National Library of Energy BETA

Sample records for thermal management system

  1. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  2. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  3. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  4. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  5. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  6. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  7. Efficient thermal management for multiprocessor systems

    E-Print Network [OSTI]

    Co?kun, Ay?e K?v?lc?m

    2009-01-01

    energy and thermal based static scheduling strategies. Our methodmethod which outperforms other static energy or temperature management techniques in terms of reducing thermalthermal cycles, and optimization methods that consider reliability constraints provide energy

  8. Dynamic thermal management in chip multiprocessor systems 

    E-Print Network [OSTI]

    Liu, Chih-Chun

    2009-05-15

    Application test scenarios : : : : : : : : : : : : : : : : : : : : : : : : 45 VIII Experimental results compared to Linux Standard Scheduler in System I (4-core system): (R.P.T. : Reduced Peak Temperature; P.O. : Performance Overhead...) : : : : : : : : : : : : : : : : : : : : : : 51 IX Experimental results compared to Linux Standard Scheduler in System II (8-core system): (R.P.T. : Reduced Peak Temperature; P.O. : Performance Overhead) : : : : : : : : : : : : : : : : : : : : : : 54 viii LIST OF FIGURES FIGURE Page 1 Real...

  9. Lighting system with thermal management system having point contact synthetic jets

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  10. Thermal-Aware System-Level Modeling and Management for Multi-Processor Systems-on-Chip

    E-Print Network [OSTI]

    De Micheli, Giovanni

    -level MPC-based thermal modeling and management approaches on an industrial 8-core MPSoC design and show in voltage and frequency scaling waste additional power [6]. Thus, system-level thermal managementThermal-Aware System-Level Modeling and Management for Multi-Processor Systems-on-Chip Francesco

  11. Adaptive Thermal Management for Portable System Batteries by Forced Convection Cooling

    E-Print Network [OSTI]

    Pedram, Massoud

    Adaptive Thermal Management for Portable System Batteries by Forced Convection Cooling Qing Xie a portable system. Since the cooling fan is also powered by the same battery, it is critical to develop thermal management problem for batteries (ATMB) in the portable systems with forced convection cooling

  12. Thermal management of long-length HTS cable systems

    SciTech Connect (OSTI)

    Demko, Jonathan A; Hassenzahl, William V

    2011-01-01

    Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

  13. POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN

    E-Print Network [OSTI]

    Römisch, Werner

    POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN RELAXATION NICOLE GR power in a hydro-thermal system under uncertainty in load, inflow to reservoirs and prices for fuel to successive decom- position into single thermal and hydro unit subproblems that are solved by dynamic

  14. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Mark K. Gee

    2008-10-01

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to improve system efficiency and reduce packaging size.

  15. Thermal Inertia: Towards An Energy Conservation Room Management System (Technical report)

    E-Print Network [OSTI]

    Wang, Dan

    increasing attention to energy conservation around the world. The heating and air-conditioning systems, many studies are working on energy efficiency for data centers [16][17][19], a top energy consumerThermal Inertia: Towards An Energy Conservation Room Management System (Technical report) Yi Yuan

  16. Method and apparatus for thermal management of vehicle exhaust systems

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1995-01-01

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.

  17. Method and apparatus for thermal management of vehicle exhaust systems

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1995-12-26

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.

  18. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

  19. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    storage and direct solar energy conversion to work. FocusManagement and Solar Energy Conversion Applications By DusanThermal Management and Solar Energy Conversion Applications

  20. Integrated Vehicle Thermal Management Systems (VTMS) Analysis/Modeling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02Department of Energy Systems (VTMS)

  1. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

  2. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect (OSTI)

    Zia Mirza, Program Manager

    2011-12-06

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  3. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  4. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    cell. The solar cell’s power conversion efficiency, ? is theEfficiency ..5 Thermal Managements of SolarTemperature on Efficiency Photons incident on a solar cell

  5. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  6. Fast Thermal Simulation for Architecture Level Dynamic Thermal Management

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    Fast Thermal Simulation for Architecture Level Dynamic Thermal Management Pu Liu, Zhenyu Qi, Hang temperature by dynamic thermal managements becomes necessary. This paper proposes a novel approach to the thermal analysis at chip architecture level for efficient dynamic thermal management. Our new approach

  7. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Nanotubes as High-Energy Density Solar Thermal Fuels,” Nanolatent heat energy storage and solar thermal applications,[for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  8. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    2002, “Survey of Thermal Energy Storage for Parabolic TroughChange Materials for Thermal Energy Storage,” Renewable andTemperature Thermal Energy Storage for Power Generation.

  9. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  10. Parallel integrated thermal management

    DOE Patents [OSTI]

    Bennion, Kevin; Thornton, Matthew

    2014-08-19

    Embodiments discussed herein are directed to managing the heat content of two vehicle subsystems through a single coolant loop having parallel branches for each subsystem.

  11. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  12. Energy Efficient Proactive Thermal Management in Memory Subsystem

    E-Print Network [OSTI]

    Simunic, Tajana

    Energy Efficient Proactive Thermal Management in Memory Subsystem Raid Ayoub rayoub management of memory subsystem is challenging due to performance and thermal constraints. Big energy gains appreciable energy savings in memory sub-system and mini- mize thermal problems. We adopt the consolidation

  13. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  14. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    focus only on the solar collector and catalytic converterfluid, a microfluidic solar collector, and a catalytic heatS. a. , 2004, “Solar Thermal Collectors and Applications,”

  15. Cu-Bi as a Model System For Liquid Phase Sintered Thermal Interface Management Materials

    E-Print Network [OSTI]

    Collins, Gary S.

    and controllable properties that can be tailored for use in TIM applications. Figure 2. Representative and respective thermal conductivity Heat Sink Si Device TIMHEAT HEAT Heat Sink Si Device TIM Heat Sink Si Device TIM 1) High thermal conductivity to conduct heat from silicon device to heat sink 2) High compliance

  16. Thermal Attacks on Storage Systems Nathanael Paul Sudhanva Gurumurthi David Evans

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    Thermal Attacks on Storage Systems Nathanael Paul Sudhanva Gurumurthi David Evans University thermal management alternative. Keywords: storage systems, security, thermal management, denial shut-down. Our new thermal attack on future storage systems is unrecognized by current Intrusion

  17. Thermal management system and method for a solid-state energy storing device

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Gauthier, Michel (La Prairie, CA); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Rouillard, Jean (Saint-Luc, CA); Shiota, Toshimi (St. Bruno, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-01-01

    An improved electrochemical energy storing device includes a number of thin-film electrochemical cells which are maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of each electrochemical cell, conducts current into and out of the electrochemical cells and also conducts thermal energy between the electrochemical cells and thermally conductive material disposed on a wall structure adjacent the conductors. The wall structure includes electrically resistive material, such as an anodized coating or a thin film of plastic. The thermal conductors are fabricated to include a spring mechanism which expands and contacts to maintain mechanical contact between the electrochemical cells and the thermally conductive material in the presence of relative movement between the electrochemical cells and the wall structure. An active cooling apparatus may be employed external to a hermetically sealed housing containing the electrochemical cells to enhance the transfer of thermal energy into and out of the electrochemical cells. An integrated interconnect board may be disposed within the housing onto which a number of electrical and electro-mechanical components are mounted. Heat generated by the components is conducted from the interconnect board to the housing using the thermal conductors.

  18. Thermal Storage with Ice Harvesting Systems 

    E-Print Network [OSTI]

    Knebel, D. E.

    1986-01-01

    Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

  19. Thermal Insulation Systems 

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  20. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Photo-chemical Solar Energy Storage Systems,” AngewandteExploitation of Solar Energy Storage Systems . ValenceOrganometallic Frames for Solar Energy Storage, Berkeley. [

  1. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  2. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Organometallic Frames for Solar Energy Storage, Berkeley. [Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  3. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”Power Plants,” Journal of Solar Energy Engineering, 124 (2),

  4. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Energy Storage for Power Generation. Part 1—Concepts,effectively. Thus, in power generation systems, phase changeIn addition to power generation, phase change heat transfer

  5. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    and Photovoltaic Solar Energy Converters,” American ChemicalNocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  6. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  7. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  8. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  9. Environmental Management System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management System Environmental Management System An Environmental Management System is a systematic method for assessing mission activities, determining the environmental impacts...

  10. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management...

  11. Generic disposal concepts and thermal load management for larger...

    Office of Scientific and Technical Information (OSTI)

    Generic disposal concepts and thermal load management for larger waste packages. Citation Details In-Document Search Title: Generic disposal concepts and thermal load management...

  12. Carbon Foam Thermal Management Materials for Electronic Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foam Thermal Management Materials for Electronic Packaging Carbon Foam Thermal Management Materials for Electronic Packaging Presentation from the U.S. DOE Office of Vehicle...

  13. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    Raman Spectroscopy and Thermal Properties of Graphenegraphite heat spreaders for thermal management of high-powerthe Raman spectroscopy and thermal properties of a novel

  14. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    on Thermal Management, Las Gatos, CA, Nov. 2012 [3] Z. Yan,Thermal Management, Las Gatos, CA, Nov. 2012 Young Scientist

  15. Environmental Management System Plan

    E-Print Network [OSTI]

    Fox, Robert

    2009-01-01

    OIA/OCA/assurance-sys/IA/index.html Management Program, R-3 • Environmental Management System Plan References 30.targets, and Environmental Management Programs 6. Structure

  16. Environmental Management System Plan

    E-Print Network [OSTI]

    Fox, Robert

    2009-01-01

    Management Program, R-3 • Environmental Management SystemEnvironmental policy 3. Environmental aspects 4. Legal andObjectives, targets, and Environmental Management Programs

  17. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  18. Power Electronics Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  19. Studying Thermal Management for Graphics-Processor Architectures Jeremy W. Sheaffer, Kevin Skadron, David P. Luebke

    E-Print Network [OSTI]

    Huang, Wei

    by dynamic thermal management techniques. In this paper, we use Qsilver [17] to explore a series of thermalStudying Thermal Management for Graphics-Processor Architectures Jeremy W. Sheaffer, Kevin Skadron. In this paper we describe our extensions to this system, which we use-- instrumented with a power model and Hot

  20. Combined Thermal and Power Energy Management Optimization 

    E-Print Network [OSTI]

    Ahner, D. J.; Priestley, R. R.

    1991-01-01

    steam headers and equipment outage may modify steam piping configurations. Such considerations may also be introduced and solved in the optimization algorithm. 38 COMBINED THERMAL AND POWER ENERGY MANAGEMENT OPTIMIZATION David J. Ahner Manager... The optimization control may be readily interfaced with other plant control functions as shown in Figure 6. The basic process control is designed to be responsive and stable for the various plant loops and to maintain specified process variable setpoints...

  1. Assessment of Latent Heat Reservoirs for Thermal Management of...

    Office of Scientific and Technical Information (OSTI)

    Assessment of Latent Heat Reservoirs for Thermal Management of QCW Laser Diodes Citation Details In-Document Search Title: Assessment of Latent Heat Reservoirs for Thermal...

  2. Optimal Energy Management Strategy including Battery Health through Thermal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid

  3. Energy Storage R&D - Thermal Management Studies and Modeling...

    Office of Environmental Management (EM)

    Storage R&D - Thermal Management Studies and Modeling Energy Storage R&D - Thermal Management Studies and Modeling Presentation from the U.S. DOE Office of Vehicle Technologies...

  4. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  5. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, James A. (Woodridge, IL); Wei, Thomas Y. C. (Downers Grove, IL); Reifman, Jaques (Western Springs, IL)

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  6. Thermal management concepts for higher efficiency heavy vehicles.

    SciTech Connect (OSTI)

    Wambsganss, M. W.

    1999-05-19

    Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

  7. Washington State University Vancouver Mech 442/542 Advanced Thermal Systems Mechanical Engineering Spring 2013 Syllabus

    E-Print Network [OSTI]

    the conservation laws (e.g. mass, momentum, and energy) to thermal systems under steady-state and transient and thermal management, microchannel heat transfer, energy resources, renewable energy, thermal systems. Thermal energy systems 5. Energy resources and renewable energy #12;Washington State University Vancouver

  8. Thermal interface materials (TIMs) are extensively used in thermal management applications especially in the microelectronics industry. With the advancement in microprocessors design and speed, the thermal management is

    E-Print Network [OSTI]

    Thermal interface materials (TIMs) are extensively used in thermal management applications, the thermal management is becoming more complex. As length scales shrink, power density and heat dissipation materials such as carbon nanotubes. The primary goal of all these materials is to reduce the thermal

  9. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-11-02

    The Order establishes policy and assigns roles and responsibilities for the Department of Energy (DOE) Emergency Management System. Supersedes DOE O 151.1B.

  10. Energy Management Systems 

    E-Print Network [OSTI]

    Ferland, K.

    2007-01-01

    This presentation will address results from a pilot project with 10 chemical plants on energy management systems and the development of an energy efficiency plant certification program....

  11. Temperature and cooling management in computing systems

    E-Print Network [OSTI]

    Ayoub, Raid

    2011-01-01

    78 5.2 Combined Energy, Thermal and Coolingdo not account for energy and thermal optimizations for theWe propose a combined energy, thermal and cooling management

  12. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L. (eds.)

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  13. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-01

    To establish policy and to assign and describe roles and responsibilities for the Department of Energy (DOE) Emergency Management System. The Emergency Management System provides the framework for development, coordination, control, and direction of all emergency planning, preparedness, readiness assurance, response, and recovery actions. Canceled by DOE O 151.1B. Cancels DOE O 151.1.

  14. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  15. Report on Toyota Prius Motor Thermal Management

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-02-11

    In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

  16. Thermal Storage with Conventional Cooling Systems 

    E-Print Network [OSTI]

    McGee, E. E.

    1990-01-01

    "Thermal Storage" is a term that describes a mechanical systems ability to sustain normal HVAC operations through a thermal retention source. This system allows for the curtailment of operating major refrigeration equipment during periods of high kw...

  17. Integrated Vehicle Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02Department of Energy Systems (VTMS)Management

  18. Thermal Simulation of Advanced Powertrain Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation of Advanced Powertrain Systems Thermal Simulation of Advanced Powertrain Systems Under this project, the Volvo complete vehicle model was modified to include engine and...

  19. Thermal System Design Thermal/Fluids

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    of thermodynamics, heat transfer, and fluid mechanics ? Hardware: fans, pumps, compressors, engines, heat exchangers, fluids transport, and food, chemical, and process industries #12;3 Basic Course Topics ? Analysis networks ? Thermodynamics: modeling and optimization of a refrigeration system ? Heat Transfer: design

  20. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  1. Thermal management in heavy vehicles : a review identifying issues and research requirements.

    SciTech Connect (OSTI)

    Wambsganss, M. W.

    1999-01-15

    Thermal management in heavy vehicles is cross-cutting because it directly or indirectly affects engine performance, fuel economy, safety and reliability, engine/component life, driver comfort, materials selection, emissions, maintenance, and aerodynamics. It follows that thermal management is critical to the design of large (class 6-8) trucks, especially in optimizing for energy efficiency and emissions reduction. Heat rejection requirements are expected to increase, and it is industry's goal to develop new, innovative, high-performance cooling systems that occupy less space and are lightweight and cost-competitive. The state of the art in heavy vehicle thermal management is reviewed, and issues and research areas are identified.

  2. Thermal Storage with Conventional Cooling Systems 

    E-Print Network [OSTI]

    Kieninger, R. T.

    1994-01-01

    simple thermal energy storage system that already exists in almost every structure - concrete. Thermal storage calculations simulate sub-cooling of a building's structure during unoccupied times. During occupied times, the sub-cooled concrete reduces peak...

  3. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Energy Management System . . . . . . . . .An energy management system. . . . . . . . . . . . . .D. Saez, “A microgrid energy management system based on the

  4. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F.; Bandhauer, Todd; Garimella, Srinivas

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  5. Oil field management system

    DOE Patents [OSTI]

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  6. Computer memory management system

    DOE Patents [OSTI]

    Kirk, III, Whitson John (Greenwood, MO)

    2002-01-01

    A computer memory management system utilizing a memory structure system of "intelligent" pointers in which information related to the use status of the memory structure is designed into the pointer. Through this pointer system, The present invention provides essentially automatic memory management (often referred to as garbage collection) by allowing relationships between objects to have definite memory management behavior by use of coding protocol which describes when relationships should be maintained and when the relationships should be broken. In one aspect, the present invention system allows automatic breaking of strong links to facilitate object garbage collection, coupled with relationship adjectives which define deletion of associated objects. In another aspect, The present invention includes simple-to-use infinite undo/redo functionality in that it has the capability, through a simple function call, to undo all of the changes made to a data model since the previous `valid state` was noted.

  7. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  8. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, Joao E. (North Augusta, SC); Williams, Daniel W. (Aiken, SC)

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  9. Managing the Management: CORBAbased Instrumentation of Management Systems

    E-Print Network [OSTI]

    Managing the Management: CORBA­based Instrumentation of Management Systems A. Keller Munich Network Management Team Department of Computer Science, TU MË? unchen Arcisstr. 21, D­80333 Munich, Germany akeller@ieee.org Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated Network Management (IM'99), Boston

  10. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module...

  11. Towards Energy-Efficient Reactive Thermal Management in Instrumented Datacenters

    E-Print Network [OSTI]

    Pompili, Dario

    Towards Energy-Efficient Reactive Thermal Management in Instrumented Datacenters Ivan Rodero, Eun techniques used to alleviate thermal anomalies (i.e., hotspots) in cloud datacenter's servers of by reducing such as voltage scaling that also can be applied to reduce the temperature of the servers in datacenters. Because

  12. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-29

    To establish policy and to assign and describe roles and responsibilities for the Department of Energy (DOE) Emergency Management System. (This is an administrative change to DOE O 151.1A). Canceled by DOE O 151.1C. Cancels DOE O 151.1A.

  13. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-21

    The Order establishes policy and assigns and describes roles and responsibilities for the DOE Emergency Management System. Cancels DOE 5500.1B, DOE 5500.2B, DOE 5500.3A, DOE 5500.4A, 5500.5A,5500.7B, 5500.8A, 5500.9A, DOE 5500.10

  14. Quantum chaos and thermalization in gapped systems

    SciTech Connect (OSTI)

    Rigol, Marcos [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Santos, Lea F. [Department of Physics, Yeshiva University, New York, New York 10016 (United States)

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  15. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  16. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  17. Training Management Information System

    SciTech Connect (OSTI)

    Rackley, M.P.

    1989-01-01

    The Training Management Information System (TMIS) is an integrated information system for all training related activities. TMIS is at the leading edge of training information systems used in the nuclear industry. The database contains all the necessary records to confirm the department's adherence to accreditation criteria and houses all test questions, student records and information needed to evaluate the training process. The key to the TMIS system is that the impact of any change (i.e., procedure change, new equipment, safety incident in the commercial nuclear industry, etc.) can be tracked throughout the training process. This ensures the best training can be performed that meets the needs of the employees. TMIS is comprised of six functional areas: Job and Task Analysis, Training Materials Design and Development, Exam Management, Student Records/Scheduling, Evaluation, and Commitment Tracking. The system consists of a VAX 6320 Cluster with IBM and MacIntosh computers tied into an ethernet with the VAX. Other peripherals are also tied into the system: Exam Generation Stations to include mark sense readers for test grading, Production PC's for Desk-Top Publishing of Training Material, and PC Image Workstations. 5 figs.

  18. A magnetic thermal switch for heat management at the nanoscale

    E-Print Network [OSTI]

    Riccardo Bosisio; Stefano Valentini; Francesco Mazza; Giuliano Benenti; Rosario Fazio; Vittorio Giovannetti; Fabio Taddei

    2015-05-15

    In a multi-terminal setup, when time-reversal symmetry is broken by a magnetic field, the heat flows can be managed by designing a device with programmable Boolean behavior. We show that such device can be used to implement operations like on/off switching, reversal, selected splitting and swap of the heat currents. For each feature, the switching from one working condition to the other is obtained by inverting the magnetic field. This offers interesting opportunities of conceiving a programmable setup, whose operation is controlled by an external parameter (the magnetic field) without need to alter voltage and thermal biases applied to the system. Our results, generic within the framework of linear response, are illustrated by means of a three-terminal electronic interferometer model.

  19. Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    The order establishes policy, and assigns and describes roles and responsibilities for the DOE Emergency Management System. DOE 5500.1B Chg 1; DOE 5500.2B Chg 1; DOE 5500.3A Chg 1; DOE 5500.4A; DOE 5500.5A; DOE 5500.7B; DOE 5500.8A; DOE 5500.9A, and DOE 5500.10A Chg 1. Canceled by DOE O 151.1A.

  20. Thermal Modeling and Analysis of Storage Systems Xunfei Jiang, Mohammed I. Alghamdi, Ji Zhang, Maen Al Assaf, Xiaojun Ruan, Tausif Muzaffar, and Xiao Qin

    E-Print Network [OSTI]

    Qin, Xiao

    Thermal Modeling and Analysis of Storage Systems Xunfei Jiang, Mohammed I. Alghamdi, Ji Zhang, Maen the thermal impact of storage systems. In the first phase of this work, we generate the thermal profile management on storage systems. Our study suggests that disk-aware thermal management techniques have

  1. Environmental Management System Plan

    E-Print Network [OSTI]

    Fox, Robert

    2009-01-01

    430.2B mandates an energy management program that considersSTAR® or Federal Energy Management Programs, and USDA-Environmental, Energy, and Transportation Management (

  2. Energy management system for a rotary machine and method therefor

    DOE Patents [OSTI]

    Bowman, Michael John; Sinha, Gautam (NMN); Sheldon, Karl Edward

    2004-11-09

    In energy management system is provided for a power generating device having a working fluid intake in which the energy management system comprises an electrical dissipation device coupled to the power generating device and a dissipation device cooling system configured to direct a portion of a working fluid to the electrical dissipation device so as to provide thermal control to the electrical dissipation device.

  3. Environmental Management System Plan

    SciTech Connect (OSTI)

    Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy; Hatayama, Howard

    2009-03-24

    Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and other natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These DOE Orders and associated policies establish goals and sustainable stewardship practices that are protective of environmental, natural, and cultural resources, and take a life cycle approach that considers aspects such as: (1) Acquisition and use of environmentally preferable products; (2) Electronics stewardship; (3) Energy conservation, energy efficiency, and renewable energy; (4) Pollution prevention, with emphasis on toxic and hazardous chemical and material reduction; (5) Procurement of efficient energy and water consuming materials and equipment; (6) Recycling and reuse; (7) Sustainable and high-performance building design; (8) Transportation and fleet management; and (9) Water conservation. LBNL's approach to sustainable environmental stewardship required under Order 450.1A poses the challenge of implementing its EMS in a compliance-based, performance-based, and cost-effective manner. In other words, the EMS must deliver real and tangible business value at a minimal cost. The purpose of this plan is to describe Berkeley Lab's approach for achieving such an EMS, including an overview of the roles and responsibilities of key Laboratory parties. This approach begins with a broad-based environmental policy consistent with that stated in Chapter 11 of the LBNL Health and Safety Manual (PUB-3000). This policy states that Berkeley Lab is committed to the following: (1) Complying with applicable environmental, public health, and resource conservation laws and regulations. (2) Preventing pollution, minimizing waste, and conserving natural resources. (3) Correcting environmental hazards and cleaning up existing environmental problems, and (4) Continually improving the Laboratory's environmental performance while maintaining operational capability and sustaining the overall mission of the Laboratory. A continual cycle of planning, implementing, evaluating, and improving processes will be performed to achieve goals, objectives, and targets that will help LBNL carry out this policy. Each year, environmental aspects will be identified and their impacts to the environm

  4. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, Joseph R. (Livermore, CA)

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  5. Environmental management system.

    SciTech Connect (OSTI)

    Salinas, Stephanie A.

    2010-08-01

    The purpose of the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Management System (EMS) is identification of environmental consequences from SNL/NM activities, products, and/or services to develop objectives and measurable targets for mitigation of any potential impacts to the environment. This Source Document discusses the annual EMS process for analysis of environmental aspects and impacts and also provides the fiscal year (FY) 2010 analysis. Further information on the EMS structure, processes, and procedures are described within the programmatic EMS Manual (PG470222).

  6. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    SciTech Connect (OSTI)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  7. SOFC seal and cell thermal management

    DOE Patents [OSTI]

    Potnis, Shailesh Vijay (Neenah, WI); Rehg, Timothy Joseph (Huntington Beach, CA)

    2011-05-17

    The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.

  8. Overview of Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020Overview of RecoveryThermal

  9. Performance Evaluation of the Delphi Non-Thermal Plasma System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions Performance Evaluation of the Delphi Non-Thermal Plasma System Under Transient and...

  10. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  11. Earned Value Management System (EVMS)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-05-06

    The Guide supports the Departments initiatives to improve program, project, and contract management through the implementation and surveillance of contractors earned value management systems. Canceled by DOE G 413.3-10A.

  12. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect (OSTI)

    Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  13. Power Modeling and Thermal Management Techniques for Manycores

    E-Print Network [OSTI]

    Simunic, Tajana

    Power Modeling and Thermal Management Techniques for Manycores Rajib Nath Computer Science number of cores in manycore archi- tectures, along with technology scaling, results in high power in such processors, we need an accurate online estimate of the power consumption. In this paper, we present the first

  14. Cryptographic Key Management System

    SciTech Connect (OSTI)

    No, author

    2014-02-21

    This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene#12;ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.

  15. Design optimization of thermal paths in spacecraft systems

    E-Print Network [OSTI]

    Stout, Kevin Dale

    2013-01-01

    This thesis introduces a thermal design approach to increase thermal control system performance and decrease reliance on system resources, e.g., mass. Thermal design optimization has lagged other subsystems because the ...

  16. Computerized training management system

    DOE Patents [OSTI]

    Rice, Harold B. (Franklin Furnace, OH); McNair, Robert C. (East Setauket, NY); White, Kenneth (Shirley, NY); Maugeri, Terry (Wading River, NY)

    1998-08-04

    A Computerized Training Management System (CTMS) for providing a procedurally defined process that is employed to develop accreditable performance based training programs for job classifications that are sensitive to documented regulations and technical information. CTMS is a database that links information needed to maintain a five-phase approach to training-analysis, design, development, implementation, and evaluation independent of training program design. CTMS is designed using R-Base.RTM., an-SQL compliant software platform. Information is logically entered and linked in CTMS. Each task is linked directly to a performance objective, which, in turn, is linked directly to a learning objective; then, each enabling objective is linked to its respective test items. In addition, tasks, performance objectives, enabling objectives, and test items are linked to their associated reference documents. CTMS keeps all information up to date since it automatically sorts, files and links all data; CTMS includes key word and reference document searches.

  17. Computerized training management system

    DOE Patents [OSTI]

    Rice, H.B.; McNair, R.C.; White, K.; Maugeri, T.

    1998-08-04

    A Computerized Training Management System (CTMS) is disclosed for providing a procedurally defined process that is employed to develop accreditable performance based training programs for job classifications that are sensitive to documented regulations and technical information. CTMS is a database that links information needed to maintain a five-phase approach to training-analysis, design, development, implementation, and evaluation independent of training program design. CTMS is designed using R-Base{trademark}, an-SQL compliant software platform. Information is logically entered and linked in CTMS. Each task is linked directly to a performance objective, which, in turn, is linked directly to a learning objective; then, each enabling objective is linked to its respective test items. In addition, tasks, performance objectives, enabling objectives, and test items are linked to their associated reference documents. CTMS keeps all information up to date since it automatically sorts, files and links all data; CTMS includes key word and reference document searches. 18 figs.

  18. Photon management in thermal and solar photovoltaics

    E-Print Network [OSTI]

    Hu, Lu

    2008-01-01

    Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

  19. Electric Motor Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

  20. Pulse thermal energy transport/storage system

    DOE Patents [OSTI]

    Weislogel, Mark M. (23133 Switzer Rd., Brookpark, OH 44142)

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  1. Earned Value Management System (EVMS)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-03-13

    This Guide provides approaches for implementing the Earned Value Management System (EVMS) requirements of DOE O 413.3B. Supersedes DOE G 413.3-10.

  2. Thermal photon emission from the pi-rho-omega system

    E-Print Network [OSTI]

    Nathan P. M. Holt; Paul M. Hohler; Ralf Rapp

    2015-06-30

    We investigate thermal photon emission rates in hot hadronic matter from a system consisting of pi, rho, and omega mesons. The rates are calculated using both relativistic kinetic theory with Born diagrams as well as thermal field theory at the two-loop level. This enables us to cross-check our calculations and to manage a pole contribution that arises in the Born approximation corresponding to the omega -> pi^0 gamma radiative decay. After implementing hadronic form factors to account for finite-size corrections, we find that the resulting photo-emission rates are comparable to existing results from pi rho -> pi gamma processes in the energy regime of 1-3 GeV. We expect that our new sources will provide a non-negligible contribution to the total hadronic rates, thereby enhancing calculated thermal photon spectra from heavy-ion collisions, which could improve the description of current direct-photon data from experiment.

  3. Thermal photon emission from the pi-rho-omega system

    E-Print Network [OSTI]

    Holt, Nathan P M; Rapp, Ralf

    2015-01-01

    We investigate thermal photon emission rates in hot hadronic matter from a system consisting of pi, rho, and omega mesons. The rates are calculated using both relativistic kinetic theory with Born diagrams as well as thermal field theory at the two-loop level. This enables us to cross-check our calculations and to manage a pole contribution that arises in the Born approximation corresponding to the omega -> pi^0 gamma radiative decay. After implementing hadronic form factors to account for finite-size corrections, we find that the resulting photo-emission rates are comparable to existing results from pi rho -> pi gamma processes in the energy regime of 1-3 GeV. We expect that our new sources will provide a non-negligible contribution to the total hadronic rates, thereby enhancing calculated thermal photon spectra from heavy-ion collisions, which could improve the description of current direct-photon data from experiment.

  4. Thermal photon emission from the pi-rho-omega system

    E-Print Network [OSTI]

    Nathan P. M. Holt; Paul M. Hohler; Ralf Rapp

    2015-10-27

    We investigate thermal photon emission rates in hot hadronic matter from a system consisting of pi, rho, and omega mesons. The rates are calculated using both relativistic kinetic theory with Born diagrams as well as thermal field theory at the two-loop level. This enables us to cross-check our calculations and to manage a pole contribution that arises in the Born approximation corresponding to the omega -> pi^0 gamma radiative decay. After implementing hadronic form factors to account for finite-size corrections, we find that the resulting photo-emission rates are comparable to existing results from pi rho -> pi gamma processes in the energy regime of 1-3 GeV. We expect that our new sources will provide a non-negligible contribution to the total hadronic rates, thereby enhancing calculated thermal photon spectra from heavy-ion collisions, which could improve the description of current direct-photon data from experiment.

  5. JETC: Joint Energy, Thermal and Cooling Management for CPU and Memory

    E-Print Network [OSTI]

    Simunic, Tajana

    JETC: Joint Energy, Thermal and Cooling Management for CPU and Memory Subsystems in Servers Raid Ayoub, Rajib Nath, Tajana Rosing, UCSD 2052.002 Observation Model of Thermal Coupling Between CPU: No Memory Management NCM: No CPU Migration DLB: Dynamic Load Balancing DTM-CM+PI: Dynamic Thermal Management

  6. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    E-Print Network [OSTI]

    Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries to a transformative change in thermal management of Li-ion batteries. a r t i c l e i n f o Article history: Received September 2013 Keywords: Battery Thermal management Graphene Phase change material a b s t r a c t Li

  7. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  8. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, J.R.

    1994-10-25

    A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

  9. EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM

    E-Print Network [OSTI]

    Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because of its ability to allow collector field, thermal storage, and power cycle to all work with the same fluid, thermal storage 1. Introduction As solar thermal technology is still in its infancy compared to more

  10. UNIVERSITY OF CALIFORNIA, SAN DIEGO Temperature and Cooling Management in Computing Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    UNIVERSITY OF CALIFORNIA, SAN DIEGO Temperature and Cooling Management in Computing Systems . . . . . . . . . . . 3 1.2 Related work on cooling management . . . . . . . . . . . 5 1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 4 Thermal and Cooling Management in Multisocket CPU Servers 41 4.1 Multi-tier thermal

  11. Optimization of Ice Thermal Storage Systems Design for HVAC Systems 

    E-Print Network [OSTI]

    Nassif, N.; Hall, C.; Freelnad, D.

    2013-01-01

    energy cost. A tool for optimal ice storage design is developed, considering the charging and discharge times and optimal sizing of ice thermal storage system. Detailed simulation studies using real office building located near Orlando, FL including...

  12. Building International Emergency Management Systems | National...

    National Nuclear Security Administration (NNSA)

    Building International Emergency Management Systems | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  13. Environmental Management System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy Services » Program Management »Management

  14. System for Award Management (SAM):

    Energy Savers [EERE]

    - Help Section BUYER BEWARE The System for Award Management (SAM) and the Federal Service Desk (FSD) are Federal Government owned and operated free web sites. www.sam.gov...

  15. Integrated Safety Management System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-01

    This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

  16. Annual Report: Turbine Thermal Management (30 September 2013)

    SciTech Connect (OSTI)

    Alvin, Mary Anne; Richards, George

    2014-04-10

    The FY13 NETL-RUA Turbine Thermal Management effort supported the Department of Energy’s (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach included explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE’s advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address: • Development and design of aerothermal and materials concepts in FY12-13. • Design and manufacturing of these advanced concepts in FY13. • Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. In addition to a Project Management task, the Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of heat transfer, materials development, and secondary flow control. These include: • Aerothermal and Heat Transfer • Coatings and Materials Development • Design Integration and Testing • Secondary Flow Rotating Rig.

  17. System Design Description PFP Thermal Stabilization

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-04-25

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures.

  18. Shopping for outage management systems

    SciTech Connect (OSTI)

    Chou, Y.C.; Konneker, L.K.; Watkins, T.R.

    1995-12-31

    Customer service is becoming increasingly important to electric utilities. Outage management is an important part of customer service. Good outage management means quickly responding to outages and keeping customers informed about outages. Each outage equals lost customer satisfaction and lost revenue. Outage management is increasingly important because of new competition among utilities for customers, pressure from regulators, and internal pressure to cut costs. The market has several existing software products for outage management. How does a utility judge whether these products satisfy their specific needs? Technology is changing rapidly to support outage management. Which technology is proven and cost-effective? The purpose of this paper is to outline the procedure for evaluating outage management systems, and to discuss the key features to look for. It also gives our opinion of the features that represent state of the art. This paper will not discuss specific products or list vendors names.

  19. Computerized Maintenance Management Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Computerized maintenance management systems (CMMS) are a type of management software that perform functions in support of operations and maintenance (O&M) programs. The...

  20. Heating System Modernization, Management of Peripheral Scope...

    Office of Environmental Management (EM)

    System Modernization, Management of Peripheral Scope Lessons Learned Report, NNSA, Dec 2010 Heating System Modernization, Management of Peripheral Scope Lessons Learned Report,...

  1. Implementing a Corporate Energy Management System | Department...

    Office of Environmental Management (EM)

    Implementing a Corporate Energy Management System Implementing a Corporate Energy Management System This presentation discusses 3M's experience with implementing a corporate energy...

  2. Bayesian-based simulation model validation for spacecraft thermal systems

    E-Print Network [OSTI]

    Stout, Kevin Dale

    2015-01-01

    Over the last several decades of space flight, spacecraft thermal system modeling software has advanced significantly, but the model validation process, in general, has changed very little. Although most thermal systems ...

  3. STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-15A NA7.5.14 Thermal Energy Storage (TES) System THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION

  4. Integrated solar thermal energy collector system

    SciTech Connect (OSTI)

    Garrison, J.D.

    1987-08-18

    A solar thermal collector system is described one of a class of devices which converts solar radiation into heat and transmits this heat to storage from whence it is utilized, comprising: an evacuated glass solar collector, the evacuated glass solar collector having a glass vacuum envelope, the upper portion of the glass vacuum envelope also serving as window to pass solar radiation, the evacuated glass solar collector having a multiplicity of substantially parallel linear adjacent concentrating troughs, each trough shaped and mirror surfaced so as concentrate solar radiation in the vacuum, the mirror surface inside the vacuum and the concentration approximately ideal, the multiplicity of substantially parallel linear adjacent troughs extending substantially over the entire length and width of the evacuated glass solar collector; a heat storage system, the heat storage system adjacent to the evacuated glass solar collector, the heat storage system having a heat storage tank which is thermally insulated, the heat storage tank containing a heat storage medium, and the heat storage system including means of removal of heat from the heat storage tank for utilization.

  5. Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage 

    E-Print Network [OSTI]

    Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

    2007-01-01

    Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

  6. HIERARCHICAL MANAGEMENT OF BATTLEFIELD NETWORKS WITH THE SHAMAN MANAGEMENT SYSTEM

    E-Print Network [OSTI]

    Sethi, Adarshpal

    HIERARCHICAL MANAGEMENT OF BATTLEFIELD NETWORKS WITH THE SHAMAN MANAGEMENT SYSTEM Adarshpal S Architecture for MANagement) is a novel management framework developed at the University of Delaware as a part of the research in network management sponsored by the ATIRP Consortium. SHAMAN extends the traditional flat SNMP

  7. XCPU2 process management system

    SciTech Connect (OSTI)

    Ionkov, Latchesar [Los Alamos National Laboratory; Van Hensbergen, Eric [IBM AUSTIN RESEARCH LAB

    2009-01-01

    Xcpu2 is a new process management system that allows the users to specify custom file system for a running job. Most cluster management systems enforce single software distribution running on all nodes. Xcpu2 allows programs running on the cluster to work in environment identical to the user's desktop, using the same versions of the libraries and tools the user installed locally, and accessing the configuration file in the same places they are located on the desktop. Xcpu2 builds on our earlier work with the Xcpu system. Like Xcpu, Xcpu2's process management interface is represented as a set of files exported by a 9P file server. It supports heterogeneous clusters and multiple head nodes. Unlike Xcpu, it uses pull instead of push model. In this paper we describe the Xcpu2 clustering model, its operation and how the per-job filesystem configuration can be used to solve some of the common problems when running a cluster.

  8. Steam System Data Management 

    E-Print Network [OSTI]

    Roberts, D.

    2013-01-01

    stream_source_info ESL-IE-13-05-35.pdf.txt stream_content_type text/plain stream_size 5953 Content-Encoding ISO-8859-1 stream_name ESL-IE-13-05-35.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Steam System Data... Certifications ?Retired From Chevron After 25 Years ? Established A Steam System Program ? Planner For Routine Maintenance Work ? Planner For Steam System Improvements ? Wal-Tech Valve, Inc. ? Purchased Wal-Tech Valve, Inc. In 2007 ? Implemented Safety...

  9. Managing risk in software systems

    SciTech Connect (OSTI)

    Fletcher, S.K.; Jansma, R.M.; Murphy, M.D. [and others

    1995-07-01

    A methodology for risk management in the design of software systems is presented. It spans security, safety, and correct operation of software within the context of its environment, and produces a risk analysis and documented risk management strategy. It is designed to be iteratively applied, to attain appropriate levels of detail throughout the analysis. The methodology and supporting tools are discussed. The methodology is critiqued relative to other research in the field. Some sample applications of the methodology are presented.

  10. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  11. Project Profile: Novel Thermal Energy Storage Systems for Concentratin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems for Concentrating Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The...

  12. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  13. Tuning energy transport in solar thermal systems using nanostructured materials

    E-Print Network [OSTI]

    Lenert, Andrej

    2014-01-01

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  14. Typicality of thermal equilibrium and thermalization in isolated macroscopic quantum systems

    E-Print Network [OSTI]

    Hal Tasaki

    2015-08-01

    Based on the view that thermal equilibrium should be characterized through macroscopic observations, we develop a general theory about typicality of thermal equilibrium and the approach to thermal equilibrium in macroscopic quantum systems. We first formulate the notion that a pure state in an isolated quantum system represents thermal equilibrium. Then by assuming, or proving in certain classes of nontrivial models (including that of two bodies in thermal contact), large-deviation type bounds (which we call thermodynamic bounds) for the microcanonical ensemble, we prove that to represent thermal equilibrium is a typical property for pure states in the microcanonical energy shell. We also establish the approach to thermal equilibrium under two different assumptions; one is that the initial state has a moderate energy distribution, and the other is the energy eigenstate thermalization hypothesis. We also discuss three easily solvable models in which these assumptions can be verified.

  15. Stand-Alone Battery Thermal Management System

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Thermal Performance of Vegetative Roofing Systems

    SciTech Connect (OSTI)

    Desjarlais, Andre Omer [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL; Ennis, Mike J [ORNL

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space. The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.

  17. Event Management System (EMS) Tutorial

    E-Print Network [OSTI]

    Event Management System (EMS) Tutorial Revised 8/14/2014 #12;1. Go to the website https of the following options: a) Request Classroom Space ­ this will bring up a list buildings & their classrooms b Engineering Ford Environmental Science & Technology (ES&T) Building Event Reservation Policy Classrooms: L1105

  18. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    the system fulfills the interoperability via energy servicesystem architecture for microgrid energy management that enables interoperabilitysystem architecture for microgrid energy management that enables interoperability

  19. ORISE: Performance Improvement Management System (PIMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Improvement Management System (PIMS) PIMS web-based application aids Veterans Health Administration (VHA) Emergency Management in response to local emergencies and...

  20. COKEMASTER: Coke plant management system

    SciTech Connect (OSTI)

    Johanning, J.; Reinke, M. [Krupp Koppers GmbH, Essen (Germany)

    1996-12-31

    To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

  1. Information system revives materials management

    SciTech Connect (OSTI)

    Hansen, T.

    1995-12-01

    Through a change in philosophy and the development of a new, more efficient information management system, Arizona Public Service Co. (APSW) has, in less than two years, reduced material and service costs by 10 percent. The utility plans to cut these costs form 1993 figures by 25 percent before 2000. The utility is breaking new ground with ongoing implementation of new business processes and the new Materials Logistics Information System (MLIS), which has been co-developed with Texas Instruments Software Division (TISD).

  2. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01

    Chilled Water Thermal Storage System and Demand Response atCalifornia. Chilled Water Thermal Storage System and Demandin the presence of thermal energy storage (TES) and the

  3. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01

    with electric and thermal storage technologies," presentedModeling of Thermal Storage Systems in MILP Distributedof California. Modeling of thermal storage systems in MILP

  4. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  5. Metrics for border management systems.

    SciTech Connect (OSTI)

    Duggan, Ruth Ann

    2009-07-01

    There are as many unique and disparate manifestations of border systems as there are borders to protect. Border Security is a highly complex system analysis problem with global, regional, national, sector, and border element dimensions for land, water, and air domains. The complexity increases with the multiple, and sometimes conflicting, missions for regulating the flow of people and goods across borders, while securing them for national security. These systems include frontier border surveillance, immigration management and customs functions that must operate in a variety of weather, terrain, operational conditions, cultural constraints, and geopolitical contexts. As part of a Laboratory Directed Research and Development Project 08-684 (Year 1), the team developed a reference framework to decompose this complex system into international/regional, national, and border elements levels covering customs, immigration, and border policing functions. This generalized architecture is relevant to both domestic and international borders. As part of year two of this project (09-1204), the team determined relevant relative measures to better understand border management performance. This paper describes those relative metrics and how they can be used to improve border management systems.

  6. Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  7. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    E-Print Network [OSTI]

    Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries g h l i g h t s We demonstrated that thermal management of Li-ion batteries improves dramatically incorporation leads to significant decrease in the temperature rise in Li-ion batteries. Graphene leads

  8. JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers

    E-Print Network [OSTI]

    Simunic, Tajana

    JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers Raid In this work we propose a joint energy, thermal and cooling management technique (JETC) that significantly re- duces per server cooling and memory energy costs. Our analysis shows that decoupling the optimization

  9. Convex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling

    E-Print Network [OSTI]

    De Micheli, Giovanni

    Convex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling Francesco multi-processors system on chip (MPSoCs) using microfluidic cooling. The controller uses dynamic volt consumption+cooling power consumption). Our experimental results illustrate that our policy satis- fies

  10. A combined sensor placement and convex optimization approach for thermal management in 3D-MPSoC with liquid cooling

    E-Print Network [OSTI]

    De Micheli, Giovanni

    -MPSoC with liquid cooling Francesco Zanini a,n , David Atienza b , Giovanni De Micheli a a Integrated Systems Lab MPSoC Liquid Cooling a b s t r a c t Modern high-performance processors employ thermal management. Moreover liquid cooling has emerged as a promising solution for addressing the elevated temperatures in 3D

  11. MIT System Design and Management Program

    E-Print Network [OSTI]

    de Weck, Olivier L.

    , disseminating, and preserving knowledge, and to working with others to bring this knowledge to bear on the worldMIT System Design and Management Program MIT System Design and Management Program Leadership, innovation, systems thinking #12;MIT System Design and Management Program #12;about MIT The mission of MIT

  12. Agricultural Waste Management System Component Design

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Agricultural Waste Management System Component Design Chapter 10 Part 651 Agricultural Waste Management Field Handbook 10­1(210-vi-AWMFH, rev. 1, July 1996) Chapter 10 Agricultural Waste Management....................................................................................................10­70 10­i #12;Chapter 10 Agricultural Waste Management System Component Design Part 651 Agricultural

  13. Metal stud wall systems -- Thermal disaster, or modern wall systems with highly efficient thermal insulation?

    SciTech Connect (OSTI)

    Kosny, J.; Christian, J.E.; Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Buildings Technology Center

    1997-11-01

    Because steel has higher thermal conductivity than wood and intense heat transfer occurs through the metal wall components, thermal performances of a metal stud wall are significantly lower than for similar wood stud walls. A reduction of the in-cavity R-value caused by the wood studs is about 10% in wood stud walls. That is why metal stud walls are believed to be considerably less thermally effective than similar made of wood. However, properly designed metal stud walls can be as thermally effective as wood stud walls. Relatively high R-values may be achieved by installing insulating sheathing, which is widely used as a remedy for a weak thermal performance of metal stud walls. A series of the promising metal stud wall configurations is analyzed using results of finite difference computer modeling and guarded hotbox tests. Some of these walls were designed and tested in the ORNL Building Technology Center, some were tested in other laboratories, and some walls were developed and forgotten long time ago. Also, a novel concept of combined foam-metal studs is considered. The main aim of the present paper is to prove that it is possible to build metal stud walls which perform as well as wood stud walls. The key lies in designing; metal stud wall systems have to be treated in a special way with particular consideration to the high thermal conduction of metal components. In the discussed collection of the efficient metal stud wall configurations, reductions of the in-cavity R-value caused by metal studs are between 10 and 20%.

  14. Management information systems software evaluation

    SciTech Connect (OSTI)

    Al-Tunisi, N.; Ghazzawi, A.; Gruyaert, F.; Clarke, D. [Saudi Aramco, Dhahran (Saudi Arabia). Process and Control Systems Dept.

    1995-11-01

    In November 1993, Saudi Aramco management endorsed a proposal to coordinate the development of the Management Information Systems (MISs) of four concurrent projects for its facilities Controls Modernization Program. The affected projects were the Ras Tanura Refinery Upgrade Project, the Abqaiq Plant Controls Modernization and the Shedgum and Uthmaniyah Gas plants Control Upgrade Projects. All of these projects had a significant requirement of MISs in their scope. Under the leadership of the Process and Control Systems Department, and MIS Coordination Team was formed with representatives of several departments. An MIS Applications Evaluation procedure was developed based on the Kepner Tregoe Decisions Analysis Process and general questionnaires were sent to over a hundred potential Vendors. The applications were divided into several categories, such as: Data Capture and Historization, Human User Interface, Trending, Reporting, Graphic Displays, Data Reconciliation, Statistical Analysis, Expert Systems, Maintenance Applications, Document Management and Operations Planning and Scheduling. For each of the MIS Application areas, detailed follow-up questionnaires were used to short list the candidate products. In May and June 1994, selected Vendors were invited to Saudi Arabia for an Exhibition which was open to all Saudi Aramco employees. In conjunction with this, the Vendors were subjected to a rigorous product testing exercise by independent teams of testers. The paper will describe the methods used and the lessons learned in this extensive software evaluation phase, which was a first for Saudi Aramco.

  15. Energy.gov Content Management System

    Broader source: Energy.gov [DOE]

    Energy.gov Content Management SystemEERE's websites are hosted in Energy.gov's Drupal content management system (CMS), which is maintained by the U.S. Department of Energy's Public Affairs Office.

  16. Integrated thermal solar heat pump system

    SciTech Connect (OSTI)

    Shaw, D.N.

    1980-04-08

    A compression module may comprise a hermetic helical screw rotary compressor having injection and ejection ports in addition to discharge and suction ports or may comprise a multiple cylinder, multiple level, reciprocating compressor. The module incorporates a subcooler coil and is connected to an outside air coil, a thermal energy storage coil, a direct solar energy supply coil, one or more inside coils for the space to be conditioned and a hot water coil through common, discharge manifold, suction manifold, liquid drain manifold and liquid feed manifold, by suitable solenoid operated control valves and check valves. The solenoid operated control valves are selectively operated in response to system operating parameters. Seal pots and positive displacement pumps may operate to force liquid refrigerant condensed at intermediate pressure to flow to the receiver which is pressurized at a pressure corresponding to the condensation temperature of the highest pressure condensing coil in the system. Alternatively, liquid refrigerant expansion may be used to reach a common receiver pressure for all condenser returns.

  17. Integrated Building Management System (IBMS)

    SciTech Connect (OSTI)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  18. Thermal management for heavy vehicles (Class 7-8 trucks)

    SciTech Connect (OSTI)

    Wambsganss, M.W.

    2000-04-03

    Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

  19. Alert Management Systems: A Quick Introduction

    E-Print Network [OSTI]

    Grossman, Robert

    and functionality. Keywords: data mining, alert management systems, events, pro- files, alerts 1 Introduction cited above. 3 Events, Profiles, and Updates Alert management systems are based upon three primitiveAlert Management Systems: A Quick Introduction Robert Grossman University of Illinois at Chicago

  20. CERTIFICATE OF REGISTRATION Quality Management Systems

    E-Print Network [OSTI]

    Rodriguez, Carlos

    CERTIFICATE OF REGISTRATION Quality Management Systems INDIAN AGRICULTURAL STATISTICS RESEARCH Certifications Limited Certifies that the Management System of the above mentioned Company has been assessed and meets the requirements established by the following rules: ISO 9001 :2008 The Management System Includes

  1. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Energy Management . . . . . . . . . . . . . . . . . . . . .Distributed Energy Management . . . . . . . . . . . . . . .Energy Management . . . . . . . . . . . . . . . . . . . . .

  2. PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM...

  3. Electronic Document Management System PIA, BechtelJacobs Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management System PIA, BechtelJacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs...

  4. Optimal Load Management System for Aircraft Electric Power Distribution

    E-Print Network [OSTI]

    Maasoumy, Mehdi; Nuzzo, Pierluigi; Iandola, Forrest; Kamgarpour, Maryam; Sangiovanni-Vincentelli, Alberto; Tomlin, Claire

    2014-01-01

    Optimal Load Management System for Aircraft Electric Poweris to develop an optimal load management system based on thescheme where a high-level load management system receives as

  5. Proceedings of IMAPS Advanced Technology Workshop on Thermal Management, Oct. 25-27, Palo Alto, CA, 2004 LEAKAGE AND VARIATION AWARE THERMAL

    E-Print Network [OSTI]

    Proceedings of IMAPS Advanced Technology Workshop on Thermal Management, Oct. 25-27, Palo Alto, CA management of leakage and variation dominant CMOS technologies. The methodology is then applied to provide. INTRODUCTION For nanometer scale VLSI technologies, power dissipation and thermal management have been

  6. The displacement of the thermally grown oxide in thermal barrier systems upon temperature cycling

    E-Print Network [OSTI]

    Hutchinson, John W.

    barrier coatings; Thermal cycling; Oxidation 1. Introduction Thermal barrier systems used in gas turbines, Cambridge, MA 02138, USA c Materials Department, University of California, Santa Barbara, Santa Barbara, CA consistent with the observations whenever the bond coat and TGO both undergo plastic deformation. The TGO

  7. Design and Analysis of Dynamic Thermal Management in Chip Multiprocessors (CMPs) 

    E-Print Network [OSTI]

    Yeo, In Choon

    2011-02-22

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 IX The thermal parameter b and Tss according to workload in 4-core system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 X Ttc and b according to thermal correlation profiled for core 1 . . . . . 96 XI The ratio of Tss... The thermal range (?T) using Twss and Ttc to calculate T?ss for core 1 94 32 Validation of improved thermal model with workload estimation and thermal correlation in static application. (Only core 1?s tem- perature is drawn...

  8. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    concentrated solar thermal energy and low grade waste heatreclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  9. Contract Management Using Industrial Energy Management & Reporting Systems 

    E-Print Network [OSTI]

    Robinson, J. E.

    2011-01-01

    Energy Management and Reporting Systems (EMRS) are rule-based control systems with a record of reducing energy usage and CO2e emissions while optimizing electrical generation in a real time environment. The rule set successfully optimizes energy...

  10. RICE UNIVERSITY Context for System Resource Management

    E-Print Network [OSTI]

    Zhong, Lin

    University. He is a great model of a caring advisor and hard working researcher. I am in debt to many greatRICE UNIVERSITY Context for System Resource Management: An Application in Wireless Data Management brings new opportunities for efficient and effective system resource management of mobile devices

  11. Automated rapid thermal imaging systems technology

    E-Print Network [OSTI]

    Phan, Long N., 1976-

    2012-01-01

    A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy ...

  12. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01

    in latent heat energy storage systems: A review," Renewableof thermal energy storage systems," International Journal ofModeling of Thermal Storage Systems in MILP Distributed

  13. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  14. Integrated Brush Management Systems for Texas 

    E-Print Network [OSTI]

    Hanselka, C. Wayne; Hamilton, Wayne T.; Rector, Barron S.

    2001-01-04

    Integrated Brush Management Systems (IBMS) involve careful analysis of range resources and ranch goals in order to develop solutions to brush problems. Successful use of IBMS should result in improved management processes and greater profitability...

  15. Health Disaster Humanitarian Systems Management Operations

    E-Print Network [OSTI]

    Li, Mo

    Health Disaster Humanitarian Systems Management Operations Models and intervention strategies Professional Certificate program in Health & Humanitarian Supply Chain Management HHS@isye.gatech.edu HHSGATech HHS Georgia Tech Annual International Conference on Health and Humanitarian Logistics 6-day

  16. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  17. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  18. Management Systems Engineering Spring 2013

    E-Print Network [OSTI]

    Sobek II, Durward K.

    ) orientation, and be focused on the modern management paradigm surrounding lean manufacturing and related

  19. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 and pumped-storage hydro units is developed. For its compu- tational solution two di erent decompo- sition-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  20. Categorizing impacts of implementing Enterprise Content Management Systems

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Electronic Document Management EDMS Electronic Document Management System ERM Electronic Records Management Management (ERM), Web Content Management (WCM), and Workflow Management (WfM) (Päivärinta and Munkvold, 2005

  1. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    Noise Reduction in Graphene Transistors: Experiment andand Thermal Properties of Graphene Nanoribbons EncapsulatedGating of Single-layer Graphene with Single- stranded

  2. Note: A simple model for thermal management in solenoids

    SciTech Connect (OSTI)

    McIntosh, E. M. Ellis, J.

    2013-11-15

    We describe a model of the dynamical temperature evolution in a solenoid winding. A simple finite element analysis is calibrated by accurately measuring the thermally induced resistance change of the solenoid, thus obviating the need for accurate knowledge of the mean thermal conductivity of the windings. The model predicts quasi thermal runaway for relatively modest current increases from the normal operating conditions. We demonstrate the application of this model to determine the maximum current that can be safely applied to solenoids used for helium spin-echo measurements.

  3. Printable, flexible and stretchable diamond for thermal management

    DOE Patents [OSTI]

    Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

    2013-06-25

    Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

  4. A model for international border management systems.

    SciTech Connect (OSTI)

    Duggan, Ruth Ann

    2008-09-01

    To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

  5. Thermal and quantum noise in active systems

    E-Print Network [OSTI]

    Jean-Michel Courty; Francesca Grassia; Serge Reynaud

    2001-10-03

    We present a quantum network approach to the treatment of thermal and quantum fluctuations in measurement devices. The measurement is described as a scattering process of input fluctuations towards output ones. We present the results obtained with this method for the treatment of a cold damped capacitive accelerometer.

  6. Freescale Semiconductor Successfully Implements an Energy Management System

    SciTech Connect (OSTI)

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  7. Environmental Management Systems | Department of Energy

    Energy Savers [EERE]

    Management Systems The U.S. Department of Energy (DOE) is committed to implement sustainability into all aspects of operations. Executive Order (EO) 13423, Strengthening Federal...

  8. Energy Management Systems: Maximizing Energy Savings

    Broader source: Energy.gov [DOE]

    This webinar covered how to optimize installations of new energy management systems, review EMS strategies following lighting/HVAC retrofit projects, and utilize excess EECBG funding.

  9. Energy.gov Content Management System Webforms

    Office of Energy Efficiency and Renewable Energy (EERE)

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, Energy.gov's content management system (CMS) has the ability to create webforms.

  10. ORISE: Asset Readiness Management System (ARMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asset Readiness Management System (ARMS) Database tracks emergency response exercises and equipment to help DOE asses emergency preparedness Developed by the Oak Ridge Institute...

  11. Comprehensive Emergency Management System - DOE Directives, Delegation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARCHIVED DOE O 151.1B, Comprehensive Emergency Management System by David Freshwater Functional areas: Emergency Preparedness, To establish policy and to assign and describe roles...

  12. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number:...

  13. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    E-Print Network [OSTI]

    Shahil, Khan Mohammad Farhan

    2012-01-01

    Based Thermal Interface Materials for the Next GenerationA), Applications and Materials 208, 1, 144-146 (2011). M. Z.A) Applications and Materials 208, 1, 144-146 (2011). M. Z.

  14. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  15. Optimal Control of Harvesting Ice Thermal Storage Systems 

    E-Print Network [OSTI]

    Knebel, D. E.

    1988-01-01

    Thermal storage is becoming a standard consideration in HVAC and process cooling systems. As the technology is refined, more attention is being given to minimize the energy consumption and power demand requirements. This paper addresses a method...

  16. 2011 IBM Corporation Computer system energy management

    E-Print Network [OSTI]

    Shi, Weisong

    © 2011 IBM Corporation Computer system energy management Charles Lefurgy 28 July 2011 #12;© 2011 IBM Corporation2 Outline A short history of server power management POWER7 EnergyScale AMESTER power management 2010: POWER7 uses DDR3 self-refresh mode POWER7 with Turbo mode Partition-aware power capping 2011

  17. Increase Productivity - Implement Energy Management Systems with Project Management Techniques 

    E-Print Network [OSTI]

    Spinner, M. P.

    1984-01-01

    's operating costs. Now they are approaching twelve percent. We believe that energy management systems would contribute to improved productivity in the manufacturing and fabricating facilities. But instinctiveness is not enough to get the funds approved...

  18. Dynamic Thermal Management in 3D Multicore Architectures Ayse K. Coskun

    E-Print Network [OSTI]

    Simunic, Tajana

    approach to overcome the power consumption and delay problems associated with the interconnects by reducing due to the high power density resulting from placing computational units on top of each other. In this work, we first investigate how the existing thermal management, power management and job scheduling

  19. Waste Management Information System (WMIS) User Guide

    SciTech Connect (OSTI)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  20. Implementation Guide for Integrating Environmental Management Systems into Integrated Safety Management Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-20

    This Guide provides guidance to assist DOE sites in identifying those missing environmental management systems elements and integrating them into the site's integrated safety management system. Canceled by DOE N 251.96.

  1. Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243

    SciTech Connect (OSTI)

    Pesaran, A.

    2012-03-01

    In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

  2. Design Methodology and Run-time Management for Predictable Many-Core Systems

    E-Print Network [OSTI]

    Teich, Jürgen

    of hardware resources due to thermal and power management or faults. Particularly, when applications with real-time requirements while heuristically optimizing the system objectives. Here, minimization of the energy consumption (manufacturing variability and aging) or due to shutoffs caused by temperature/power management. The challenge

  3. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

  4. Thermal control system for SSF sensor/electronics

    SciTech Connect (OSTI)

    Akau, R.L.; Lee, D.E.

    1992-12-31

    As part of the Defense Meteorological Support Program (DMSP) with Martin Marieta Astro-Space Division, a thermal control system was designed for the SSF (Special Sensor F) sensor/electronics box (SSTACK) located on the precision mounting platform of the DMSP satellite. Multi-layer insulation and heaters are used to maintain the temperatures of the critical components within their operating and survival temperature limits. Detailed and simplified SSTACK thermal models were developed and temperatures were calculated for worst-case orbital conditions. A comparison between the two models showed very good agreement. Temperature predictions were also compared to measured temperatures from a thermal-vacuum test

  5. Thermal Quantum Speed Limit for Classical-Driving Open Systems

    E-Print Network [OSTI]

    Wenjiong Wu; Kai Yan; Xiang Hao

    2015-10-21

    Quantum speed limit (QSL) time for open systems driven by classical fields is studied in the presence of thermal bosonic environments. The decoherence process is quantitatively described by the time-convolutionless master equation. The evolution speed of an open system is related not only to the strength of driving classical field but also to the environmental temperature. The energy-state population plays a key role in the thermal QSL. Comparing with the zero-temperature reservoir, we predict that the structural reservoir at low temperatures may contribute to the acceleration of quantum decoherence. The manifest oscillation of QSL time takes on under the circumstance of classical driving fields. We also investigate the scaling property of QSL time for multi-particle noninteracting entangled systems. It is demonstrated that entanglement of open systems can be considered as one resource for improving the potential capacity of thermal quantum speedup.

  6. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    SciTech Connect (OSTI)

    HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K; Maienschein, J L

    2011-08-03

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.

  7. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  8. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Allen, G.C.

    1992-09-09

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  9. Hydrocarbons Heterogeneous Pyrolysis: Experiments and Modeling for Scramjet Thermal Management

    E-Print Network [OSTI]

    Bouchez, Marc; Visez, Nicolas; Herbinet, Olivier; Fournet, René; Marquaire, Paul-Marie

    2009-01-01

    The last years saw a renewal of interest for hypersonic research in general and regenerative cooling specifically, with a large increase of the number of dedicated facilities and technical studies. In order to quantify the heat transfer in the cooled structures and the composition of the cracked fuel entering the combustor, an accurate model of the thermal decomposition of the fuel is required. This model should be able to predict the fuel chemical composition and physical properties for a broad range of pressures, temperatures and cooling geometries. For this purpose, an experimental and modeling study of the thermal decomposition of generic molecules (long-chain or polycyclic alkanes) that could be good surrogates of real fuels, has been started at the DCPR laboratory located in Nancy (France). This successful effort leads to several versions of a complete kinetic model. These models do not assume any effect from the material that constitutes the cooling channel. A specific experimental study was performed ...

  10. Firearm suppressor having enhanced thermal management for rapid heat dissipation

    DOE Patents [OSTI]

    Moss, William C.; Anderson, Andrew T.

    2014-08-19

    A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.

  11. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  12. OSU Building and Environmental Thermal Systems Research Group Citation Index

    E-Print Network [OSTI]

    .D. Spitler, and Z. Fang. 2008. Simulation of hybrid ground-coupled heat pump with domestic hot water heating-borehole ground-coupled heat pumps: A review of models and systems. Applied Energy 87(1):16-27. Fabrizio, E., M in a multi-function ground source heat pump system. Applied Thermal Engineering 29(17-18):3679-3686. Ma, Z

  13. Thermal Storage Options for HVAC Systems 

    E-Print Network [OSTI]

    Weston, R. F.; Gidwani, B. N.

    1986-01-01

    is based on the specific heat of water rather than the latent 'heat of fusion of ice as in ice storage, it requires about 4 times the storage capacity of an equivalent ice storage system. ? Salt Storage: This system utilizes eutectic salts which... freeze and melt around 47 o F. Exist ing chillers can be easily retrofitted for salt storage or chilled water storage. For ice stor age systems, a direct refrigerant system or glycol chillers are suitable. This paper discusses the details of each...

  14. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  15. THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2011-01-01

    Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

  16. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01

    Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

  17. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01

    thermal absorption solar photo- storage chiller thermalbetween solar thermal collection and storage systems and CHPThe addition of solar thermal and heat storage systems can

  18. Evaluating Ocean Management Systems to Facilitate the Development of Ecosystem-Based Management

    E-Print Network [OSTI]

    Young, Oran R

    2009-01-01

    ENV-02 Evaluating Ocean Management Systems to Facilitate theof Ecosystem-Based Management Preparer Information: Juliaof Environmental Science & Management young@bren.ucsb.edu

  19. Autonomous Thermal Control System Omid Ardakanian

    E-Print Network [OSTI]

    Waterloo, University of

    ) to model and efficiently control a commer- cial building heating system. We use supervised learning in space heating and cooling. Specifically, we use decision making to control the temperature of a building decision-making sys- tem to optimally control a building heating system. Our main goal is to not expend

  20. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2010-02-01

    Techniques for evaluating and quantifying integrated transient and continuous heat loads of combined systems incorporating electric drive systems operating primarily under transient duty cycles.

  1. A Monolithic Microconcentrator Receiver For A Hybrid PV-Thermal System: Preliminary Performance

    E-Print Network [OSTI]

    -thermal concentrator systems offer improvements in key economic indicators, such as Levelised Cost of Energy (LCOE

  2. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  3. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m[sup 2] at an insulating vacuum of 10[sup [minus]6]torr.

  4. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m{sup 2} at an insulating vacuum of 10{sup {minus}6}torr.

  5. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect (OSTI)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  6. Thermal Storage Systems at IBM Facilities 

    E-Print Network [OSTI]

    Koch, G.

    1981-01-01

    .p cavitation. A potentially more serious problem, however, could have been what initially appeared to be the system's inability to maintain the design temperature difference of 18 0 F. The problem was primarily caused by improper or no flow balancing...

  7. Thermal Plasma Systems for Industrial Processes 

    E-Print Network [OSTI]

    Fey, M. G.; Meyer, T. N.; Reed, W. H.; Philbrook, W. O.

    1982-01-01

    , metallurgical, and specialty materials areas. The applications for plasma systems to be discussed in this paper include: blast furnace conversions, direct reduction or iron ore, hot blast superheating and hydrocarbon pyrolysis. Both the technical and economic...

  8. A Systems Approach to Managing Oil

    E-Print Network [OSTI]

    van Dorp, Johan René

    A Systems Approach to Managing Oil Transportation Risk in Prince William Sound Jason R. W. Merrick Received April 21, 2000; revised June 12, 2000; accepted June 26, 2000MANAGING OIL TRANSPORTATION RISK about the safety of oil transportation in the Prince William Sound, Alaska. As a result, a large number

  9. Complexity Management in System-level Design

    E-Print Network [OSTI]

    California at Berkeley, University of

    , and work with a range of constraints and optimization criteria. This design process is quite complex1 of 22 Complexity Management in System-level Design Asawaree Kalavade Edward A. Lee Keywords design space exploration, hardware-software codesign, design methodology management, design flow

  10. Management Information Systems Mexico City EMBA Program

    E-Print Network [OSTI]

    Ghosh, Joydeep

    Management Information Systems Mexico City EMBA Program Spring 2012 Professor : Professor Anitesh efficiency, and business partner and strategic values. Managers need to be able to articulate the impact) Required Books Analyzing Social Media Networks with NodeXL: Insights from a Connected World by Derek Hansen

  11. Distributed Energy Management for Electric Power Systems

    E-Print Network [OSTI]

    Distributed Energy Management for Electric Power Systems Gabriela Hug, ghug@ece.cmu.edu Soummya Kar Theory Power flow control Consensus + Innovation Approach Theory Energy Management Conclusions 2 #12 line flows Tertiary Control => Energy Energy source scheduling including generator and storage

  12. Atom Interferometry in Space: Thermal Management and Magnetic Shielding

    E-Print Network [OSTI]

    Alexander Milke; André Kubelka-Lange; Norman Gürlebeck; Benny Rievers; Sven Herrmann; Thilo Schuldt; Claus Braxmaier

    2014-08-18

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6E-4% due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 10E5. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  13. Atom interferometry in space: Thermal management and magnetic shielding

    SciTech Connect (OSTI)

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman Rievers, Benny; Herrmann, Sven; Schuldt, Thilo; Braxmaier, Claus

    2014-08-15

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260?nm or 2.6 × 10{sup ?4}?% due to thermal expansion although they consume an average power of 22?W. Also Earth's magnetic field has to be suppressed by a factor of 10{sup 5}. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  14. A DECISION SUPPORT SYSTEM (DSS) FOR STORMWATER MANAGEMENT SYSTEM SELECTION

    E-Print Network [OSTI]

    A DECISION SUPPORT SYSTEM (DSS) FOR STORMWATER MANAGEMENT SYSTEM SELECTION BY ANGIE SHELLEY MILES B...................................................................................................... 1 1.1 History of Stormwater Regulations............................................................................................................ 7 2.1 Stormwater DSS Development

  15. Tehachapi solar thermal system first annual report

    SciTech Connect (OSTI)

    Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  16. Integrated Energy and Greenhouse Gas Management System 

    E-Print Network [OSTI]

    Spates, C. N.

    2010-01-01

    , the results obtained and the lessons learned in developing an integrated Energy and Greenhouse Gas Management System with a major industrial manufacturing company in the Midwest. Key subject areas covered include: Integration of Climate Change and Energy...

  17. ISO 50001 Conformant Energy Management Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ISO 50001-conformant Energy Management Systems Aimee McKane Lawrence Berkeley National Laboratory atmckane@lbl.gov 518-782-7002 April 2, 2013 2 | Building Technologies Office...

  18. Integrated Safety Management System Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-29

    The guide provide DOE line management information useful for implementing the provisions of DOE P 450.4A and the requirements and responsibilities of DOE O 450.2. Supersedes DOE G 450.4-1B and DOE G 450.3-3.

  19. The Next Generation Energy Management System Design

    E-Print Network [OSTI]

    Paul Myrda, EPRI Naim Logic SRP George Stefopoulos, NYPA Michael Swider, New York ISO. i #12;iiThe Next Generation Energy Management System Design Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The Next Generation

  20. Analyzing the Effects of Climate and Thermal Configuration on Community Energy Storage Systems (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Coleman, D.; Chen, D.

    2013-10-01

    Community energy storage (CES) has been proposed to mitigate the high variation in output from renewable sources and reduce peak load on the electrical grid. Thousands of these systems may be distributed around the grid to provide benefits to local distribution circuits and to the grid as a whole when aggregated. CES must be low cost to purchase and install and also largely maintenance free through more than 10 years of service life to be acceptable to most utilities.Achieving the required system life time is a major uncertainty for lithium-ion batteries. The lifetime and immediate system performance of batteries can change drastically with battery temperature, which is a strong function of system packaging, local climate, electrical duty cycle, and other factors. In other Li-ion applications, this problem is solved via air or liquid heating and cooling systems that may need occasional maintenance throughout their service life. CES requires a maintenance-free thermal management system providing protection from environmental conditions while rejecting heat from a moderate electrical duty cycle. Thus, the development of an effective, low-cost, zero-maintenance thermal management system poses a challenge critical to the success of CES. NREL and Southern California Edison have collaborated to evaluate the long-term effectiveness of various CES thermal configurations in multiple climates by building a model of CES based on collected test data, integrating it with an NREL-developed Li-ion degradation model, and applying CES electrical duty cycles and historic location-specific meteorological data to forecast battery thermal response and degradation through a 10-year service life.

  1. Composition of Management System for Smart Homes

    E-Print Network [OSTI]

    Levin, Mark Sh; Klapproth, Alexander

    2011-01-01

    The paper addresses modular hierarchical design (composition) of a management system for smart homes. The management system consists of security subsystem (access control, alarm control), comfort subsystem (temperature, etc.), intelligence subsystem (multimedia, houseware). The design solving process is based on Hierarchical Morphological Multicriteria Design (HMMD) approach: (1) design of a tree-like system model, (2) generation of design alternatives for leaf nodes of the system model, (3) Bottom-Up process: (i) multicriteria selection of design alternatives for system parts/components and (ii) composing the selected alternatives into a resultant combination (while taking into account ordinal quality of the alternatives above and their compatibility). A realistic numerical example illustrates the design process of a management system for smart homes.

  2. Quantum systems in a stationary environment out of thermal equilibrium

    E-Print Network [OSTI]

    Bruno Bellomo; Riccardo Messina; Didier Felbacq; Mauro Antezza

    2013-01-15

    We discuss how the thermalization of an elementary quantum system is modified when the system is placed in an environment out of thermal equilibrium. To this aim we provide a detailed investigation of the dynamics of an atomic system placed close to a body of arbitrary geometry and dielectric permittivity, whose temperature $T_M$ is different from that of the surrounding walls $T_W$. A suitable master equation for the general case of an $N$-level atom is first derived and then specialized to the cases of a two- and three-level atom. Transition rates and steady states are explicitly expressed as a function of the scattering matrices of the body and become both qualitatively and quantitatively different from the case of radiation at thermal equilibrium. Out of equilibrium, the system steady state depends on the system-body distance, on the geometry of the body and on the interplay of all such parameters with the body optical resonances. While a two-level atom tends toward a thermal state, this is not the case already in the presence of three atomic levels. This peculiar behavior can be exploited, for example, to invert the populations ordering and to provide an efficient cooling mechanism for the internal state of the quantum system. We finally provide numerical studies and asymptotic expressions when the body is a slab of finite thickness. Our predictions can be relevant for a wide class of experimental configurations out of thermal equilibrium involving different physical realizations of two or three-level systems.

  3. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita (Old Field, NY)

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  4. Department of Energy Project Management System

    SciTech Connect (OSTI)

    Not Available

    1981-01-08

    This manual provides guidance to all appropriate personnel for implementation of DOE Project Management Policy. It sets forth the principles and requirements that govern the development, approval, and execution of DOE's outlay programs as embodied within the Project Management System (PMS). Its primary goal is to assure application of sound management principles providing a disciplined, systematic, and coordinated approach resulting in efficient planning, organization, coordination, budgeting, management, review, and control of DOE projects. The provisions of this manual are mandatory for the Department's Major Systems Acquisitions (MSA's) and Major Projects and will be used for other projects to the extent practicable. Department's project-management task is over 250 projects, with a total estimated cost in excess of $24 billion at completion. This diverse array of project activities requires a broad spectrum of scientific, engineering, and management skills to assure that they meet planned technical and other objectives and are accomplished on schedule, within cost and scope, and that they serve the purposes intended. In recognition of these requirements and the Department's ever-increasing magnitude of responsibilities, an interim Project Management System was established and has been in use for over a year. This manual constitutes an update of the system based on the experience gained and lessons learned during this initial period.

  5. Guidance for FY2014 Facilities Information Management System...

    Office of Environmental Management (EM)

    Guidance for FY2014 Facilities Information Management System Data Validations Guidance for FY2014 Facilities Information Management System Data Validations FY 2014 FIMS Data...

  6. A monitoring sensor management system for grid environments

    E-Print Network [OSTI]

    Tierney, Brian; Crowley, Brian; Gunter, Dan; Lee, Jason; Thompson, Mary

    2001-01-01

    A Monitoring Sensor Management System for Grid Environmentsof a Grid environment. 1.1 Monitoring Agents For thismonitoring data management system within a Grid environment.

  7. PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE...

    Broader source: Energy.gov (indexed) [DOE]

    SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE More Documents & Publications PIA - INL Education Programs...

  8. Quality Management System Guidelines - Building America Top Innovation...

    Energy Savers [EERE]

    Quality Management System Guidelines - Building America Top Innovation Quality Management System Guidelines - Building America Top Innovation Effec guid-quality-mgnt.png The...

  9. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy...

  10. Concept for Management of the Future Electricity System (Smart...

    Open Energy Info (EERE)

    Concept for Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System...

  11. Office of Personnel Management (OPM) Billing System PIA, Office...

    Energy Savers [EERE]

    Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security...

  12. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits in hybrid vehicles include electric motor drive circuits and DC/DC converter circuits. Conventional circuit

  13. Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs

    E-Print Network [OSTI]

    Simunic, Tajana

    Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs Shervin Sharifi Ayse Kivilcim Coskun Tajana Simunic Rosing CSE Department, University of California, San Diego ECE Department Boston University CSE Department, University of California, San Diego shervin@ucsd.edu acoskun

  14. JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers

    E-Print Network [OSTI]

    Simunic, Tajana

    - duces per server cooling and memory energy costs. Our analysis shows that decoupling the optimization the dynamics of the cooling subsystem and its energy costs. Modern servers incorporate a fan subsystemJETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers Raid

  15. Table of Contents Superhydrophilic and Superhydrophobic Nanostructured Surfaces for Microfluidics and Thermal Management 4-1

    E-Print Network [OSTI]

    Voldman, Joel

    for Microfluidics and Thermal Management 4-1 Design of a Micro-breather for Venting Vapor Slugs in Two-phase Microchannels 4-2 Microfluidic Patterning of P-Selectin for Cell Separation through Rolling 4-3 Electrical Membranes in Thermoplastic Microfluidic Devices 4-5 Teflon Films for Chemically-inert Microfluidic Valves

  16. Trinity Thermal Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) Jump to: navigation,PowerNetworks JumpSystems Jump to:

  17. NREL: Transportation Research - Vehicle Thermal Management Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models and Tools image of

  18. Commercial thermal distribution systems, Final report for CIEE/CEC

    SciTech Connect (OSTI)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

  19. OSU Building and Environmental Thermal Systems Research Group Citation Index

    E-Print Network [OSTI]

    in a multi-function ground source heat pump system. Applied Thermal Engineering 29(17-18):3679-3686. Ma, Z. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat.D. Spitler, and Z. Fang. 2008. Simulation of hybrid ground-coupled heat pump with domestic hot water heating

  20. Interconnected hydro-thermal systems Models, methods, and applications

    E-Print Network [OSTI]

    Interconnected hydro-thermal systems Models, methods, and applications Magnus Hindsberger Kgs. Lyngby 2003 IMM-PHD-2003-112 Interconnected hydro-thermalsystems #12;Technical University of Denmark 45882673 reception@imm.dtu.dk www.imm.dtu.dk IMM-PHD-2003-112 ISSN 0909-3192 #12;Interconnected hydro

  1. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Energy Management . . . . . . . . . . . . . . . . . . . . .116 Energy Scheduling . . . . . .Distributed Energy Management . . . . . . . . . . . . . . .

  2. System for Award Management (SAM):

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority SustainXSystem for Award Management (SAM)

  3. Magnetic tunable microstructured surfaces for thermal management and microfluidic applications

    E-Print Network [OSTI]

    Zhu, Yangying

    2013-01-01

    Micro and nanostructured surfaces have broad applications including heat transfer enhancement in phase-change systems and liquid manipulation in microfluidic devices. While significant efforts have focused on fabricating ...

  4. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect (OSTI)

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  5. Energy Management in Microgrids: Algorithms and System

    E-Print Network [OSTI]

    Shi, Wenbo

    2015-01-01

    Optimal Energy Management in Microgrids . . . . . . . . . .Management in Microgrids . . . . . . . . . . . . . . . .Hatziargyriou, and A. Dimeas, “Microgrids management,” IEEE

  6. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  7. Computational design and experimental validation of new thermal barrier systems

    SciTech Connect (OSTI)

    Guo, Shengmin

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  8. Simulation of diurnal thermal energy storage systems: Preliminary results

    SciTech Connect (OSTI)

    Katipamula, S.; Somasundaram, S.; Williams, H.R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system, and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  9. Steam System Forecasting and Management 

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01

    Union Carbide's Taft Plant is a typical petrochemical complex with several processes that use and produce various fuel and steam resources. The plant steam and fuel system balances vary extensively since several process units 'block operate...

  10. Thermal stratification performance of underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Webster, T.; Bauman, Fred; Shi, M.; Reese, J.

    2002-01-01

    Distribution (UFAD): Thermal Stratification Performance,"Engineers, Inc. Thermal Stratification Performance ofSAT) on the thermal stratification in interior spaces, and

  11. Computational Design and Experimental Validation of New Thermal Barrier Systems

    SciTech Connect (OSTI)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2012-10-01

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DEFOA- 0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed Durability Test Rig.

  12. Computational Design and Experimental Validation of New Thermal Barrier Systems

    SciTech Connect (OSTI)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2014-04-01

    This project (10/01/2010-9/30/2014), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. In this project, the focus is to develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments.

  13. Vol 2, Integrated Safety Management System Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-05-27

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1B.

  14. Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems

    E-Print Network [OSTI]

    Yee, Gaymond; Webster, Tom

    2003-01-01

    for emerging energy management systems. The second article [of these complex energy management systems. This series ofrelative to energy management systems design, specification,

  15. Trends in Energy Management Technology - Part 3: State of Practice of Energy Management, Control, and Information Systems

    E-Print Network [OSTI]

    Yee, Gaymond; Webster, Tom

    2004-01-01

    for emerging energy management systems. The second report [of these complex energy management systems. This series ofrelative to energy management systems design, specification,

  16. Trends in Energy Management Technologies - Part 5: Effectiveness of Energy Management Systems: What the Experts Say and Case Studies Reveal

    E-Print Network [OSTI]

    Webster, Tom

    2005-01-01

    Effectiveness of Energy Management Systems: What the Expertsin Energy Management, Control, and Information Systems. ”of Energy Management, Control, and Information Systems."

  17. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01

    capacity Please note that thermal storage contains also heat1 considers cold thermal storage indirectly. presented atThe addition of solar thermal and heat storage systems can

  18. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  19. High-speed thermal cycling system and method of use

    DOE Patents [OSTI]

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  20. High-speed thermal cycling system and method of use

    DOE Patents [OSTI]

    Hansen, Anthony D. A. (Berkely, CA); Jaklevic, Joseph M. (Lafayette, CA)

    1996-01-01

    A thermal cycling system and method of use are described. The thermal cycling system is based on the-circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate microtiter plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 .mu.l of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded.

  1. Operation Diagnosis for Buildings Connecting Building Management Systems with Energy Management Systems 

    E-Print Network [OSTI]

    Mehler, G.

    2008-01-01

    or installing a Building Automation Sys-tem with an Energy Management System helps to analyze the flow of material, build up an integrated Alarm Management and create an excellent documentation of the installed base. To pick the best of each and connect the two...

  2. GDMN : An Information Management Network for Distributed Systems

    E-Print Network [OSTI]

    Sengupta, Raja

    GDMN : An Information Management Network for Distributed Systems Amit Mahajan {amahajan from the system. 1 Introduction There are many systems that produce and con- sume information at many sites distributed over large geographical areas. Battlefield networks, traffic management systems

  3. Integrated Vehicle Thermal Management Â… Combining Fluid Loops in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02Department of Energy Systems

  4. Integrated Vehicle Thermal Management Â… Combining Fluid Loops in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02Department of Energy SystemsDrive Vehicles |

  5. Integrated Vehicle Thermal Management Â… Combining Fluid Loops in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02Department of Energy SystemsDrive Vehicles

  6. Delivering Document Management Systems Through the ASP Model

    E-Print Network [OSTI]

    Furht, Borko

    -the-shelf software products that complement Database Management Systems (DBMS). DBMS typically store structured data systems store, retrieve, and manage unstructured data, such as files, text, spreadsheets, images, sound Management Systems The traditional approach in document management systems is based on the client

  7. POEMS: A Transformable Architecture for Managing System Overload

    E-Print Network [OSTI]

    Ooi, Beng Chin

    result in the overload of the DBMS. Existing load management systems assume nodes are fully dedicated

  8. Assessment of central receiver solar thermal enhanced oil recovery systems

    SciTech Connect (OSTI)

    Gorman, D.N.

    1987-07-01

    In November 1982, ARCO Solar, Incorporated, with the cooperation of ARCO Oil and Gas Company, completed installation and began operation of a central receiver solar thermal pilot plant to produce steam for enhanced oil recovery. The highly automated plant can produce approximately one megawtt of thermal power in the form of 80% quality steam, which is delivered to a distribution header for injection into heavy oil formations. An engineering evaluation of data from the ARCO plant has been performed, with the conclusion that central receiver solar systems can be very effective sources of power to generate steam for the enhanced recovery of heavy oil. The highly automated pilot plant exhibited outstanding reliability of the solar power conversion components while operating routinely with a single attendant, demonstrating the capability for very low operating and maintenance costs for these systems relative to the use of conventional oil-burning steam generators. This document reports the operating and performance characteristics of the ARCO solar thermal enhanced oil recovery (STEOR) system over a full year of operation. System sizing and performance projection for a much larger commercial plant is also presented.

  9. Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure

    E-Print Network [OSTI]

    Quality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch/Output-Controllers for in situ and automatic function control of solar thermal systems that were developed within the research project have been installed in 12 systems. After five years seven solar thermal systems benefited from

  10. Fighting Fire with Fire: Modeling the Datacenter-Scale Effects of Targeted Superlattice Thermal Management

    SciTech Connect (OSTI)

    Biswas, S; Tiwari, M; Theogarajan, L; Sherwood, T P; Chong, F T

    2010-11-11

    Local thermal hot-spots in microprocessors lead to worst case provisioning of global cooling resources, especially in large-scale systems. However, efficiency of cooling solutions degrade non-linearly with supply temperature, resulting in high power consumption and cost in cooling - 50 {approx} 100% of IT power. Recent advances in active cooling techniques have shown on-chip thermoelectric coolers (TECs) to be very efficient at selectively eliminating small hot-spots, where applying current to a superlattice film deposited between silicon and the heat spreader results in a Peltier effect that spreads the heat and lowers the temperature of the hot-spot significantly to improve chip reliability. In this paper, we propose that hot-spot mitigation using thermoelectric coolers can be used as a power management mechanism to allow global coolers to be provisioned for a better worst case temperature leading to substantial savings in cooling power. In order to quantify the potential power savings from using TECs in data center servers, we present a detailed power model that integrates on-chip dynamic and leakage power sources, heat diffusion through the entire chip, TEC and global cooler efficiencies, and all their mutual interactions. Our multiscale analysis shows that, for a typical data center, TECs allow global coolers to operate at higher temperatures without degrading chip lifetime, and thus save {approx}27% cooling power on average while providing the same processor reliability as a data center running at 288K.

  11. Systems approach to project risk management

    SciTech Connect (OSTI)

    Kindinger, J. P.

    2002-01-01

    This paper describes the need for better performance in the planning and execution of projects and examines the capabilities of two different project risk analysis methods for improving project performance. A quantitative approach based on concepts and tools adopted from the disciplines of systems analysis, probabilistic risk analysis, and other fields is advocated for managing risk in large and complex research & development projects. This paper also provides an overview of how this system analysis approach for project risk management is being used at Los Alamos National Laboratory along with examples of quantitative risk analysis results and their application to improve project performance.

  12. Energy Management and Information Systems 

    E-Print Network [OSTI]

    Conraud, J.

    2013-01-01

    ?lb steam?/?year ? 2?power?distribution?networks 30MW?peak?demand ? 3?main?chilled?water?distribution? networks 12,000?ton?capacity ? ?1,000?HVAC?systems? P h o t o : ? F l i c k e r ? U s e r ? t r e p e l u h t t p...?of?Measures ? Review?HVAC?schedules to?realign?occupants??needs? and?optimal?operations ? Optimize?ventilation?and? temperature?set?points ? Enthalpy?control?of?fresh? air ? Peak?shaving steam?generation?and?peak? power the?project the?project the?project the...

  13. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect (OSTI)

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  14. The DIRAC Data Management System (poster)

    E-Print Network [OSTI]

    Haen, Christophe

    2015-01-01

    The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. The DIRAC DMS is in use by several user communities now. The contribution will present the experience of the LHCb exper...

  15. A prototype photovoltaic/thermal system integrated with transpired collector

    SciTech Connect (OSTI)

    Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan

    2011-01-15

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  16. ExxonMobil Global Energy Management System 

    E-Print Network [OSTI]

    Roberto, F.

    2009-01-01

    For many years, ExxonMobil has undertaken voluntary actions to improve efficiency in our operations and in customer use of our products. Our Global Energy Management System (GEMS) is an important initiative that is having a positive impact at each...

  17. Policy Management for Networked Systems and Applications

    E-Print Network [OSTI]

    Lee, Kang-Won

    Policy Management for Networked Systems and Applications Dakshi Agrawal, Seraphin Calo, James Giles {agrawal,scalo,gilesjam,kangwon,dverma}@us.ibm.com Abstract In this paper, we present a novel policy and administrative domains. The proposed policy middleware provides a standard infrastructure for the creation

  18. HEMS, a Hurricane Evacuation Management System

    E-Print Network [OSTI]

    Cardei, Mihaela

    HEMS, a Hurricane Evacuation Management System Arny Ambrose, Mihaela Cardei, and Ionut Cardei, there has been a high incidence of hurricanes over the past decade. Before a hurricane makes landfall and challenges associated with hurricane evacuation of health care centers, such as nursing homes. Then, we

  19. Patient-centric Hurricane Evacuation Management System

    E-Print Network [OSTI]

    Cardei, Mihaela

    Patient-centric Hurricane Evacuation Management System Arny Ambrose, Mihaela Cardei, and Ionut--In the United States, there has been a high incidence of hurricanes over the past decade. Before a hurricane investigate the characteristics and challenges associated with hurricane evacuation of health care centers

  20. Implementation Guide for Integrating Pollution Prevention into Environmental Management Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-05-27

    This Guide suggests approaches to integrating pollution prevention into Integrated Safety Management/Environmental Management Systems. Canceled by DOE N 251.82.

  1. A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection

    E-Print Network [OSTI]

    Wang, Yu

    A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection a thermal-conscious system-level methodology to make energy-efficient voltage selection (VS) for nanometer), thermal resistance, are integrated and considered in our system models, and their impacts on energy

  2. Thermal Equilibrium of a Macroscopic Quantum System in a Pure State

    E-Print Network [OSTI]

    Goldstein, Sheldon

    Thermal Equilibrium of a Macroscopic Quantum System in a Pure State Sheldon Goldstein , David A of thermal equilibrium for an individual closed macro- scopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its

  3. Aalborg Universitet Thermal modeling and temperature control of a PEM fuel cell system for forklift

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Thermal modeling and temperature control of a PEM fuel cell system for forklift., & Mortensen, H. H. (2014). Thermal modeling and temperature control of a PEM fuel cell system for forklift.aau.dk on: juli 07, 2015 #12;Thermal modeling and temperature control of a PEM fuel cell system for forklift

  4. Data management system for organic soil

    SciTech Connect (OSTI)

    Stinnette, P.

    1999-07-01

    A Data Management System for Organic Soil (DMSOS) has been developed that enables the acquisition, management and analysis of organic soil data as well as the presentation of results to be conducted effectively through a common interface. This development was in response to the data management needs of research investigating the engineering properties of organic soil and its extension to the stabilization of organic soil through dynamic replacement (DR). It is shown how the above functions are implemented efficiently using Windows-based software to perform comprehensive data management and analysis of data gathered from both laboratory and field tests. When the engineering properties of a given organic soil deposit are needed, a build-in Computer Advisor for Organic Soil Projects (CAOSP) predicts the properties from DMSOS based correlations. A unique and useful feature of the CAOSP is its ability to estimate the anticipated ultimate settlement of an organic soil deposit given the loading conditions and the moisture or organic content. Also incorporated in the DMSOS is a quality control system that utilizes computerized data acquisition/data management techniques in order to evaluate the degree of improvement of an organic soil layer at a given stage of treatment using DR.

  5. Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage

    E-Print Network [OSTI]

    Mammoli, Andrea

    2014-01-01

    Assisted HVAC System with Thermal Storage A. Mammoli a , M.HVAC system with thermal storage. Energy and Buildings, 42(ASSISTED HVAC SYSTEM WITH THERMAL STORAGE A. Mammoli a , M.

  6. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  7. Best Management Practice #3: Distribution System Audits, Leak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Distribution System Audits, Leak Detection, and Repair Best Management Practice 3: Distribution System Audits, Leak Detection, and Repair A distribution system audit, leak...

  8. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01

    V. D. ; Saegrov, S. ; Asset management for urban wastewater16) Parker, P. A. Asset Management Approach: Systems andFree Ride is Over: Asset Management Can Help Seminar, San

  9. Thermal comfort and perceived air quality of a PEC system

    E-Print Network [OSTI]

    Arens, Edward; Zhang, Hui; Pasut, Wilmer; Warneke, Ashley; Bauman, Fred; Higuchi, Hiroshi

    2011-01-01

    Akimoto, T. , Genma T. 2007. Thermal sensation and comfortW. , Gong, N. 2007. Thermal performance of a personalizedRESULTS 1. Whole-body thermal sensation and comfort with the

  10. "Load Management Systems for Component-based Middleware"

    E-Print Network [OSTI]

    Murphy, John

    "Load Management Systems for Component-based Middleware" Octavian Ciuhandu, B.E. Masters Management Services Characteristics . . . . . 26 3.3.2 Load Management Services Classification . . . . . . 28 3.3.3 Load Management Services Requirements . . . . . 30 3.3.4 Load Management Services Components

  11. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore »both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  12. Standard Guide for Specifying Thermal Performance of Geothermal Power Systems

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. THERMAL STRESS CALCULATIONS FOR HEATPIPE-COOLED REACTOR POWER SYSTEMS.

    SciTech Connect (OSTI)

    Kapernick, R. J. (Richard J.); Guffee, R. M. (Ray M.)

    2001-01-01

    A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module comprises a single heatpipe surrounded by 3-6 clad fuel pins. As part of the design development and performance assessment activities for these reactors, specialized methods and models have been developed to perform thermal and stress analyses of the core modules. The methods have been automated so that trade studies can be readily performed, looking at design options such as module size, heatpipe and clad thickness, use of sleeves to contain the fuel, material type, etc. This paper describes the methods and models that have been developed, and presents thermal and stress analysis results for a Mars surface power system and a NEP power source.

  14. Computational Design and Experimental Validation of New Thermal Barrier Systems

    SciTech Connect (OSTI)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2011-12-31

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

  15. Integrated analysis of nuclear thermal rocket system performance

    SciTech Connect (OSTI)

    Buksa, J.J.; Rider, W.J.; Hall, M.; Perry, R.T.; Houts, M. (Los Alamos National Lab., NM (United States))

    1992-01-01

    As part of the Space Exploration Initiative (SEI), nuclear thermal rocket (NTR) engines will play a key transportation role. Although a number of tests of prismatic, solid-core nuclear engines were completed during the ROVER/NERVA program, the estimated cost of completing full-engine tests will severely limit the scope, duration, and number of any such tests in the future. Design optimization by test iteration is unlikely, and an emphasis on computational modeling is a cost-effective alternative. As a consequence of our responsibilities within the US Dept. of Energy's SEI efforts to develop key NTR technologies, Los Alamos National Laboratory (LANL) is developing the capability to design and verify the safety and performance of NTR systems. Because of the important role that computational modeling will play in the faster, better, and cheaper development of an NTR system, we are pursuing two paths of analysis. The first undertaking is the development of accurate separate-effects codes for design and analysis. Included in this category are thermal-hydraulic and radiation-transport codes. Our other endeavor, which is the focus of this paper, is to develop an advanced computational architecture that can be used to model the entire NTR system.

  16. Continuous Commissioning(SM) of a Thermal Storage System 

    E-Print Network [OSTI]

    Turner, W. D.; Liu, M.

    2001-01-01

    electrical demand dropped rapidly after 4:30 PM, the control sequence was modified to turn on one small 200-ton chiller after 5:00 PM if the thermal storage tank is about to run out of chilled water and the electrical demand is below 1200 kW. This situation... Storage Tank and the Chilled Water System In the charging mode, chilled water produced by the chillers enters the bottom of the storage tank (Port FGe0 Port E Ge0 Pump Ge0 Port B Ge0 Port A). In the discharge mode, 3-way control valves V1 and V2 move...

  17. Solar-thermal-energy collection/storage-pond system

    DOE Patents [OSTI]

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  18. 239Pu Resonance Evaluation for Thermal Benchmark System Calculations

    SciTech Connect (OSTI)

    Leal, Luiz C; Noguere, G; De Saint Jean, C; Kahler, A.

    2013-01-01

    Analyses of thermal plutonium solution critical benchmark systems have indicated a deciency in the 239Pu resonance evaluation. To investigate possible solutions to this issue, the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) Working Party for Evaluation Cooperation (WPEC) established Subgroup 34 to focus on the reevaluation of the 239Pu resolved resonance parameters. In addition, the impacts of the prompt neutron multiplication (nubar) and the prompt neutron ssion spectrum (PFNS) have been investigated. The objective of this paper is to present the results of the 239Pu resolved resonance evaluation eort.

  19. THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)Feedback SystemGimbaled X-Ray Head (JournalSciTech Connect THERMAL

  20. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  1. Thermal Regimes of Northeast Streams

    E-Print Network [OSTI]

    Thermal Loading (USGS) Stormwater and Streams ­ Optimizing Stormwater Management to Protect the Thermal

  2. System and method for advanced power management

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  3. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  4. PTEC: A System for Predictive Thermal and Energy Control in Data Centers

    E-Print Network [OSTI]

    Xing, Guoliang

    1 PTEC: A System for Predictive Thermal and Energy Control in Data Centers Jinzhu Chen Rui Tan presents the design and evaluation of PTEC ­ a system for predictive thermal and energy control in data energy consumption by more than 30%, compared with baseline thermal control strategies. I. INTRODUCTION

  5. Assessment of thermal analysis software for the DOE Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Williams, P.T.; Graham, R.F.; Lagerberg, G.N.; Chung, T.C.

    1989-07-01

    This assessment uses several recent assessments and the more general code compilations that have been completed to produce a list of 116 codes that can be used for thermal analysis. This list is then compared with criteria prepared especially for the Department of Energy Office of Civilian Radioactive Waste Management (DOE/OCRWM). Based on these criteria, fifteen codes are narrowed to three primary codes and four secondary codes for use by the OCRWM thermal analyst. The analyst is cautioned that since no single code is sufficient for all applications, a code must be selected based upon the predominate heat transfer mode of the problem to be solved, but the codes suggested in this report have been used successfully for a range of OCRWM applications. The report concludes with a series of recommendations for additional work of which the major points include the following: The codes suggested by this report must be benchmarked with the existing US and international problems and validated when possible; An interactive code selection tool could be developed or, perhaps even more useful, a users group could be supported to ensure the proper selection of thermal codes and dissemination of information on the latest version; The status of the 116 codes identified by this report should be verified, and methods for maintaining the still active codes must be established; and special capabilities of each code in phase change, convection and radiation should be improved to better enable the thermal analyst to model OCRWM applications. 37 refs., 3 figs., 12 tabs.

  6. NO2 Management in Diesel Exhaust System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO2 Management in Diesel Exhaust System NO2 Management in Diesel Exhaust System The project discusses the use of an NO2 mitigator for catalytic NO2 reduction deer09roberts.pdf...

  7. ISMS for Microsoft's Cloud Infrastructure 1 Information Security Management System

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    ISMS for Microsoft's Cloud Infrastructure 1 Information Security Management System for Microsoft's Cloud Infrastructure Online Services Security and Compliance Executive summary This paper describes the Microsoft Cloud Infrastructure and Operations (MCIO) Information Security Management System (ISMS) program

  8. Managing Aging Effects on Dry Cask Storage Systems for Extended...

    Office of Environmental Management (EM)

    Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0 Managing Aging Effects on Dry Cask Storage Systems for...

  9. Survey Report: Improving Integration of Program Management and Systems Engineering

    E-Print Network [OSTI]

    Conforto, Edivandro

    For many years, a cultural barrier has existed between practitioners of systems engineering and of program management.  Some systems engineers and program managers have developed the mindset that their work activities ar ...

  10. The rotary zone thermal cycler: A low-power system enabling automated...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Accepted Manuscript: The rotary zone thermal cycler: A low-power system enabling automated rapid PCR Title: The rotary zone thermal cycler: A low-power...

  11. Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The University of Connecticut, under the Thermal Storage FOA, is developing innovative heat transfer devices and methodologies for novel thermal energy storage (TES) systems for CSP involving phase change materials (PCMs).

  12. Project Profile: Indirect, Dual-Media, Phase Changing Material Modular Thermal Energy Storage System

    Broader source: Energy.gov [DOE]

    Acciona Solar, under the Thermal Storage FOA, plans to design and validate a prototype and demonstrate a full-size (800 MWth) thermal energy storage (TES) system based on phase change materials (PCMs).

  13. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  14. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  15. Comparison of experimental and analytical methods to evaluate thermal bridges in wall systems

    SciTech Connect (OSTI)

    Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Energy Div.; McGowan, A.G. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

    1997-03-01

    Twelve ASTM C0236 guarded hot box experiments have been performed on wall systems containing a variety of thermal bridges. All of the wall systems included steel framing. Six walls also had a concrete block wall system and a concrete slab to simulate a wall/floor intersection. Thermal bridges included in the wall systems included steel studs, steel tracks, steel stud/track joints, fasteners (steel framing system), concrete slab, metal bolts and angle iron, and brick ties (concrete block wall). Two-dimensional finite difference modeling was also employed to characterize the wall systems. The experimental test data was used to tune and ultimately validate the computer simulation model. The average variation between the tested and simulated wall system R-Values was 3.3% and ranged from {minus}3.4 to +7.4%. The model was then used to determine the thermal impact of each individual thermal bridge. Beside the standard complement of temperature sensors that are traditionally used for these laboratory experiments, additional sensors were installed near each thermal bridge to define the area and magnitude of the thermal distortion caused by the thermal bridge. These thermal bridges were analytically simulated and the additional heat flux due to each thermal bridge was computed. This paper summarizes the experimental and analytical analyses used to characterize the wall systems and concentrate on the thermal impact each type of thermal bridge has on the overall performance of the wall systems.

  16. Track 7: Environmental Protection, Environmental Management System (EMS), "Greening Initiatives"

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 7: Environmental Protection, Environmental Management System (EMS), "Greening Initiatives"

  17. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    SciTech Connect (OSTI)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  18. SEMI-THERM 21, SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGMENT SYMPOSIUM, SAN JOSE. MAR 15-17, 2005. 1 Thermal Contact Resistance: Effect of Elastic

    E-Print Network [OSTI]

    Bahrami, Majid

    in the microelectronics industry is low due to load constraints. In this paper a new model is presented which is moreSEMI-THERM 21, SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGMENT SYMPOSIUM, SAN JOSE. MAR 15-17, 2005 elastic modulus, Pa F = applied load, N Hmic = microhardness, Pa H = non-dimensional microhardness Hmic

  19. Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage

    E-Print Network [OSTI]

    Mammoli, Andrea

    2014-01-01

    of a solar-thermal- assisted hvac system. Energy andsolar thermal collectors using flat reflective surfaces. Solar Energy,of a solar-assisted HVAC system with thermal storage. Energy

  20. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  1. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  2. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect (OSTI)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  3. Environmental management system objectives & targets results summary :

    SciTech Connect (OSTI)

    Vetter, Douglas Walter

    2014-04-01

    Sandia National Laboratories/New Mexicos (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL/NM performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL/NMs operations on the environment. An annual summary of the results achieved towards meeting established Sandia Corporation and SNL/NM Site-specific objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY2013.

  4. V-125: Cisco Connected Grid Network Management System Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System 2.x ABSTRACT: Some vulnerabilities have been reported in Cisco Connected Grid Network Management System. REFERENCE LINKS: Cisco Security Notice CVE-2013-1163 Cisco...

  5. V-132: IBM Tivoli System Automation Application Manager Multiple...

    Broader source: Energy.gov (indexed) [DOE]

    IBM has acknowledged multiple vulnerabilities in IBM Tivoli System Automation Application Manager PLATFORM: The vulnerabilities are reported in IBM Tivoli System Automation...

  6. Business Manangement System(BMS), RL-2008/Project Hanford Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Manangement System(BMS), RL-2008Project Hanford Management Contract PHMC (Flour), Office of the Chief Information Officer Business Manangement System(BMS), RL-2008...

  7. Energy Management and Information Systems Study - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Information Systems Study - 2014 BTO Peer Review Energy Management and Information Systems Study - 2014 BTO Peer Review Presenter: Jessica Granderson, Lawrence Berkeley...

  8. Power and thermal constraints of modern system-on-a-chip computer Efraim Rotem*1

    E-Print Network [OSTI]

    Ginosar, Ran

    Power and thermal constraints of modern system-on-a-chip computer Efraim Rotem*1 , Ran Ginosar2 and UltrabookTM drive the power and thermal envelopes of computer systems further down. More focus is put computer systems cannot sustain all the system on a chip components operating at their highest power

  9. Investigations on Repository Near-Field Thermal Modeling - Repository Science/Thermal Load Management & Design Concepts (M41UF033302)

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Fratoni, M; Greenberg, H R; Ross, A D

    2011-07-15

    The various layers of material from the waste package (such as components of the engineered barrier system and the host rock surface) to a given distance within the rock wall at a given distance can be described as concentric circles with varying thermal properties (see Figure 5.1-1). The selected model approach examines the contributions of the waste package, axial waste package neighbors and lateral neighboring emplacement drifts (see Section 5.2.1 and Appendix H, Section 2). In clay and deep borehole media, the peak temperature is driven by the central waste package whereas, in granite and salt, the contribution to the temperature rise by adjacent (lateral) waste packages in drift or emplacement borehole lines is dominant at the time of the peak temperature. Mathematical models generated using Mathcad software provide insight into the effects of changing waste package spacing for six waste forms, namely UOX, MOX, co-extraction, new extraction, E-Chem ceramic and E-Chem metal in four different geologic media (granite, clay, salt and deep borehole). Each scenario includes thermal conductivity and diffusivity for each layer between the waste package and the host rock, dimensions of representative repository designs (such as waste package spacing, drift or emplacement borehole spacing, waste package dimensions and layer thickness), and decay heat curves generated from knowledge of the contents of a given waste form after 10, 50, 100 and 200 years of surface storage. Key results generated for each scenario include rock temperature at a given time calculated at a given radius from the central waste package (Section 5.2.1 and Appendix H, Section 3), the corresponding temperature at the interface of the waste package and EBS material, and at each EBS layer in between (Section 5.2.2 and Appendix H, Section 4). This information is vital to understand the implications of repository design (waste package capacity, surface storage time, waste package spacing, and emplacement drift or borehole spacing) by comparing the peak temperature to the thermal limits of the concentric layers surrounding the waste package; specifically 100 C for the bentonite buffer in granite and clay repositories, 100 C for rock wall in a clay repository and 200 C at the rock wall for a salt repository. These thermal limits are both preliminary and approximate, and serve as a means to evaluate design options rather than determining compliance for licensing situations. The thermal behavior of a salt repository is more difficult to model because it is not a concentric geometry and because the crushed salt backfill initially has a much higher thermal resistance than intact salt. Three models were investigated, namely a waste package in complete contact with crushed salt, secondly a waste package in contact with intact salt, and thirdly a waste package in contact with 75% intact and 25% crushed salt. The latter model best depicts emplacement of a waste package in the corner of an intact salt alcove and subsequently covered with crushed salt backfill to the angle of repose. The most conservative model (crushed salt) had temperatures much higher than the other models and although bounding, is too conservative to use. The most realistic model (75/25) had only a small temperature difference from the simplest (non-conservative, intact salt) model, and is the one chosen in this report (see Section 5.2.3). A trade-study investigating three key variables (surface storage time, waste package capacity and waste package spacing) is important to understand and design a repository. Waste package heat can be reduced by storing for longer periods prior to emplacement, or by reducing the number of assemblies or canisters within that waste package. Waste package spacing can be altered to optimize the thermal load without exceeding the thermal limits of the host rock or EBS components. By examining each of these variables, repository footprint (and therefore cost) can be optimized. For this report, the layout was fixed for each geologic medium based on prior published designs in

  10. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01

    of commercial energy management systems, IEEE Transactionsfor intelligent energy management systems of resi- dentialin an intelligent energy management system, three approaches

  11. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01

    also known as EMS (Energy Management Systems), BMS (Buildingfacility operator or energy management systems, often wastefor enterprise energy management systems that typically are

  12. ORISE: Performance Improvement Management System (PIMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE TheForensicPerformance Improvement Management System

  13. EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM

    E-Print Network [OSTI]

    of its ability to allow collector field, thermal storage, and power cycle to all work with the same fluid

  14. Towards Eco-friendly Database Management Systems

    E-Print Network [OSTI]

    Lang, Willis

    2009-01-01

    Database management systems (DBMSs) have largely ignored the task of managing the energy consumed during query processing. Both economical and environmental factors now require that DBMSs pay close attention to energy consumption. In this paper we approach this issue by considering energy consumption as a first-class performance goal for query processing in a DBMS. We present two concrete techniques that can be used by a DBMS to directly manage the energy consumption. Both techniques trade energy consumption for performance. The first technique, called PVC, leverages the ability of modern processors to execute at lower processor voltage and frequency. The second technique, called QED, uses query aggregation to leverage common components of queries in a workload. Using experiments run on a commercial DBMS and MySQL, we show that PVC can reduce the processor energy consumption by 49% of the original consumption while increasing the response time by only 3%. On MySQL, PVC can reduce energy consumption by 20% wit...

  15. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    Römisch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed hydro units. The variable ut i 2 f0;1g; i = 1;:::;I;t = 1;:::;T indicates whether the thermal unit i

  16. ME 413 Systems Dynamics & Control Chapter 7: Fluid Systems and Thermal Systems ChapterChapterChapterChapter 7777

    E-Print Network [OSTI]

    Al-Qahtani, Hussain M.

    & Control Chapter 7: Fluid Systems and Thermal Systems 2/9 laminar flow and is characterized by a smooth is compressible. 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS Steady State Flow Laminar Turbulent D Figure 7.1 (a) Velocity profile for laminar flow Flow dominated by viscosity forces is called Figure 7.1 (b

  17. An Object Management System for MultiUser Programming Environments

    E-Print Network [OSTI]

    of data management in multi­user systems. Two models are proposed here, both are based on the objectAn Object Management System for Multi­User Programming Environments Israel Z. Ben­Shaul Columbia April 1991 Abstract Multi­user design environments impose specific requirements on data management

  18. Data Management System for Surface Drifters Bob Keeley1

    E-Print Network [OSTI]

    Data Management System for Surface Drifters Bob Keeley1 , Mayra Pazos2 , Bruce Bradshaw1 1. Integrated Science Data Management, Department of Fisheries and Oceans, 200 Kent St., Ottawa, Canada, K1A 0E6. The data management systems to handle the data returned from these platforms started with FGGE and have

  19. Job Management Requirements for NAS Parallel Systems and Clusters

    E-Print Network [OSTI]

    Feitelson, Dror

    that are becoming increasingly important in the high performance computing industry. Newer job management systems in high perfor- mance computing for NASA. This paper focuses on job management require- ments for two1 Job Management Requirements for NAS Parallel Systems and Clusters William Saphir1, Leigh Ann

  20. A Classification Scheme for Radiant Systems based on Thermal TimeConstant

    E-Print Network [OSTI]

    Ning, Baisong; Schiavon, Stefano; Bauman, Fred S

    2015-01-01

    Design Manual, Embedded Systems for Commercial Applications.to 7.7 h. Embedded surface systems and thermally activatedbetween 30-91 s; for embedded surface systems between 0.25-

  1. The Landscape Manage-ment System (LMS) is a

    E-Print Network [OSTI]

    Brown, Sally

    to unanticipated and vexing natural resource manage- ment problems that impact rural communities is right down our technology to unanticipated and vexing natural resource management problems that impact rural communities) to test the applicability of LMS to DNR planning needs. Partly through this proc- ess, community leaders

  2. Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems

    E-Print Network [OSTI]

    1 LBNL-43724 Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems Walker, I., Sherman, M., and Siegel, J. Environmental Energy Technologies Division Energy

  3. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  4. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    low and mid temperature solar collectors," Journal of SolarSA Kalogirou, "Solar thermal collectors and applications,"analysis of the solar collector system is presented. Results

  5. Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage

    E-Print Network [OSTI]

    Mammoli, Andrea

    2014-01-01

    1980, but its thermal solar and storage systems received achiller. A 30 m heat storage tank solar decouples heatfacility with thermal storage and solar- assisted HVAC for

  6. Implementation and main results Ecient Management of HVAC Systems

    E-Print Network [OSTI]

    Schenato, Luca

    Motivation Implementation and main results Ecient Management of HVAC Systems Mirco Rampazzo Management of HVAC Systems #12;Motivation Implementation and main results Outline 1 Motivation HVAC Systems Multiple-chiller systems 2 Implementation and main results Models, Control and Optimization Examples Mirco

  7. Managing Uncertainty in Operational Control of Water Distribution Systems

    E-Print Network [OSTI]

    Bargiela, Andrzej

    Managing Uncertainty in Operational Control of Water Distribution Systems A. Bargiela Department Operation of water distribution systems requires a variety of decisions to be made. There are system. There are system management decisions concerning the regulatory measures such as water pricing principles, effluent

  8. Stand-Alone Battery Thermal Management System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2 SpecialSpent|Staffing

  9. Thermal Management of PHEV / EV Charging Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific Measures 5 U.S. C.of PHEV / EV

  10. Model for a web-based hospital technology management system 

    E-Print Network [OSTI]

    Srinivasan, Niranjana

    2002-01-01

    The objective of this project is to design a hospital technology management system that is web-based. Technology management may be defined as 'an accountable, systematic approach to ensure that cost-effective, efficacious, safe and appropriate...

  11. Design of a Computerized Energy Management System for Marine Applications 

    E-Print Network [OSTI]

    Russell, B. D.; Perry, L. W.; Gerloff, G. W.; Heller, R. P.; Pankonien, G.

    1982-01-01

    A computer-based energy management system for marine applications is presented. The problem of fuel-management for large diesel engines on board ship is discussed. The design of the computer hardware and software are presented including...

  12. Utility system integration and optimization models for nuclear power management

    E-Print Network [OSTI]

    Deaton, Paul Ferris

    1973-01-01

    A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model ...

  13. Capture Utility Savings Using Energy Management and Reporting Systems (EMRS) 

    E-Print Network [OSTI]

    Robinson, James E.

    2012-01-01

    Energy Management and Reporting Systems (EMRS) have proven effective in reducing powerhouse cost. These cost reductions are provided through effective management of equipment operation, fuel allocation, combustion optimization, and generation...

  14. Departmental Integrated Safety Management System (9-23-10)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-09-23

    This directive will convert and consolidate DOE M 450.4-1, Integrated Safety Management System Manual and DOE M 411.1-1C, Safety Management Functions, Responsibilities, and Authorities Manual into a single Order.

  15. Introduction Operations Management of Blood Banking Systems Blood Banking Systems Network Design Supply Chain Network

    E-Print Network [OSTI]

    Nagurney, Anna

    Introduction Operations Management of Blood Banking Systems Blood Banking Systems Network Design Supply Chain Network Operations Management and Design of A Sustainable Blood Banking System Amir Masoumi of Massachusetts Amherst #12;Introduction Operations Management of Blood Banking Systems Blood Banking Systems

  16. The Dark Energy Survey Data Management System

    E-Print Network [OSTI]

    Mohr, Joseph J; Beldica, Cristina; Bertin, Emmanuel; Cai, Y Dora; da Costa, Luiz; Darnell, J Anthony; Daues, Gregory E; Jarvis, Michael; Gower, Michelle; Lin, Huan; Martelli, leandro; Neilsen, Eric; Ngeow, Chow-Choong; Ogando, Ricardo; Parga, Alex; Sheldon, Erin; Tucker, Douglas; Kuropatkin, Nikolay; Stoughton, Chris

    2008-01-01

    The Dark Energy Survey collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at NCSA and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our appr...

  17. Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage

    E-Print Network [OSTI]

    Mammoli, Andrea

    2014-01-01

    performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

  18. The Dark Energy Survey Data Management System

    SciTech Connect (OSTI)

    Mohr, Joseph J.; Barkhouse, Wayne; Beldica, Cristina; Bertin, Emmanuel; Dora Cai, Y.; Nicolaci da Costa, Luiz A.; Darnell, J.Anthony; Daues, Gregory E.; Jarvis, Michael; Gower, Michelle; Lin, Huan; /Fermilab /Rio de Janeiro Observ.

    2008-07-01

    The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

  19. The Dark Energy Survey Data Management System

    E-Print Network [OSTI]

    Joseph J. Mohr; Wayne Barkhouse; Cristina Beldica; Emmanuel Bertin; Y. Dora Cai; Luiz da Costa; J. Anthony Darnell; Gregory E. Daues; Michael Jarvis; Michelle Gower; Huan Lin; leandro Martelli; Eric Neilsen; Chow-Choong Ngeow; Ricardo Ogando; Alex Parga; Erin Sheldon; Douglas Tucker; Nikolay Kuropatkin; Chris Stoughton

    2008-07-16

    The Dark Energy Survey collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at NCSA and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used Teragrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

  20. REGIONAL MANAGEMENT INFORMATION SYSTEM. REPORT ON SECOND YEAR ACTIVITIES 1975-76

    E-Print Network [OSTI]

    Postle, W.

    2010-01-01

    data base on commercially available data management systemsData Bases of the Employment & Training Administration Regional Management Information System

  1. LED lamp power management system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  2. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  3. Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Balmer, M. Lou (Pacific Northwest National Laboratory (PNNL)); Tonkyn, Russell (Battelle Pacific Northwest Laboratories (BPNL)); Maupin, Gary; Yoon, Steven; Kolwaite, Ana (PNNL); Barlow, Stephen (BPNL); Domingo, Norberto; Storey, John M. (Oak Ridge National Laboratory); Hoard, John Wm. (Ford Research Laboratory); Howden, Ken (U.S. Dept. of Energy)

    2000-04-01

    There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry. More recently, plasma/catalyst systems have been evaluated for NOx reduction and particulate removal on a CIDI engine. Performance results for select plasma-catalyst systems for both simulated and actual CIDI exhaust will be presented. The effect of NOx and hydrocarbon concentration on plasma-catalyst performance will also be shown. SAE Paper SAE-2000-01-1601 {copyright} 2000 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

  4. Application and Management of Commonality within NASA Systems

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Application and Management of Commonality within NASA Systems by Richard A. Rhodes B.S. Mechanical Students #12;2 #12;3 Application and Management of Commonality within NASA Systems by Richard A. Rhodes commonality, NASA has the opportunity to develop, produce, and operate systems more efficiently, thus reducing

  5. ECOSystem: Managing Energy as a First Class Operating System Resource

    E-Print Network [OSTI]

    Ellis, Carla

    ECOSystem: Managing Energy as a First Class Operating System Resource Ł Heng Zeng, Carla S. Ellis attention to managing energy as a first-class system resource and explicitly allocating it among competing.duke.edu Abstract Energy consumption has recently been widely recognized as a ma- jor challenge of computer systems

  6. Managing System of Systems Requirements with a Requirements Screening Group

    SciTech Connect (OSTI)

    Ronald R. Barden

    2012-07-01

    Figuring out an effective and efficient way to manage not only your Requirement’s Baseline, but also the development of all your individual requirements during a Program’s/Project’s Conceptual and Development Life Cycle Stages can be both daunting and difficult. This is especially so when you are dealing with a complex and large System of Systems (SoS) Program with potentially thousands and thousands of Top Level Requirements as well as an equal number of lower level System, Subsystem and Configuration Item requirements that need to be managed. This task is made even more overwhelming when you have to add in integration with multiple requirements’ development teams (e.g., Integrated Product Development Teams (IPTs)) and/or numerous System/Subsystem Design Teams. One solution for tackling this difficult activity on a recent large System of Systems Program was to develop and make use of a Requirements Screening Group (RSG). This group is essentially a Team made up of co-chairs from the various Stakeholders with an interest in the Program of record that are enabled and accountable for Requirements Development on the Program/Project. The RSG co-chairs, often with the help of individual support team, work together as a Program Board to monitor, make decisions on, and provide guidance on all Requirements Development activities during the Conceptual and Development Life Cycle Stages of a Program/Project. In addition, the RSG can establish and maintain the Requirements Baseline, monitor and enforce requirements traceability across the entire Program, and work with other elements of the Program/Project to ensure integration and coordination.

  7. Pressure drops for direct steam generation in line-focus solar thermal systems

    E-Print Network [OSTI]

    Pressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham) is increasingly the approach taken for new large-scale solar thermal energy projects. Compared to earlier systems the focus of the solar collector, and then generate steam outside the collector in a large heat exchanger

  8. Utility Systems Management and Operational Optimization 

    E-Print Network [OSTI]

    Dhole, V.; Seillier, D.; Garza, K.

    2002-01-01

    simultaneously within the context of an integrated utilities management objective. Aspen Utilities™ provides a single environment to optimize business processes relating to utilities management and substantially improves financial performance typically equivalent...

  9. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect (OSTI)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  10. Development of a thermal reclamation system for spent blasting abrasive

    SciTech Connect (OSTI)

    Bryan, B.B.; Mensinger, M.C.; Rehmat, A.G.

    1991-01-01

    Abrasive blasting is the most economical method for paint removal from large surface areas such as the hulls and tanks of oceangoing vessels. Tens of thousands of tons of spent abrasive are generated annually by blasting operations in private and US Navy shipyards. Some of this material is classified as hazardous waste, and nearly all of it is currently being either stockpiled or disposed in landfills. The rapid decline in available landfill space and corresponding rise in landfill tipping fees pose a severe problem for shipyard operators throughout the US. This paper discusses the results of a research and development program initiated by the Institute of Gas Technology and supported by the US Navy to develop and test a fluidized-bed thermal reclamation system for spent abrasive waste minimization. Bench- and pilot-scale reclaimer tests and reclaimed abrasive performance tests are described along with the current status of a program to build and test a 5-ton/hour prototype reclaimer at a US Navy shipyard.

  11. Effects of Home Energy Management Systems on Distribution Utilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Home Energy Management Systems on Distribution Utilities and Feeders under Various Market Structures Preprint Mark Ruth, Annabelle Pratt, Monte Lunacek, Saurabh Mittal,...

  12. Adding Links in Energy.gov Content Management System

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, to add a link in the Energy.gov Drupal content management system (CMS), follow these steps.

  13. Energy.gov Content Management System Block Types

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, learn about the variety of block types available in the Energy.gov Drupal content management system (CMS).

  14. Contributions of PDM Systems in Organizational Technical Data Management

    E-Print Network [OSTI]

    Ahmed, Zeeshan

    2010-01-01

    Product Data Management (PDM) claims of producing desktop and web based systems to maintain the organizational data to increase the quality of products by improving the process of development, business process flows, change management, product structure management, project tracking and resource planning. Moreover PDM helps in reducing the cost and effort required in engineering. This paper discusses PDM desktop and web based system, needed information and important guidelines for PDM system development, functional requirements, basic components in detail and some already implemented PDM Sys-tems. In the end paper investigates and briefly concludes major currently faced challenges to Product Data Management (PDM) community.

  15. Energy.gov Data Tables in Content Management System

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, follow these guidelines for creating Section 508-compliant data tables in the Energy.gov content management system.

  16. Cryptographic Trust Management System Design Document

    SciTech Connect (OSTI)

    Edgar, Thomas W.; Clements, Samuel L.; Hadley, Mark D.; Maiden, Wendy M.; Manz, David O.; Zabriskie, Sean J.

    2010-08-04

    Deliverable for DOE NSTB Cryptographic Trust Management project. Design document to follow the Requirements document submitted in Sept 2009.

  17. Rutgers Applied Probability Conference Department of Management Science & Information Systems

    E-Print Network [OSTI]

    2nd Rutgers Applied Probability Conference Department of Management Science & Information Systems and the Management Sciences, New Jersey Chapter Stochastic Methods in Information Technology December 6 in memory of Research and the Management Sciences, New Jersey Chapter Stochastic Methods in Information Technology Ben

  18. Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER 

    E-Print Network [OSTI]

    Naveed, A.T.; Lee, E. J.; Kang, E. C.

    2006-01-01

    The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

  19. A photogrammetric on-orbit inspection for orbiter thermal protection system 

    E-Print Network [OSTI]

    Gesting, Peter Paul

    2006-04-12

    Due to the Columbia Space Shuttle Accident of February 2003, the Columbia Accident Investigation Board determined the need for an on-orbit inspection system for the Thermal Protection System that accurately determines ...

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  1. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  2. Waste Information Management System-2012 - 12114

    SciTech Connect (OSTI)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)

  3. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. ); Todosow, M. )

    1992-09-22

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  4. Systems analysis techniques for annual cycle thermal energy storage solar systems

    SciTech Connect (OSTI)

    Baylin, F.; Sillman, S.

    1980-07-01

    Community-scale annual cycle thermal energy storage (ACTES) solar systems are promising options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is first examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented next. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently being used to examine the economic trade-off between collector field area and storage capacity. Finally, programs in the US Department of Energy directed toward developing either other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.

  5. Recommended Practice for Patch Management of Control Systems

    SciTech Connect (OSTI)

    Steven Tom; Dale Christiansen; Dan Berrett

    2008-12-01

    A key component in protecting a nation’s critical infrastructure and key resources is the security of control systems. The term industrial control system refers to supervisory control and data acquisition, process control, distributed control, and any other systems that control, monitor, and manage the nation’s critical infrastructure. Critical Infrastructure and Key Resources (CIKR) consists of electric power generators, transmission systems, transportation systems, dam and water systems, communication systems, chemical and petroleum systems, and other critical systems that cannot tolerate sudden interruptions in service. Simply stated, a control system gathers information and then performs a function based on its established parameters and the information it receives. The patch management of industrial control systems software used in CIKR is inconsistent at best and nonexistent at worst. Patches are important to resolve security vulnerabilities and functional issues. This report recommends patch management practices for consideration and deployment by industrial control systems owners.

  6. Defects, thermal phenomena and design in photonic crystal systems

    E-Print Network [OSTI]

    Chan, David Lik Chin

    2006-01-01

    The physics of blackbodies has been an ongoing source of fascination and scientific research for over a hundred years. Kirchhoff's law states that emissivity and absorptivity are equal for an object in thermal equilibrium. ...

  7. Optimal operational planning of cogeneration systems with thermal storage by the decomposition method

    SciTech Connect (OSTI)

    Yokoyama, R.; Ito, K.

    1995-12-01

    An optimal operational planning method is proposed for cogeneration systems with thermal storage. The daily operational strategy of constituent equipment is determined so as to minimize the daily operational cost subject to the energy demand requirement. This optimization problem is formulated as a large-scale mixed-integer linear programming one, and it is solved by means of the decomposition method. Effects of thermal storage on the operation of cogeneration systems are examined through a numerical study on a gas engine-driven cogeneration system installed in a hotel. This method is a useful tool for evaluating the economic and energy-saving properties of cogeneration systems with thermal storage.

  8. GEOGRAPHIC INFORMATION SYSTEMS CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS

    E-Print Network [OSTI]

    GEOGRAPHIC INFORMATION SYSTEMS CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS CEMML | 1490@cemml.colostate.edu | http://www.cemml.colostate.edu A Geographic Information System (GIS) is a necessary tool for effective

  9. Systems Engineering Integrating Project Management, Science, Engineering, and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations Systems Engineering Experience LASP is a full-cycle space research institute, combining all aspects of space exploration through our expertise in science, engineering, mission operations, data analysis

  10. Systems Engineering Integrating Project Management, Science, Engineering, and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations Systems Engineering Experience LASP is a full-cycle space institute, combining all aspects of space exploration through our expertise in science, engineering, mission operations, data analysis, and education

  11. Thermal control system and method for a passive solar storage wall

    DOE Patents [OSTI]

    Ortega, Joseph K. E. (Westminister, CO)

    1984-01-01

    The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  12. Plant perspective on electronic document management systems for process safety management programs

    SciTech Connect (OSTI)

    Mannan, M.; Lee, W.S. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    As mandated by the Clean Air Act Amendments of 1990, the Occupational Safety and Health Administration (OSHA) promulgated on February 24, 1992 the Process Management (PSM) rule: 29 CFR 1910.119. Compliance with the PSM requirements is causing a significant impact on both financial resources and manpower for the covered facilities. A major portion of the efforts have been concentrated on developing and compiling a vast amount of data in various formats (i.e., autocad, word processing, and numeric databases). Because of the need to access and revise these data on a continuous basis, many facilities have started to implement computer-based document management systems to store, manage, and maintain these data. This paper provides a plant perspective of the necessary features and characteristics of a computer-based document management system. An electronic document management system can also form the basis for a plant workflow system. Once, all the information related to a plant`s PSM program are inputted into the system, it is possible to control the plant workflow using the management of change system and maintenance work requests. Other key issues that must be included in a computer-based system are redlining capabilities, execution of management of change authorization, and interfacing with existing computer programs (many plants are already using different kinds of software for a variety of objectives). This paper provides a roadmap for the development and implementation of an electronic document management system.

  13. Mae A System Model and Environment for Managing Architectural Evolution

    E-Print Network [OSTI]

    Medvidovic, Nenad

    -3425 USA andre@ics.uci.edu ABSTRACT As with any other artifact produced as part of the software life cycle projects. Keywords Software architecture, configuration management, evolution, system model, design envi1 Mae ­ A System Model and Environment for Managing Architectural Evolution Roshanak Roshandel

  14. Sandia National Laboratories, California Environmental Management System program manual.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  15. Sandia National Laboratories, California Environmental Management System program manual

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  16. SNL/CA Environmental Management System Program Manual.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2005-09-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  17. Coding Hazardous Tree Failures for a Data Management System

    E-Print Network [OSTI]

    Standiford, Richard B.

    Terms: hazard trees; hazard reduction; recreation areas; urban forestry; safety standards; dataCoding Hazardous Tree Failures for a Data Management System Lee A. Paine PACIFIC SOUTHWEST hazardous tree failures for a data management system. Gen. Tech. Rep. PSW-29, 108 p., illus. Pacific

  18. Control-Based Quality Adaptation in Data Stream Management Systems

    E-Print Network [OSTI]

    Hefeeda, Mohammed

    in a traditional DBMS, the processing of continuous queries in a data stream management system (DSMS) needs elements. Processing of data streams brings great challenges to DBMS design for two major reasons. First Management Systems 747 very common in data stream applications. Unlike those in a traditional DBMS, queries

  19. Process for Managing and Customizing HPC Operating Systems

    SciTech Connect (OSTI)

    Brown, David ML

    2014-04-02

    A process for maintaining a custom HPC operating system was developed at the Environmental Molecular Sciences Laboratory (EMSL) over the past ten years. This process is generic and flexible to manage continuous change as well as keep systems updated while managing communication through well defined pieces of software.

  20. TOWARDS A DAMS SAFETY MANAGEMENT SYSTEM FOR Vitor Camilo*

    E-Print Network [OSTI]

    da Silva, Alberto Rodrigues

    1 TOWARDS A DAMS SAFETY MANAGEMENT SYSTEM FOR ANGOLA Vitor Camilo* , Alberto Rodrigues da Silva Angola e-mail: vitor.camilo@tecangol.com, webpage: www.tecangol.com Keywords: Dams, Dam Safety Management System, gestBarragens, Angola, Portugal Abstract. Dams have contributed to the human development and have

  1. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01

    N. et al. , (2007), “Microgrids, An Overview of OngoingSolar Thermal Systems in Microgrids with Combined Heat andSolar Thermal Systems in Microgrids with Combined Heat and

  2. The University of North Texas System Chapter 04 Fiscal Management System Administration Policies

    E-Print Network [OSTI]

    The University of North Texas System Chapter 04 ­ Fiscal Management System Administration Policies presentation of purchase order to Purchasing and Payment Services Department. A Foreign National Information

  3. The University of North Texas System Chapter 04 Fiscal Management System Administration Policies

    E-Print Network [OSTI]

    The University of North Texas System Chapter 04 ­ Fiscal Management System Administration Policies business. · This policy does not affect reimbursements related to travel, classroom academic activities

  4. Carnegie Mellon University 70-451 Management Information Systems: Spring 2012Carnegie Mellon University 70-451 Management Information Systems: Spring 2012 1Carnegie Mellon University 70-451 Management Information Systems: Spring 2012 1Carnegie Mellon Univ

    E-Print Network [OSTI]

    Gatterbauer, Wolfgang

    Carnegie Mellon University 70-451 Management Information Systems: Spring 2012Carnegie Mellon University 70-451 Management Information Systems: Spring 2012 1Carnegie Mellon University 70-451 Management Information Systems: Spring 2012 1Carnegie Mellon University 70-451 Management Information Systems: Spring

  5. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOE Patents [OSTI]

    Kee, Robert J. (864 Lucille St., Livermore, CA 94550); Ting, Aili (7329 Stonedale Dr., Pleasanton, CA 94558)

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  6. Cost Optimal Operation of Thermal Energy Storage System with Real-Time Prices

    E-Print Network [OSTI]

    ) problem where future thermal demand and electricity prices are predicted. The proposed method uses show that significant cost reduction can be obtained. I. INTRODUCTION Cutting peak electricity demand for the next day is defined taking account of thermal demand for the TES system and electricity prices

  7. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System 

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  8. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Cui, Yi

    Charging-free electrochemical system for harvesting low-grade thermal energy Yuan Yanga,1 , Seok processes, environment, solar-thermal, and geothermal en- ergy (1­3). It is generally difficult to convert Cuib,d,3 , and Gang Chena,3 a Department of Mechanical Engineering, Massachusetts Institute

  9. Descriptive analysis of aquifer thermal energy storage systems

    SciTech Connect (OSTI)

    Reilly, R.W.

    1980-06-01

    The technical and economic feasibility of large-scale aquifer thermal energy storage (ATES) was examined. A key to ATESs attractiveness is its simplicity of design and construction. The storage device consists of two ordinary water wells drilled into an aquifer, connected at the surface by piping and a heat exchanger. During the storage cycle water is pumped out of the aquifer, through the heat exchanger to absorb thermal energy, and then back down into the aquifer through the second well. The thermal storage remains in the aquifer storage bubble until required for use, when it is recovered by reversing the storage operation. For many applications the installation can probably be designed and constructed using existing site-specific information and modern well-drilling techniques. The potential for cost-effective implementation of ATES was investigated in the Twin Cities District Heating-Cogeneration Study in Minnesota. In the study, ATES demonstrated a net energy saving of 32% over the nonstorage scenario, with an annual energy cost saving of $31 million. Discounting these savings over the life of the project, the authors found that the break-even capital cost for ATES construction was $76/kW thermal, far above the estimated ATES development cost of $23 to 50/kW thermal. It appears tht ATES can be highly cost effective as well as achieve substantial fuel savings. ATES would be environmentally beneficial and could be used in many parts of the USA. The existing body of information on ATES indicates that it is a cost-effective, fuel-conserving technique for providing thermal energy for residential, commercial, and industrial users. The negative aspects are minor and highly site-specific, and do not seem to pose a threat to widespread commercialization. With a suitable institutional framework, ATES promises to supply a substantial portion of the nation's future energy needs. (LCL)

  10. Trends Affecting Building Control System Development: Trends in Energy Management Technology

    E-Print Network [OSTI]

    Collins, Ted; Parker, Steven A.; Webster, Tom

    2002-01-01

    technologies on energy management systems and products. Therelative to energy management systems design, specification,and Control System Energy Management System F E D E R A L E

  11. Energy Storage R&D: Thermal Management Studies and Modeling (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2009-05-01

    Here we summarize NREL's FY09 energy storage R&D studies in the areas of 1. thermal characterization and analysis, 2. cost, life, and performance trade-off studies, and 3. thermal abuse modeling.

  12. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  13. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet), Thermal Systems Group: CSP Capabilities (TSG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer CoatingThermophysical

  14. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  15. Design, implementation, and benchmarking of a file manager for a relational database management system on a raw UNIX disk 

    E-Print Network [OSTI]

    Narayanan, Pudugramam Shanker

    1994-01-01

    The file management component of a database management system (DBMS) has to be tailor designed to meet the performance demands of large database applications. The operating system (OS) file systems are typically not suitable for storing...

  16. Standard information system for construction management 

    E-Print Network [OSTI]

    Sultanbekov, Kanat A

    2000-01-01

    , data communication and integration between different organizations still remains a "gray" area in construction management. There are several means of communication used in the industry: mail, phone, fax and information technology. Yet, only...

  17. Trends Affecting Building Control System Development: Trends in Energy Management Technology

    E-Print Network [OSTI]

    Collins, Ted; Parker, Steven A.; Webster, Tom

    2002-01-01

    Peak Demand with Energy Management Control Systems. ” WCDSR-of Energy’s Federal Energy Management Program (FEMP) isBCS) Development Trends in energy management technology

  18. Optimal operation and design of solar-thermal energy storage systems

    E-Print Network [OSTI]

    Lizarraga-García, Enrique

    2012-01-01

    The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

  19. Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation 

    E-Print Network [OSTI]

    Cho, S.; Haberl, J.

    2010-01-01

    This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which ...

  20. Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies

    E-Print Network [OSTI]

    Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

    2009-01-01

    To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

  1. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Yang, Yuan

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the ...

  2. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems 

    E-Print Network [OSTI]

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01

    , encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

  3. Study on Commissioning Process for Control Logic of Thermal Storage System 

    E-Print Network [OSTI]

    Shioya, M.; Tsubaki, M.; Nakahara, N.

    2004-01-01

    and measurements of the control output, the CLT can detect faults relating to operation. The present paper reports the result of commissioning of a heat exchanger secondary control in a thermal storage system in an actual building using the CLT....

  4. Thermal design of humidification dehumidification systems for affordable and small-scale desalination

    E-Print Network [OSTI]

    Govindan, Prakash Narayan

    2012-01-01

    The humidification dehumidification (HDH) technology is a carrier-gas-based thermal desalination technique ideal for application in a small-scale system but, currently, has a high cost of water production (about 30 $/mł ...

  5. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems...

    Office of Scientific and Technical Information (OSTI)

    Hot Spots in Thermal Process Off-Gas Systems Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and...

  6. Irrigation System Management for Better Water Usage Howard Neibling, Extension Water Management Engineer

    E-Print Network [OSTI]

    O'Laughlin, Jay

    Irrigation System Management for Better Water Usage Howard Neibling, Extension Water Management · Check pump discharge pressure. If too low, adjust or repair the pump. If additional lines have been added, the pump may need to be re-sized. · Clean pump intake on surface water supplies · Crop root zones

  7. The Certification Information System: Managing Chain-of-Custody

    E-Print Network [OSTI]

    Inbound Materials Logistics Operations End-to-End Coordination CIS Based Logistics Management #12;CISThe Certification Information System: Managing Chain-of-Custody Lucie K. Ozanne, Ph.D. Senior quality (quality assurance and production) and the logistical precision required to meet the needs

  8. US-75 INTEGRATED CORRIDOR MANAGEMENT: DECISION SUPPORT SYSTEM

    E-Print Network [OSTI]

    US-75 INTEGRATED CORRIDOR MANAGEMENT: DECISION SUPPORT SYSTEM STAGE 3 The Integrated Corridor Management (ICM) Project fun- damentally changes how transportation agencies in the US-75 corridor reliability for commuters, and less pollution in local communities caused by idling vehicles in congested

  9. A Smart Energy System: Distributed Resource Management, Control and Optimization

    E-Print Network [OSTI]

    Beigl, Michael

    A Smart Energy System: Distributed Resource Management, Control and Optimization Yong Ding, Student of distributed energy resource and consumption management, which proposes to design a networked and embedded platform for realizing a dynamic energy mix and optimizing the energy consumption dy- namically. Based

  10. Proposed platform for improving grid security by trust management system

    E-Print Network [OSTI]

    Siadat, Safieh; Mohsenzadeh, Mehran

    2009-01-01

    With increasing the applications of grid system, the risk in security field is enhancing too. Recently Trust management system has been recognized as a noticeable approach in enhancing of security in grid systems. In this article due to improve the grid security a new trust management system with two levels is proposed. The benefits of this platform are adding new domain in grid system, selecting one service provider which has closest adaption with user requests and using from domains security attribute as an important factor in computing the trust value.

  11. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¢�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  12. A 40KW ROOF MOUNTED PV THERMAL CONCENTRATOR SYSTEM J.F.H. Smeltink1

    E-Print Network [OSTI]

    thermal (PV-T) concentrator system. This system is based on its Combined Heat and Power Solar (CHAPS called Combined Heat and Power Solar (CHAPS) Systems. During 2002 the Australian Greenhouse Office made of 37x. Heat is removed from the solar cells using a fluid, which flows through a passage in the cell

  13. A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS

    E-Print Network [OSTI]

    conditioning (HVAC), and process heat. The system can be modularly configured for hybrid concentrating PVA 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter of America ABSTRACT A unique, linear, low-concentration, hybrid `micro- concentrator' (MCT) system concept

  14. Study of participant-spectator matter and thermalization in isospin asymmetric systems

    E-Print Network [OSTI]

    Sakshi Gautam; Rajeev K. Puri

    2011-07-28

    We study the behavior of participant and spectator matter and thermalization in neutron rich systems at the energy of vanishing flow. Our study indicates that participant-spectator matter follows a similar behavior for neutron-rich systems and for systems lie on the stability line.

  15. Commercial thermal distribution systems, Final report for CIEE/CEC

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01

    System L3 ducts upstream and downstream of VAVboxes. Similarof System L4 ducts upstream and downstream of VAVboxes.monitored pressures upstream and downstream of mixing boxes

  16. Distrbuted Sensing Systems for Water Quality Assesment and Management

    E-Print Network [OSTI]

    2007-01-01

    system require service? Has a sewer reached capacity duringManagement of Combined Sewer Overflows 1. Sensors andQuality 4.4 Combined Sewer Overflows 5. Recommendations for

  17. Probabilistic Risk Assessment for dairy waste management systems 

    E-Print Network [OSTI]

    Leigh, Edward Marshall

    1993-01-01

    Probabilistic Risk Assessment (PRA) techniques were used to evaluate the risk of contamination of surface and ground water with wastewater from an open lot dairy in Erath County, Texas. The dairy supported a complex waste management system...

  18. Power management circuits for ultra-low power systems

    E-Print Network [OSTI]

    El-Damak, Dina Reda

    2015-01-01

    Power management circuits perform a wide range of vital tasks for electronic systems including DC-DC conversion, energy harvesting, battery charging and protection as well as dynamic voltage scaling. The impact of the ...

  19. NTC Launches New eLearning Management System | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    eLearning courses available to students for free on our Learning Management System (LMS). Here is a complete list of all new highly interactive courses debuting in 2013,...

  20. Buildings and corporate strategy : towards a management system model

    E-Print Network [OSTI]

    Brana, Rodrigo

    1985-01-01

    This thesis focuses on buildings as a subject of attention and inquiry in a corporate setting. It attempts to draw implications for the design of a management system to deal with the special nature of buildings as a resource. ...

  1. Major: Ecological Systems Design, Air Quality Control and Waste Management

    E-Print Network [OSTI]

    Giger, Christine

    Laboratory: Computer exercises (Pfister) · Regionalized environmental assessment of global power plants of Warsaw, Poland · Environmental Impact of Virtual Meetings including Rebound Effects · Carbon Footprint · Evaluation of future designs of treatment and recycling plants and waste management systems Skills after

  2. Quality Management Systems for Zero Energy Ready Home Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    quality management system? And again, I'm not going to spend all the time here. It takes multi-day training from ISO 9001 to go into all of it. But there are some of the key parts...

  3. proactive energy management for next-generation building systems

    E-Print Network [OSTI]

    Victor M Zavala

    2010-03-03

    Mar 3, 2010 ... PROACTIVE ENERGY MANAGEMENT FOR NEXT-GENERATION BUILDING SYSTEMS ... and an accurate prediction of the daily electricity demand profile. ... of weather conditions, fuel prices, heat gains, and utility demands.

  4. Demand Control Utilizing Energy Management Systems - Report of Field Tests 

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  5. Case Study of Two Alternative Energy Management Systems 

    E-Print Network [OSTI]

    Wagner, J. R.

    1983-01-01

    Energy Management systems (EMS) have become increasingly popular for reducing energy consumption at commercial and industrial facilities. This paper documents the installation of his equipment in two buildings, one using dedicated wire and the other...

  6. The Bureau of Land Management's Well Information System (WIS...

    Open Energy Info (EERE)

    Bureau of Land Management's Well Information System (WIS) How-To Guide Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  7. A system engineering approach to improving vehicle NVH attribute management

    E-Print Network [OSTI]

    Sacka, Michelle Lorraine

    2008-01-01

    This research is comprised of a detailed study of attribute management processes at a North American Automotive OEM (NA OEM) that has just introduced a new product development system intended to drastically reduce product ...

  8. Portfolio Analysis and Management System (PAMS) External User Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    Portfolio Analysis and Management System (PAMS) External User Guide, Version 11.0, September 2013. Prepared for: U.S. Department of Energy Office of Science Office of Business Policy and Operations.

  9. Health Assessment Requirements Candidate Waiver Request Health Assessment Management System

    E-Print Network [OSTI]

    Sin, Peter

    Health Assessment Requirements Candidate Waiver Request Health Assessment Management System Please: To Position #: Position Title: Environmental Health & Safety Use Only Reviewer Name: ___________________ Effective Date: _______________ Comments: Revised: May 14, 2012 #12;Health Assessment Requirements Candidate

  10. ECOSystem: Managing Energy as a First Class Operating System Resource

    E-Print Network [OSTI]

    Vahdat, Amin

    ECOSystem: Managing Energy as a First Class Operating System Resource Ł Heng Zeng, Carla S. Ellis design. This paper explores how to support energy as a first-class operating system resource. En- ergy the limited energy resource among competing tasks. 1. INTRODUCTION Traditionally, the operating system plays

  11. Operating System Management of MEMS-based Storage Devices

    E-Print Network [OSTI]

    : Microelectromechanical systems (MEMS), operating systems, secondary storage, request schedul- ing, data placement, faultOperating System Management of MEMS-based Storage Devices John Linwood GriĂ?n, Steven W. Schlosser University Pittsburgh, PA 15213 Abstract MEMS-based storage devices promise signi#12;cant performance

  12. Design and Power Management of Energy Harvesting Embedded Systems

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Design and Power Management of Energy Harvesting Embedded Systems Vijay Raghunathan NEC Labs, biomedical implants, etc. While energy harvesting has the potential to enable near-perpetual system operation, designing an efficient energy harvesting system that actually realizes this potential requires an in

  13. Generating and Managing Metadata for Web-Based Information Systems

    E-Print Network [OSTI]

    van Harmelen, Frank

    Generating and Managing Metadata for Web-Based Information Systems Heiner Stuckenschmidt and Frank, aggregate and visualize the metadata of an existing information system. We conclude that the possibility by potential users. In this paper we describe a system for the validation of semi-structured information

  14. POEM: Power-efficient Occupancy-based Energy Management System

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    is electrical energy [1]. Of this total, 50% of the energy consumed in buildings is used for heating, air-conditioningPOEM: Power-efficient Occupancy-based Energy Management System Varick L. Erickson Elect. Eng for Heating Ventilation and Air-Conditioning (HVAC) systems. Current HVAC systems only condition based

  15. Sensitivity Based Power Management of Enterprise Storage Systems Sriram Sankar

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    Sensitivity Based Power Management of Enterprise Storage Systems Sriram Sankar Sudhanva Gurumurthi today. Storage systems constitute a significant fraction of the energy consumed in a data center and therefore enter- prise storage systems need to deliver high performance in an energy-efficient manner

  16. SNL/CA Environmental Management System Program Manual.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  17. Coupled Thermal and Water Management in Polymer-Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, Adam Z.; Newman, John

    2006-01-01

    electrolyte fuel-cell (PEFC) behavior. What is sometimeshave various pros and cons on PEFC behavior, which must beideally suited to analyzing PEFC thermal and water behavior.

  18. Adsorption at the nanoparticle interface for increased thermal capacity in solar thermal systems

    E-Print Network [OSTI]

    Thoms, Matthew W

    2012-01-01

    In concentrated solar power (CSP) systems, high temperature heat transfer fluids (HTFs) are responsible for collecting energy from the sun at the solar receiver and transporting it to the turbine where steam is produced ...

  19. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  20. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect (OSTI)

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.