique ... Keywords: Thermal management, task scheduling

Xiuyi Zhou; Jun Yang; Marek Chrobak; Youtao Zhang

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar thermal power systems. Program summary  

DOE Green Energy (OSTI)

Each of DOE's solar Thermal Power Systems projects funded and/or in existence during FY 1978 is described and the status as of September 30, 1978 is reflected. These projects are divided as follows: small thermal power applications, large thermal power applications, and advanced thermal technology. Also included are: 1978 project summary tables, bibliography, and an alphabetical index of contractors. (MHR)

Not Available

1978-12-01T23:59:59.000Z

82

Computer memory management system  

DOE Patents (OSTI)

A computer memory management system utilizing a memory structure system of "intelligent" pointers in which information related to the use status of the memory structure is designed into the pointer. Through this pointer system, The present invention provides essentially automatic memory management (often referred to as garbage collection) by allowing relationships between objects to have definite memory management behavior by use of coding protocol which describes when relationships should be maintained and when the relationships should be broken. In one aspect, the present invention system allows automatic breaking of strong links to facilitate object garbage collection, coupled with relationship adjectives which define deletion of associated objects. In another aspect, The present invention includes simple-to-use infinite undo/redo functionality in that it has the capability, through a simple function call, to undo all of the changes made to a data model since the previous `valid state` was noted.

Kirk, III, Whitson John (Greenwood, MO)

2002-01-01T23:59:59.000Z

83

Purge water management system  

DOE Patents (OSTI)

A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, Joao E. (North Augusta, SC); Williams, Daniel W. (Aiken, SC)

1996-01-01T23:59:59.000Z

84

Purge water management system  

DOE Patents (OSTI)

A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, J.E.; Williams, D.W.

1995-01-01T23:59:59.000Z

85

Applications and benefits of catalytic converter thermal management  

DOE Green Energy (OSTI)

A catalytic converter thermal management system (TMS) using variable-conductance vacuum insulation and phase-change thermal storage can maintain the converter temperature above its operating temperature for many hours, allowing most trips to begin with minimal ``cold-start`` emissions. The latest converter TMS prototype was tested on a Ford Taurus (3.0 liter flex-fuel engine) at Southwest Research Institute. Following a 24-hour soak, the FTP-75 emissions were 0.031, 0.13, and 0.066 g/mile for NMHC, CO, and NOx, respectively. Tests were also run using 85% ethanol (E85), resulting in values of 0.005, 0.124, and 0.044 g/mile, and 0.005 g/mile NMOG. Compared to the baseline FTP levels, these values represent reductions of 84% to 96% for NMHC, NMOG, and CO.

Burch, S.D.; Keyser, M.A.; Colucci, C.P.; Potter, T.F.; Benson, D.K.; Biel, J.P.

1996-07-01T23:59:59.000Z

86

Thermal management in heavy vehicles : a review identifying issues and research requirements.  

DOE Green Energy (OSTI)

Thermal management in heavy vehicles is cross-cutting because it directly or indirectly affects engine performance, fuel economy, safety and reliability, engine/component life, driver comfort, materials selection, emissions, maintenance, and aerodynamics. It follows that thermal management is critical to the design of large (class 6-8) trucks, especially in optimizing for energy efficiency and emissions reduction. Heat rejection requirements are expected to increase, and it is industry's goal to develop new, innovative, high-performance cooling systems that occupy less space and are lightweight and cost-competitive. The state of the art in heavy vehicle thermal management is reviewed, and issues and research areas are identified.

Wambsganss, M. W.

1999-01-15T23:59:59.000Z

87

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network (OSTI)

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The… (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

88

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

89

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.  

SciTech Connect

A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

2012-01-01T23:59:59.000Z

90

Automated Transportation Management System (ATMS) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Packaging and Transportation Automated Transportation Management System (ATMS) Automated Transportation Management System (ATMS) The Department of Energy's...

91

NIM (NERSC Information Management) system  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Information Management (NIM) portal The NERSC Information Management (NIM) system is a web portal used to view and modify user account, usage, and allocations information....

92

Drilling Waste Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

The Drilling Waste Management Information System is an online resource for technical and regulatory information on practices for managing drilling muds and cuttings, including...

93

National reconstruction information management system  

Science Conference Proceedings (OSTI)

National Reconstruction Information Management System (NARIMS) is a revolutionary concept designed and developed by the National Reconstruction Bureau, Government of Pakistan, to work as an aid in support of the Local Governments under the Devolution ... Keywords: administration, asset management, community development, decision support, e-governance, financial, geographical information system, human resource management, information management system, local government, monitoring, performance evaluation

Daniyal Aziz; Syed Adnan Shah; Deeba Gilani

2007-12-01T23:59:59.000Z

94

Power management system  

DOE Patents (OSTI)

A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

2007-10-02T23:59:59.000Z

95

Thermal Management Using Carbon Nanotubes - Energy Innovation ...  

Patent 7,763,353: Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites Methods and apparatus are described for ...

96

TransForum v3n3 - Underhood Thermal Management  

NLE Websites -- All DOE Office Websites (Extended Search)

DEBUT OF HYBRID ELECTRIC VEHICLES HEATS UP INTEREST IN UNDERHOOD THERMAL MANAGEMENT Amidst a great deal of fanfare last year, the Toyota Prius joined the Honda Insight as the...

97

Training Management Information System  

Science Conference Proceedings (OSTI)

The Training Management Information System (TMIS) is an integrated information system for all training related activities. TMIS is at the leading edge of training information systems used in the nuclear industry. The database contains all the necessary records to confirm the department's adherence to accreditation criteria and houses all test questions, student records and information needed to evaluate the training process. The key to the TMIS system is that the impact of any change (i.e., procedure change, new equipment, safety incident in the commercial nuclear industry, etc.) can be tracked throughout the training process. This ensures the best training can be performed that meets the needs of the employees. TMIS is comprised of six functional areas: Job and Task Analysis, Training Materials Design and Development, Exam Management, Student Records/Scheduling, Evaluation, and Commitment Tracking. The system consists of a VAX 6320 Cluster with IBM and MacIntosh computers tied into an ethernet with the VAX. Other peripherals are also tied into the system: Exam Generation Stations to include mark sense readers for test grading, Production PC's for Desk-Top Publishing of Training Material, and PC Image Workstations. 5 figs.

Rackley, M.P.

1989-01-01T23:59:59.000Z

98

Thermal Barrier Coating Systems II  

Science Conference Proceedings (OSTI)

Oct 26, 2009... on the application requirements and not on substrate physical properties such as thermal expansion rate Esp. within the same class of alloys.

99

Environmental Compliance Management System  

SciTech Connect

Argonne National Laboratory (ANL) is developing the Environmental Compliance Management System (ECMS) as a comprehensive, cost-effective tool to ensure (1) that the Laboratory complies with all applicable federal and state environmental laws and regulations, (2) that environmental issues and concerns are recognized and considered in the early phases of projects; and (3) that Laboratory personnel conduct Laboratory operations in the most environmentally acceptable manner. The ECMS is an expert computer system which is designed to allow project engineers to perform an environmental evaluation of their projects. The system includes a Master Program which collects basic project information, provide utility functions, and access the environmental expert modules, environmental expert system modules for each federal and state environmental law which allows the user to obtain specific information on how an individual law may affect his project; and site-specific databases which contain information necessary for effective management of the site under environmental regulations. The ECMS will have the capability to complete and print many of the necessary environmental forms required by federal and state agencies, including the Department of Energy.

Brownson, L.W.; Krsul, T.; Peralta, R.A. [Argonne National Lab., Idaho Falls, ID (United States); Knudson, D.A.; Rosignolo, C.L. [Argonne National Lab., IL (United States)

1992-09-01T23:59:59.000Z

100

Environmental Compliance Management System  

SciTech Connect

Argonne National Laboratory (ANL) is developing the Environmental Compliance Management System (ECMS) as a comprehensive, cost-effective tool to ensure (1) that the Laboratory complies with all applicable federal and state environmental laws and regulations, (2) that environmental issues and concerns are recognized and considered in the early phases of projects; and (3) that Laboratory personnel conduct Laboratory operations in the most environmentally acceptable manner. The ECMS is an expert computer system which is designed to allow project engineers to perform an environmental evaluation of their projects. The system includes a Master Program which collects basic project information, provide utility functions, and access the environmental expert modules, environmental expert system modules for each federal and state environmental law which allows the user to obtain specific information on how an individual law may affect his project; and site-specific databases which contain information necessary for effective management of the site under environmental regulations. The ECMS will have the capability to complete and print many of the necessary environmental forms required by federal and state agencies, including the Department of Energy.

Brownson, L.W.; Krsul, T.; Peralta, R.A. (Argonne National Lab., Idaho Falls, ID (United States)); Knudson, D.A.; Rosignolo, C.L. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

102

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

103

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

DOE Green Energy (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

104

Environmental Management System Plan  

SciTech Connect

Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and other natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These DOE Orders and associated policies establish goals and sustainable stewardship practices that are protective of environmental, natural, and cultural resources, and take a life cycle approach that considers aspects such as: (1) Acquisition and use of environmentally preferable products; (2) Electronics stewardship; (3) Energy conservation, energy efficiency, and renewable energy; (4) Pollution prevention, with emphasis on toxic and hazardous chemical and material reduction; (5) Procurement of efficient energy and water consuming materials and equipment; (6) Recycling and reuse; (7) Sustainable and high-performance building design; (8) Transportation and fleet management; and (9) Water conservation. LBNL's approach to sustainable environmental stewardship required under Order 450.1A poses the challenge of implementing its EMS in a compliance-based, performance-based, and cost-effective manner. In other words, the EMS must deliver real and tangible business value at a minimal cost. The purpose of this plan is to describe Berkeley Lab's approach for achieving such an EMS, including an overview of the roles and responsibilities of key Laboratory parties. This approach begins with a broad-based environmental policy consistent with that stated in Chapter 11 of the LBNL Health and Safety Manual (PUB-3000). This policy states that Berkeley Lab is committed to the following: (1) Complying with applicable environmental, public health, and resource conservation laws and regulations. (2) Preventing pollution, minimizing waste, and conserving natural resources. (3) Correcting environmental hazards and cleaning up existing environmental problems, and (4) Continually improving the Laboratory's environmental performance while maintaining operational capability and sustaining the overall mission of the Laboratory. A continual cycle of planning, implementing, evaluating, and improving processes will be performed to achieve goals, objectives, and targets that will help LBNL carry out this policy. Each year, environmental aspects will be identified and their impacts to the environm

Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy; Hatayama, Howard

2009-03-24T23:59:59.000Z

105

Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs  

E-Print Network (OSTI)

Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs Shervin propose a joint thermal and energy management technique specifically designed for heterogeneous MPSo technique simultaneously reduces the thermal hot spots, temperature gradients, and energy consumption

Simunic, Tajana

106

Battery management system  

SciTech Connect

A battery management system is described, comprising: a main battery; main battery charging system means coupled to the main battery for charging the main battery during operation of the main battery charging system means; at least one auxiliary battery; primary switching means for coupling the auxiliary battery to a parallel configuration with the main battery charging system means and with the main battery, where upon both the main battery and the auxiliary battery are charged by the main battery charging system means, the primary switching means also being operable to decouple the auxiliary battery from the parallel configuration; and sensing means coupled to the primary switching means and operable to sense presence or absence of charging current from the main battery charging system means to the main battery, the sensing means being operable to activate the switching means for coupling the auxiliary battery into the parallel configuration during presence of the charging current, wherein the main battery charging system provides a charging signal to the main battery having an alternating current component, and wherein the sensing means includes transformer means coupled to the charging signal for inducing a voltage, the voltage being applied to a switching circuit of the switching means.

Albright, C.D.

1993-07-06T23:59:59.000Z

107

Environmental management system.  

Science Conference Proceedings (OSTI)

The purpose of the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Management System (EMS) is identification of environmental consequences from SNL/NM activities, products, and/or services to develop objectives and measurable targets for mitigation of any potential impacts to the environment. This Source Document discusses the annual EMS process for analysis of environmental aspects and impacts and also provides the fiscal year (FY) 2010 analysis. Further information on the EMS structure, processes, and procedures are described within the programmatic EMS Manual (PG470222).

Salinas, Stephanie A.

2010-08-01T23:59:59.000Z

108

Thermal processing system concepts and considerations for RWMC buried waste  

SciTech Connect

This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

1992-02-01T23:59:59.000Z

109

Global Energy Management System  

E-Print Network (OSTI)

Exxon Mobil Corporation has undertaken voluntary actions to continuously improve energy efficiency in our operations for many years. From 1973 to 1999, we improved the energy efficiency of our refineries and chemical plants by over 35 percent - saving the cumulative equivalent of 1.8 billion barrels of oil and reducing carbon dioxide emissions by over 200 million tonnes. In 2000, we redoubled our efforts with deployment of our Global Energy Management System (GEMS), which utilizes international best practices and benchmarking to identify energy efficiencies at each of our refineries and chemical plants. Thus far, we have identified opportunities to improve the energy efficiency of these facilities by an additional 15 to 20 percent. At full implementation, savings are expected to total $500 million to $1 billion per year, with an associated reduction in carbon dioxide emissions of about 10 million tonnes per year - roughly equivalent to removing 1.5 million cars from the world's roads.

Eidt, B. D.

2005-01-01T23:59:59.000Z

110

Computerized training management system  

DOE Patents (OSTI)

A Computerized Training Management System (CTMS) is disclosed for providing a procedurally defined process that is employed to develop accreditable performance based training programs for job classifications that are sensitive to documented regulations and technical information. CTMS is a database that links information needed to maintain a five-phase approach to training-analysis, design, development, implementation, and evaluation independent of training program design. CTMS is designed using R-Base{trademark}, an-SQL compliant software platform. Information is logically entered and linked in CTMS. Each task is linked directly to a performance objective, which, in turn, is linked directly to a learning objective; then, each enabling objective is linked to its respective test items. In addition, tasks, performance objectives, enabling objectives, and test items are linked to their associated reference documents. CTMS keeps all information up to date since it automatically sorts, files and links all data; CTMS includes key word and reference document searches. 18 figs.

Rice, H.B.; McNair, R.C.; White, K.; Maugeri, T.

1998-08-04T23:59:59.000Z

111

Computerized training management system  

DOE Patents (OSTI)

A Computerized Training Management System (CTMS) for providing a procedurally defined process that is employed to develop accreditable performance based training programs for job classifications that are sensitive to documented regulations and technical information. CTMS is a database that links information needed to maintain a five-phase approach to training-analysis, design, development, implementation, and evaluation independent of training program design. CTMS is designed using R-Base.RTM., an-SQL compliant software platform. Information is logically entered and linked in CTMS. Each task is linked directly to a performance objective, which, in turn, is linked directly to a learning objective; then, each enabling objective is linked to its respective test items. In addition, tasks, performance objectives, enabling objectives, and test items are linked to their associated reference documents. CTMS keeps all information up to date since it automatically sorts, files and links all data; CTMS includes key word and reference document searches.

Rice, Harold B. (Franklin Furnace, OH); McNair, Robert C. (East Setauket, NY); White, Kenneth (Shirley, NY); Maugeri, Terry (Wading River, NY)

1998-08-04T23:59:59.000Z

112

Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph W. Reiter (Primary Contact), Alexander Raymond, Channing C. Ahn (Caltech), Bret Naylor, Otto Polanco, Rajeshuni Ramesham, and Erik Lopez Jet Propulsion Laboratory (JPL) 4800 Oak Grove Drive, Mail Stop 79-24 Pasadena, CA 91109-8099 Phone: (818) 354-4224; Email: Joseph.W.Reiter@jpl.nasa.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractor: California Institute of Technology, Pasadena, CA Project Start Date: February, 2009 Project End Date: September, 2014 Fiscal Year (FY) 2012 Objectives Identify state-of-art concepts and designs for * cryosorbent-based hydrogen storage systems

113

Computational thermal, chemical, fluid, and solid mechanics for geosystems management.  

Science Conference Proceedings (OSTI)

This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

2011-09-01T23:59:59.000Z

114

SOFC seal and cell thermal management  

SciTech Connect

The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.

Potnis, Shailesh Vijay (Neenah, WI); Rehg, Timothy Joseph (Huntington Beach, CA)

2011-05-17T23:59:59.000Z

115

Sanitary Sewer System Management Plan  

E-Print Network (OSTI)

Indicators PMT Plant Maintenance Technician POSM Pipeline Observation System Management POTW Publicly OwnedSanitary Sewer System Management Plan Prepared by: Environment, Health and Safety Division to enforce any violation iii-10 Section iv: Operation and Maintenance Program iv iv-a: System mapping iv-2 iv

116

NETL: Produced Water Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

PWMIS Home Produced Water Management Information System The Produced Water Management Information System is an online resource for technical and regulatory information for managing...

117

Thermal Systems Process and Components Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Process and Systems Process and Components Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Systems Process and Components Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Systems Process and Components Laboratory The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds

118

Variable emissivity laser thermal control system  

DOE Patents (OSTI)

A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

Milner, Joseph R. (Livermore, CA)

1994-01-01T23:59:59.000Z

119

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE VALUES FOR SEVERAL WINDOW DESIGNS XBL 796-10098IN MINNEAPOLIS AS A FUNCTION OF WINDOW AREA AND GLAZING/Thermal Performance of Insulating Window Systems Stephen E.

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

120

The Added Economic and Environmental Value of Solar Thermal Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power Title The Added Economic and Environmental Value of Solar Thermal Systems in...

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration to someone by E-mail Share Vehicle Technologies Office: Thermal Control and System Integration on Facebook Tweet about Vehicle Technologies...

122

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the...

123

Parallel Integrated Thermal Management - Energy Innovation Portal  

Many current cooling systems for hybrid electric vehicles ... Energy Innovation Portal ... either through direct heat transfer or through integration with a heat ...

124

Portfolio Manager Technical Reference: Thermal Conversion Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

able to monitor electricity consumption on a continuous basis. Based on your particular energy suppliers and onsite systems, you may have a variety of different meter types that...

125

Design Tool for Cryogenic Thermal Insulation Systems  

Science Conference Proceedings (OSTI)

Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida

2008-01-01T23:59:59.000Z

126

Photon management in thermal and solar photovoltaics  

E-Print Network (OSTI)

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

127

Fuel cell gas management system  

SciTech Connect

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

128

Business System Management Review Template  

NLE Websites -- All DOE Office Websites (Extended Search)

F-009 Business System Management Review Template 09_0519 Page 1 of 12 F-009 Business System Management Review Template 09_0519 Page 1 of 12 Company - Business Form Document Title: Business System Management Review Template Document Number: F-009 Rev. 11_0628 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-004, Business System Management Review Notify of Changes: QAM, MGT Referenced Document(s): N/A F-009 Business System Management Review Template 09_0519 Page 2 of 12 Revision History: Rev. Description of Change A Initial Release 09_0519 Format changes made to template (in particular Section 7.0 CAR/PAR/IO reporting) and several edits for clarification and ease of reading. 11_0628 Modified template categories to reflect current process

129

Integrated thermal treatment systems study. Internal review panel report  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Technology Development (OTD) commissioned two studies to evaluate nineteen thermal treatment technologies for treatment of DOE mixed low-level waste. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the help of the DOE Office of Environmental Management (EM) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel to review and comment on the ITTS studies. This Panel was composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency, the California EPA, and private experts. The Panel met from November 15-18, 1994 to review the ITTS studies and to make recommendations on the most promising thermal treatment systems for DOE mixed low-level wastes and on research and development necessary to prove the performance of the technologies. This report describes the findings and presents the recommendations of the Panel.

Cudahy, J.; Escarda, T.; Gimpel, R. [and others

1995-04-01T23:59:59.000Z

130

Notional all-electric ship systems integration thermal simulation and visualization  

Science Conference Proceedings (OSTI)

This work presents a simplified mathematical model for fast visualization and thermal simulation of complex and integrated energy systems that is capable of providing quick responses during system design. The tool allows for the determination of the ... Keywords: early-stage design tool, medium voltage direct current architecture, relative humidity field, temperature field, thermal management

Jvc Vargas; Ja Souza; R Hovsapian; Jc Ordonez; T Chiocchio; J Chalfant; C Chryssostomidis; E Dilay

2012-09-01T23:59:59.000Z

131

Thermal distribution systems in commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal distribution systems in commercial buildings Thermal distribution systems in commercial buildings Title Thermal distribution systems in commercial buildings Publication Type Journal Article LBNL Report Number LBNL-51860 Year of Publication 2003 Authors Diamond, Richard C., Craig P. Wray, Darryl J. Dickerhoff, Nance Matson, and Duo Wang Start Page Chapter Abstract Previous research suggests that HVAC thermal distribution systems in commercial buildings suffer from thermal losses, such as those caused by duct air leakage and poor duct location. Due to a lack of metrics and data showing the potentially large energy savings from reducing these losses, the California building industry has mostly overlooked energy efficiency improvements in this area. The purpose of this project is to obtain the technical knowledge needed to properly measure and understand the energy efficiency of these systems. This project has three specific objectives: to develop metrics and diagnostics for determining system efficiencies, to develop design and retrofit information that the building industry can use to improve these systems, and to determine the energy impacts associated with duct leakage airflows in an existing large commercial building. The primary outcome of this project is the confirmation that duct leakage airflows can significantly impact energy use in large commercial buildings: our measurements indicate that adding 15% duct leakage at operating conditions leads to an increase in fan power of about 25 to 35%. This finding is consistent with impacts of increased duct leakage airflows on fan power that have been predicted by previous simulations. Other project outcomes include the definition of a new metric for distribution system efficiency, the demonstration of a reliable test for determining duct leakage airflows, and the development of new techniques for duct sealing. We expect that the project outcomes will lead to new requirements for commercial thermal distribution system efficiency in future revisions of California's Title 24.

132

Management Information Systems (MIS) Sample Occupations  

E-Print Network (OSTI)

Support Specialist Computer and Information Systems Manager Computer Training Specialist Consultant Data Recruiter Knowledge Manager Logistics Manager Management Analysis MIS Director/Specialist Network Securities & Exchange Commission Website Design Companies Wholesale & Retail Companies Operations Manager

Ronquist, Fredrik

133

Safety Management System Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

POLICY POLICY Washington, D.C. Approved: 4-25-11 SUBJECT: INTEGRATED SAFETY MANAGEMENT POLICY PURPOSE AND SCOPE To establish the Department of Energy's (DOE) expectation for safety, 1 including integrated safety management that will enable the Department's mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. This Policy cancels and supersedes DOE Policy (P) 411.1, Safety Management Functions, Responsibilities, and Authorities Policy, dated 1-28-97; DOE P 441.1, DOE Radiological Health and Safety Policy, dated 4-26-96; DOE P 450.2A, Identifying, Implementing and Complying with Environment, Safety and Health Requirements, dated 5-15-96; DOE P 450.4, Safety Management

134

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System...

135

Pulse thermal energy transport/storage system  

DOE Patents (OSTI)

A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

Weislogel, Mark M. (23133 Switzer Rd., Brookpark, OH 44142)

1992-07-07T23:59:59.000Z

136

Analysis of a Retrofitted Thermal Energy Storage Air-conditioning System of a Marine Museum.  

E-Print Network (OSTI)

??Thermal energy storage(TES) air-conditioning system is a electrical load management technology with great potential to shift load from peak to off-peak utility periods. TES is… (more)

Yu, Po-wen

2005-01-01T23:59:59.000Z

137

Solar photovoltaic/thermal residential systems  

DOE Green Energy (OSTI)

The results of a conceptual design study using computer simulations to determine the physical and economic performance of combined photovoltaic/thermal collector heat-pump solar systems for a single-family residence are presented. Economic analyses are based upon projected costs for a 1986 system installation. The results show that PV/T collector systems can be economically competitive for a cold climate residence, that systems employing on-site electrical storage batteries are not economically competitive with utility-interactive systems, and that an ambient-air-source heat-pump system has a lower life-cycle cost than a solar-source heat-pump system.

Russell, M.C.

1979-12-28T23:59:59.000Z

138

Building International Emergency Management Systems | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building International Emergency Management Systems | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

139

BALDR-1: a solar thermal system simulation  

DOE Green Energy (OSTI)

A solar thermal system simulation (BALDR-1) was written in a modular fashion to facilitate expansion and modification. The flexibility of the simulation is derived, in part, from the use of three separate models to constitute the system simulation: FIELD, POWER, and ECON. Each model can be run independently, or they may be coupled and run as a set. The FIELD code models the optical and thermal performance of the collector field. It has separate optical and thermal performance routines for each generic collector type. Meteorological data is read in 15-minute or hourly increments. The POWER code models the performance of power conversion and storage components. It calculates the total thermal and/or electrical energy produced during the year for a set of plant configurations comprised of different collector field sizes, thermal storage sizes, and electrical storage sizes. The POWER code allows the selection of one of several control strategies in the dispatch of thermal and electrical storage. The ECON code calculates the initial capital cost of each power plant configuration modelled in POWER. This capital cost is combined with operations and maintenance costs to calculate a life-cycle busbar energy cost and simple payback period for each plant.

Finegold, J.G.; Herlevich, F.A.

1980-01-01T23:59:59.000Z

140

JETC: Joint Energy, Thermal and Cooling Management for CPU and Memory  

E-Print Network (OSTI)

JETC: Joint Energy, Thermal and Cooling Management for CPU and Memory Subsystems in Servers Raid Ayoub, Rajib Nath, Tajana Rosing, UCSD 2052.002 Observation Model of Thermal Coupling Between CPU: No Memory Management NCM: No CPU Migration DLB: Dynamic Load Balancing DTM-CM+PI: Dynamic Thermal Management

Simunic, Tajana

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of Energy Management Strategies for Automated Real- Time Pricing: Control System Enhancements for Thermal Energy Storage (TES) and Modulating Building Loads  

Science Conference Proceedings (OSTI)

Many prominent electric utilities throughout the United States are currently investigating real-time pricing rate structures (RTP) as a means of giving their large customers an economic incentive to reduce their electricity usage during periods when the utility's cost of providing power is high. This report summarizes the results of an engineering study of the technical approach and potential benefits of optimizing thermal energy storage in response to real-time pricing of electricity. The program is com...

1996-06-18T23:59:59.000Z

142

Earned Value Management System RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earned Value Management System Review Module Earned Value Management System Review Module March 2010 CD-0 O Ea 0 OFFICE OF arned Va C CD-1 F ENVIRO Standard R alue Man Rev Critical Decis CD-2 M ONMENTAL Review Plan agement view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) t System e pplicability D-3 EMENT (EVMS) CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

143

Solar thermal power systems. Summary report  

DOE Green Energy (OSTI)

The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

Not Available

1980-06-01T23:59:59.000Z

144

Federal Energy Management Program: Metering Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Metering Systems Metering Systems to someone by E-mail Share Federal Energy Management Program: Metering Systems on Facebook Tweet about Federal Energy Management Program: Metering Systems on Twitter Bookmark Federal Energy Management Program: Metering Systems on Google Bookmark Federal Energy Management Program: Metering Systems on Delicious Rank Federal Energy Management Program: Metering Systems on Digg Find More places to share Federal Energy Management Program: Metering Systems on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency

145

Advanced Thermal Barrier Coating System Development  

DOE Green Energy (OSTI)

The objectives of the program are to provide an improved Thermal Barrier Coating (TBC) system with increased temperature capability and improved reliability relative to current state of the art TBC systems. The development of such a coating system is essential to the ATS engine meeting its objectives. The base program consists of three phases: Phase I: Program Planning - Complete; Phase II: Development; and Phase III: Selected Specimen - Bench Test Work is being performed in Phase II and III of the program.

NONE

1999-03-31T23:59:59.000Z

146

Petascale system management experiences  

Science Conference Proceedings (OSTI)

Petascale HPC systems are among the largest systems in the world. Intrepid, one such system, is a 40,000 node, 556 teraflop Blue Gene/P system that has been deployed at Argonne National Laboratory. In this paper, we provide some background about the ...

Narayan Desai; Rick Bradshaw; Cory Lueninghoener; Andrew Cherry; Susan Coghlan; William Scullin

2008-11-01T23:59:59.000Z

147

Power Electronic Thermal System Performance and Integration (Presentation)  

DOE Green Energy (OSTI)

Thermal control is a critical factor in power electronics equipment. NREL aims to integrate and improve thermal system performance in power electronics.

Bennion, K.

2007-11-08T23:59:59.000Z

148

Integrating gray system theory and logistic regression into case-based reasoning for safety assessment of thermal power plants  

Science Conference Proceedings (OSTI)

Safety assessment of thermal power plants (TPPs) is one of the important means to guarantee the safety of production in thermal power production enterprises. Due to various technical limitations, existing assessment approaches, such as analytic hierarchy ... Keywords: Case-based reasoning, Gray system theory, Intelligent decision support system, Logistic regression, Management safety assessment, Thermal power plants

Changyong Liang; Dongxiao Gu; Isabelle Bichindaritz; Xingguo Li; Chunrong Zuo; Wenen Cheng

2012-04-01T23:59:59.000Z

149

Integrated system for control and monitoring in real time of efficient electrical and thermal energy production  

Science Conference Proceedings (OSTI)

The integrated monitoring and driving system is made of main distributed components: - first level:_one or two computers placed in the control room which monitors the thermal and electrical processes based on the datas provided by the second level via ... Keywords: cogenerative gas power plant, control of distributed parameter systems, distribution management system, electric power systems, optimization, process control, real time systems, simulation

Ion Miciu; Florin Hartescu

2008-08-01T23:59:59.000Z

150

Hybrid photovoltaic/thermal solar energy system  

DOE Green Energy (OSTI)

Heating and cooling systems that use hybrid solar energy collectors (combination photovoltaic-thermal) have the potential for considerable energy savings, particularly when the system includes a heat pump. Economic evaluations show that photovoltaic systems are potentially most economical, but results depend critically on future collector costs as well as energy prices. Results are based on a specially developed computer program that predicted the total auxiliary energy required for five different solar heating/cooling systems. Performance calculations for a modeled residence and small office building were made using meteorological data from four geographic locations. Annual system costs were also calculated.

Kern, E.C. Jr.; Russell, M.C.

1978-03-27T23:59:59.000Z

151

Thermal comfort and perceived air quality of a PEC system.  

E-Print Network (OSTI)

W. , Gong, N. 2007. Thermal performance of a personalizedRESULTS 1. Whole-body thermal sensation and comfort withthe PEC system Whole-body thermal sensation and comfort are

Arens, Edward; Zhang, Hui; Pasut, Wilmer

2011-01-01T23:59:59.000Z

152

Variable emissivity laser thermal control system  

DOE Patents (OSTI)

A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

Milner, J.R.

1994-10-25T23:59:59.000Z

153

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

Management & Safeguards System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials...

154

System for Award Management (SAM):  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System for Award Management (SAM) System for Award Management (SAM) ChallengeHER Opportunities for Women in Federal Contracting May 23, 2013 Judith R. Zawatsky General Services Administration You are here today because you want to: a) Get a contract with the federal government b) Get a grant from the federal government c) Increase the work you are already doing with the federal government d) Learn new acronyms WHERE DO YOU START? www.sam.gov WHAT IS SAM? The System for Award Management (SAM) is the Official U.S. Government system that consolidated the capabilities of * Central Contractor Registry (CCR) * Online Representations & Certifications Application (ORCA) * Excluded Parties List System (EPLS) WHAT DO I NEED TO DO? Create User Account Register or Update Entity Get contracts/grants

155

System design description PFP thermal stabilization  

SciTech Connect

The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides.

RISENMAY, H.R.

1998-11-10T23:59:59.000Z

156

Joint Environmental Management System (EMS) Declaration of Conformance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Environmental Management System Joint Environmental Management System (EMS) Declaration of Conformance Joint Environmental Management System (EMS) Declaration of...

157

Joint Environmental Management System (EMS) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) The environmental management system (EMS) has...

158

Undo in workflow management systems  

Science Conference Proceedings (OSTI)

Workflow Management Systems are one of the main technology for supporting Business Processes and they need to be as flexible as possible. One relevant issue arising from integration between WfMSs and corporate Information Systems is that of undo strategies, ...

Alessandra Agostini; Giorgio De Michelis; Marco Loregian

2003-06-01T23:59:59.000Z

159

Topology, Design, Analysis, and Thermal Management of Power Electronics for Hybrid Electric Vehicle Applications  

DOE Green Energy (OSTI)

Power electronics circuits play an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits in hybrid vehicles include electric motor drive circuits and DC/DC converter circuits. Conventional circuit topologies, such as buck converters, voltage source inverters and bidirectional boost converters are challenged by system cost, efficiency, controllability, thermal management, voltage and current capability, and packaging issues. Novel topologies, such as isolated bidirectional DC/DC converters, multilevel converters, and Z-source inverters, offer potential improvement to hybrid vehicle system performance, extended controllability and power capabilities. This paper gives an overview of the topologies, design, and thermal management, and control of power electronics circuits in hybrid vehicle applications.

Mi, C.; Peng, F. Z.; Kelly, K. J.; O'Keefe, M.; Hassani, V.

2008-01-01T23:59:59.000Z

160

JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers  

E-Print Network (OSTI)

JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers Raid In this work we propose a joint energy, thermal and cooling management technique (JETC) that significantly re to thermal de- pendencies between CPU and memory and non-linearity in cooling energy. This motivates us

Simunic, Tajana

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

WIMS - Waste Information Management System  

Office of Environmental Management (EM)

Welcome To WIMS Welcome To WIMS Waste Information Management System WIMS new web address: http://www.emwims.org WIMS is developed to provide DOE Headquarters and site waste managers with the tools necessary to easily visualize, understand, and manage the vast volumes, categories, and problems of forecasted waste streams. WIMS meets this need by providing a user-friendly online system to gather, organize, and present waste forecast data from DOE sites. This system provides a method for identification of waste forecast volumes, material classes, disposition pathways, and potential choke points and barriers to final disposition. Disclaimer: Disposition facility information presented is for planning purposes only and does not represent DOE's decisions or commitments. Any selection of disposition facility will be made after technical, economic, and policy considerations.

162

Thermal management of batteries using a Variable-Conductance Insulation (VCI) enclosure  

DOE Green Energy (OSTI)

Proper thermal management is important for optimum performance and durability of most electric-vehicle batteries. For high-temperature cells such as sodium/sulphur, a very efficient and responsive thermal control system is essential. Heat must be removed during exothermic periods and retained when the batteries are not in use. Current thermal management approaches rely on passive insulation enclosures with active cooling loops that penetrate the enclosure. This paper presents the design, analysis, and testing of an enclosure with variable conductance insulation (VCI). VCI uses a hydride with an integral electric resistance heater to expel and retrieve a small amount of hydrogen gas into a vacuum space. By controlling the amount of hydrogen gas, the thermal conductance can be varied by more than 100:1, enabling the cooling loop (cold plate) to be mounted on the enclosure exterior. By not penetrating the battery enclosure, the cooling system is simpler and more reliable. Also, heat can be retained more effectively when desired. For high temperatures, radiation shields within the vacuum space are required. Ceramic spacers are used to maintain separation of the steel enclosure materials against atmospheric loading. Ceramic-to-ceramic thermal contact resistance within the spacer assembly minimizes thermal conductance. Two full-scale (0.8-m {times} 0.9-m {times} 0.3-m) prototypes were designed, built, and tested under high-temperature 200{degrees}-350{degrees}C battery conditions. With an internal temperature of 330{degrees}C (and 20{degrees}C ambient), the measured total-enclosure minimum heat loss was 80 watts (excluding wire pass-through losses). The maximum heat rejection was 4100 watts. The insulation can be switched from minimum to maximum conductance (hydrogen pressure from 2.0 {times} 10{sup -3} to 8 torr) in 3 minutes. Switching from maximum to minimum conductance was longer (16 minutes), but still satisfactory because of the large thermal mass of the battery.

Burch, S.D.; Parish, R.C.; Keyser, M.A.

1995-05-01T23:59:59.000Z

163

Evaluation of Thermal Fatigue Effects on Systems Requiring Aging Management Review for License Renewal for the Calvert Cliffs Nuclear Power Plant  

Science Conference Proceedings (OSTI)

In recent years, the nuclear power industry has devoted significant attention to metal fatigue and its impact on the design qualification and serviceability of operating components. This study provides a pilot plant demonstration of the current industry technical position on fatigue evaluation for license renewal, specifically addressing reactor water environmental effects. It also develops a technical evaluation method for determining fatigue life adequacy in a feedwater piping system, a pressurizer sur...

1998-02-25T23:59:59.000Z

164

Solar-thermal power technical and management support. Program summary report  

DOE Green Energy (OSTI)

Support activities described are: preparation of the significant development weekly reports; preparation of briefings for the Solar Thermal Power Systems Program; preparation of the Annual Thermal Power Systems Technical Progress Report; Integrated Solar Thermal/Industrial Process Heat Program Plan; review of the Storage Technology Development Program for Thermal Power Systems; and review of the Thermal Power Systems Multiyear Plan. A draft of the Goals and Requirements Section of the Integrated Solar Thermal/Industrial Process Heat Program Plan is included. (LEW)

Not Available

1979-03-09T23:59:59.000Z

165

Civilian Radioactive Waste Management System Requirements Document...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management System Requirements Document More Documents & Publications Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 FY 2007 Total...

166

Low-temperature thermally regenerative electrochemical system  

DOE Patents (OSTI)

A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, R.O.; Brown, A.P.; Yao, N.P.

1982-04-21T23:59:59.000Z

167

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

168

Applications of HVAC System Utilizing Building Thermal Mass in Japan  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of HVAC System Utilizing Building Thermal Mass in Japan Applications of HVAC System Utilizing Building Thermal Mass in Japan Speaker(s): Katsuhiro Miura Date: January 27, 2012 - 10:00am Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Buildings have a large thermal capacity and it affects much on building thermal load for the HVAC system. The thermal mass can be utilized also to control the thermal load by storing thermal energy before HVAC operation. There are two ways to store thermal energy. One is by operating the HVAC system and the other is by natural ventilation, mainly at night. The latter could be combined with daily HVAC operation as a hybrid ventilation. Thermal mass storage is useful to decrease the hourly peak load and the daily thermal load and can be used for both cooling and heating purpose.

169

The Added Economic and Environmental Value of Solar Thermal Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and...

170

Using the CIM Conceptualization in Autonomic System Management: the System Management Ontology Project  

E-Print Network (OSTI)

Using the CIM Conceptualization in Autonomic System Management: the System Management Ontology across multiple organizations. The CIM standard #12;schemas, on which system databases on CIM

Calvanese, Diego

171

Safety Management System Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Program Management » Safety » Safety Management Services » Program Management » Safety » Safety Management System Policy Safety Management System Policy Safety Management Systems provide a formal, organized process whereby people plan, perform, assess, and improve the safe conduct of work. The Safety Management System is institutionalized through Department of Energy (DOE) directives and contracts to establish the Department-wide safety management objective, guiding principles, and functions. The DOE safety management system consists of six components: Objective Guiding principles Core functions Mechanisms Responsibilities Implementation Safety Management System Policy More Documents & Publications "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL

172

Thermal Analysis of Refrigeration Systems Used for Vaccine ...  

Science Conference Proceedings (OSTI)

Page 1. Thermal Analysis of Refrigeration Systems Used for Vaccine Storage ... Suitability of commercial refrigerators for vaccine storage not ...

2012-08-03T23:59:59.000Z

173

Primer/Paint System for Thermal Insulation of Vehicles  

Disclosure Number 200902299 Technology Summary The present invention comprises an improved primer/paint system for providing enhanced thermal ...

174

Nuclear Materials Management & Safeguards System | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Jobs Our Jobs Working at NNSA Blog Nuclear Materials Management & Safeguards System Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management &...

175

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

176

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

energy conversion systems ..on thermal energy conversion systems As energy demandsefficient energy conversion in power systems," in Thermal

Ho, Tony

2012-01-01T23:59:59.000Z

177

Thermal Storage Systems at IBM Facilities  

E-Print Network (OSTI)

In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27,000 ton hours. Through reduced chiller plant capacity and annual operating cost savings in primarily electric demand charges the payback will be approximately 3 1/2 years. The water is stored in multiple, insulated tanks, located above the ground. A similar but smaller system at IBM's Charlotte, North Carolina plant has no provisions for heat reclaim. Instead, it uses cooling tower water directly in the chilled water circuit when outside conditions permit. This paper presents system designs, control modes and economic considerations and describes IBM's experience to date with large volume storage systems.

Koch, G.

1981-01-01T23:59:59.000Z

178

Integrated thermal treatment system study: Phase 1 results. Volume 1  

Science Conference Proceedings (OSTI)

An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

1994-07-01T23:59:59.000Z

179

An energy management framework for energy harvesting embedded systems  

Science Conference Proceedings (OSTI)

Energy harvesting (also known as energy scavenging) is the process of generating electrical energy from environmental energy sources. There exists a variety of different energy sources such as solar energy, kinetic energy, or thermal energy. In recent ... Keywords: Power management, embedded systems, energy harvesting, model predictive control, real-time scheduling, reward maximization

Clemens Moser; Jian-Jia Chen; Lothar Thiele

2010-06-01T23:59:59.000Z

180

Integrated Safety Management (ISM) - System Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

System Descriptions Integrated Safety Management (ISM) ism logo Sample DOE Contractor ISM System Descriptions Sample DOE Site Office ISM System Descriptions DOE HQ Program Office...

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Efficient thermal management for multiprocessor systems  

E-Print Network (OSTI)

the autocorrelation function (ACF). Autocorrelation is theresiduals are random, the ACF of all residuals (except forassumed as random if the ACF for the majority of the trace

Co?kun, Ay?e K?v?lc?m

2009-01-01T23:59:59.000Z

182

THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS  

E-Print Network (OSTI)

orientation, location, weather, and solar conditions, andso-called "weather tapes") contain information about solarweather conditions (Le. , sun and cloud coverage, wind direction and velo- city), direct and delayed solar

Selkowitz, S. E.

2011-01-01T23:59:59.000Z

183

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

184

Thermal Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Energy Systems Energy Systems Jump to: navigation, search Name Thermal Energy Systems Place London, United Kingdom Sector Biomass Product UK based company that constructs and installs boilers for biomass projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

DOCS System Configuration Management Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOCS System Configuration Management Plan DOCS System Configuration Management Plan The DOCS Systems Configuration Management Plan (SCMP), from an actual DOE systems engineering...

186

An Operational Global-Scale Ocean Thermal Analysis System  

Science Conference Proceedings (OSTI)

The Optimum Thermal Interpolation System (OTIS) is an ocean thermal analysis product developed for real-time operational use at the U.S. Navy's Fleet Numerical Oceanography Center. It functions in an analysis-prediction-analysis data assimilation ...

R. Michael Clancy; Patricia A. Phoebus; Kenneth D. Pollak

1990-04-01T23:59:59.000Z

187

Thermal reclaimer apparatus for a thermal sand reclamation system  

SciTech Connect

A thermal reclaimer apparatus is disclosed for thermally removing from the used foundry sand the organic matter that is present therein. The subject thermal reclaimer apparatus includes chamber means in which the used foundry sand is heated to a predetermined temperature for a preestablished period in order to accomplish the burning away of the organic matter that the used foundry sand contains. The chamber means includes inlet means provided at one end thereof and outlet means provided at the other end thereof. Feed means are cooperatively associated with the pipe means and thereby with the inlet means for feeding the used foundry sand through the inlet means into the chamber means. The subject thermal reclaimer apparatus further includes rotating means operative for effecting the rotation of the chamber means as the used foundry sand is being heated therein. The chamber means has cooperatively associated therewith burner means located at the same end thereof as the outlet means. The burner means is operative to effect the heating of the used foundry sand to the desired temperature within the chamber means. Tumbling means are provided inside the chamber means to ensure that the used foundry sand is constantly turned over, i.e., tumbled, and that the lumps therein are broken up as the chamber means rotates. Lastly, the used foundry sand from which the organic matter has been removed leaves the chamber means through the outlet means.

Deve, V.

1984-02-07T23:59:59.000Z

188

Automated Transportation Management System (ATMS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Re evised June 2010 Re evised June 2010 Autom The Depa Transport an integra system al outbound air. Its ea 1989 DOE significant operationa commerce electronic rates, pre transporta users eva shipments opportunit logistics im ATMS is i radioactiv shipments System ATMS is a activities p packaging including materials. common s lading, fre * W * C S * A * H * E * * O 0 mated T artment of Ene tation Manage ated web-base lowing users freight shipm arly developm E Inspector G t opportunitie al efficiency t e. Today's sy cally prepare s pare shipping ation bills befo aluate carrier s, and use co ties for system mprovements ts capability t ve and other h s in a comple Modules a modular sys performed by g and transpo radioactive a . Its modules shipment info eight bills, rate System Web Applic Carrier Eval Selection Automated

189

Integrated Building Management System (IBMS)  

SciTech Connect

This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

Anita Lewis

2012-07-01T23:59:59.000Z

190

DOI 10.1007/s11227-010-0453-8 Proactive thermal management in green datacenters  

E-Print Network (OSTI)

Abstract The increasing demand for faster computing and high storage capacity has resulted in an increase in energy consumption and heat generation in datacenters. Because of the increase in heat generation, cooling requirements have become a critical concern, both in terms of growing operating costs as well as their environmental and societal impacts. Presently, thermal management techniques make an effort to thermally profile and control datacenters ’ cooling equipment to increase their efficiency. In conventional thermal management techniques, cooling systems are triggered by the temperature crossing predefined thresholds. Such reactive approaches result in delayed response as the temperature may already be too high, which can result in performance degradation of hardware. In this work, a proactive control approach is proposed that jointly optimizes the air conditioner compressor duty cycle and fan speed to prevent heat imbalance—the difference between the heat generated and extracted from a machine—thus minimizing the cost of cooling. The proposed proactive optimization framework has two objectives: (i) minimize the energy consumption of the cooling system, and (ii) minimize the risk of equipment damage due to overheating. Through thorough simulations comparing the proposed proactive heat-imbalance estimation-based approach against conventional reactive temperature-based schemes, the superiority of the proposed ap-

Eun Kyung; Lee Indraneel Kulkarni; Dario Pompili; Manish Parashar; E. K. Lee; I. Kulkarni; D. Pompili; M. Parashar; I. Kulkarni; D. Pompili; M. Parashar

2010-01-01T23:59:59.000Z

191

System Support for Distributed Energy Management in Modular Operating Systems.  

E-Print Network (OSTI)

??This thesis proposes a novel approach for managing energy in modular operating systems. Our approach enables energy awareness if the resource-management subsystem is distributed among… (more)

Stöß, Jan

2010-01-01T23:59:59.000Z

192

Guidelines for System Security and Information System Management  

Science Conference Proceedings (OSTI)

This document provides a concise set of guidelines and best practices for performing risk assessment, security management, and system management within utility automation networks.

2008-06-09T23:59:59.000Z

193

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:. Recent Thermal Management Techniques for  

E-Print Network (OSTI)

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:. Recent Thermal Management Techniques are higher- capacity alternatives to conventional air cooling techniques. Thermal reliability/security issues, performance and reliability ACM File Format: KONG, J., CHUNG, S. W., AND SKADRON, K., 2010. Recent Thermal

Skadron, Kevin

194

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

195

EIS-0285: Transmission System Vegetation Management Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission System Vegetation Management Program June 23, 2000 EIS-0285: EPA Notice of Availability of the Final Environmental Impact Statement Transmission System Vegetation...

196

US Department of Energy Solar Thermal Energy Systems Program. An overview presentation, August 1979  

DOE Green Energy (OSTI)

Intended as both a position paper and a progress report to industry, this document provides a comprehensive overview of the US Department of Energy's Solar Thermal Program. Cost goals, systems design parameters, applications considerations, and the potential for industry involvement in solar thermal development and commercialization are described in detail. Decentralized management of R and D functions is linked to priorities and strategies of the evolving program.

Braun, G W

1980-06-01T23:59:59.000Z

197

PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM...

198

PIA - EERE Infrastructure-EERE Reviewer Management System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EERE Infrastructure-EERE Reviewer Management System PIA - EERE Infrastructure-EERE Reviewer Management System PIA - EERE Infrastructure-EERE Reviewer Management System PIA - EERE...

199

Thermal-Electric Conversion Efficiency of the Dish/AMTEC Solar Thermal Power System in Wind Condition  

Science Conference Proceedings (OSTI)

The dish/AMTEC solar thermal power system is a newly proposed solar energy utilization system that enables the direct thermal-electric conversion. The performance of the solar dish/AMTEC system in wind condition has been theoretically evaluated in addition ... Keywords: dish/AMTEC solar thermal power system, efficiency, thermal-electric conversion, wind condition

Lan Xiao; Shuang-Ying Wu; You-Rong Li

2012-07-01T23:59:59.000Z

200

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1....

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Power Electronic Thermal System Performance and Integration (Presentation)  

DOE Green Energy (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL Power Electronic Thermal System Performance and Integration Project.

Bennion, K.

2009-05-01T23:59:59.000Z

202

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and...

203

Concentrating Solar Power Thermal Storage System Basics | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Storage System Basics Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to generate electricity. If the receiver contains oil or molten salt as the heat-transfer medium, then the thermal energy can be stored for later use. This enables CSP systems to be cost-competitive options for providing clean, renewable energy. Several thermal energy storage technologies have been tested and

204

Dynamic power management in environmentally powered systems  

Science Conference Proceedings (OSTI)

In this paper a framework for energy management in energy harvesting embedded systems is presented. As a possible example scenario, we focus on wireless sensor nodes which are powered by solar cells. We demonstrate that classical power management solutions ... Keywords: embedded systems, energy harvesting, model predictive control, power management, real-time scheduling, reward maximization

Clemens Moser; Jian-Jia Chen; Lothar Thiele

2010-01-01T23:59:59.000Z

205

Definition: Distribution Management System | Open Energy Information  

Open Energy Info (EERE)

Management System Management System Jump to: navigation, search Dictionary.png Distribution Management System A Distribution Management System (DMS) is a utility IT system capable of collecting, organizing, displaying and analyzing real-time or near real-time electric distribution system information. A DMS can also allow operators to plan and execute complex distribution system operations in order to increase system efficiency, optimize power flows, and prevent overloads. A DMS can interface with other operations applications such as geographic information systems (GIS), outage management systems (OMS), and customer information systems (CIS) to create an integrated view of distribution operations.[1] View on Wikipedia Wikipedia Definition In the recent years, utilization of electrical energy increased

206

Thermal performance of concrete masonry unit wall systems  

Science Conference Proceedings (OSTI)

New materials, modern building wall technologies now available in the building marketplace, and unique, more accurate, methods of thermal analysis of wall systems create an opportunity to design and erect buildings where thermal envelopes that use masonry wall systems can be more efficient. Thermal performance of the six masonry wall systems is analyzed. Most existing masonry systems are modifications of technologies presented in this paper. Finite difference two-dimensional and three-dimensional computer modeling and unique methods of the clear wall and overall thermal analysis were used. In the design of thermally efficient masonry wall systems is t to know how effectively the insulation material is used and how the insulation shape and its location affect the wall thermal performance. Due to the incorrect shape of the insulation or structural components, hidden thermal shorts cause additional heat losses. In this study, the thermal analysis of the clear wall was enriched with the examination of the thermal properties of the wall details and the study of a quantity defined herein the Thermal Efficiency of the insulation material.

Kosny, J.

1995-12-31T23:59:59.000Z

207

Tank waste remediation system configuration management plan  

SciTech Connect

The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

Vann, J.M.

1998-01-08T23:59:59.000Z

208

Appendix 1 -Additional iManage Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Additional iManage/Corporate Information Systems - Additional iManage/Corporate Information Systems In addition to STARS, STRIPES, IDW/iPortal, these are corporate systems maintained by the Office of Corporate Information Systems. These systems are currently not included as part of the requirements. Application/Project Automated Time and Attendance (ATAAPS) Budget and Reporting Code System (BARC) Budget Table System (BTS) Consent Order Tracking System (COTS) Consolidated Accounting and Investment System (CAIS) Departmental Audit Report Tracking System (DARTS) - Enhancements Departmental Audit Report Tracking System (DARTS) - Existing Departmental Inventory Management System (DIMS) DOEInfo eMailList ePerformance eRooms (Pensions) External CFO Website Folio (Portfolio Management) Funds Distribution System (FDS)

209

Thermal Systems Process and Components Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

Not Available

2011-10-01T23:59:59.000Z

210

Integrated Requirements Management System and System Design Description  

Science Conference Proceedings (OSTI)

This document provides a System Design Description (SDD) for the Integrated Requirements Management System (IRMS) database. The database manager chosen for this task was the Dynamic Object Oriented Requirements System (DOORS) Version 5.0 or greater. The schema for the IRMS is described with respect to the CH2M Hill Hanford Group, Inc requirements management processes.

ACREE, C.D.

2001-03-27T23:59:59.000Z

211

Architecting dependable systems with proactive fault management  

Science Conference Proceedings (OSTI)

Management of an ever-growing complexity of computing systems is an everlasting challenge for computer system engineers. We argue that we need to resort to predictive technologies in order to harness the system's complexity and transform a vision of ...

Felix Salfner; Miroslaw Malek

2010-01-01T23:59:59.000Z

212

Non-ferrous Metals Industry Energy Management System Certification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-ferrous Metals Industry Energy Management System Certification Details about China Quality Certification Center and Energy Management System certifications....

213

Design of thermal imprinting system with uniform residual thickness  

Science Conference Proceedings (OSTI)

A new thermal imprinting system for the printed circuit boards (PCBs) with both large areas and fine conducting lines was developed adopting hot airs with a high pressure. Several small nickel stamps were used to cover the large area, and the stamps ... Keywords: Patterned circuit boards, Thermal imprinting system, Uniformity of residual thickness

Won-Ho Shin

2009-11-01T23:59:59.000Z

214

Advanced Ceramic Composites for Improved Thermal Management in Molten Aluminum Applications  

Science Conference Proceedings (OSTI)

Degradation of refractories in molten aluminum applications leads to energy inefficiencies, both in terms of increased energy consumption during use as well as due to frequent and premature production shutdowns. Therefore, the ability to enhance and extend the performance of refractory systems will improve the energy efficiency through out the service life. TCON? ceramic composite materials are being produced via a collaboration between Fireline TCON, Inc. and Rex Materials Group. These materials were found to be extremely resistant to erosion and corrosion by molten aluminum alloys during an evaluation funded by the U.S. Department of Energy and it was concluded that they positively impact the performance of refractory systems. These findings were subsequently verified by field tests. Data will be presented on how TCON shapes are used to significantly improve the thermal management of molten aluminum contact applications and extend the performance of such refractory systems.

Peters, Klaus-Markus [ORNL; Cravens, Robert [Rex Materials Group; Hemrick, James Gordon [ORNL

2009-01-01T23:59:59.000Z

215

Environmental Management Systems (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Management Systems (Iowa) Environmental Management Systems (Iowa) Environmental Management Systems (Iowa) < Back Eligibility Local Government Municipal/Public Utility Tribal Government Program Info State Iowa Program Type Environmental Regulations Fees Training/Technical Assistance Siting and Permitting Provider Iowa Department of Natural Resources A solid waste planning area (e.g., the land encompassed by a municipality with a comprehensive solid waste management policy) may qualify to be an Environmental Management System if it provides multiple environmental services in addition to solid waste disposal and plans for the continuous improvement of solid waste management by appropriately and aggressively mitigating the environmental impacts of solid waste disposal, including greenhouse gas emissions reduction measures. Environmental Management

216

Methodical Construction of Database Management Systems  

E-Print Network (OSTI)

Although more and more database management systems are being developed, constructing such systems in an engineering fashion remains an open problem. An engineering attitude towards construction not only tells how to implement a database management system, but also tries to minimize construction time. Hence, the prime objective of an engineering-style construction approach is construction efficiency.

Andreas Geppert; Erlangung Der; Philosophischen Doktorwrde; Vorgelegt Der; Begutachtet Von; Den Herren; K. R. Dittrich; K. Bauknecht; Prof Dr; Prof Dr; Prof Dr; M. Glinz

1994-01-01T23:59:59.000Z

217

A model for international border management systems.  

SciTech Connect

To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

Duggan, Ruth Ann

2008-09-01T23:59:59.000Z

218

iManage Strategic Integrated Procurement Enterprise System (STRIPES...  

NLE Websites -- All DOE Office Websites (Extended Search)

iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA, Office of Procurement and Assistance Management iManage Strategic Integrated Procurement Enterprise System...

219

PIA - iManage Strategic Integrated Procurement Enterprise System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA - iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA - iManage Strategic...

220

PIA - iManage Strategic Integrated Procurement Enterprise System...  

NLE Websites -- All DOE Office Websites (Extended Search)

iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA - iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA - iManage Strategic Integrated...

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Integrated Thermal Treatment Systems study: US Department of Energy Internal Review Panel report  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy`s (DOE) Office of Technology Development (OTD) commissioned two studies to uniformly evaluate nineteen thermal treatment technologies. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the advice and guidance of the DOE Office of Environmental Management`s (EM`s) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel, composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency (EPA), the California EPA, and private experts. The Panel met from November 15-18, 1994, to review and comment on the ITTS studies, to make recommendations on the most promising thermal treatment systems for DOE mixed low level wastes (MLLW), and to make recommendations on research and development necessary to prove the performance of the technologies on MLLW.

Cudahy, J.; Escarda, T.; Gimpel, R. [and others

1995-04-01T23:59:59.000Z

222

Contractor Earned Value Management System Certification Status...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Centers Field Sites Power Marketing Administration Other Agencies You are here Home Contractor Earned Value Management System Certification Status Contractor Earned...

223

Nuclear Materials Management & Safeguards System CONTACT INFORMATION...  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Business Name PhoneFax...

224

Power management system - Energy Innovation Portal  

A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in ...

225

ORISE: Asset Readiness Management System (ARMS)  

NLE Websites -- All DOE Office Websites (Extended Search)

How ORISE is Making a Difference Asset Readiness Management System (ARMS) Tracks Emergency Response Exercises and Equipment Developed by the Oak Ridge Institute for Science and...

226

Thermal barrier coating for alloy systems  

DOE Patents (OSTI)

An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

2000-01-01T23:59:59.000Z

227

Thermal Storage Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to...

228

Automated rapid thermal imaging systems technology  

E-Print Network (OSTI)

A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy ...

Phan, Long N., 1976-

2012-01-01T23:59:59.000Z

229

Assessment of Latent Heat Reservoirs for Thermal Management of QCW Laser Diodes  

SciTech Connect

There is great interest in improving the thermal management of laser diodes intended for use as pumps in inertial confinement fusion systems. Laser diode power is currently constrained by heat dissipation in the diodes. Diodes typically dissipate a quantity of heat that is comparable to their optical power output. This heating of the diode junction causes a thermal rollover that prevents the output power from scaling linearly with current drive, and also results in reliability limits due to catastrophic failure at diode mirror facets. For the pulsed, quasi-continuous wave (QCW) operating mode employed for LIFE and certain DOD applications, {approx}5 kW/cm{sup 2} of heat must be removed on timescales of {approx}100{micro}s, which is determined by thermal paths located within {approx}200 {micro}m of the laser junction. For these reasons, QCW thermal management is extremely challenging. Reducing the diode junction temperature enables more efficient operation, reduced thermal chirp, and operation at higher output power without compromised reliability - which improves the diode costs as measured in $/W. We have proposed the use of latent heat reservoirs to improve thermal management of diodes used in pulsed, quasi-continuous wave (QCW) operation. Our basic concept involves placement of a reservoir of low-melting-point metal within a few hundred microns of the laser junction, as in Fig. 1-1. This metal's latent heat of fusion maintains a nearly constant temperature (like a cold plate) in the very near vicinity of the diode junction. This cold reservoir creates large thermal gradients, which in turn are anticipated to drive a large heat flow from the diode. In contrast, conventional QCW devices rely on thermal diffusion into a large solid mass which cannot be held at a fixed temperature, which significantly limits the thermal extraction. Our operational concept involves phase changes within the reservoir during every QCW pulse. During the early portion of the pulse, heating of the diode and its surrounding material initiates melting within the latent heat reservoir. This phase change results in a near-constant reservoir temperature that facilitates heat transfer. During the long ({approx}100 ms) time between QCW pulses, the reservoir metal resolidifies. A simple back-of-the-envelope calculation based on Gallium metal shows that a 50 {micro}m thick Gallium reservoir is sufficient to absorb all heat generated by a 350 {micro}s pulse at 5 kW/cm{sup 2}. While this calculation shows that a latent heat reservoir can provide sufficient capacity to handle the magnitude of heat generated, it does not address the transient change in the diode junction temperature, which depends on details the heat flow into and through the reservoir. For this reason, we undertook a set of numerical experiments to quantitatively assess the impact of latent heat reservoirs on junction temperature. This report documents the results of these simulations.

Deri, B; Kotovsky, J; Spadaccini, C

2010-03-15T23:59:59.000Z

230

Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling  

SciTech Connect

The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.

Pannala, S.; D'Azevedo, E.; Zacharia, T.

2002-02-26T23:59:59.000Z

231

Open cycle ocean thermal energy conversion system  

DOE Patents (OSTI)

An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

232

Distributed Systems for Energy Management  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings-to-grid, responsive loads, on-line monitoring of efficiency programs, microgrids, and other forms of distributed resource management. A key challenge will be the...

233

Environmental Information Management System (EIMS)  

NLE Websites -- All DOE Office Websites (Extended Search)

from BNL's environmental sampling programs. Applications are available to users to query, display, export and print data as well as several data management utilities,...

234

A thermal energy storage system for adsorbent low-pressure natural gas storage  

SciTech Connect

Thermal energy storage (TES) was previously demonstrated to be a potentially promising technique to mitigate heat effects associated with low-pressure carbon adsorption systems for natural gas storage. Further investigations were conducted to develop information for the design of an optimized adsorption system that incorporates TES heat management. The selection of appropriate phase-change materials and nucleating agents, encapsulant materials, and corrosion inhibitors for a TES heat management system are discussed and the results of extended thermal cyclic behavior are presented. Engineering analyses and finite element analyses are employed to calculate adsorption rates, heat generation, temperatures, and heat transfer within the adsorbent bed. The size, volume, and arrangement of components for an operational TES system designed to accommodate fast-fill within a defined time limit is presented.

Jasionowski, W.J.; Kountz, K.J.; Blazek, C.F.; Tiller, A.J. (Institute of Gas Technology, Chicago, IL (United States)); Gauthier, S.W.; Takagishi, S.K. (Gas Research Inst., Chicago, IL (United States))

1992-01-01T23:59:59.000Z

235

A thermal energy storage system for adsorbent low-pressure natural gas storage  

SciTech Connect

Carbon-based adsorbents were determined to be the best enhanced storage media that would store more natural gas at low pressures than achieved with compression only. Thermal energy storage (TES) was previously demonstrated to be a potentially promising technique to mitigate heat effects associated with low-pressure carbon adsorption systems for natural gas storage. Further investigations were conducted to develop information for the design of an optimized adsorption system that incorporates TES heat management. The selection of appropriate phase-change materials and nucleating agents, encapsulant materials, and corrosion inhibitors for a TES heat management system are discussed and the results of extended thermal cyclic behavior are presented. Engineering analyses and finite element analyses are employed to calculate adsorption rates, heat generation, temperatures, and heat transfer within the adsorbent bed. The size, volume, and arrangement of components for an operational TES system designed to accommodate fast-fill within a defined time limit is presented.

Blazek, C.F.; Jasionowski, W.J.; Kountz, K.J.; Tiller, A.J. [Institute of Gas Technology, Chicago, IL (United States); Gauthier, S.W.; Takagishi, S.K. [Gas Research Inst., Chicago, IL (United States)

1992-12-31T23:59:59.000Z

236

Scalable data management in distributed information systems  

Science Conference Proceedings (OSTI)

In the era of cloud computing and huge information systems, distributed applications should manage dynamic workloads; i.e., the amount of client requests per time unit may vary frequently and servers should rapidly adapt their computing efforts to those ... Keywords: NoSQL, cloud computing, data management, distributed system, high availability, scalability

M. Remedios Pallardó-Lozoya; Javier Esparza-Peidro; José-Ramón García-Escrivá; Hendrik Decker; Francesc D. Muñoz-Escoí

2011-10-01T23:59:59.000Z

237

Printable, flexible and stretchable diamond for thermal management  

DOE Patents (OSTI)

Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

2013-06-25T23:59:59.000Z

238

Advanced thermal barrier coating system development. Technical progress report  

Science Conference Proceedings (OSTI)

This report describes work to develop new thermal barrier coating systems, which will be essential to the operation of the ATS engine which is under development. Work is at the stage of process improvement and bond coat improvement, along with proof testing of the coatings under thermal conditions typical of what can be expected in the ATS engine.

NONE

1998-03-16T23:59:59.000Z

239

iManage: Policy-Driven Self-management for Enterprise-Scale Systems  

E-Print Network (OSTI)

iManage: Policy-Driven Self-management for Enterprise-Scale Systems Vibhore Kumar, Brian F. Cooper of an adminis- trator's needs. In our iManage system we have developed a policy-driven system modeling framework that aims to bridge the gap between manageable compo- nents and manageable systems. In particular, iManage

Eisenhauer, Greg S.

240

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)  

SciTech Connect

Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

2009-11-01T23:59:59.000Z

242

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

Design." Atlanta, American Society of Heating, Refrigeration, andRefrigeration, and Air Conditioning Engineers Brake horsepower Building Management System Constant air volume Center for Environmental Design

Xu, T.

2011-01-01T23:59:59.000Z

243

Industry InteractiveProcurement System PIA, Office of Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry InteractiveProcurement System PIA, Office of Management Industry InteractiveProcurement System PIA, Office of Management Industry InteractiveProcurement System PIA, Office...

244

Optimal control for maximum power in thermal and chemical systems  

Science Conference Proceedings (OSTI)

This research treats power optimization for energy converters, such like thermal, solar and chemical engines. Thermodynamic analyses lead to converter's efficiency and limiting power. Steady and dynamic systems are investigated. Static optimization of ...

Stanislaw Sieniutycz

2009-09-01T23:59:59.000Z

245

Applications of HVAC System Utilizing Building Thermal Mass in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of HVAC System Utilizing Building Thermal Mass in Japan Speaker(s): Katsuhiro Miura Date: January 27, 2012 - 10:00am Location: 90-3122 Seminar HostPoint of Contact:...

246

User's manual for computer code SOLTES-1 (simulator of large thermal energy systems). [For CDC 6600  

DOE Green Energy (OSTI)

SOLTES simulates the steady-state response of thermal energy systems to time-varying data such as weather and loads. Thermal energy system models of both simple and complex systems can easily be modularly constructed from a library of routines. These routines mathematically model solar collectors, pumps, switches, thermal energy storage, thermal boilers, auxiliary boilers, heat exchangers, extraction turbines, extraction turbine/generators, condensers, regenerative heaters, air conditioners, heating and cooling of buildings, process vapor, etc.; SOLTES also allows user-supplied routines. The analyst need only specify fluid names to obtain readout of property data for heat-transfer fluids and constants that characterize power-cycle working fluids from a fluid property data bank. A load management capability allows SOLTES to simulate total energy systems that simultaneously follow heat and power loads and demands. Generalized energy accounting is available, and values for system performance parameters may be automatically determined by SOLTES. Because of its modularity and flexibility, SOLTES can be used to simulate a wide variety of thermal energy systems such as solar power/total energy, fossil fuel power plants/total energy, nuclear power plants/total energy, solar energy heating and cooling, geothermal energy, and solar hot water heaters.

Fewell, M.E.; Grandjean, N.R.; Dunn, J.C.; Edenburn, M.W.

1978-09-01T23:59:59.000Z

247

Trends in Energy Management Technologies - Part 5: Effectiveness of Energy Management Systems: What the Experts Say and Case Studies Reveal  

E-Print Network (OSTI)

computerized maintenance management systems (CMMS)). Energymaintenance of mechanical and electrical systems, and management

Webster, Tom

2005-01-01T23:59:59.000Z

248

Integrated safety management system verification: Volume 2  

Science Conference Proceedings (OSTI)

Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalization of an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR, 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System (ISMS). Guidance and expectations have been provided to PNNL by incorporation into the operating contract (Contract DE-ACM-76FL0 1830) and by letter. The contract requires that the contractor submit a description of their ISMS for approval by DOE. PNNL submitted their proposed Safety Management System Description for approval on November 25,1997. RL tentatively approved acceptance of the description pursuant to a favorable recommendation from this review. The Integrated Safety Management System Verification is a review of the adequacy of the ISMS description in fulfilling the requirements of the DEAR and the DOE Policy. The purpose of this review is to provide the Richland Operations Office Manager with a recommendation for approval of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and to verify the extent and maturity of ISMS implementation within the Laboratory. Further the review will provide a model for other DOE laboratories managed by the Office of Assistant Secretary for Energy Research.

Christensen, R.F.

1998-08-10T23:59:59.000Z

249

System Engineering Design [Nuclear Waste Management using  

NLE Websites -- All DOE Office Websites (Extended Search)

System Engineering System Engineering Design Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology System Engineering Design Bookmark and Share Two major pieces of electrometallurgical process equipment are the Electrorefiner and the Cathode Processor. NE personnel have been involved in the conceptual design, final design, procurement, manufacture,

250

Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage  

E-Print Network (OSTI)

Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation hours) by utilizing a large amount of the thermal capacity of building structures such as beams, columns and floors composed of concrete. These BSTS systems have recently been considered as one method for leveling hourly electricity demands for HVAC on a day-to-day basis. Through a simulation using a model developed with experimental data, this paper describes how various factors for the design and operation of a BSTS quantitatively affect the charge/discharge performances of a HVAC system. As a result, the following was revealed: the thermal performance of the system is strongly influenced by the daily heat storage operation hours, supply air volume and supply air temperature during the nighttime operation hours, stored heat caused the total daytime cooling extraction to decrease by 11% to 58% and the daily total cooling extraction through nighttime to daytime to increase by 4% to 17% compared with the values of non- thermal storage HVAC system.

Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

2007-01-01T23:59:59.000Z

251

Definition: Outage Management System | Open Energy Information  

Open Energy Info (EERE)

Outage Management System Outage Management System A software application that can process outage reports from a variety of utility operational systems including SCADA, AMI, and customer phone calls, and display outage information to utility operators. The OMS can help a utility interpret outage information and determine where the likely cause of an outage may be. It can also help the utility optimize its service restoration resources.[1] Related Terms advanced metering infrastructure References ↑ https://www.smartgrid.gov/category/technology/outage_management_system [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Outage_Management_System&oldid=502507

252

Peak Load Management of Thermal Loads Using Advanced Thermal Energy Storage Technologies  

Science Conference Proceedings (OSTI)

Almost 50% of electric energy delivered to residences is converted into some sort of thermal energy—hot water, air conditioning, and refrigeration. Storing energy in thermal form is cheaper especially when the medium used to store the energy is an end-use medium for example, hot water. This technical update evaluates two different technologies for storing energy—in cold water and in hot water.GreenPeak technology, a storage condensing unit (SCU) from IE Technologies, uses an ...

2013-12-20T23:59:59.000Z

253

Integrated thermal treatment system sudy: Phase 2, Results  

Science Conference Proceedings (OSTI)

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

Feizollahi, F.; Quapp, W.J.

1995-08-01T23:59:59.000Z

254

Thermal Modeling, Characterization and Management of On-chip Networks  

E-Print Network (OSTI)

Due to the wire delay constraints in deep submicron technology and increasing demand for on-chip bandwidth, networks are becoming the pervasive interconnect fabric to connect processing elements on chip. With ever-increasing power density and cooling costs, the thermal impact of onchip networks needs to be urgently addressed.

Li Shang; Li-shiuan Peh; Amit Kumar; Niraj K. Jha

2004-01-01T23:59:59.000Z

255

Systems modelling for effective mine water management  

Science Conference Proceedings (OSTI)

Concerns about the difficulties in securing water have led the Australian coal mining industry to seek innovative ways to improve its water management and to adopt novel strategies that will lead to less water being used and more water being reused. ... Keywords: Mining, Sustainable development, Systems model, Water balance, Water resources management

Claire M. Côte; Chris J. Moran; Christopher J. Hedemann; Christian Koch

2010-12-01T23:59:59.000Z

256

Development of dam safety management system  

Science Conference Proceedings (OSTI)

Recently, we can see an increasing amount of dam damage or failure due to aging, earthquakes occurrence and unusual changes in weather. For this reason, dam safety is gaining more importance than ever before in terms of disaster management at a national ... Keywords: Dam safety, Dam safety issue, Dam safety management system, Field inspection, Instrumentation, Monitoring, Safety evaluation

Jesung Jeon; Jongwook Lee; Donghoon Shin; Hangyu Park

2009-08-01T23:59:59.000Z

257

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

DOE Green Energy (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

258

Integrated safety management system verification: Volume 1  

SciTech Connect

Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System. The Manager, Richland Operations Office (RL), initiated a combined Phase 1 and Phase 2 Integrated Safety Management Verification review to confirm that PNNL had successfully submitted a description of their ISMS and had implemented ISMS within the laboratory facilities and processes. A combined review was directed by the Manager, RL, based upon the progress PNNL had made in the implementation of ISM. This report documents the results of the review conducted to verify: (1) that the PNNL integrated safety management system description and enabling documents and processes conform to the guidance provided by the Manager, RL; (2) that corporate policy is implemented by line managers; (3) that PNNL has provided tailored direction to the facility management; and (4) the Manager, RL, has documented processes that integrate their safety activities and oversight with those of PNNL. The general conduct of the review was consistent with the direction provided by the Under Secretary`s Draft Safety Management System Review and Approval Protocol. The purpose of this review was to provide the Manager, RL, with a recommendation to the adequacy of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and, to provide an evaluation of the extent and maturity of ISMS implementation within the Laboratory. Further, this review was intended to provide a model for other DOE Laboratories. In an effort to reduce the time and travel costs associated with ISM verification the team agreed to conduct preliminary training and orientation electronically and by phone. These activities are normally conducted during a pre-visit trip to the site. The Team recommends approval of the Integrated Safety Management System Description subject to the resolution of the Areas of Concerns noted here.

Christensen, R.F.

1998-08-12T23:59:59.000Z

259

Solar thermal repowering systems integration. Final report  

DOE Green Energy (OSTI)

This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

1979-08-01T23:59:59.000Z

260

The effect of load parameters on system thermal performance  

SciTech Connect

The effects of load size, load profile and hot water set temperature on system thermal performance are investigated in order to determine the relative importance of these design parameters in sizing a solar water heating system. The WATSUN IV computer program was used to introduce various load sizes, load profiles and set temperatures to a base model. The results indicate that variations in load size have a significant effect on the thermal performance of the system. However, variations in load profile and hot water set temperature seem to have no significant effect on system performance.

Vakili, M.

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Integrated thermal treatment system study -- Phase 2 results. Revision 1  

SciTech Connect

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

Feizollahi, F.; Quapp, W.J.

1996-02-01T23:59:59.000Z

262

Analysis of the Thermal Loads on the KSTAR Cryogenic System  

SciTech Connect

A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.

Kim, Y.S.; Oh, Y.K.; Kim, W.C.; Park, Y.M.; Lee, Y.J.; Jin, S.B.; Sa, J.W.; Choi, C.H.; Cho, K.W.; Bak, J.S.; Lee, G.S. [Korea Basic Science Institute, Yusung-Ku, Daejeon 305-806 (Korea, Republic of)

2004-06-23T23:59:59.000Z

263

Computerized Maintenance Management Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Operations & Maintenance » Computerized Program Areas » Operations & Maintenance » Computerized Maintenance Management Systems Computerized Maintenance Management Systems October 7, 2013 - 9:35am Addthis Computerized maintenance management systems (CMMS) are a type of management software that perform functions in support of operations and maintenance (O&M) programs. The software automates most of the logistical functions performed by O&M staff. Capabilities Typical CMMS functions depend on the complexity of the system chosen. Examples include: Work order generation, prioritization, and tracking by equipment and/or component. Work orders often can be sorted by equipment, date, person responding, etc. Tracking scheduled and unscheduled maintenance activities Storing technical documentation and maintenance procedures by

264

Optimal dynamic management of energy systems: implementations ...  

Science Conference Proceedings (OSTI)

Abstract Management of multiple systems to generate energy is important with regard to the costs to incur, the effects on the environment and the flexibility of the ...... The average values of the coefficients were obtained from the dated values of  ...

265

A Total Energy & Water Quality Management System  

Science Conference Proceedings (OSTI)

This report develops a generic model for an energy and water quality management system for the water community, and defines standard specifications for software applications required to minimize energy costs within the constraints of water quality and operation goals.

1999-09-30T23:59:59.000Z

266

Managing trust in distributed agent systems  

Science Conference Proceedings (OSTI)

Software agent technology has attracted much attention for developing various distributed systems, composed of autonomous agents interacting with one another using particular mechanisms and protocols. Such systems provide high-level reconfigurability, ... Keywords: distributed agent systems, security, situation-awareness, trust, trust management

Stephen S. Yau

2006-09-01T23:59:59.000Z

267

UNCLASSIFIED Nuclear Materials Management & Safeguards System  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous Project Number(s) Status Code Allotment Code (S=Supplier, U=User) I authorize that the information listed above is for the NMMSS Program to use as part of the project number conversion process for this facility.

268

Design for an information-management system  

DOE Green Energy (OSTI)

The design of an information management system to assemble, classify, and catalog existing documentation on the development of the Geysers/Calistoga Known Geothermal Resources Area (KGRA) is presented. The study consisted of several components: user need requirements, design of the system, survey of information management systems, and systems analysis and cost proposal. User input concerning information requirements and system characteristics were obtained from interviews (personal and telephone) and a questionnaire. The sample user population expressed a need for the identification and access to relevant information concerning local geothermal development. Furthermore, it was a consensus of opinion that the creation of an information center as a depository for relevant documentation would be useful in meeting information needs. The production of a book catalog utilizing automatic data processing (ADP) and a data base management system (DBMS) approach is proposed. The catalog would contain full bibliographic descriptions for all records as well as abstracts for highly significant documents.

Not Available

1979-03-08T23:59:59.000Z

269

Composition of Management System for Smart Homes  

E-Print Network (OSTI)

The paper addresses modular hierarchical design (composition) of a management system for smart homes. The management system consists of security subsystem (access control, alarm control), comfort subsystem (temperature, etc.), intelligence subsystem (multimedia, houseware). The design solving process is based on Hierarchical Morphological Multicriteria Design (HMMD) approach: (1) design of a tree-like system model, (2) generation of design alternatives for leaf nodes of the system model, (3) Bottom-Up process: (i) multicriteria selection of design alternatives for system parts/components and (ii) composing the selected alternatives into a resultant combination (while taking into account ordinal quality of the alternatives above and their compatibility). A realistic numerical example illustrates the design process of a management system for smart homes.

Levin, Mark Sh; Klapproth, Alexander

2011-01-01T23:59:59.000Z

270

Combustion chemical vapor deposited coatings for thermal barrier coating systems  

DOE Green Energy (OSTI)

The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-12-31T23:59:59.000Z

271

Materials Reliability Program: Lessons Learned from PWR Thermal Fatigue Management Training (MRP-83)  

Science Conference Proceedings (OSTI)

In January 2001, The EPRI Materials Reliability Program (MRP) issued an Interim Guideline (MRP-24) for the management of thermal fatigue in non-isolable piping attached to reactor coolant piping in pressurized water reactor (PWR) plants (EPRI report 1000701). To assist utility personnel in understanding the potential for thermal fatigue in this piping, the MRP also conducted plant-specific workshops at plant sites. These workshops offered training on fatigue and fatigue cracking in non-isolable piping, a...

2002-12-05T23:59:59.000Z

272

SunShot Initiative: Thermal Storage R&D for CSP Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Storage R&D for CSP Systems to someone by E-mail Share SunShot Initiative: Thermal Storage R&D for CSP Systems on Facebook Tweet about SunShot Initiative: Thermal Storage...

273

Handling effluent from nuclear thermal propulsion system ground tests  

SciTech Connect

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Allen, G.C.

1992-09-09T23:59:59.000Z

274

Effluent treatment options for nuclear thermal propulsion system ground tests  

DOE Green Energy (OSTI)

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Brockmann, J.E.

1992-10-16T23:59:59.000Z

275

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies: Preprint  

DOE Green Energy (OSTI)

Techniques for evaluating and quantifying integrated transient and continuous heat loads of combined systems incorporating electric drive systems operating primarily under transient duty cycles.

Bennion, K.; Thornton, M.

2010-02-01T23:59:59.000Z

276

Multiple system modelling of waste management  

Science Conference Proceedings (OSTI)

Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

Eriksson, Ola, E-mail: ola.eriksson@hig.se [Profu i Goeteborg AB, Goetaforsliden 13 Nedre, SE 431 34 Moelndal (Sweden); Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle (Sweden); Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se [Profu i Goeteborg AB, Goetaforsliden 13 Nedre, SE 431 34 Moelndal (Sweden)

2011-12-15T23:59:59.000Z

277

Building Energy Monitoring System: Making Energy Manageable  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Monitoring System: Making Energy Manageable Building Energy Monitoring System: Making Energy Manageable Speaker(s): Bob Hunter Date: July 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Peng Xu For any line-item expense to be managed, it must first be manageable. In most organizations, this means bringing that expense into the budget/forecast/variance cycle at the department and individual level. While energy costs are the second fastest growing for most organizations, they have simply received a pass on individual accountability. TrendPoint provides a patented system for monitoring energy at the department and user-level. By monitoring each circuit, we assign a circuit to a user, each user to a group and each group to a site. Energy budgets can then be created and assigned to departments, allowing energy costs become a part of

278

Increase Productivity - Implement Energy Management Systems with Project Management Techniques  

E-Print Network (OSTI)

The Glass Division is the second smallest of Ford Motor Company's 20 odd major divisions. It employs four percent of Ford's people, uses but one and one-half percent of the manufacturing space yet it consumes 20 percent of the energy. As Plant Engineering Manager of this small but active division, I devote a big part of my time on justifying energy expenditures and the means to reduce these costs. Ten years ago energy costs were one tenth of today's costs and just about three percent of the division's operating costs. Now they are approaching twelve percent. We believe that energy management systems would contribute to improved productivity in the manufacturing and fabricating facilities. But instinctiveness is not enough to get the funds approved to install the system. We are planning to conduct a major undertaking to prove feasibility. It will be a methodical plan of action. We have prepared a graphic plan of action of the major work items that have to be done to prepare the feasibility report. This presentation highlights the work associated with completing the feasibility report. From this report we develop the documents required for management approval. And we feel comfortable that this approach will result in having energy management systems installed in our division plants.

Spinner, M. P.

1984-01-01T23:59:59.000Z

279

Concept for Management of the Future Electricity System (Smart...  

Open Energy Info (EERE)

Concept for Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System...

280

Use of energy management systems for performance monitoring of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of energy management systems for performance monitoring of industrial load-shaping measures Title Use of energy management systems for performance monitoring of industrial...

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Security Analysis and Project Management Systems | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Analysis and Project Management Systems SHARE Security Analysis and Project Management Systems ORNL brings together the subject matter experts with programmers to design,...

282

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies. Thermal control is a critical element to enable power density, cost, and reliability of Power Electronics and Electric Machines (PEEM). Current hybrid electric vehicle systems typically use a dedicated 65°C coolant loop to cool the electronics and electric machines. A primary research focus is to develop cooling technologies that will enable the use of coolant temperatures of up to 105°C. Enabling the higher-temperature coolant would reduce system cost by using a single loop to cool the PEEM, internal combustion engine or fuel cell. Several candidate cooling technologies are being investigated along with the potential to reduce material and component costs through the use of more aggressive cooling. Advanced component modeling, fabrication, and manufacturing techniques are also being investigated.

283

Optimal Control of Harvesting Ice Thermal Storage Systems  

E-Print Network (OSTI)

Thermal storage is becoming a standard consideration in HVAC and process cooling systems. As the technology is refined, more attention is being given to minimize the energy consumption and power demand requirements. This paper addresses a method for optimal control of a harvesting ice storage system. A simplified procedure is used to develop 24 hour load data. Example installations will be shown.

Knebel, D. E.

1988-01-01T23:59:59.000Z

284

Secondary concentrators for parabolic dish solar thermal power systems  

SciTech Connect

One approach to production of electricity or high-temperature process heat from solar energy is to use point-focusing, two-axis pointing concentrators in a distributed-receiver solar thermal system. This paper discusses some of the possibilities and problems in using compound concentrators in parabolic dish systems. 18 refs.

Jaffe, L.D.; Poon, P.T.

1981-01-01T23:59:59.000Z

285

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

286

Distribution Management Systems Planning Guide  

Science Conference Proceedings (OSTI)

No portion of the electric power grid has been impacted more significantly by the Smart Grid concept than the electric distribution system. In the past, the distribution portion of the system received little attention compared to transmission and generation systems unless the lights went out. Since the dawn of the smart grid era, many electric distribution utilities have transitioned from (or are in the process of transitioning from) a mostly manual, paper-driven business process to electronic ...

2013-03-22T23:59:59.000Z

287

Remote access of electronic resources for thermal plant using mobile devices  

Science Conference Proceedings (OSTI)

This paper proposes a framework that extends a typical intelligent thermal system management that enables field engineers retrieving vital resources from centralised management station using mobile devices with limited memory, such as PDAs and cell phones. ... Keywords: J2ME, PDAs, artificial intelligence, cell phones, fault diagnosis, intelligent thermal management, mobile devices, mobile phones, remote access, thermal management systems, thermal plants, thermodynamic properties

F-L. Tan; S-C. Fok

2007-11-01T23:59:59.000Z

288

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

have higher cooling capacity because the thermal resistancethe thermal comfort requirement unless the cooling capacitysurface cooling system and TABS systems THERMAL COMFORT

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

289

Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance  

E-Print Network (OSTI)

Inc. , 2004. ASHRAE Fundamentals Handbook, Chapter 14,distribution (UFAD) systems: Fundamentals and influence onwas used to explain the fundamentals of thermal decay, to

Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

2012-01-01T23:59:59.000Z

290

Integration of project management and systems engineering: Tools for a total-cycle environmental management system  

SciTech Connect

An expedited environmental management process has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL). This process is one result of the Lockheed Martin commitment to the US Department of Energy to incorporate proven systems engineering practices with project management and program controls practices at the INEEL. Lockheed Martin uses a graded approach of its management, operations, and systems activities to tailor the level of control to the needs of the individual projects. The Lockheed Martin definition of systems engineering is: ``Systems Engineering is a proven discipline that defines and manages program requirements, controls risk, ensures program efficiency, supports informed decision making, and verifies that products and services meet customer needs.`` This paper discusses: the need for an expedited environmental management process; how the system was developed; what the system is; what the system does; and an overview of key components of the process.

Blacker, P.B.; Winston, R.

1997-10-01T23:59:59.000Z

291

Thermal Characterization of Molten Salt Systems  

Science Conference Proceedings (OSTI)

The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

Toni Y. Gutknecht; Guy L. Fredrickson

2011-09-01T23:59:59.000Z

292

FY 93 Thermal Loading Systems Study Final Report  

Science Conference Proceedings (OSTI)

The objective of the Mined Geologic Disposal System (MGDS) Thermal Loading Systems Study being conducted by the is to identify a thermal strategy that will meet the performance requirements for waste isolation and will be safe and licensable. Specifically, both postclosure and preclosure performance standards must be met by the thermal loading strategy ultimately selected. In addition cost and schedule constraints must be considered. The Systems Engineering approach requires structured, detailed analyses that will ultimately provide the technical basis for the development, integration, and evaluation of the overall system, not just a subelement of that system. It is also necessary that the systems study construct options from within the range that are allowed within the current legislative and programmatic framework. For example the total amount of fuel that can legally be emplaced is no more than 70,000 metric tons of uranium (MTU) which is composed of 63,000 MTU spent fuel and 7,000 MTU of defense high level waste. It is the intent of this study to begin the structured development of the basis for a thermal loading decision. However, it is recognized that to be able to make a final decision on thermal loading will require underground data on the effects of heating as well as a suite of ''validated'' models. It will be some time before these data and models are available to the program. Developing a final, thermal loading decision will, therefore, be an iterative process. In the interim, the objective of the thermal loading systems study has been to utilize the information available to assess the impact of thermal loading. Where technical justification exists, recommendations to narrow the range of thermal loading options can be made. Additionally, recommendations as to the type of testing and accuracy of the testing needed to establish the requisite information will be made. A constraint on the ability of the study to select an option stems from the lack of primary hard data, uncertainties in derived data, unsubstantiated models, and the inability to fully consider simultaneously coupled processes. As such, the study must rely on idealized models and available data to compare the thermal loading options. This report presents the findings of the FY 1993 MGDS Thermal Loading Systems Study. The objectives of the study were to: (1) if justified, place bounds on the thermal loading which would establish the loading that is ''too hot''; (2) ''grade'' or evaluate the performance as a function of thermal loading of the potential repository to contain high level spent nuclear fuel against performance criteria; (3) evaluate the performance of the various options with respect to cost, safety, and operability; and (4) recommend the additional types of tests and/or analyses to be conducted to provide the necessary information for a thermal loading selection.

S.F. Saterlie

1994-08-29T23:59:59.000Z

293

Hybrid power management system and method - Energy Innovation ...  

Solar Photovoltaic; Solar Thermal; Startup America; Vehicles and Fuels; ... Space power systems; Technology Status. Development Stage Availability Published Last Updated;

294

A Monolithic Microconcentrator Receiver For A Hybrid PV?Thermal System: Preliminary Performance  

Science Conference Proceedings (OSTI)

An innovative hybrid PV?thermal microconcentrator (MCT) system is being jointly developed by Chromasun Inc.

D. Walter; V. Everett; M. Vivar; J. Harvey; R. Van Scheppingen; S. Surve; J. Muric?Nesic; A. Blakers

2010-01-01T23:59:59.000Z

295

General theme report: Working session 2, Solar thermal systems  

DOE Green Energy (OSTI)

Currently, over 90% of the world's large-scale solar electric energy is generated with concentrating solar thermal power plants. Such plants have the potential to meet many of the world's future energy needs. Research efforts are generally focused on generating electricity, though a variety of other applications are being pursued. Today, the technology for using solar thermal energy is well developed, cost competitive, and in many cases, ready for widespread application. The current state of each of the solar thermal technologies and their applications is reviewed, and recommendations for increasing their use are presented. The technologies reviewed in detail are: parabolic trough systems, central tower systems, and parabolic dish systems. 20 refs., 1 fig., 1 tab.

Alpert, D.J.; Kolb, G.J.

1991-01-01T23:59:59.000Z

296

Environmental management system for the organizations to achieve business excellence  

Science Conference Proceedings (OSTI)

The ISO 14000 Environmental Management System (EMS) standards apply to the management system concepts of total quality management (TQM) to the management of an organization's environmental issues and opportunities. It defines the features of an EMS that ... Keywords: ISO, eco-friendly products and services, environmental impact assessment, environmental management systems, environmental planning, environmental policy, pollution

Gurumurthy Vijayan Iyer; Nikos E. Mastorakis

2006-08-01T23:59:59.000Z

297

Development of an Integrated Distribution Management System  

Science Conference Proceedings (OSTI)

This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

Schatz, Joe E.

2010-10-20T23:59:59.000Z

298

Solar thermal parabolic dish systems: technology and applications  

DOE Green Energy (OSTI)

This presentation surveys the status and some probable future courses of development of parabolic dish solar collector technology and some of the near-term and long-range applications of the technology. Included are fundamentals of the technology, descriptions of current collectors with particular emphasis on the types developed within the Department of Energy's Solar Thermal Program, descriptions of current systems and applications, key technical issues and tradeoff considerations which will affect the competition between parabolic dish systems and other solar thermal technologies, and, finally, a discussion of future possibilities for the development of parabolic dish technology.

Leonard, J.A.

1984-05-01T23:59:59.000Z

299

Tehachapi solar thermal system first annual report  

DOE Green Energy (OSTI)

The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

1993-05-01T23:59:59.000Z

300

Integrated Energy and Greenhouse Gas Management System  

E-Print Network (OSTI)

With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed an integrated Energy and Greenhouse Gas Management System that allows companies to reduce energy and carbon intensity at the same time all the while bolstering bottom line performance. Reducing energy use and greenhouse gases is not an option but a necessity today. All manufacturing companies need to develop in-house capabilities to manage these important resources or pay the price of high carbon taxes and/or face a depletion in operating margins. MPC will present a case history highlighting the steps taken, the results obtained and the lessons learned in developing an integrated Energy and Greenhouse Gas Management System with a major industrial manufacturing company in the Midwest. Key subject areas covered include: Integration of Climate Change and Energy Management Strategies- a winning approach to meet the challenge; Turn a potential cost of compliance into a new cash flow source; Leveraging Energy Management Systems to optimize savings; Navigating through the new Greenhouse Gas reporting requirements; Utilizing Plant and Corporate Energy Management Dashboards to Control Energy Consumption and Greenhouse Gas emissions.

Spates, C. N.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Design and operation of solar thermal heat transfer systems  

Science Conference Proceedings (OSTI)

The importance of heat transfer systems in the collection and use of solar energy is discussed. The success or failure of many solar energy systems has been determined by the design of the heat transfer system. This report includes a short summary of some of the DOE sponsored solar industrial process heat sites. From the design, construction, and operation of these systems many lessons were learned which will be important to designers and potential users of solar thermal systems. Also included is a discussion of solar collector foundation over-design that has increased the collector system costs.

Rush, E.E.

1985-01-01T23:59:59.000Z

302

Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials (Presentation)  

DOE Green Energy (OSTI)

This Powerpoint presentation examines battery thermal management using PCM and concludes excellent performance in limiting peak temperatures at short period extensive battery use; although, vehicle designers will need to weigh the potential increase in mass and cost associated with adding PCM against the anticipated benefits.

Kim, G.-H.; Gonder, J.; Lustbader, J.; Pesaran, A.

2007-12-01T23:59:59.000Z

303

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network (OSTI)

for fuel cells and advanced heavy-duty hybrid electric vehicles. He also has experience with alternativeTopology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits

Mi, Chunting "Chris"

304

Adaptive Thermal Management for High-Performance Microprocessors David Brooks and Margaret Martonosi  

E-Print Network (OSTI)

Martonosi Dept. of Electrical Engineering Princeton University fdbrooks,mrmg@ee.princeton.edu Abstract. With the increasing usage of clock gating tech- niques, the average power dissipation typically seen by common dynamic thermal management, the CPU can be designed for a much lower maximum power rat- ing with minimal

Martonosi, Margaret

305

Performance of thermal distribution systems in large commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of thermal distribution systems in large commercial buildings Performance of thermal distribution systems in large commercial buildings Title Performance of thermal distribution systems in large commercial buildings Publication Type Journal Article LBNL Report Number LBNL-44331 Year of Publication 2002 Authors Xu, Tengfang T., François Rémi Carrié, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Duo Wang, and Mark P. Modera Journal Energy and Buildings Volume 34 Start Page Chapter Pagination 215-226 Abstract This paper presents major findings of a field study on the performance of five thermal distribution systems in four large commercial buildings. The five systems studied are typical single-duct or dual-duct constant air volume (CAV) systems and variable air volume (VAV) systems, each of which serves an office building or a retail building with floor area over 2,000 m2. The air leakage from ducts are reported in terms of effective leakage area (ELA) at 25 Pa reference pressure, the ASHRAE-defined duct leakage class, and air leakage ratios. The specific ELAs ranged from 0.7 to 12.9 cm2 per m2 of duct surface area, and from 0.1 to 7.7 cm2 per square meter of floor area served. The leakage classes ranged from 34 to 757 for the five systems and systems sections tested. The air leakage ratios are estimated to be up to one-third of the fan- supplied airflow in the constant-air-volume systems. The specific ELAs and leakage classes indicate that air leakage in large commercial duct systems varies significantly from system to system, and from system section to system section even within the same thermal distribution system. The duct systems measured are much leakier than the ductwork specified as "unsealed ducts" by ASHRAE. Energy losses from supply ducts by conduction (including convection and radiation) are found to be significant, on the scale similar to the losses induced by air leakage in the duct systems. The energy losses induced by leakage and conduction suggest that there are significant energy-savings potentials from duct-sealing and insulation practice in large commercial buildings

306

Analyzing the Effects of Climate and Thermal Configuration on Community Energy Storage Systems (Presentation)  

DOE Green Energy (OSTI)

Community energy storage (CES) has been proposed to mitigate the high variation in output from renewable sources and reduce peak load on the electrical grid. Thousands of these systems may be distributed around the grid to provide benefits to local distribution circuits and to the grid as a whole when aggregated. CES must be low cost to purchase and install and also largely maintenance free through more than 10 years of service life to be acceptable to most utilities.Achieving the required system life time is a major uncertainty for lithium-ion batteries. The lifetime and immediate system performance of batteries can change drastically with battery temperature, which is a strong function of system packaging, local climate, electrical duty cycle, and other factors. In other Li-ion applications, this problem is solved via air or liquid heating and cooling systems that may need occasional maintenance throughout their service life. CES requires a maintenance-free thermal management system providing protection from environmental conditions while rejecting heat from a moderate electrical duty cycle. Thus, the development of an effective, low-cost, zero-maintenance thermal management system poses a challenge critical to the success of CES. NREL and Southern California Edison have collaborated to evaluate the long-term effectiveness of various CES thermal configurations in multiple climates by building a model of CES based on collected test data, integrating it with an NREL-developed Li-ion degradation model, and applying CES electrical duty cycles and historic location-specific meteorological data to forecast battery thermal response and degradation through a 10-year service life.

Neubauer, J.; Pesaran, A.; Coleman, D.; Chen, D.

2013-10-01T23:59:59.000Z

307

Tank waste remediation system systems engineering management plan  

Science Conference Proceedings (OSTI)

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

Peck, L.G.

1998-01-08T23:59:59.000Z

308

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

for emerging energy management systems. The second article [of these complex energy management systems. This series ofrelative to energy management systems design, specification,

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

309

Trends in Energy Management Technologies - Part 5: Effectiveness of Energy Management Systems: What the Experts Say and Case Studies Reveal  

E-Print Network (OSTI)

Effectiveness of Energy Management Systems: What the Expertsin Energy Management, Control, and Information Systems. ”of Energy Management, Control, and Information Systems."

Webster, Tom

2005-01-01T23:59:59.000Z

310

Trends in Energy Management Technology - Part 3: State of Practice of Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

for emerging energy management systems. The second report [of these complex energy management systems. This series ofrelative to energy management systems design, specification,

Yee, Gaymond; Webster, Tom

2004-01-01T23:59:59.000Z

311

Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies  

SciTech Connect

In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy`s (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled {open_quotes}Integrated Thermal Treatment System Study - Phase 1 Results{close_quotes} (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was {open_quotes}to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.{close_quotes} The study also {open_quotes}identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.{close_quotes} This study evaluated ten primary thermal treatment technologies, organized into complete {open_quotes}cradle-to-grave{close_quotes} systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews.

1996-12-01T23:59:59.000Z

312

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents (OSTI)

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

313

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

314

Ad Hoc mobility management with uniform quorum systems  

Science Conference Proceedings (OSTI)

Keywords: Ad hoc network, balanced incomplete block design, data distribution, mobility management, quorum system, reconfigurable wireless network, uniform quorum system

Zygmunt J. Haas; Ben Liang

1999-04-01T23:59:59.000Z

315

EIS-0285: Transmission System Vegetation Management Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 19, 2002 July 19, 2002 EIS-0285-SA-96: Supplement Analysis Transmission System Vegetation Management Program, Snohomish District Substations July 19, 2002 EIS-0285-SA-70: Supplement Analysis Transmission System Vegetation Management Program July 9, 2002 EIS-0285-SA-81: Supplement Analysis Transmission System Vegetation Management Program July 1, 2002 EIS-0285-SA-84: Supplement Analysis Transmission System Vegetation Management Program July 1, 2002 EIS-0285-SA-80: Supplement Analysis Transmission System Vegetation Management Program July 1, 2002 EIS-0285-SA-78: Supplement Analysis Transmission System Vegetation Management Program June 21, 2002 EIS-0285-SA-75: Supplement Analysis Transmission System Vegetation Management Program May 31, 2002 EIS-0285-SA-58: Supplement Analysis

316

EIS-0285: Transmission System Vegetation Management Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 20, 2003 February 20, 2003 EIS-0285-SA-123: Supplement Analysis Transmission System Vegetation Management Program February 19, 2003 EIS-0285-SA-126: Supplement Analysis Transmission System Vegetation Management Program February 18, 2003 EIS-0285-SA-125: Supplement Analysis Transmission System Vegetation Management Program February 18, 2003 EIS-0285-SA-124: Supplement Analysis Transmission System Vegetation Management Program February 12, 2003 EIS-0285-SA-121: Supplement Analysis Transmission System Vegetation Management Program February 10, 2003 EIS-0285-SA-120: Supplement Analysis Transmission System Vegetation Management Program, Benton County, Washington January 16, 2003 EIS-0285-SA-117: Supplement Analysis Transmission System Vegetation Management Program December 24, 2002

317

Magnetic tunable microstructured surfaces for thermal management and microfluidic applications  

E-Print Network (OSTI)

Micro and nanostructured surfaces have broad applications including heat transfer enhancement in phase-change systems and liquid manipulation in microfluidic devices. While significant efforts have focused on fabricating ...

Zhu, Yangying

2013-01-01T23:59:59.000Z

318

High resolution, low cost, privacy preserving human motion tracking system via passive thermal sensing  

E-Print Network (OSTI)

Thermal imaging is powerful but expensive. This thesis presents an alternative thermal sensing system capable of tracking human motion by using a novel projection mechanism from an array of inexpensive single-bit thermal ...

Browarek, Sharmeen

2010-01-01T23:59:59.000Z

319

Commercial thermal distribution systems, Final report for CIEE/CEC  

Science Conference Proceedings (OSTI)

According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

1999-12-01T23:59:59.000Z

320

Commercial thermal distribution systems, Final report for CIEE/CEC  

SciTech Connect

According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Project Management and Systems Support | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Project Management and Systems Support | National Nuclear Security Project Management and Systems Support | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Project Management and Systems Support Home > About Us > Our Operations > Acquisition and Project Management > Project Management and Systems Support Project Management and Systems Support Goal

322

Project Management and Systems Support | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Management and Systems Support | National Nuclear Security Project Management and Systems Support | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Project Management and Systems Support Home > About Us > Our Operations > Acquisition and Project Management > Project Management and Systems Support Project Management and Systems Support Goal

323

Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks  

DOE Green Energy (OSTI)

Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

2012-10-01T23:59:59.000Z

324

Thermal oxidation vitrification flue gas elimination system  

SciTech Connect

With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

Kephart, W. [Foster-Wheeler Environmental Corp., Oak Ridge, TN (United States); Angelo, F. [Resource Energy Corp. (United States); Clemens, M. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

325

A Systems Approach to Managing Oil  

E-Print Network (OSTI)

led to the spilling of 11 million gallons of crude oil into the Prince William Sound (PWS), Alaska. Af of 1990 (US Fed- eral Law, 1990). Regionally, the state of Alaskas oil pollution prevention and responseA Systems Approach to Managing Oil Transportation Risk in Prince William Sound Jason R. W. Merrick

van Dorp, Johan René

326

Management and Safety of Transportation Systems  

E-Print Network (OSTI)

Management and Safety of Transportation Systems University Transportation Center for Alabama A N N@eng.ua.edu www.eng.ua.edu Editors: James Cruise, Ph.D. Barbara Moore University Transportation Center for Alabama Transportation Center for Alabama (UTCA). The contents of this Annual Report reflect the views of the editors

Carver, Jeffrey C.

327

Implementing Management Systems-Based Assessments  

SciTech Connect

A management system approach for evaluating environment, safety, health, and quality is in use at Sandia National Laboratories (SNL). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. As a multi-program national laboratory, SNL has many diverse operations including research, engineering development and applications, production, and central services supporting all activities and operations. Basic research examples include fusion power generation, nuclear reactor experiments, and investigation of combustion processes. Engineering development examples are design, testing, and prototype developments of micro-mechanical systems for safe'~arding computer systems, air bags for automobiles, satellite systems, design of transportation systems for nuclear materials, and systems for use in medical applications such as diagnostics and surgery. Production operations include manufacture of instrumented detection devices, radioisotopes, and replacement parts for previously produced engineered systems. Support services include facilities engineering, construction, and site management, site security, packaging and transportation of hazardous materials wastes, ES&H functional programs to establish requirements and guidance to comply with federal, state, local, and contractual requirements and work safety. In this diverse environment, unlike more traditional single function business units, an integrated consistent management system is not typical. Instead, each type of diverse activity has its own management system designed and distributed around the operations, personnel, customers, and facilities (e.g., hazards involved, security, regulatory requirements, and locations). Laboratory managers are not likely to have experience in the more traditional hierarchical or command and control structures and thus do not share oversight expectations found in centralized management systems. The resulting corporate management system gives the appearance of an assembly of multiple, nearly independent operating units. The executive management system maintains these separate units, encouraging autonomy and creativity by establishing a minimum of requirements and procedures. In any organization, senior management has a responsibility to ensure that all operating units are meeting requirements. Part of this responsibility is fulfilled by conducting oversight or assurance activities, to determine the effectiveness of established systems in meeting requirements and performance expectations. Internal independent assessment is one of these assurance activities. Independent appraisals are combined with external audits and appraisals, self-assessments, peer reviews, project reviews, and other internal and external audits (e.g., financial, contractual) for a more complete assurance view. At SNL, internal independent appraisals are performed by the Audit Center, which reports directly to the Executive Vice President. ES&H independent appraisals are the responsibility of the ES&H and Quality Assessments Department, with a staff complement of eight. With our organization's charter to perform internal, independent appraisals, we set out to develop an approach and associated tools, which would be useful in the overall SNL environment and within our resource limitations.

Campisi, John A.; Reese, Robert T.

1999-05-03T23:59:59.000Z

328

Software Management in the LHCb Online System  

E-Print Network (OSTI)

LHCb has a large online IT infrastructure with thousands of servers and embedded systems, network routers and switches, databases and storage appliances. These systems run a large number of different applications on various operating systems. The dominant operating systems are Linux and MS-Windows. This large heterogeneous environment, operated by a small number of administrators, requires that new software or updates can be pushed quickly, reliably and as automated as possible. We present here the general design of LHCb's software management along with the main tools: LinuxFC / Quattor and Microsoft SMS, how they have been adapted and integrated and discuss experiences and problems.

Neufeld, N; Brarda, L; Closier, J; Moine, G; Degaudenzi, H

2009-01-01T23:59:59.000Z

329

Software Management in the LHCb Online System  

E-Print Network (OSTI)

LHCb has a large online IT infrastructure with thousands of servers and embedded systems, network routers and switches, databases and storage appliances. These systems run a large number of different applications on various operating systems. The dominant operating systems are Linux and MS-Windows. This large heterogeneous environment, operated by a small number of administrators, requires that new software or updates can be pushed quickly, reliably and as automated as possible. We present here the general design of LHCb's software management along with the main tools: LinusFC / Quattor, Microsoft SMS and CMT.

Bonaccorsi, E; Closier, J; Degaudenzi, H; Moine, G; Neufeld, N

2009-01-01T23:59:59.000Z

330

Business Manangement System(BMS), RL-2008/Project Hanford Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA, Office of Procurement and Assistance Management PIA - Security Clearance Work...

331

PIA - HSS Electronic Visitor Management System (HSEVMS) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home PIA - HSS Electronic Visitor Management System (HSEVMS) PIA - HSS Electronic Visitor Management...

332

Earned Value Management System (EVMS) Certifications | U.S. DOE...  

Office of Science (SC) Website

Management Processes and Procedures Cost & Contingency EDIA Escalation Rates Earned Value Management System (EVMS) Certifications Awards Lessons Learned Tools & Resources SC...

333

iManage: policy-driven self-management for enterprise-scale systems  

Science Conference Proceedings (OSTI)

It is obvious that big, complex enterprise systems are hard to manage. What is not obvious is how to make them more manageable. Although there is a growing body of research into system self-management, many techniques are either too narrow, focusing ... Keywords: Bayesian networks, enterprise-systems, policies, self-management

Vibhore Kumar; Brian F. Cooper; Greg Eisenhauer; Karsten Schwan

2007-11-01T23:59:59.000Z

334

Simulation of diurnal thermal energy storage systems: Preliminary results  

DOE Green Energy (OSTI)

This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system, and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

Katipamula, S.; Somasundaram, S. [Pacific Northwest Lab., Richland, WA (United States); Williams, H.R. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Mechanical Engineering

1994-12-01T23:59:59.000Z

335

Exploration of Management Information System: Pemetreating Business Way  

Science Conference Proceedings (OSTI)

The indispensable role of Management Information Systems is common sense in the buisness and organizaiton circle. The use of Management Information Systems has gone from competitive advantage for few to business necessity for all. Its true value comes ... Keywords: Information management, management information system, information technology

Guo Xiang, Li Yanxiao, Li Weihua

2013-01-01T23:59:59.000Z

336

High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15. 2013 | Singh April 15. 2013 | Singh * Thermal modeling will be conducted to establish the benefits of using a high thermal conducting graphite foams in conjunction with PCM and to develop a design for a laboratory scale prototype. * Variety of characterizations will be carried out to qualify the materials (PCMs, alloys, coatings) for the prototype construction. * Process to infiltrate selected PCM into the foam will be developed. * Using the appropriate brazing/joining techniques, prototype will be assembled. * Performance testing of the TES system prototype to ensure a full- scale system will meet the SunShot goals. * Complete cost analysis of the proposed TES system * Complete laboratory scale prototype design * Develop SiC coating using polycarbosilanes for graphite

337

VALIDATION OF A THERMAL CONDUCTIVITY MEASUREMENT SYSTEM FOR FUEL COMPACTS  

SciTech Connect

A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.

Jeff Phillips; Colby Jensen; Changhu Xing; Heng Ban

2011-03-01T23:59:59.000Z

338

High-speed thermal cycling system and method of use  

DOE Patents (OSTI)

A thermal cycling system and method of use are described. The thermal cycling system is based on the-circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate microtiter plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 .mu.l of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded.

Hansen, Anthony D. A. (Berkely, CA); Jaklevic, Joseph M. (Lafayette, CA)

1996-01-01T23:59:59.000Z

339

High-speed thermal cycling system and method of use  

DOE Patents (OSTI)

A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

Hansen, A.D.A.; Jaklevic, J.M.

1996-04-16T23:59:59.000Z

340

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Efficiency Thermal Energy High-Efficiency Thermal Energy Storage System for CSP to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Facebook Tweet about SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Twitter Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Google Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Delicious Rank SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Digg Find More places to share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Trends in Energy Management Technology - Part 3: State of Practice of Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

Computerized Maintenance Management System), and CAFM (maintenance & management G G G G G G G: Hotel Check-In System

Yee, Gaymond; Webster, Tom

2004-01-01T23:59:59.000Z

342

Molten salt thermal energy storage systems: salt selection  

DOE Green Energy (OSTI)

A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

Maru, H.C.; Dullea, J.F.; Huang, V.S.

1976-08-01T23:59:59.000Z

343

Fighting Fire with Fire: Modeling the Datacenter-Scale Effects of Targeted Superlattice Thermal Management  

SciTech Connect

Local thermal hot-spots in microprocessors lead to worst case provisioning of global cooling resources, especially in large-scale systems. However, efficiency of cooling solutions degrade non-linearly with supply temperature, resulting in high power consumption and cost in cooling - 50 {approx} 100% of IT power. Recent advances in active cooling techniques have shown on-chip thermoelectric coolers (TECs) to be very efficient at selectively eliminating small hot-spots, where applying current to a superlattice film deposited between silicon and the heat spreader results in a Peltier effect that spreads the heat and lowers the temperature of the hot-spot significantly to improve chip reliability. In this paper, we propose that hot-spot mitigation using thermoelectric coolers can be used as a power management mechanism to allow global coolers to be provisioned for a better worst case temperature leading to substantial savings in cooling power. In order to quantify the potential power savings from using TECs in data center servers, we present a detailed power model that integrates on-chip dynamic and leakage power sources, heat diffusion through the entire chip, TEC and global cooler efficiencies, and all their mutual interactions. Our multiscale analysis shows that, for a typical data center, TECs allow global coolers to operate at higher temperatures without degrading chip lifetime, and thus save {approx}27% cooling power on average while providing the same processor reliability as a data center running at 288K.

Biswas, S; Tiwari, M; Theogarajan, L; Sherwood, T P; Chong, F T

2010-11-11T23:59:59.000Z

344

Optimal management of batteries in electric systems  

DOE Patents (OSTI)

An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

2002-01-01T23:59:59.000Z

345

Optimizing the design and operation of aquifer thermal energy systems  

DOE Green Energy (OSTI)

The design of Aquifer Thermal Energy Storage (ATES) systems is complicated by significant uncertainties in ones ability to reliably predict the response of the aquifer to fluid and thermal fluxes. Overdesigning the system, to compensate for these uncertainties, reduces the potential economic and energy benefits of an ATES system. Underdesigning the system results in systems that fail to meet design targets. Unfortunately, standard aquifer characterization methods and hydrologic models do not provide adequate information to overcome these uncertainties. Thus, expensive full-scale tests are generally recommended to develop an adequate-understanding of the systems response. However, the standard engineering {open_quotes}design-build-operate{close_quotes} process is not. appropriate for ATES systems because an optimal design cannot be completed without some operational experience, i.e., field tests. A more adaptive engineering process is required. This engineering process should be flexible enough to allow the design to be adjusted during the operation, as monitoring data become available and as an understanding of the system response increases. Engineering approaches being developed for environmental restoration of contaminated soil and groundwater can be adapted to optimally design and operate ATES systems.

Vail, L.W.; Jenne, E.A.

1994-11-01T23:59:59.000Z

346

Joint Environmental Management System (EMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) The environmental management system (EMS) has two areas of focus: environmental compliance and environmental sustainability. The environmental compliance aspect of the EMS consists of regulatory compliance and monitoring programs that implement federal, state, local, and tribal requirements; agreements; and permits under the Legacy Management contract. The environmental sustainability aspect promotes and integrates sustainability initiatives such as energy and natural resource conservation, waste minimization, green construction, and use of eco-friendly products and services into all phases of work. U.S. Department of Energy (DOE) Office of Legacy Management (LM) EMS was

347

Chemical energy storage system for SEGS solar thermal power plant  

DOE Green Energy (OSTI)

In October 1988, a symposium was held in Helendale, California, to discuss thermal energy storage (TES) concepts applicable to medium-temperature (200 to 400{degrees}C) solar thermal electric power plants, in general, and the solar electric generating system (SEGS) plants developed by Luz International, in particular. Chemical reaction energy storage based on the reversible reaction between metal oxides and metal hydroxides was identified as a leading candidate for meeting Luz International's cost and performance requirements. The principal objectives of this study were to identify the design conditions, requirements, and potential feasibility for a chemical energy storage system applied to a SEGS solar thermal power plant. The remaining sections of this report begin by providing an overview of the chemical reaction energy storage concept and a SEGS solar thermal power plant. Subsequent sections describe the initial screening of alternative evaporation energy sources and the more detailed evaluation of design alternatives considered for the preferred evaporation energy source. The final sections summarize the results, conclusions, and recommendations. 7 refs., 8 figs., 13 tabs.

Brown, D.R.; LaMarche, J.L.; Spanner, G.E.

1991-09-01T23:59:59.000Z

348

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

for energy and maintenance management. TIEMS is currentlywith a computerized maintenance management system (CMMS 4 ).Berkeley Computerized maintenance management system Fault

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

349

Integrated heat pipe-thermal storage system performance evaluation  

SciTech Connect

Performance verification tests of an integrated heat pipe-thermal energy storage system have been conducted. This system is being developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System (ORC-SDPS) receiver for future space stations. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage (TES) canisters within the vapor space along with an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the surface of the heat pipe elements of the ORC-SDPS receiver and is internally transferred by the potassium vapor for use and storage. Part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was fabricated that employs axial arteries and a distribution wick connecting the wicked TES units and the heater to the solar insolation surface of the heat pipe. Tests were conducted to verify the heat pipe operation and to evaluate the heat pipe/TES units/heater tube operation by interfacing the heater unit to a heat exchanger.

Keddy, E.; Sena, J.T.; Merrigan, M.

1987-01-01T23:59:59.000Z

350

Irrigation market for solar-thermal parabolic-dish systems  

Science Conference Proceedings (OSTI)

The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. A model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. Results indicate that the near-term market for such systems depends not only on the type of crop and method of irrigation, but also on the optimal utilization of each added module, which in turn depends on the price of conventional fuel, real discount rate, marginal cost of the solar thermal power system, local insolation level and parabolic dish system efficiency. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14% real discount rate is assumed to 220,000 modules when the real discount rate drops to 8%. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98% of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71%) of the total market.

Habib-agahi, H.; Jones, S.C.

1981-09-01T23:59:59.000Z

351

Parabolic trough collector systems for thermal enhanced oil recovery  

SciTech Connect

Enhanced Oil Recovery (EOR) techniques offer a means of increasing US oil production by recovering oil otherwise unavailable when using primary or secondary production methods. The use of parabolic trough collector solar energy systems can expand the production of oil recovered by the most prevalent of these techniques, thermal EOR, by improving the economics and lessening the environmental impacts. These collector systems, their state of development, their application to EOR, and their capacity for expanding oil production are reviewed. An economic analysis which shows that these systems will meet investment hurdle rates today is also presented.

Niemeyer, W.A.; Youngblood, S.B.; Price, A.L.

1981-01-01T23:59:59.000Z

352

ExxonMobil Global Energy Management System  

E-Print Network (OSTI)

For many years, ExxonMobil has undertaken voluntary actions to improve efficiency in our operations and in customer use of our products. Our Global Energy Management System (GEMS) is an important initiative that is having a positive impact at each of our refineries and chemical plants. The system builds on international best practices and benchmarking to identify energy efficiencies. Launched in 2000, it utilizes a common methodology to identify performance gaps, implement closure plans, sustain progress, and drive energy efficiency toward leading-edge performance. The GEMS business model is based on a three-step approach to performance improvement. First, it addresses base case performance issues by operating existing facilities optimally and efficiently through application of best practices. Second, it identifies economic investment opportunities above an optimized base for step-change improvement to address structural differences. Third, the system implements strong management systems to provide the rigor and discipline necessary to sustain progress and drive continuous improvement. Ultimately, management leadership, organizational commitment, and personal accountability all work together to drive continuous improvement.

Roberto, F.

2009-05-01T23:59:59.000Z

353

Review: Knowledge management and knowledge management systems: conceptual foundations and research issues  

Science Conference Proceedings (OSTI)

Knowledge is a broad and abstract notion that has defined epistemological debate in western philosophy since the classical Greek era. In the past few years, however, there has been a growing interest in treating knowledge as a significant organizational ... Keywords: knowledge management, knowledge management review, knowledge management systems, organizational knowledge management, research issues in knowledge management

Maryam Alavi; Dorothy E. Leidner

2001-03-01T23:59:59.000Z

354

Solar thermal power systems. Annual technical progress report, FY 1978  

DOE Green Energy (OSTI)

A technical progress report on the DOE Solar Thermal Power Systems Program is given. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the prior to FY 1978 is given; the significant achievements and real progress of each project during FY 1978 are described; and future project activities as well as anticipated significant achievements for each project are forecast. (WHK)

Not Available

1979-06-01T23:59:59.000Z

355

THERMAL HYDRAULIC ANALYSIS OF A GAS TEST LOOP SYSTEM  

Science Conference Proceedings (OSTI)

This paper discusses thermal hydraulic calculations for a Gas Test Loop (GTL) system designed to provide a high intensity fast-flux irradiation environment for testing fuels and materials for advanced concept nuclear reactors. To assess the performance of candidate reactor fuels, these fuels must be irradiated under actual fast reactor flux conditions and operating environments, preferably in an existing irradiation facility [1]. Potential users of the GTL include the Generation IV Reactor Program, the Advanced Fuel Cycle Initiative and Space Nuclear Programs.

Donna Post Guillen; James E. Fisher

2005-11-01T23:59:59.000Z

356

Evaluation of diurnal thermal energy storage combined with cogeneration systems  

DOE Green Energy (OSTI)

This report describes the results of an evaluation of thermal energy storage (TES) integrated with simple gas turbine cogeneration systems. The TES system captures and stores thermal energy from the gas turbine exhaust for immediate or future generation of process heat. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers the following two significant advantages: (1) Electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced; (2) Although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. The study evaluated the cost of power produced by cogeneration and cogeneration/TES systems designed to serve a fixed process steam load. The value of the process steam was set at the levelized cost estimated for the steam from a conventional stand-alone boiler. Power costs for combustion turbine and combined-cycle power plants were also calculated for comparison. The results indicated that peak power production costs for the cogeneration/TES systems were between 25% and 40% lower than peak power costs estimated for a combustion turbine and between 15% and 35% lower than peak power costs estimated for a combined-cycle plant. The ranges reflect differences in the daily power production schedule and process steam pressure/temperature assumptions for the cases evaluated. Further cost reductions may result from optimization of current cogeneration/TES system designs and improvement in TES technology through future research and development.

Somasundaram, S.; Brown, D.R.; Drost, M.K.

1992-11-01T23:59:59.000Z

357

Communication architecture based power management for battery efficient system design  

Science Conference Proceedings (OSTI)

Communication-based power management (CBPM) is a new battery-driven system-level power management methodology in which the system-level communication architecture regulates the execution of various system components, with the aim of improving battery ... Keywords: battery efficiency, communication architectures, embedded systems, low power design, power management

Kanishka Lahiri; Sujit Dey; Anand Raghunathan

2002-06-01T23:59:59.000Z

358

Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report  

SciTech Connect

The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

W.E. Lowry

2001-12-13T23:59:59.000Z

359

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

360

Systems analysis of solar thermal power systems. Report on Task 1: determination and characterization of solar thermal conversion options  

SciTech Connect

Seven general solar thermal conversion concepts were selected initially. The literature review confirmed that these are the only concepts that are developed to a level suitable for inclusion in the comparative analysis to be performed. A summary of information pertaining to these concepts is given and the concepts are briefly described. The information presented is abstracted from applicable references presented in the bibliography. The bibliography and a list of the major contacts established are included in appendices. The seven concepts are: point-focusing distributed receiver system; point focusing, central receiver systems; fixed mirror/distributed focus system; line-focus central receiver system; line-focus distributed receiver system; fixed mirror line-focus distributed receiver system, and low concentrator non-tracking systems. (WHR)

Apley, W.J.

1978-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Long-term fuzzy management of water resource systems  

Science Conference Proceedings (OSTI)

In the present context of water resource scarcity, a complete approach for long-term storage/transfer/distribution system management is proposed. The main management objective of such a kind of system is to manage reserves and releases so as to minimize ... Keywords: fuzzy logic, modeling, optimization, water resource management

Roger Marcelin Faye; Salam Sawadogo; Claude Lishou; Félix Mora-Camino

2003-05-01T23:59:59.000Z

362

SunShot Initiative: High-Efficiency Thermal Storage System for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Thermal Storage System for Solar Plants to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Storage System for Solar Plants on Facebook Tweet about...

363

ISO 50001 Conformant Energy Management Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISO 50001-conformant ISO 50001-conformant Energy Management Systems Aimee McKane Lawrence Berkeley National Laboratory atmckane@lbl.gov 518-782-7002 April 2, 2013 2 | Building Technologies Office eere.energy.gov * Energy efficiency improvements with very favorable payback periods often do not get implemented due to competing organizational priorities * Even projects that are implemented may not be sustained due to lack of supportive operational and maintenance practices Problem: Energy efficiency is not integrated into daily

364

ISO 50001 Conformant Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

ISO 50001-conformant ISO 50001-conformant Energy Management Systems Aimee McKane Lawrence Berkeley National Laboratory atmckane@lbl.gov 518-782-7002 April 2, 2013 2 | Building Technologies Office eere.energy.gov * Energy efficiency improvements with very favorable payback periods often do not get implemented due to competing organizational priorities * Even projects that are implemented may not be sustained due to lack of supportive operational and maintenance practices Problem: Energy efficiency is not integrated into daily

365

System and method for advanced power management  

DOE Patents (OSTI)

A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

366

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

also known as EMS (Energy Management Systems), BMS (Buildingfacility operator or energy management systems, often wasteand Control Systems Energy Management Systems Environmental

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

367

A prototype photovoltaic/thermal system integrated with transpired collector  

SciTech Connect

Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

2011-01-15T23:59:59.000Z

368

Definition: Meter Data Management System | Open Energy Information  

Open Energy Info (EERE)

System System Jump to: navigation, search Dictionary.png Meter Data Management System A meter data management system (MDMS) collects and stores meter data from a head-end system and processes that meter data into information that can be used by other utility applications including billing, customer information systems, and outage management systems. The MDMS is a key resource for managing large quantities of meter data.[1] Related Terms system, outage management system References ↑ https://www.smartgrid.gov/category/technology/meter_data_management_system [[Ca LikeLike UnlikeLike You like this.Sign Up to see what your friends like. tegory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Meter_Data_Management_System&oldid=50258

369

Worker health and safety in solar thermal power systems. III. Thermal energy storage subsystems  

DOE Green Energy (OSTI)

The effects of the use of thermal energy storage (TES) subsystems in solar thermal power systems (STPS) on operating failures and on worker health and safety are examined. Revelant near- and medium-term designs for TES subsystems are reviewed. Generic failure events are considered by an event tree methodology. Three generic categories of initiating events are identified which can lead to release of storage fluids and other hazards. Three TES subsystem designs are selected for, and subjected to, analysis. A fluid release event tree for a sensible heat TES subsystem using mixed media organic oil/crushed rock and sand, designed for the Barstow, CA, 10 MWe pilot plant, is developed. Toxicology and flammability hazards are considered. The effect of component failures, including ullage and fluid maintenance units, on subsystem safety is considered. A latent heat subsystem using NaNO/sub 3//NaOH as the working medium is studied, and relevant failure events delineated. Mechanical equipment failures including the scraped wall heat exchangers, are examined. Lastly, a thermochemical TES subsystem using SO/sub 2//SO/sub 3/ interconversion is considered. Principle hazards identified include mechanical failures and storage fluid release. The integrity of the system is found to depend on catalyst and heat exchanger reliability. Dynamic response to off-normal system events is considered.

Ullman, A.Z.; Sokolow, B.B.; Daniels, J.; Hurt, P.

1979-10-01T23:59:59.000Z

370

LARGO hot water system thermal performance test report  

DOE Green Energy (OSTI)

The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions are presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The tests and evaluation were performed at the Marshall Space Flight Center solar test facility. The Solar Hot Water system is termed a ''Dump-type'' because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

Not Available

1978-11-01T23:59:59.000Z

371

An overview: Component development for solar thermal systems  

DOE Green Energy (OSTI)

In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

Mancini, T.R.

1994-10-01T23:59:59.000Z

372

Managing Aging Effects on Dry Cask Storage Systems for Extended...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0 Managing Aging Effects on Dry Cask Storage Systems for...

373

Survey Report: Improving Integration of Program Management and Systems Engineering  

E-Print Network (OSTI)

For many years, a cultural barrier has existed between practitioners of systems engineering and of program management.  Some systems engineers and program managers have developed the mindset that their work activities ar ...

Conforto, Edivandro

374

A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection  

E-Print Network (OSTI)

A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection a thermal-conscious system-level methodology to make energy-efficient voltage selection (VS) for nanometer), thermal resistance, are integrated and considered in our system models, and their impacts on energy

Wang, Yu

375

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating.

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

376

Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system  

E-Print Network (OSTI)

Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system X dependence of the thermal stability factor, the width of the thermal energy barrier distribution- ropy energy distribution and the interaction and the thermal energy barrier distribution determined

Laughlin, David E.

377

Thermal ground water flow systems in the thrust zone in southeastern Idaho  

DOE Green Energy (OSTI)

The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

Ralston, D.R.

1983-05-01T23:59:59.000Z

378

NGNP Data Management and Analysis System Modeling Capabilities  

SciTech Connect

Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

Cynthia D. Gentillon

2009-09-01T23:59:59.000Z

379

Operation Diagnosis for Buildings Connecting Building Management Systems with Energy Management Systems  

E-Print Network (OSTI)

Reducing energy consumption of buildings is a good contribution to protect the environment and to reduce costs. The first and most important step to operate a building most efficiently is to make aware of most of the technical parameters. Connecting or installing a Building Automation Sys-tem with an Energy Management System helps to analyze the flow of material, build up an integrated Alarm Management and create an excellent documentation of the installed base. To pick the best of each and connect the two professional systems is the principle for a successful Operation Diagnosis.

Mehler, G.

2008-01-01T23:59:59.000Z

380

MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES  

E-Print Network (OSTI)

MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES DONALD H. GRAHAM Operations. The discussion will focus on the management, operation, and maintenance systems nec essary to support long maintenance management pro gram (j) cost accounting and a record keeping system to provide timely, accurate

Columbia University

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ENVIRONMENTAL MANAGEMENT SYSTEM OBJECTIVES AND TARGETS  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives & Targets Rev. 7/17/13 Objectives & Targets Rev. 7/17/13 ENVIRONMENTAL MANAGEMENT SYSTEM OBJECTIVES AND TARGETS 2012 PROGRESS REPORT for SOUTHWESTERN POWER ADMINISTRATION Activity Legal Requirement Aspect Objective Target** see important note Target Achieved Details Real Estate Management DOE O 436.1 E.O. 13423 & 13514 EPAct 1992 and 2005 EISA 2007 NECPA 1978 Natural resource depletion and GHG emissions from resource intensive facilities Increase sustainability of facility resources, reduce energy and water consumption, reduce impacts to natural resources from facility usage 1) Meter 90% of electricity by September 2012 2) Meter 90% of gas, steam, and water by September 2015 3) 30% energy intensity reduction by 2015 from baseline 2003 4) Reduce water consumption intensity 2%

382

Thermal comfort and perceived air quality of a PEC system  

E-Print Network (OSTI)

Akimoto, T. , Genma T. 2007. Thermal sensation and comfortW. , Gong, N. 2007. Thermal performance of a personalizedRESULTS 1. Whole-body thermal sensation and comfort with the

Arens, Edward; Zhang, Hui; Pasut, Wilmer; Warneke, Ashley; Bauman, Fred; Higuchi, Hiroshi

2011-01-01T23:59:59.000Z

383

Characterization of in-cylinder techniques for thermal management of diesel aftertreatment  

DOE Green Energy (OSTI)

One challenge in meeting emission regulations with catalytic aftertreatment systems is maintaining the proper catalyst temperatures that enable the catalytic devices to perform the emissions reduction. In this study, in-cylinder techniques are used to actively control the temperature of a catalyzed diesel particulate filter (DPF) in order to raise the DPF temperature to induce particulate oxidation. The performance of four strategies is compared for two different starting DPF temperatures (150 C and 300 C) on a 4-cylinder, 1.7-liter diesel engine. The four strategies include: (1) addition of extra fuel injection early in the combustion cycle for all four cylinders, (2) addition of extra fuel injection late in the combustion cycle for all four cylinders, (3) operating one-cylinder with extra fuel injection early in the combustion cycle, and (4) operating one-cylinder with extra fuel injection late in the combustion cycle. In cases (3) and (4), the cylinder operating with extra fuel injection is changed frequently to avoid oil dilution complications. In addition to the in-cylinder strategies, an in-pipe fuel addition technique for thermal management was studied for comparison. Results show that at starting temperatures above 300 C, late cycle injection strategies that cause temperature rise from exotherms created by unburned fuel components result in higher temperature rise for a given fuel penalty. At the low temperature of 150 C, early injection strategies that create temperature rise from both combustion and light reductant exotherms are preferred due to the inability of the catalyst to oxidize unburned fuel from late injection strategies.

Parks, II, James E [ORNL; Huff, Shean P [ORNL; Kass, Michael D [ORNL; Storey, John Morse [ORNL

2007-01-01T23:59:59.000Z

384

System Demand-Side Management: Regional results  

DOE Green Energy (OSTI)

To improve the Bonneville Power Administration's (Bonneville's) ability to analyze the value and impacts of demand-side programs, Pacific Northwest Laboratory (PNL) developed and implemented the System Demand-Side Management (SDSM) model, a microcomputer-based model of the Pacific Northwest Public Power system. This document outlines the development and application of the SDSM model, which is an hourly model. Hourly analysis makes it possible to examine the change in marginal revenues and marginal costs that accrue from the movement of energy consumption from daytime to nighttime. It also allows a more insightful analysis of programs such as water heater control in the context of hydroelectric-based generation system. 7 refs., 10 figs., 10 tabs.

Englin, J.E.; Sands, R.D.; De Steese, J.G.; Marsh, S.J.

1990-05-01T23:59:59.000Z

385

Hazardous Waste Management System-General (Ohio) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System-General (Ohio) Hazardous Waste Management System-General (Ohio) Eligibility Agricultural Industrial Investor-Owned Utility Local Government MunicipalPublic Utility Rural...

386

Federal Energy Management Program: Facility Energy Decision System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Energy Decision System Software to someone by E-mail Share Federal Energy Management Program: Facility Energy Decision System Software on Facebook Tweet about Federal...

387

Thermal control system and method for a passive solar storage wall  

DOE Patents (OSTI)

A system and method are provided for controlling the storing and release of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, J.K.E.

1981-07-10T23:59:59.000Z

388

Molten salt thermal energy storage systems. Project 8981, final report  

DOE Green Energy (OSTI)

The feasibility of storing thermal energy at temperatures of 450/sup 0/ to 535/sup 0/C (850/sup 0/ to 1000/sup 0/F) in the form of latent heat of fusion has been examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures are attractive as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. An equimolar mixture of Li/sub 2/CO/sub 3/ and K/sub 2/CO/sub 3/, which melts at 505/sup 0/C with a latent heat of 148 Btu/lb, was chosen for experimental study. The cyclic charge/discharge behavior of laboratory- and engineering-scale systems was determined and compared with predictions based on a mathematical heat-transfer model that was developed during this program. The thermal performance of one engineering-scale unit remained very stable during 1400 hours of cyclic operation. Several means of improving heat conduction through the solid salt were explored. Areas requiring further investigation have been identified.

Maru, H.C.; Dullea, J.F.; Kardas, A.; Paul, L.

1978-03-01T23:59:59.000Z

389

Assessment of thermal analysis software for the DOE Office of Civilian Radioactive Waste Management  

SciTech Connect

This assessment uses several recent assessments and the more general code compilations that have been completed to produce a list of 116 codes that can be used for thermal analysis. This list is then compared with criteria prepared especially for the Department of Energy Office of Civilian Radioactive Waste Management (DOE/OCRWM). Based on these criteria, fifteen codes are narrowed to three primary codes and four secondary codes for use by the OCRWM thermal analyst. The analyst is cautioned that since no single code is sufficient for all applications, a code must be selected based upon the predominate heat transfer mode of the problem to be solved, but the codes suggested in this report have been used successfully for a range of OCRWM applications. The report concludes with a series of recommendations for additional work of which the major points include the following: The codes suggested by this report must be benchmarked with the existing US and international problems and validated when possible; An interactive code selection tool could be developed or, perhaps even more useful, a users group could be supported to ensure the proper selection of thermal codes and dissemination of information on the latest version; The status of the 116 codes identified by this report should be verified, and methods for maintaining the still active codes must be established; and special capabilities of each code in phase change, convection and radiation should be improved to better enable the thermal analyst to model OCRWM applications. 37 refs., 3 figs., 12 tabs.

Williams, P.T.; Graham, R.F.; Lagerberg, G.N.; Chung, T.C.

1989-07-01T23:59:59.000Z

390

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets  

E-Print Network (OSTI)

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

Chester, David A.

391

Business Manangement System(BMS), RL-2008/Project Hanford Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Manangement System(BMS), RL-2008/Project Hanford Business Manangement System(BMS), RL-2008/Project Hanford Management Contract PHMC (Flour), Office of the Chief Information Officer Business Manangement System(BMS), RL-2008/Project Hanford Management Contract PHMC (Flour), Office of the Chief Information Officer Business Manangement System(BMS), RL-2008/Project Hanford Management Contract PHMC (Flour), Office of the Chief Information Officer Business Manangement System(BMS), RL-2008/Project Hanford Management Contract PHMC (Flour), Office of the Chief Information Officer More Documents & Publications iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA, Office of Procurement and Assistance Management PIA - Security Clearance Work Tracking and Budget System Office of Personnel Management (OPM) Billing System PIA, Office of Health,

392

The Dark Energy Survey Data Management System  

SciTech Connect

The Dark Energy Survey (DES) is a project with the goal of building, installing and exploiting a new 74 CCD-camera at the Blanco telescope, in order to study the nature of cosmic acceleration. It will cover 5000 square degrees of the southern hemisphere sky and will record the positions and shapes of 300 million galaxies up to redshift 1.4. The survey will be completed using 525 nights during a 5-year period starting in 2012. About O(1 TB) of raw data will be produced every night, including science and calibration images. The DES data management system has been designed for the processing, calibration and archiving of these data. It is being developed by collaborating DES institutions, led by NCSA. In this contribution, we describe the basic functions of the system, what kind of scientific codes are involved and how the Data Challenge process works, to improve simultaneously the Data Management system algorithms and the Science Working Group analysis codes.

Sevilla, I.; /Madrid, CIEMAT; Armstrong, R.; Jarvis, M.; /Pennsylvania U.; Bertin, E.; /Paris, Inst. Astrophys.; Carlson, A.; Desai, S.; Mohr, J.; /Munich U.; Daues, G.; Gower, M.; Gruendl, R.; Petravick, D.; /Illinois U., Urbana /Illinois U., Urbana /Chicago U. /Fermilab /Brookhaven /Harvard-Smithsonian Ctr. Astrophys.

2011-09-01T23:59:59.000Z

393

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

solar thermal systems, which can be used for domestic hot water, space heatingsolar thermal systems, which can be used for domestic hot water, space heating

Marnay, Chris

2010-01-01T23:59:59.000Z

394

Systems Engineering Management Plan. Volume 5 of the MRS Project Management Plan  

SciTech Connect

The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP).

1994-01-01T23:59:59.000Z

395

THERMAL STRESS CALCULATIONS FOR HEATPIPE-COOLED REACTOR POWER SYSTEMS.  

DOE Green Energy (OSTI)

A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module comprises a single heatpipe surrounded by 3-6 clad fuel pins. As part of the design development and performance assessment activities for these reactors, specialized methods and models have been developed to perform thermal and stress analyses of the core modules. The methods have been automated so that trade studies can be readily performed, looking at design options such as module size, heatpipe and clad thickness, use of sleeves to contain the fuel, material type, etc. This paper describes the methods and models that have been developed, and presents thermal and stress analysis results for a Mars surface power system and a NEP power source.

Kapernick, R. J. (Richard J.); Guffee, R. M. (Ray M.)

2001-01-01T23:59:59.000Z

396

Preliminary hazards analysis of thermal scrap stabilization system. Revision 1  

SciTech Connect

This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

Lewis, W.S.

1994-08-23T23:59:59.000Z

397

Installation system for integral mounting of thermal or photovoltaic panels  

Science Conference Proceedings (OSTI)

A unique installation system for mounting solar thermal or photovoltaic solar collector panels as an integral part of a structure is described. The most common example would have the collector array replacing the sheathing and shingles of a roof supported by trusses or rafters on 24 inch centers. The design achieves the goals of a good integral installation which is reliably weathertight, rapid and easy to execute by typical construction workers with little specific extra training and no special tools. All materials and components are commercially available and have proven performance.

Rost, D.F. (Solar Energy Engineering, Poland, OH); Ameduri, G.; Groves, L.

1981-01-01T23:59:59.000Z

398

Solar-thermal-energy collection/storage-pond system  

DOE Patents (OSTI)

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

399

Encapsulated sink-side thermal energy storage for pulsed space power systems  

DOE Green Energy (OSTI)

In sprint mode space applications, which require high power for relatively short durations, energy storage devices may be employed to reduce the size and mass of the thermal management system. This is accomplished by placing the reject heat in the thermal store during the sprint mode. During the remaining nonoperational portion of the orbit the stored heat is dissipated to space. The heat rejection rate is thus reduced, and this results in a smaller radiator being required. Lithium hydride (LiH) has been identfied as the best candidate for use in power system sink-side thermal energy storage applications due to its superior heat storage properties and suitable melt temperature (T/sub m/ = 962K). To maximize storage density, both sensible and latent modes of heat storage are used. This paper focuses on the use of encapsulated lithium hydride shapes in a packed bed storage unit with lithium or NaK as the heat transport fluid. Analytical and experimental development work associated with the concept is described. Since the program is in its early stages, emphasis thus far has been on feasibility issues associated with encapsulating lithium hydride spheres. These issues include shell stress induced by phase-change during heating, hydrogen diffusion through the encapsulating shell, heat transfer limitations due to poor conductivity of the salt, void behavior, and material constraints. The impact of these issues on the design of encapsulated lithium hydride spheres has been evaluated, and design alternatives have been identified for circumventing key problem areas.

Foote, J.P.; Morris, D.G.; Olszewski, M.

1987-01-01T23:59:59.000Z

400

Towards semantic performance measurement systems for supply chain management  

Science Conference Proceedings (OSTI)

The literature on Supply Chain Management (SCM) supports the integration of key business processes, including the performance management process, in order to increase the performance within and between the organisations. Nevertheless, the lack of proper ... Keywords: SCOR, business process management, ontology engineering, performance measurement systems, supply chain management

Artturi Nurmi; Thierry Moyaux; Valérie Botta-Genoulaz

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

402

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

403

Facilities Information Management System (FIMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information Management System Facilities Information Management System (FIMS) Facilities Information Management System (FIMS) FIMS is DOE's corporate database for real property as required by DOE Order 430.1B, Real Property Asset Management. The system provides DOE with an accurate inventory and management tool that assists with planning and managing all current real property assets. The DOE Office of Acquisition and Project Management, the Office of Management and Budget, Congress, and other Federal entities use the real property data reported through FIMS. All Office of Legacy Management (LM) real property assets (buildings, trailers, other structures, and land) are entered into FIMS at the time they are acquired. Annually LM is required to update maintenance cost, operating cost, replacement cost, and utilization details for each asset.

404

ITS Hardware Maintenance Management Systems: White Paper for MORIP Pooled Fund Study  

E-Print Network (OSTI)

an ITS hardware maintenance management system. It can aid inITS Hardware Maintenance Management Systems: White Paper forITS HARDWARE MAINTENANCE MANAGEMENT SYSTEMS WHITE PAPER For

Kuhn, Beverly T.; Durkop, Brooke R.

2001-01-01T23:59:59.000Z

405

System design and dynamic signature identification for intelligent energy management in residential buildings.  

E-Print Network (OSTI)

of commercial energy management systems, IEEE Transactionsfor intelligent energy management systems of resi- dentialin an intelligent energy management system, three approaches

Jang, Jaehwi

2008-01-01T23:59:59.000Z

406

ITS Hardware Maintenance Management Systems: White Paper for MORIP Pooled Fund Study  

E-Print Network (OSTI)

of an ITS hardware maintenance management system. It can aidBERKELEY ITS Hardware Maintenance Management Systems: WhiteHIGHWAYS ITS HARDWARE MAINTENANCE MANAGEMENT SYSTEMS WHITE

Kuhn, Beverly T.; Durkop, Brooke R.

2001-01-01T23:59:59.000Z

407

Trends in Energy Management Technology - Part 3: State of Practice of Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

CMMS (Computerized Maintenance Management System), andG: Tenant billing, maintenance & management G G G G G G G:

Yee, Gaymond; Webster, Tom

2004-01-01T23:59:59.000Z

408

Efficiency of critical incident management systems: Instrument development and validation  

Science Conference Proceedings (OSTI)

There is much literature in the area of emergency response management systems. Even so, there is in general a lacuna of literature that deals with the issue of measuring the effectiveness of such systems. The aim of this study is to develop and validate ... Keywords: Critical incident management system (CIMS), Decision support, Emergency response systems, Instrument, Measurement, Media richness theory, National incident management systems (NIMS), Validation

Jin Ki Kim; Raj Sharman; H. Raghav Rao; Shambhu Upadhyaya

2007-11-01T23:59:59.000Z

409

Building Technologies Office: Building-Level Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

410

Management of the ten-megawatt solar-thermal central-receiver pilot-plant project  

DOE Green Energy (OSTI)

This report deals with inspection (between April and May 1979) of the Ten-Megawatt Solar-Thermal Central-Receiver Pilot-Plant Project being constructed in Barstow, California by the Department of Energy (DOE) and a utility consortium. At the time of inspection the project was behind schedule and over its projected cost. The project was subsequently rescheduled for initial operation by June 1982 at an estimated cost of $139.5 million. Recommendations are included relative to: better utilization of DOE resources; modified date for initial operation; and initiation of independent management audits. Comments to the draft report are appended. (PSB)

Not Available

1980-06-20T23:59:59.000Z

411

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

412

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

413

Management of Power Demand through Operations of Building Systems  

E-Print Network (OSTI)

In hot summers, the demand for electrical power is dominated by the requirements of the air-conditioning and lighting systems. Such systems account for more than 80% of the peak electrical demand in Kuwait. A study was conducted to explore the potential for managing the peak electrical demand through improved operation strategies for building systems. Two buildings with partial occupancy patterns and typical peak loads of 1 and 2.2 MW were investigated. Changes to the operation of building systems included utilizing the thermal mass to reduce cooling production and distribution during the last hour of occupancy, time-of-day control of chillers and auxiliaries, and de-lamping. The implemented operational changes led to significant reductions in building loads during the hours of national peak demand. The achieved savings reached 31% during the critical hour, and up to 47% afterwards. Daily energy savings of 13% represented an added benefit. Additional operational changes could lead to further savings in peak power when implemented.

ElSherbini, A. I.; Maheshwari, G.; Al-Naqib, D.; Al-Mulla, A.

2009-11-01T23:59:59.000Z

414

Embedded automatic parking management system based on RFID and existed gate system integration  

Science Conference Proceedings (OSTI)

In this paper, an Embedded Automatic Parking Management System (EAPMS) that integrates the existed gate system and RFID is proposed. This system includes Embedded Gate Hardware, Gate-PC Controller, RFID System, Parking Management Platform. Most systems ... Keywords: RFID, embedded, parking management, system integration

Ming-Shen Jian; Kuen Shiuh Yang; Chung-Lun Lee; Nan-Yuan Huang

2008-07-01T23:59:59.000Z

415

Modular RFID parking management system based on existed gate system integration  

Science Conference Proceedings (OSTI)

In this paper, a Modular RFID Parking Management System that integrates the existed gate system and RFID is proposed. This system includes Modular Gate-PC Controller and Embedded Gate Hardware, RFID System, Modular Parking Management Platform. Most systems ... Keywords: RFID, embedded, modular, parking management, system integration

Ming-Shen Jian; Kuen Shiuh Yang; Chung-Lun Lee

2008-06-01T23:59:59.000Z

416

Options for thermal energy storage in solar-cooling systems. Final report  

DOE Green Energy (OSTI)

The current effort concentrates on design requirements of thermal storage subsystems for active solar cooling systems. The use of thermal storage with respect to absorption, Rankine, and desiccant cooling technologies is examined.

Curran, H.M.; DeVries, J.

1981-05-01T23:59:59.000Z

417

Cask system maintenance in the Federal Waste Management System  

SciTech Connect

In early 1988, in support of the development of the transportation system for the Office of Civilian Radioactive Waste Management System (OCRWM), a feasibility study was undertaken to define a the concept for a stand-alone, green-field'' facility for maintaining the Federal Waste Management System (FWMS) casks. This study provided and initial layout facility design, an estimate of the construction costs, and an acquisition schedule for a Cask Maintenance Facility (CMF). It also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs derived from the study have been organized for use in the total transportation system decision-making process. Most importantly, they also provide a foundation for continuing design and planning efforts. The feasibility study was based on an assumed stand-alone, green-field'' configuration. This design approach provides a comprehensive design evaluation, to guide the development of a cost estimate and to permit flexibility in locating the facility. The following sections provide background information on cask system maintenance, briefly summarizes some of the functional requirements that a CMF must satisfy, provides a physical description of the CMF, briefly discusses the cost and schedule estimates and then reviews the findings of the efforts undertaken since the feasibility study was completed. 15 refs., 3 figs.

Pope, R.B.; Rennich, M.J.; Medley, L.G.; Attaway, C.R.

1991-01-01T23:59:59.000Z

418

Demo Abstract: ThermoSense: Thermal Array Sensor Networks in Building Management  

E-Print Network (OSTI)

, and ventilation (HVAC) systems have two different points of control; temperature and ventila- Permission to make this occupancy information can be integrated with a real building management system in order to control of time in order to ensure the room can reach the appropriate tem- perature. A prediction model can

Cerpa, Alberto E.

419

A design of an integrated document system for project management  

Science Conference Proceedings (OSTI)

The paper describes a design model for an integrated document system for project management, which takes into account the key requirement of ensuring consistent and high-quality project management documentation. The model is based on structured documents ... Keywords: document system, model, project management

Iulian Intorsureanu; Rodica Mihalca; Adina Uta; Anca Andreescu

2009-06-01T23:59:59.000Z

420

Modelling integrated waste management system of the Czech Republic  

Science Conference Proceedings (OSTI)

The paper is devoted to environmental modelling, particularly modelling of Integrated Municipal Solid Waste Management Systems at the Czech Republic (IMSWMS). There are considered input macroeconomic variables (landfills fees, price of electricity, tax ... Keywords: environmental modelling, integrated waste management system, municipal solid waste, waste management modelling

Jiri Hrebicek; Jana Soukopova

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems  

SciTech Connect

A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

Liekhus, K.; Grandy, J.; Chambers, A. [and others] [and others

1997-03-01T23:59:59.000Z

422

Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System  

SciTech Connect

Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

2010-01-01T23:59:59.000Z

423

FFT-LB modeling of thermal liquid-vapor systems  

E-Print Network (OSTI)

We further develop a thermal LB model for multiphase flows. In the improved model, we propose to use the FFT scheme to calculate both the convection term and external force term. The usage of FFT scheme is detailed and analyzed. By using the FFT algorithm spatiotemporal discretization errors are decreased dramatically and the conservation of total energy is much better preserved. A direct consequence of the improvement is that the unphysical spurious velocities at the interfacial regions can be damped to neglectable scale. Together with the better conservation of total energy, the more accurate flow velocities lead to the more accurate temperature field which determines the dynamical and final states of the system. With the new model, the phase diagram of the liquid-vapor system obtained from simulation is more consistent with that from theoretical calculation. Very sharp interfaces can be achieved. The accuracy of simulation results are also verified by the Laplace law. The FFT scheme can be easily applied t...

Gan, Yanbiao; Zhang, Guangcai; Li, Yingjun

2012-01-01T23:59:59.000Z

424

New and Underutilized Technology: Computer Power Management Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computer Power Management Systems Computer Power Management Systems New and Underutilized Technology: Computer Power Management Systems October 7, 2013 - 9:08am Addthis The following information outlines key deployment considerations for computer power management systems within the Federal sector. Benefits Computer power management systems include network-based software that manages computer power consumption by automatically putting them in standby, hibernation, or other low energy consuming state without interfering with user productivity or IT functions. Application Computer power management systems are applicable in most building categories with high computer counts. Key Factors for Deployment Life-cycle cost effectiveness studies are recommended prior to deployment. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are

425

Farm management systems and the Future Internet era  

Science Conference Proceedings (OSTI)

Smart/precision farming systems are expected to play an important role in improving farming activities. During the past years, sophisticated farm management systems have emerged to replace outdated complex and monolithic farm systems and software tools. ... Keywords: Farm management system, Future Internet, Generic enablers, Internet of Things

Alexandros Kaloxylos; Robert Eigenmann; Frederick Teye; Zoi Politopoulou; Sjaak Wolfert; Claudia Shrank; Markus Dillinger; Ioanna Lampropoulou; Eleni Antoniou; Liisa Pesonen; Huether Nicole; Floerchinger Thomas; Nancy Alonistioti; George Kormentzas

2012-11-01T23:59:59.000Z

426

Earned Value Management System RM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earned Value Management System RM Earned Value Management System RM Earned Value Management System RM In recent years Department of Energy (DOE) has developed a number of orders, and guidance documents aimed to improve the overall performance of project management and the acquisition of capital assets with the DOE complex. One of the most important activities or products required by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assess, to strengthen the overall performance of project management and the acquisition of capital assets is the Earned Value Management System (EVMS). EVMS allows both government and contractor managers to gain significant insights into technical, cost, and schedule progress of contracts and projects. The implementation of an EVMS is widely recognized

427

Essentials of Management Information Systems, 5th edition  

Science Conference Proceedings (OSTI)

From the Publisher:Exceptionally practical in approach, this volume prepares readers for the constantly changing demands of using information systems as managers in today's fast-paced organizations. It relates MIS to management, the organization and ...

Kenneth C. Laudon

2002-05-01T23:59:59.000Z

428

Earned Value Management System RM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earned Value Management System RM Earned Value Management System RM Earned Value Management System RM In recent years Department of Energy (DOE) has developed a number of orders, and guidance documents aimed to improve the overall performance of project management and the acquisition of capital assets with the DOE complex. One of the most important activities or products required by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assess, to strengthen the overall performance of project management and the acquisition of capital assets is the Earned Value Management System (EVMS). EVMS allows both government and contractor managers to gain significant insights into technical, cost, and schedule progress of contracts and projects. The implementation of an EVMS is widely recognized

429

Analysis of photovoltaic/thermal electric power plant systems  

DOE Green Energy (OSTI)

A conceptual definition and performance evaluation of a 100 megawatt (MW) hybrid photovoltaic/thermal electric power plant has been carried out. The concept utilizes the ability of gallium arsenide photovoltaic cells to achieve high conversion efficiency at high incident fluxes and elevated temperatures. Solar energy is focused by a field of steerable mirrors (heliostats) onto a tower mounted receiver whose outer surface is covered with gallium arsenide (AlGaAs/GaAs) solar cells and whose inner surface is a water boiler. The solar cells convert a fraction of the incident radiation into electrical energy, and the remaining energy is extracted at approximately 200/sup 0/C and used to power a Rankine cycle turbine generator (bottoming cycle). Water is used as the solar cell array coolant, as the thermodynamic working fluid, and as the thermal energy storage medium. Parametric studies were conducted to select conceptual design parameters and operational characteristics which imply the lowest levelized busbar electric energy costs. Parameters varied were collector area, condenser surface area, fan power, ambient temperature, and electric and thermal energy storage capacities. The report describes the concept, outlines the design analysis method, summarizes the parametric study results, and defines the selected plant configuration. The lowest levelized busbar electric energy generation cost, 70 mills/kilowatt-hr., was achieved with a relatively small collector area, 0.8 x 10/sup 6/ square meters, and no stored energy. A rough comparison of this combined power plant with a similar photovoltaic plant, operated at lower solar cell temperature and with no bottoming cycle, showed the busbar cost of electricity (BBEC) from the combined system to be approximately 9% lower.

Gluck, D.F.; Kelley, W.A.

1979-03-01T23:59:59.000Z

430

Nuclear Energy CFD Application Management System  

Science Conference Proceedings (OSTI)

In modeling and simulation (M&S), it is virtually impossible to separately evaluate the effectiveness of the model from the data used because the results produced rely heavily on the interaction between the two. Both the data and the simulation are responsible for achieving the ultimate goal of providing defensible research and development (R&D) products and decisions. It is therefore vital that data verification and validation (V&V) activities, along with stringent configuration management, be considered part of the overall M&S accreditation process. In support of these goals is the Nuclear Energy CFD Application Management System (NE-CAMS) for nuclear system design and safety analysis. Working with Bettis Laboratory and Utah State University, a plan of action is being developed by the Idaho National Laboratory (INL) that will address the highest and most immediate needs to track and manage computational fluid dynamics (CFD) models and experimental data in an electronic database. The database will intrinsically incorporate the Nuclear Regulatory Commission (NRC) approved policies and procedures for quality. The quality requirements will be such that the model and data must conform to the quality specifications outlined by the NRC before they can be entered into the database. The primary focus of this database is CFD V&V for nuclear industry needs and will, in practice, serve as the best practice guideline that will accommodate NRC regulations. Such a database, along with a prescriptive methodology for how to utilize it, will provide the NRC with accepted CFD results that could potentially be used for licensing. NE-CAMS will incorporate data V&V as key precursors to the distribution of nuclear systems design and safety data, ensuring that these data are appropriate for use in a particular M&S application. Verification will be conducted to provide a level of confidence that the data selected are the most appropriate for the simulation and are properly prepared, i.e., they are complete, correct and conform to predefined procedures and requirements. Validation will ensure that the data accurately represent the real world activity that is being simulated, ensuring the analytical quality of the data. The level of detail and stringency applied against the data V&V activities will be based on a graded approach principle; the higher the risk, the more rigorous the V&V activities. For the V&V activities to be complete, it will be necessary to scrutinize the physical and statistical properties of the extracted data during the overall process. Regardless of the specific technique or methodology, data V&V will be an important component of NE-CAMS.

Hyung Lee; Kimberlyn C. Mousseau

2001-09-01T23:59:59.000Z

431

The Dark Energy Survey Data Management System  

SciTech Connect

The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

Mohr, Joseph J.; /Illinois U., Urbana, Astron. Dept. /Illinois U., Urbana; Barkhouse, Wayne; /North Dakota U.; Beldica, Cristina; /Illinois U., Urbana; Bertin, Emmanuel; /Paris, Inst. Astrophys.; Dora Cai, Y.; /NCSA, Urbana; Nicolaci da Costa, Luiz A.; /Rio de Janeiro Observ.; Darnell, J.Anthony; /Illinois U., Urbana, Astron. Dept.; Daues, Gregory E.; /NCSA, Urbana; Jarvis, Michael; /Pennsylvania U.; Gower, Michelle; /NCSA, Urbana; Lin, Huan; /Fermilab /Rio de Janeiro Observ.

2008-07-01T23:59:59.000Z

432

The Dark Energy Survey Data Management System  

E-Print Network (OSTI)

The Dark Energy Survey collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at NCSA and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used Teragrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

Joseph J. Mohr; Wayne Barkhouse; Cristina Beldica; Emmanuel Bertin; Y. Dora Cai; Luiz da Costa; J. Anthony Darnell; Gregory E. Daues; Michael Jarvis; Michelle Gower; Huan Lin; leandro Martelli; Eric Neilsen; Chow-Choong Ngeow; Ricardo Ogando; Alex Parga; Erin Sheldon; Douglas Tucker; Nikolay Kuropatkin; Chris Stoughton

2008-07-16T23:59:59.000Z

433

Federal Energy Management Program: EISA Compliance Tracking System Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

EISA Compliance EISA Compliance Tracking System Reports and Data to someone by E-mail Share Federal Energy Management Program: EISA Compliance Tracking System Reports and Data on Facebook Tweet about Federal Energy Management Program: EISA Compliance Tracking System Reports and Data on Twitter Bookmark Federal Energy Management Program: EISA Compliance Tracking System Reports and Data on Google Bookmark Federal Energy Management Program: EISA Compliance Tracking System Reports and Data on Delicious Rank Federal Energy Management Program: EISA Compliance Tracking System Reports and Data on Digg Find More places to share Federal Energy Management Program: EISA Compliance Tracking System Reports and Data on AddThis.com... Requirements by Subject Requirements by Regulation Notices & Rules

434

Integrated Building Management System (IBMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Management System Building Management System (IBMS) Integrated Building Management System (IBMS) The U.S. Department of Energy (DOE) is currently conducting research into an integrated building management system (IBMS). Project Description This project seeks to develop an open integration framework that allows multivendor systems to interoperate seamlessly using internet protocols. The applicant will create an integrated control platform for implementing new integrated control strategies and to enable additional enterprise control applications, such as demand response. The project team seeks to develop several strategies that take advantage of the sensors and functionality of heating, ventilation, and air conditioning (HVAC); security; and information and communication technologies (ICT) subsystems;

435

Thermal storage HVAC system retrofit provides economical air conditioning  

Science Conference Proceedings (OSTI)

This article describes an EMS-controlled HVAC system that meets the ventilation and cooling needs of an 18,000-seat indoor ice hockey arena. The Buffalo Memorial Auditorium (affectionately referred to as the Aud) was built in 1937 under the Works Project Administration of the federal government. Its original configuration included a 12,000-seat arena with an ice skating rink. By the late 1980s, the city was unsuccessfully attempting to attract events and tenants to the auditorium, which lacked air conditioning and other modern amenities. Thus, it was decided to renovate the facility to make it marketable. The first phase of the renovation included installing an air-conditioning system in the arena and repairing the existing building systems that were inoperable because of deferred maintenance. After considering the existing conditions (such as size of the space, intermittent usage, construction restrictions, operating budgets and the limited operations staff), the engineering team designed an innovative HVAC system. The system's features include: a carbon dioxide monitoring device that controls the intake of outside air; an ice storage system that provides chilled water and shifts electrical demand to off-peak hours; and a design that uses the building mass as a heat sink. A new energy management system (EMS) determines building cooling needs based on the type of event, ambient conditions and projected audience size. Then, it selects the most economical method to obtain the desired arena temperature.

Smith, S.F. (Wendel Engineers, P.C., Buffalo, NY (United States))

1993-03-01T23:59:59.000Z

436

LED lamp power management system and method  

DOE Patents (OSTI)

An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

2013-03-19T23:59:59.000Z

437

High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

June 15, 2013 | Singh * Thermal modeling will be conducted to establish the benefits of using a high thermal conducting graphite foams in conjunction with PCM and to develop a...

438

Information Management, Analytics & Optimization Services IMS System Maintenance Service Offering  

E-Print Network (OSTI)

Information Management, Analytics & Optimization Services IMS System Maintenance Service Offering The IMS System Maintenance Review offering is a special service offering from the IMS laboratory Technical Specialist group. Complex IMS systems require periodic maintenance, coupled with a specific testing process

439

Thermal runaway reaction hazard and decomposition mechanism of the hydroxylamine system  

E-Print Network (OSTI)

Chemical reactivity hazards have posed a significant challenge for industries that manufacture, store, and handle reactive chemicals. Without proper management and control of reactivity, numerous incidents have caused tremendous loss of property and human lives. The U.S. Chemical Safety and Hazard Investigation Board (CSB) reported 167 incidents involving reactive chemicals that occurred in the U.S. from 1980 to 2001. According to the report, 35 percent of the incidents were caused by thermal runaway reactions, such as incidents that involved hydroxylamine and hydroxylamine nitrate. The thermal stability of hydroxylamine system under various industrial conditions was studied thoroughly to develop an understanding necessary to prevent recurrence of incidents. The macroscopic runaway reaction behavior of hydroxylamine system was analyzed using a RSST (Reactive System Screening Tool) and an APTAC (Automatic Pressure Tracking Calorimeter). Also, computational chemistry was employed as a powerful tool to evaluate and predict the measured reactivity. A method was proposed to develop a runaway reaction mechanism that provides atomic level ofinformation on elementary reaction steps, in terms of reaction thermochemistry, activation barriers, and reaction rates. This work aims to bridge molecular and macroscopic scales for process safety regarding reactive chemicals and to understand macroscopic runaway reaction behaviors from a molecular point of view.

Wei, Chunyang

2005-08-01T23:59:59.000Z

440

Trends in Energy Management Technologies - Part 5: Effectiveness of Energy Management Systems: What the Experts Say and Case Studies Reveal  

E-Print Network (OSTI)

with computerized maintenance management systems (CMMS)).maintenance of mechanical and electrical systems, and managementengineers and maintenance staff. Firm management are

Webster, Tom

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal management system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Thermal energy from a biogas engine/generator system  

SciTech Connect

A biogas fueled engine/generator equipped with heat recovery apparatus and thermal storage is described. The thermal energy is used to fuel a liquid fuel plant. Heat recovery is quantified and the static and dynamic performance of the thermal storage is described. At 1260 rpm the engine/generator produces 21 kW of electric power and 2500 kJ/min of thermal energy.

Stahl, T.; Fischer, J.R.; Harris, F.D.

1982-12-01T23:59:59.000Z

442

ALTERNATIVE ENERGY TESTBED ELECTRIC VEHICLE AND THERMAL MANAGEMENT SYSTEM INVESTIGATION.  

E-Print Network (OSTI)

??Methodology of and details on designing, constructing, and testing an efficient low power electric vehicle for alternative energy testing purposes. Experimental analysis of the drive… (more)

Gregg, Christopher B

2007-01-01T23:59:59.000Z

443

Selected papers on solar radiation and solar thermal systems  

SciTech Connect

This volume contains a collection of reprints that represent the milestone papers in the fields of optical science and engineering. After a section containing historical papers in solar thermal research, the following sections are included: solar radiation; solar thermal power; solar thermal materials; and solar ponds. A total of 57 papers were indexed separately for the data base.

Osborn, D.E. (ed.) (Sacramento Municipal Utility District, CA (United States))

1993-01-01T23:59:59.000Z

444

V-125: Cisco Connected Grid Network Management System Multiple  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Cisco Connected Grid Network Management System Multiple 5: Cisco Connected Grid Network Management System Multiple Vulnerabilities V-125: Cisco Connected Grid Network Management System Multiple Vulnerabilities April 3, 2013 - 1:44am Addthis PROBLEM: Cisco Connected Grid Network Management System Multiple Vulnerabilities PLATFORM: Cisco Connected Grid Network Management System 2.x ABSTRACT: Some vulnerabilities have been reported in Cisco Connected Grid Network Management System. REFERENCE LINKS: Cisco Security Notice CVE-2013-1163 Cisco Security Notice CVE-2013-1171 Secunia Advisory SA52834 SecurityTracker Alert ID: 1028374 SecurityTracker Alert ID: 1028373 CVE-2013-1163 CVE-2013-1171 IMPACT ASSESSMENT: Medium DISCUSSION: 1) Certain input related to the element list component is not properly sanitised before being returned to the user. This can be exploited to

445

V-125: Cisco Connected Grid Network Management System Multiple  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Cisco Connected Grid Network Management System Multiple 5: Cisco Connected Grid Network Management System Multiple Vulnerabilities V-125: Cisco Connected Grid Network Management System Multiple Vulnerabilities April 3, 2013 - 1:44am Addthis PROBLEM: Cisco Connected Grid Network Management System Multiple Vulnerabilities PLATFORM: Cisco Connected Grid Network Management System 2.x ABSTRACT: Some vulnerabilities have been reported in Cisco Connected Grid Network Management System. REFERENCE LINKS: Cisco Security Notice CVE-2013-1163 Cisco Security Notice CVE-2013-1171 Secunia Advisory SA52834 SecurityTracker Alert ID: 1028374 SecurityTracker Alert ID: 1028373 CVE-2013-1163 CVE-2013-1171 IMPACT ASSESSMENT: Medium DISCUSSION: 1) Certain input related to the element list component is not properly sanitised before being returned to the user. This can be exploited to

446

Building-Level Energy Management Systems (BLEMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Building-Level Energy Management Systems Emerging Technologies » Building-Level Energy Management Systems (BLEMS) Building-Level Energy Management Systems (BLEMS) The U.S. Department of Energy (DOE) is currently conducting research into building-level energy management systems (BLEMS). Project Description BLEMS provide an integrated plug-and-play capability for legacy energy management systems (EMSs), such as those based on X-10, Zigbee, 802.15, and newly developed EMS for buildings of any size. Project Partners Research is being undertaken by DOE, the University of Southern California, General Electric (GE) Global Research, and GE Consumer & Industrial Division. Project Goals The goal of this project is to develop practical solutions that bring together ad-hoc legacy energy management systems under a single, unified

447

V-132: IBM Tivoli System Automation Application Manager Multiple  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: IBM Tivoli System Automation Application Manager Multiple 2: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities V-132: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities April 12, 2013 - 6:00am Addthis PROBLEM: IBM has acknowledged multiple vulnerabilities in IBM Tivoli System Automation Application Manager PLATFORM: The vulnerabilities are reported in IBM Tivoli System Automation Application Manager versions 3.1, 3.2, 3.2.1, and 3.2.2 ABSTRACT: Multiple security vulnerabilities exist in the IBM Java Runtime Environment component of IBM Tivoli System Automation Application Manager which may affect the product REFERENCE LINKS: Secunia Advisory: SA53006 IBM Security Bulletin 21633991 IBM Security Bulletin 21633992 CVE-2011-3563 CVE-2012-0497 CVE-2012-0498 CVE-2012-0499 CVE-2012-0501

448

Practical Ocean Energy Management Systems Inc POEMS | Open Energy  

Open Energy Info (EERE)

Ocean Energy Management Systems Inc POEMS Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name Practical Ocean Energy Management Systems Inc (POEMS) Place San Diego, California Zip 92138 Sector Ocean, Renewable Energy Product POEMS was formed to involve the public in providing support for the development of ocean energy as a viable component of the renewable energy market. References Practical Ocean Energy Management Systems Inc (POEMS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Practical Ocean Energy Management Systems Inc (POEMS) is a company located in San Diego, California . References ↑ "Practical Ocean Energy Management Systems Inc (POEMS)" Retrieved from

449

V-132: IBM Tivoli System Automation Application Manager Multiple  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: IBM Tivoli System Automation Application Manager Multiple 2: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities V-132: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities April 12, 2013 - 6:00am Addthis PROBLEM: IBM has acknowledged multiple vulnerabilities in IBM Tivoli System Automation Application Manager PLATFORM: The vulnerabilities are reported in IBM Tivoli System Automation Application Manager versions 3.1, 3.2, 3.2.1, and 3.2.2 ABSTRACT: Multiple security vulnerabilities exist in the IBM Java Runtime Environment component of IBM Tivoli System Automation Application Manager which may affect the product REFERENCE LINKS: Secunia Advisory: SA53006 IBM Security Bulletin 21633991 IBM Security Bulletin 21633992 CVE-2011-3563 CVE-2012-0497 CVE-2012-0498 CVE-2012-0499 CVE-2012-0501

450

MANAGEMENT ASSESSMENT AN INTEGRATED ENVIRONMENT SAFETY & HEALTH MANAGEMENT SYSTEM (ISMS) CORE FUNCTION FOR FEEDBACK & CONTINUOUS IMPROVEMENT  

Science Conference Proceedings (OSTI)

Management assessment is required of US Department of Energy contractors by 10 CFR 830.122 and DOE Order 414.1. The management assessment process is a rigorous, preplanned, forward-looking review. It is required to be performed by owners of the processes that are being assessed. Written from the perspective of the Assessment Program Director and an Assessment Specialist, this paper describes the evolution of the process used by CH2MHILL to implement its management assessment program over the past two years including: roles, responsibilities, and details about our program improvement project designed to produce a clear picture of management processes and to identify opportunities for improvement. The management assessment program is essential to successful implementation, maintenance, and improvement of the CH2MHILL Integrated Environment, Safety, and Health Management System (ISMS). The management assessment program implements, in part, ISMS Core Function No. 5. ''Feedback and Continuous Improvement''. Organizations use the management assessment process to assess ISMS implementation and effectiveness. Management assessments evaluate the total picture of how well management processes are meeting organizational objectives and the customer's requirements and expectations. The emphasis is on management issues affecting performance, systems, and processes such as: strategic planning, qualification, training, staffing, organizational interfaces, communication, cost and schedule control and mission objectives. Management assessments should identify any weaknesses in the management aspects of performance and make process improvements. All managers from first line supervisors to the president and general manager are involved in the management assessment process. More senior managers, in conducting their assessment, will use data from lower levels of management. This approach will facilitate the objective of having managers closer to the work under review focusing on more compliance- and process-oriented aspects of work performance, while senior managers will concentrate on more strategic issues, having more access to information generated from assessments by their subordinates.

VON WEBER, M.

2005-07-26T23:59:59.000Z

451

Managing System of Systems Requirements with a Requirements Screening Group  

SciTech Connect

Figuring out an effective and efficient way to manage not only your Requirement’s Baseline, but also the development of all your individual requirements during a Program’s/Project’s Conceptual and Development Life Cycle Stages can be both daunting and difficult. This is especially so when you are dealing with a complex and large System of Systems (SoS) Program with potentially thousands and thousands of Top Level Requirements as well as an equal number of lower level System, Subsystem and Configuration Item requirements that need to be managed. This task is made even more overwhelming when you have to add in integration with multiple requirements’ development teams (e.g., Integrated Product Development Teams (IPTs)) and/or numerous System/Subsystem Design Teams. One solution for tackling this difficult activity on a recent large System of Systems Program was to develop and make use of a Requirements Screening Group (RSG). This group is essentially a Team made up of co-chairs from the various Stakeholders with an interest in the Program of record that are enabled and accountable for Requirements Development on the Program/Project. The RSG co-chairs, often with the help of individual support team, work together as a Program Board to monitor, make decisions on, and provide guidance on all Requirements Development activities during the Conceptual and Development Life Cycle Stages of a Program/Project. In addition, the RSG can establish and maintain the Requirements Baseline, monitor and enforce requirements traceability across the entire Program, and work with other elements of the Program/Project to ensure integration and coordination.

Ronald R. Barden

2012-07-01T23:59:59.000Z

452

Burner Management System Maintenance Guide for Fossil Power Plant Personnel  

Science Conference Proceedings (OSTI)

Burner Management System Maintenance Guide for Fossil Power Plant Personnel provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist plant maintenance personnel in improving the reliability of and reducing the maintenance costs associated with the burner management system.

2008-03-25T23:59:59.000Z

453

Spent Nuclear Fuel project systems engineering management plan  

SciTech Connect

The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

Womack, J.C.

1995-10-03T23:59:59.000Z

454

Persistence of entanglement in thermal states of spin systems  

E-Print Network (OSTI)

We study and compare the persistence of bipartite and multipartite entanglement in one and two-dimensional spin XY model in an external transverse magnetic field under the effect of thermal excitations. We compare the threshold temperature at which the entanglement vanishes in both cases. We use the concurrence as a measure of the bipartite entanglement and the geometric measure to evaluate the multipartite entanglement of the system. We have found that for the anisotropic and partially anisotropic systems the nearest neighbor bipartite entanglement vanishes asymptotically at much higher magnetic field compared to both the next to nearest neighbor bipartite entanglement and the multipartite entanglement which asymptotically coincide. Also the same behavior was observed for the threshold temperatures where the nearest neighbor bipartite one is much higher than both of the next to nearest neighbor bipartite and multipartite where the latter two coincide asymptotically and the three of them increase monotonically with the magnetic field strength. Thus as the temperature increases to certain value, the threshold, the multipartite entanglement and the bipartite entanglement of the far parts of the system may vanish while the nearest neighbor bipartite entanglement may sustain up to much higher temperature. For the isotropic system, all types of entanglement and threshold temperatures vanish at the same exact small value of the magnetic field. We emphasis the major role played by both the properties of the ground state of the system and the energy gap as well. Furthermore, we found that the quantum effects in the system can be maintained at high temperatures, where we have observed that the different types of entanglements in the lattice sustain at high temperatures if we apply sufficiently high magnetic fields.

Gehad Sadiek; Sabre Kais

2013-01-01T23:59:59.000Z

455

Agricultural Waste Management System Component Design  

E-Print Network (OSTI)

Management Field Handbook 10­1(210-vi-AWMFH, rev. 1, July 1996) Chapter 10 Agricultural Waste Management..............................................................................................10­67 (b) Gravity flow pipes Waste Management Field Handbook 10­2 (210-vi-AWMFH, rev. 1, July 1996) 651.1006 Utilization 10­71 (a

Mukhtar, Saqib

456

Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System  

SciTech Connect

Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

2011-02-01T23:59:59.000Z

457

Evaluating Ocean Management Systems to Facilitate the Development of Ecosystem-Based Management  

E-Print Network (OSTI)

Report R/OPC-ENV-02 Evaluating Ocean Management Systems toinformation about how the oceans are governed can be gleanedthe understanding of existing ocean governance to assist

Young, Oran R

2009-01-01T23:59:59.000Z