National Library of Energy BETA

Sample records for thermal ionization mass

  1. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Patents [OSTI]

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  2. Standard test method for uranium and plutonium concentrations and isotopic abundances by thermal ionization mass spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of the concentration and isotopic composition of uranium and plutonium in solutions. The purified uranium or plutonium from samples ranging from nuclear materials to environmental or bioassay matrices is loaded onto a mass spectrometric filament. The isotopic ratio is determined by thermal ionization mass spectrometry, the concentration is determined by isotope dilution. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Thermal mass loss of protoplanetary cores with hydrogen-dominated atmospheres: The influences of ionization and orbital distance

    E-Print Network [OSTI]

    Erkaev, N V; Odert, P; Kislyakova, K G; Johnstone, C P; Güdel, M; Khodachenko, M L

    2016-01-01

    We investigate the loss rates of the hydrogen atmospheres of terrestrial planets with a range of masses and orbital distances by assuming a 100 times stronger soft X-ray and extreme ultraviolet (XUV) flux. We apply a 1D upper atmosphere radiation absorption and hydrodynamic escape model that takes into account ionization, dissociation and recombination to calculate hydrogen mass loss rates. We study the effect of the ionization, dissociation and recombination on the thermal mass loss rates of hydrogen-dominated super-Earths and compare the results with those obtained by the energy-limited escape formula which is widely used for mass loss evolution studies. Our results indicate that the energy-limited formula can to a great extent over- or underestimate the hydrogen mass loss rates by amounts that depend on the stellar XUV flux and planetary parameters such as mass, size, effective temperature, and XUV absorption radii.

  4. Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  5. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    SciTech Connect (OSTI)

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.; White, Byron M.

    2015-05-01

    135Cs/137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide variety of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2?) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/137Cs ratio measurements currently reported for soil samples at the femtogram level.

  6. Improvement in Thermal-Ionization Mass Spectrometry (TIMS) using Total Flash Evaporation (TFE) method for lanthanides isotope ratio measurements in transmutation targets

    SciTech Connect (OSTI)

    Mialle, S.; Gourgiotis, A.; Aubert, M.; Stadelmann, G.; Gautier, C.; Isnard, H.

    2011-07-01

    The experiments involved in the PHENIX french nuclear reactor to obtain precise and accurate data on the total capture cross sections of the heavy isotopes and fission products require isotopic ratios measurements with uncertainty of a few per mil. These accurate isotopic ratio measurements are performed with mass spectrometer equipped with multi-collector system. The major difficulty for the analyses of these actinides and fission products is the low quantity of the initial powder enclosed in steel container (3 to 5 mg) and the very low quantities of products formed (several {mu}g) after irradiation. Specific analytical developments are performed by Thermal Ionization Mass Spectrometry (TIMS) to be able to analyse several nanograms of elements with this technique. A specific method of acquisition named Total Flash Evaporation was adapted in this study in the case of lanthanide measurements for quantity deposited on the filament in the order of 2 ng and applied on irradiated fuel. To validate the analytical approach and discuss about the accuracy of the data, the isotopic ratios obtained by TIMS are compared with other mass spectrometric techniques such as Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). (authors)

  7. Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios. 1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes. 1.3 The tot...

  8. Standard test method for isotopic analysis of hydrolyzed uranium hexafluoride and uranyl nitrate solutions by thermal ionization mass spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This method applies to the determination of isotopic composition in hydrolyzed nuclear grade uranium hexafluoride. It covers isotopic abundance of 235U between 0.1 and 5.0 % mass fraction, abundance of 234U between 0.0055 and 0.05 % mass fraction, and abundance of 236U between 0.0003 and 0.5 % mass fraction. This test method may be applicable to other isotopic abundance providing that corresponding standards are available. 1.2 This test method can apply to uranyl nitrate solutions. This can be achieved either by transforming the uranyl nitrate solution to a uranyl fluoride solution prior to the deposition on the filaments or directly by depositing the uranyl nitrate solution on the filaments. In the latter case, a calibration with uranyl nitrate standards must be performed. 1.3 This test method can also apply to other nuclear grade matrices (for example, uranium oxides) by providing a chemical transformation to uranyl fluoride or uranyl nitrate solution. 1.4 This standard does not purport to address al...

  9. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    E-Print Network [OSTI]

    Koh, Christine J.

    2013-01-01

    thermal energy from evaporation and the energy imparted by the ionization process.energy imparted into the isolated ion pair upon thermal vaporization and minimizes reactive processes.

  10. Thermal Ionization Jurg Frohlich and Marco Merkli yz

    E-Print Network [OSTI]

    Thermal Ionization Jurg Frohlich #3; and Marco Merkli yz Theoretical Physics ETH- Honggerberg CH is in a thermal state corresponding to a suÃ?ciently high positive temperature, and under suitable conditions is called thermal ionization. Thus, a very dilute gas of atoms or molecules in intergalactic space

  11. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOE Patents [OSTI]

    Felter, Thomas E. (Livermore, CA)

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  12. Laser desorption lamp ionization source for ion trap mass spectrometry

    E-Print Network [OSTI]

    Zare, Richard N.

    Laser desorption lamp ionization source for ion trap mass spectrometry Qinghao Wu and Richard N. Zare* A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm

  13. Electron Ionization Mass Spectrum of Tellurium Hexafluoride

    SciTech Connect (OSTI)

    Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.

    2015-05-18

    The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.

  14. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  15. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  16. Method for analyzing the mass of a sample using a cold cathode ionization source mass filter

    DOE Patents [OSTI]

    Felter, Thomas E.

    2003-10-14

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  17. Residential Thermal Mass Construction 

    E-Print Network [OSTI]

    Thieken, J. S.

    1988-01-01

    The southwest has long known the value of building homes with high mass materials. The ancient Pueblo Indians found that by using "adobe" they could capture the energy necessary to survive the harsh desert climate. Our ancestors knew that a heavy...

  18. LOW IONIZATION STATE PLASMA IN CORONAL MASS EJECTIONS

    SciTech Connect (OSTI)

    Lee, Jin-Yi [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2012-10-20

    The Ultraviolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory often observes low ionization state coronal mass ejection (CME) plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI (3 Multiplication-Sign 10{sup 5} K), C III (8 Multiplication-Sign 10{sup 4} K), Ly{alpha}, and Ly{beta}, with the low ionization plasma confined to bright filaments or blobs that appear in small segments of the UVCS slit. On the other hand, in situ observations by the Solar Wind Ion Composition Spectrometer on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in the magnetic clouds in interplanetary coronal mass ejection (ICME) events, while low ionization states are rarely seen. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME to be consistent with the small fraction of ACE ICMEs that show low ionization plasma, or whether the CME plasma must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show average covering factors below 10%. This indicates that the lack of low ionization state ICME plasmas observed by the ACE results from a small probability that the spacecraft passes through a region of low ionization plasma. We also find that the low ionization state plasma covering factors in faster CMEs are smaller than in slower CMEs.

  19. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  20. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of methylcyclohexane in the supersonic jet

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of methylcyclohexane t Vacuum ultraviolet (VUV) mass-analyzed threshold ionization (MATI) spectrum of supersonically cooled the vacuum ultraviolet (VUV) laser source is particu- larly useful for molecular systems with no stable

  1. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of p-, m-, and o-difluorobenzenes. Ionization energies

    E-Print Network [OSTI]

    Kim, Myung Soo

    Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of p-, m-, and o been measured by vacuum ultraviolet mass-analyzed threshold ionization VUV-MATI spectroscopy. From use of monochromatic and tunable vacuum ultraviolet radia- tion which is not routinely available

  2. Vacuum-ultraviolet mass-analyzed threshold ionization spectra of iodobutane isomers: Conformer-specific ionization and ion-core

    E-Print Network [OSTI]

    Kim, Myung Soo

    Vacuum-ultraviolet mass-analyzed threshold ionization spectra of iodobutane isomers: Conformer-analyzed threshold ionization MATI spectra using coherent vacuum ultraviolet radiation have been obtained for t-photon MATI spectroscopy using a vacuum-ultraviolet VUV laser source generated by four-wave mixing in Kr gas.8

  3. CNT-based MEMS/NEMS gas ionizers for portable mass spectrometry applications

    E-Print Network [OSTI]

    Velasquez-Heller, Luis Fernand

    We report the fabrication and experimental characterization of a carbon nanotube (CNT)-based MEMS/NEMS electron impact gas ionizer with an integrated extractor gate for portable mass spectrometry. The ionizer achieves ...

  4. Laser Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects

    E-Print Network [OSTI]

    Zare, Richard N.

    Laser Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity and flow assurance. Laser desorption single-photon ionization mass spectrometry (LDSPI-MS) has emerged, such as their molecular mass distribution and dominant molecular architecture.1,6-11 Laser mass spectrometry, including

  5. Thermal transition temperature from twisted mass QCD

    E-Print Network [OSTI]

    Florian Burger; Ernst-Michael Ilgenfritz; Malik Kirchner; Maria Paola Lombardo; Michael Müller-Preussker; Owe Philipsen; Carsten Urbach; Lars Zeidlewicz

    2010-09-20

    We present the current status of lattice simulations with N_f=2 maximally twisted mass Wilson fermions at finite temperature. In particular, the determination of the thermal transition temperature is discussed.

  6. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, In vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

    2011-11-29

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation (LA) with electrospray ionization (ESI).

  7. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2012-10-30

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  8. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  9. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  10. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    SciTech Connect (OSTI)

    Vertes, Akos; Nemes, Peter

    2014-08-19

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  11. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

    2011-06-21

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  12. Mass spectral characterization of oxygen-containing aromatics with methanol chemical ionization

    SciTech Connect (OSTI)

    Buchanan, M.V.

    1984-03-01

    Chemical ionization mass spectrometry with methanol and deuterated methanol as ionization reagents is used to differentiate oxygen-containing aromatics, including phenols, aromatic ethers, and aromatic substituted alcohols, as well as compounds containing more than one oxygen atom. The analogous sulfur-containing aromatics may be similarly differentiated. Methanol chemical ionization is used to characterize a neutral aromatic polar subfraction of a coal-derived liquid by combined gas chromatography/mass spectrometry. 16 references, 2 tables, 1 figure.

  13. ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

    SciTech Connect (OSTI)

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin; Wunschel, David S.

    2014-02-02

    ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

  14. Toward Single-Cell Analysis by Plume Collimation in Laser Ablation Electrospray Ionization Mass Spectrometry

    E-Print Network [OSTI]

    Vertes, Akos

    is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of 13-cell level.4 New cell isolation methods, such as laser capture microdissection, are being developed

  15. MASS SPECTROMETRY | Ionization Methods Overview DJ Harvey, University of Oxford, Oxford, UK

    E-Print Network [OSTI]

    FD Field desorption FI Field ionization GC/MS Gas chromatography/mass spectrometry HPLC High/ionization SEND Surface-enhanced neat desorption SEPAR Surface-enhanced photolabile attachment and release SIMS and involatile molecules, desorption techniques using high electric fields or bombardment with fission fragments

  16. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  17. Mass Loss Rates, Ionization Fractions, Shock Velocities and Magnetic Fields of Stellar Jets

    E-Print Network [OSTI]

    Hartigan, Patrick

    Mass Loss Rates, Ionization Fractions, Shock Velocities and Magnetic Fields of Stellar Jets Patrick the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows

  18. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect (OSTI)

    Isselhardt, B H

    2011-09-06

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  19. A study of the tropospheric oxidation of volatile organic compounds using chemical ionization mass spectrometry

    E-Print Network [OSTI]

    Broekhuizen, Keith Edward, 1974-

    2002-01-01

    The mechanisms and kinetics of reactions important to the troposphere have been investigated using a high pressure, turbulent, discharge-flow technique coupled to a chemical ionization mass spectrometer. The ability to ...

  20. The effect of solvent on matrix-assisted laser desorption ionization mass spectrometry 

    E-Print Network [OSTI]

    Campo, Karen Kay

    1996-01-01

    Since its introduction in 1988, matrix-assisted laser desorption/ionization mass spectrometry (MALDI) has developed into a useful analytical tool in the biological field. The work presented here focuses on the effect of solvent on MALDI ion yields...

  1. A postsource decay study of bradykinin by Matrix-assisted laser desorption ionization mass spectrometry 

    E-Print Network [OSTI]

    Wei, Xiaona

    1996-01-01

    Matrix-assisted laser desorption/ionization (MALDI) with time-of-flight (TOF) mass spectrometry is a very powerful technique for the analysis of peptides and proteins. Fragmentation reactions of the protonated analyte molecule, [M+H]+ ions...

  2. CNT-based gas ionizers with integrated MEMS gate for portable mass spectrometry applications

    E-Print Network [OSTI]

    Velasquez-Garcia, Luis Fernando

    We report the fabrication and experimental characterization of a novel low-cost carbon nanotube (CNT)-based electron impact ionizer (EII) with integrated gate for portable mass spectrometry applications. The device achieves ...

  3. Heating and Ionization of the Primordial Intergalactic Medium by High Mass X-ray Binaries

    E-Print Network [OSTI]

    Knevitt, Gillian; Power, Chris; Bolton, James

    2014-01-01

    We investigate the influence of High Mass X-ray Binaries on their high redshift environments. Using a one-dimensional radiative transfer code, we predict the ionization and temperature profiles surrounding a coeval stellar population, composed of main sequence stars and HMXBs, at various times after its formation. We consider both uniform density surroundings, and a cluster embedded in a 10^8 solar mass NFW halo. HMXBs in a constant density environment produce negligible enhanced ionization because of their high-energy SEDs and short lifetimes. In this case, HMXBs only marginally contribute to the local heating rate. For NFW profiles, radiation from main sequence stars cannot prevent the initially ionized volume from recombining since it is unable to penetrate the high density galactic core. However, HMXB photons stall recombinations behind the front, keeping it partially ionized for longer. The increased electron density in these partially ionized regions promotes further cooling, resulting in lower IGM temp...

  4. Minimally invasive monitoring of cellulose degradation by desorption electrospray ionization and laser ablation electrospray ionization mass

    E-Print Network [OSTI]

    Vertes, Akos

    Minimally invasive monitoring of cellulose degradation by desorption electrospray ionization cellulose degradation products produced by accelerated aging in unsized cotton paper. Soluble extracts from and degradation rate of cellulose in aging paper has been of great concern in applications where the long term

  5. One-Photon Mass-Analyzed Threshold Ionization Spectroscopy of trans-and cis-1-C3H5Br: Ionization Energies and Vibrational Assignments for the Cations

    E-Print Network [OSTI]

    Kim, Myung Soo

    two-photon 1 + 1 scheme5 and ionized by pulsed electric field (pulsed field ionization, PFI is recorded that is virtually the vibration-rotation spectrum of the corresponding cation. Mass to spectral interpretation even though the irregularly spaced torsional overtones have not been observed

  6. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-08-25

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore »a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  7. Thermal Equilibrium in Nebulae1 For an ionized nebula under steady conditions, heating and cooling processes that in

    E-Print Network [OSTI]

    Boettcher, Markus

    processes that in isolation would change the thermal energy content of the gas are in balance to as a "photoelectron"). This kinetic energy represents an addition to the thermal energy of the gas bookkeeping for ionization. II. Cooling. Cooling occurs when thermal energy in the gas particles is converted

  8. Matrixassisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers

    E-Print Network [OSTI]

    Yang, Jian

    photoluminescent polymers using new ionic liquid matrices Carlos A. Serrano1 , Yi Zhang2 , Jian Yang2 and Kevin A elucidation of recently developed aliphatic biodegradable polymers by matrixassisted laser desorption/ionization mass spectrometry (MALDIMS). The polymers, formed by a condensation reaction of three components

  9. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  10. Explorations of Functionalized Gold Nanoparticle Surface Chemistry for Laser Desorption Ionization Mass Spectrometry Applications 

    E-Print Network [OSTI]

    Gomez Hernandez, Mario 1980-

    2012-07-11

    -MS Matrix Assisted Laser Desorption Ionization Mass Spectrometry AuNPs Gold Nanoparticles UV-Vis Ultraviolet-Visible Spectroscopy TEM Transmission Electron Microscopy NMR Nuclear Magnetic Resonance Spectroscopy RIY Relative Ion... including enhanced Rayleigh scattering,2 biological reaction catalysis,3 aggregation assays,4 surface enhanced Raman spectroscopy,5 and other applications known as nanobiotechnology.6 Therefore, it is the combination of the proven performance of mass...

  11. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect (OSTI)

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  12. Electron impact and chemical ionization mass spectral analysis of a volatile uranyl derivative

    SciTech Connect (OSTI)

    Reutter, D.J.; Hardy, D.R.

    1981-01-01

    Quadrupole mass spectral analysis of the volatile uranium ligand complex bis (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato) dioxouranium-di-n-butyl sulfoxide is described utilizing electron impact (EI) and methane chemical ionization (CI) ion sources. All major ions are tentatively identified and the potential usefulness of this complex for determining uranium isotope /sup 235/U//sup 238/U abundance is demonstrated.

  13. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOE Patents [OSTI]

    Mowry, Curtis Dale (Albuquerque, NM); Thornberg, Steven Michael (Peralta, NM)

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  14. SEARCH FOR IONIZED JETS TOWARD HIGH-MASS YOUNG STELLAR OBJECTS

    SciTech Connect (OSTI)

    Guzman, Andres E.; Garay, Guido; Brooks, Kate J.; Voronkov, Maxim A.

    2012-07-01

    We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets toward high-mass young stellar objects (HMYSOs). Here we report observations at 1.4, 2.4, 4.8, and 8.6 GHz, made with angular resolutions of about 7'', 4'', 2'', and 1'', respectively, toward six objects of a sample of 33 southern HMYSOs thought to be in very early stages of evolution. The objects in the sample were selected from radio and infrared catalogs by having positive radio spectral indices and being luminous (L{sub bol} > 2 Multiplication-Sign 10{sup 4} L{sub Sun }), but underluminous in radio emission compared with that expected from its bolometric luminosity. This criterion makes the radio sources good candidates for being ionized jets. As part of this systematic search, two ionized jets have been discovered: one previously published and the other reported here. The rest of the observed candidates correspond to three hypercompact H II regions and two ultracompact H II regions. The two jets discovered are associated with two of the most luminous (7 Multiplication-Sign 10{sup 4} and 1.0 Multiplication-Sign 10{sup 5} L{sub Sun }) HMYSOs known to harbor this type of object, showing that the phenomena of collimated ionized winds appear in the formation process of stars at least up to masses of {approx}20 M{sub Sun} and provide strong evidence for a disk-mediated accretion scenario for the formation of high-mass stars. From the incidence of jets in our sample, we estimate that the jet phase in high-mass protostars lasts for {approx}4 Multiplication-Sign 10{sup 4} yr.

  15. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect (OSTI)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  16. Ionization Spectroscopy of a DNA Base: Vacuum-Ultraviolet Mass-Analyzed Threshold Ionization Spectroscopy of Jet-Cooled Thymine

    E-Print Network [OSTI]

    Kim, Sang Kyu

    to ionizing radiation.1-8 After the initial ionization of a nucleic acid base, the hole trapped in that base migrates along the DNA helix through hopping and/or tunneling mechanisms, resulting in various types-based molecular devices. According to the hopping mechanism, charge migration in DNA occurs through hole/electron

  17. Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Thomas, Mathew; Laskin, Julia

    2014-02-04

    Mass spectrometry imaging (MSI) has been extensively used for determining spatial distributions of molecules in biological samples, and there is increasing interest in using MSI for quantification. Nanospray desorption electrospray ionization, or nano-DESI, is an ambient MSI technique where a solvent is used for localized extraction of molecules followed by nanoelectrospray ionization. Doping the nano-DESI solvent with carefully selected standards enables online quantification during MSI experiments. In this proof-of-principle study, we demonstrate this quantification approach can be extended to provide shotgun-like quantification of phospholipids in thin brain tissue sections. Specifically, two phosphatidylcholine (PC) standards were added to the nano-DESI solvent for simultaneous imaging and quantification of 22 PC species observed in nano-DESI MSI. Furthermore, by combining the quantitative data obtained in the individual pixels, we demonstrate quantification of these PC species in seven different regions of a rat brain tissue section.

  18. Velocity Profile of the Ionized Disk and the Mass of the Black Hole in M87

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1994-11-10

    We present a theoretical model for the ionized disk in M87 which includes spiral shock waves. The line emission profiles computed from this model at various positions on the disk are found to be in agreement with the recent Hubble Space Telescope results. Based on this model, we find that the ionized disk comprises two-armed giant spiral shock waves which extend from around $0.1$ arc sec from the center to at least $1$ arc second or more. Our model requires that the mass of the black hole be $(4 \\pm 0.2) \\times 10^9 M_\\odot$ and the inclination angle to be $(42\\pm 2)^{\\deg}$. We predict the nature of the line profiles at many other locations of the disk which could be verified in future observations.

  19. Evaluation of Demand Shifting with Thermal Mass in Two Large Commercial Buildings

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01

    Control of Building Thermal Storage. ASHRAE Transactions 96(Control of Building Thermal Storage. ASHRAE Transactions1992. Heat Storage in Building Thermal Mass: A Parametric

  20. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect (OSTI)

    Perdian, David C.

    2009-08-19

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  1. International Journal of Mass Spectrometry 226 (2003) 135 Matrix-assisted laser desorption/ionization mass spectrometry

    E-Print Network [OSTI]

    2003-01-01

    , electrospray ionization; FAB, fast atom bom- bardment; Frc, fructose; FT, Fourier transform; Fuc, fucose; FWHM-assisted laser desorption/ ionization; Man, mannose; PAGE, polyacrylamide gel electropho- resis; PD, plasma

  2. Toward a Fieldable Atomic Mass Spectrometer for Safeguards Applications: Sample Preparation and Ionization

    SciTech Connect (OSTI)

    Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth; Jones, Sarah MH; Manard, Benjamin T.

    2014-10-31

    The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for the development of new methods to detect misuse at nuclear fuel cycle facilities such as reprocessing and enrichment plants. At enrichment plants, for example, the IAEA’s contemporary safeguards approaches are based on a combination of routine and random inspections that include collection of UF6 samples from in-process material and selected cylinders for subsequent analyses. These analyses include destructive analysis (DA) in a laboratory (typically by mass spectrometry [MS]) for isotopic characterization, and environmental sampling (ES) for subsequent laboratory elemental and isotopic analysis (also both typically by MS). One area of new method development includes moving this kind of isotope ratio analytical capability for DA and ES activities into the field. Some of the reasons for these developments include timeliness of results, avoidance of hazardous material shipments, and guidance for additional sample collecting. However, this capability does not already exist for several reasons, such as that most lab-based chemical and instrumental methods rely on laboratory infrastructure (highly trained staff, power, space, hazardous material handling, etc.) and require significant amounts of consumables (power, compressed gases, etc.). In addition, there are no currently available, fieldable instruments for atomic or isotope ratio analysis. To address these issues, Pacific Northwest National Laboratory (PNNL) and collaborator, Clemson University, are studying key areas that limit the fieldability of isotope ratio mass spectrometry for atomic ions: sample preparation and ionization, and reducing the physical size of a fieldable mass spectrometer. PNNL is seeking simple and robust techniques that could be effectively used by inspectors who may have no expertise in analytical MS. In this report, we present and describe the preliminary findings for three candidate techniques: matrix-assisted laser desorption/ionization (MALDI) MS, liquid sampling-atmospheric pressure glow discharge (LS-APGD), and laser ablation/ionization (LAI) MS at atmospheric pressure. Potential performance metrics for these techniques will be presented, including detectability, response, isotope ratio accuracy and precision, and ease of use.

  3. One-Photon Mass-Analyzed Threshold Ionization Spectroscopy of Bis(6-benzene)chromium and Its Benzene and Ar Clusters

    E-Print Network [OSTI]

    Kim, Sang Kyu

    One-Photon Mass-Analyzed Threshold Ionization Spectroscopy of Bis(6-benzene)chromium and Its Benzene and Ar Clusters Kyo-Won Choi and Sang Kyu Kim* Department of Chemistry and School of Molecular-analyzed threshold ionization (MATI) spectroscopy of bis(6-benzene)chromium is reported. The adiabatic ionization

  4. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-06-09

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-?m-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography.

  5. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    SciTech Connect (OSTI)

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2014-01-01

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  6. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of benzene: Vibrational analysis of C6H6

    E-Print Network [OSTI]

    Kim, Myung Soo

    Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of benzene: Vibrational analysis-photon spectra agrees with the previous suggestion that the geometry of benzene cation in the ground electronic. INTRODUCTION Benzene cation has been the focus of an intensive re- search effort, both experimental1

  7. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    SciTech Connect (OSTI)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  8. International Journal of Mass Spectrometry 267 (2007) 8997 One-photon mass-analyzed threshold ionization spectroscopy (MATI)

    E-Print Network [OSTI]

    Kim, Myung Soo

    2007-01-01

    ionization (MATI) spectrum of cis-C2H2Cl2 was obtained by using vacuum ultravio- let radiation generated in the spectrum was 9.6578 ± 0.0006 eV. Ten vibrational fundamentals for the cation were identified. Most are ionized by electric field pulse. ZEKE and MATI spectra are obtained by recording the electron and ion

  9. Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock

    E-Print Network [OSTI]

    Kissock, Kelly

    1 Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock tanks and reducing thermal mass. A companion paper, Energy Efficiency Process Heating: Managing Air Flow of the oven/furnace. Reducing the quantity of energy lost to thermal mass in a process heating system saves

  10. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  11. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  12. Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California

    E-Print Network [OSTI]

    Yin, Rongxin

    2010-01-01

    control of building thermal storage, ASHARE Transactionscan be achieved by utilizing thermal energy storage suchas ice storage or building thermal mass. Demand shedding is

  13. Strong thermal leptogenesis and the absolute neutrino mass scale

    SciTech Connect (OSTI)

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re, E-mail: pdb1d08@soton.ac.uk, E-mail: sk1806@soton.ac.uk, E-mail: m.re-fiorentin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2014-03-01

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}?>10 meV for normal ordering (NO) and m{sub 1}?>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |?{sub ij}{sup 2}|?<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.

  14. The generalised principle of perturbative agreement and the thermal mass

    E-Print Network [OSTI]

    Nicolò Drago; Thomas-Paul Hack; Nicola Pinamonti

    2015-07-01

    The Principle of Perturbative Agreement, as introduced by Hollands & Wald, is a renormalisation condition in quantum field theory on curved spacetimes. This principle states that the perturbative and exact constructions of a field theoretic model given by the sum of a free and an exactly tractable interaction Lagrangean should agree. We develop a proof of the validity of this principle in the case of scalar fields and quadratic interactions without derivatives which differs in strategy from the one given by Hollands & Wald for the case of quadratic interactions encoding a change of metric. Thereby we profit from the observation that, in the case of quadratic interactions, the composition of the inverse classical M{\\o}ller map and the quantum M{\\o}ller map is a contraction exponential of a particular type. Afterwards, we prove a generalisation of the Principle of Perturbative Agreement and show that considering an arbitrary quadratic contribution of a general interaction either as part of the free theory or as part of the perturbation gives equivalent results. Motivated by the thermal mass idea, we use our findings in order to extend the construction of massive interacting thermal equilibrium states in Minkowski spacetime developed by Fredenhagen & Lindner to the massless case. In passing, we also prove a property of the construction of Fredenhagen & Lindner which was conjectured by these authors.

  15. Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography/mass spectrometry

    E-Print Network [OSTI]

    Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography Available online 29 March 2008 Keywords: Flame-retardant polymers Thermal degradation Pyrolysis by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The polymers were synthesized

  16. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01

    Control of Building Thermal Storage. ” ASHRAE TransactionsControl of Building Thermal Storage. ” ASHRAE Transactionsto how fast the passive thermal storage can be charged and

  17. Subgrid models for mass and thermal diffusion in turbulent mixing

    SciTech Connect (OSTI)

    Sharp, David H; Lim, Hyunkyung; Li, Xiao - Lin; Gilmm, James G

    2008-01-01

    We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without resolving the Batchelor scale, allows a feasible approach to the modeling of high Schmidt number flows.

  18. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    SciTech Connect (OSTI)

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance of ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.

  19. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance ofmore »ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.« less

  20. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  1. Efficient mass-selective three-photon ionization of zirconium atoms

    SciTech Connect (OSTI)

    Page, R.H.

    1994-12-27

    In an AVLIS process, [sup 91]Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength [lambda][sub 1], selectively raising [sup 91]Zr atoms to an odd-parity E[sub 1] energy level in the range of 16000--19000 cm[sup [minus]1], are irradiated by a laser beam having a wavelength [lambda][sub 2] to raise the atoms from an E[sub l] level to an even-parity E[sub 2] energy level in the range of 35000--37000 cm[sup [minus]1] and are irradiated by a laser beam having a wavelength [lambda][sub 3] to cause a resonant transition of atoms from an E[sub 2] level to an autoionizing level above 53506 cm[sup [minus]1][lambda][sub 3] wavelengths of 5607, 6511 or 5756 [angstrom] will excite a zirconium atom from an E[sub 2] energy state of 36344 cm[sup [minus]1] to an autoionizing level; a [lambda][sub 3] wavelength of 5666 [angstrom] will cause an autoionizing transition from an E[sub 2] level of 36068 cm[sup [minus]1]; and a [lambda][sub 3] wavelength of 5662 [angstrom] will cause an ionizing resonance of an atom at an E[sub 2] level of 35904 cm[sup [minus]1]. 4 figures.

  2. Efficient mass-selective three-photon ionization of zirconium atoms

    DOE Patents [OSTI]

    Page, Ralph H. (San Ramon, CA)

    1994-01-01

    In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.

  3. Thermal mass performance in residential construction : an energy analysis using a cube model

    E-Print Network [OSTI]

    Ledwith, Alison C. (Alison Catherine)

    2012-01-01

    Given the pervasiveness of energy efficiency concerns in the built environment, this research aims to answer key questions regarding the performance of thermal mass construction. The work presents the Cube Model, a simplified ...

  4. Cooling Strategies Based on Indicators of Thermal Storage in Commercial Building Mass 

    E-Print Network [OSTI]

    Eto, J. H.

    1985-01-01

    specific instance of this phenomenon, in which thermal storage by building mass over weekends exacerbates Monday cooling energy requirements. The study relies on computer simulations of energy use for a large, office building prototype in El Paso, TX using...

  5. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect (OSTI)

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10{sup 11} and 5.0 × 10{sup 11} molecule s{sup ?1} cm{sup ?3} of C{sub 2}H{sub 5}{sup •} (ethyl) and t-C{sub 4}H{sub 9}{sup •} (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  6. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    SciTech Connect (OSTI)

    Yang, Rui Gudipati, Murthy S.

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings.

  7. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    SciTech Connect (OSTI)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small mass ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.

  8. PHOTOIONIZATION OF JET COOLED MOLECULES AND Photo-ionization provides a forum of hyphenation for mass spectrometry since one can

    E-Print Network [OSTI]

    de Vries, Mattanjah S.

    PHOTOIONIZATION OF JET COOLED MOLECULES AND CLUSTERS Photo-ionization provides a forum-ionization the vibrational and rotational temperatures should be reduced by entertainment in a supersonic jet. For non nozzle. 1. Jet cooling Expanding a high-pressure gas through a small hole into a low pressure decreases

  9. Exploring the Optimal Thermal Mass to Investigate the Potential of a Novel Low-Energy House Concept 

    E-Print Network [OSTI]

    Hoes, P. J.; Trcka, M.; Hensen, J.; Bonnema, B.

    2010-01-01

    the benefits of buildings with low and high thermal mass by applying hybrid adaptable thermal storage (HATS) systems and materials to a lightweight building. The HATS concept increases building performance and the robustness to changing user behavior, seasonal...

  10. Utilizing the Inherent Electrolysis in a Chip-Based Nanoelectrospray Emitter System to Facilitate Selective Ionization and Mass Spectrometric Analysis of Metallo Alkylporphyrins

    SciTech Connect (OSTI)

    Van Berkel, Gary J; Kertesz, Vilmos

    2012-01-01

    A commercially available chip-based infusion nanoelectrospray ionization system was used to ionize metallo alkylporphyrins for mass spectrometric detection and structure elucidation by mass spectrometry. Different ionic forms of model compounds (nickel (II), vanadyl (II), copper (II) and cobalt (II) octaethylporphyrin) were created by using two different types of conductive pipette tips supplied with the device. These pipette tips provide the conductive contact to solution at which the electrolysis process inherent to electrospray takes places in the device. The original unmodified, bare carbon-impregnated plastic pipette tips, were exploited to intentionally electrochemically oxidize (ionize) the porphyrins to form molecular radical cations for detection. Use of modified pipette tips, with a surface coating devised to inhibit analyte mass transport to the surface, was shown to limit the ionic species observed in the mass spectra of these porphyrins largely, but not exclusively, to the protonated molecule. Under the conditions of these experiments, the effective upper potential limit for oxidation with the uncoated pipette tip was 1.1 V or less and the coated pipette tips effectively prevented the oxidation of analytes with redox potentials greater than about 0.25 V. Product ion spectra of either molecular ionic species could be used to determine the alkyl chain length on the porphyrin macrocycle. The utility of this electrochemical ionization approach for the analysis of naturally occurring samples was demonstrated using nickel geoporphyrin fractions isolated from Gilsonite bitumen. Acquiring neutral loss spectra as a means to improve the specificity of detection in these complex natural samples was also illustrated.

  11. Chemistry of ?-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of ?-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm?3 s, corresponding to approximately 1.0 to 7.5 daysmore »of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  12. Determination of mass and thermal accommodation coefficients from evolution of evaporating water droplet

    E-Print Network [OSTI]

    droplet M. Zientara, D. Jakubczyk, G. Derkachov, K. Kolwas and M. Kolwas Institute of Physics, Polish of evaporation and condensation are in the very heart of various fields of science. Cloud and aerosol called evaporation (condensation) or mass accommodation coefficient C and thermal conductivity

  13. The slow ionized wind and rotating disklike system that are associated with the high-mass young stellar object G345.4938+01.4677

    SciTech Connect (OSTI)

    Guzmán, Andrés E.; Garay, Guido; Bronfman, Leonardo; Mardones, Diego; Rodríguez, Luis F.; Moran, James; Brooks, Kate J.; Nyman, Lars-Åke; Sanhueza, Patricio

    2014-12-01

    We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40?, H42?, and H50? emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562–3959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings imply electron densities of 5 × 10{sup 7} cm{sup –3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (?3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.

  14. The COS/UVES absorption survey of the Magellanic stream. III. Ionization, total mass, and inflow rate onto the Milky Way

    SciTech Connect (OSTI)

    Fox, Andrew J.; Thom, Christopher; Tumlinson, Jason; Ely, Justin; Kumari, Nimisha [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wakker, Bart P.; Hernandez, Audra K.; Haffner, L. Matthew [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Barger, Kathleen A.; Lehner, Nicolas; Howk, J. Christopher [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Richter, Philipp [Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Strasse 24/25, D-14476, Potsdam (Germany); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Charlton, Jane C. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Westmeier, Tobias [ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Misawa, Toru [School of General Education, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Rodriguez-Hidalgo, Paola, E-mail: afox@stsci.edu [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON M3J 1P3 (Canada)

    2014-06-01

    Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30° of the 21 cm emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is ?11,000 deg{sup 2}, or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be ?2.0 × 10{sup 9} M {sub ?} (d/55 kpc){sup 2}, with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ?0.5-1.0 Gyr, it will represent an average inflow rate of ?3.7-6.7 M {sub ?} yr{sup –1}, potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona.

  15. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect (OSTI)

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  16. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect (OSTI)

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  17. Thermal Mass Modeling How We Got to Where We Are Today 

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01

    of Ventilation Air Total Cooling Load on Coils Solar Temperature Difference Method No direct treatment of thermal mass TRANE Air-Conditioning Manual p. 47 Energy Systems Laboratory © 2010 In 1944, Mackey and Wright developed Sol-Air Temperature Method... which was published by ASHVE Source: Mackey, C.O., Wright, L.T., 1944. Periodic Heat Flow-Homogeneous Walls or Roofs. ASHVE Journal; Mcquiston, Parker, 1994. Heating, Ventilating and Air-Conditioning Analysis and Design, Fourth Edition...

  18. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    SciTech Connect (OSTI)

    Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

    2010-05-14

    This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

  19. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    SciTech Connect (OSTI)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  20. Thermal gradient-induced forces on geodetic reference masses for LISA

    E-Print Network [OSTI]

    L. Carbone; A. Cavalleri; G. Ciani; R. Dolesi; M. Hueller; D. Tombolato; S. Vitale; W. J. Weber

    2007-06-29

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodetic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the LISA gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the LISA sensitivity goals.

  1. Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole A.; Bateman, Adam P.; Nguyen, Tran B.; Bones, David L.; Nizkorodov, Sergey; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-08-21

    Aerosol samples collected in the urban areas of Shanghai and Los Angeles were analyzed by nanospray-desorption electrospray ionization mass spectrometry (nano-DESI MS) with high mass resolution (m/?m=100,000). Solvent mixtures of acetonitrile/water and acetonitrile/toluene were used to extract and ionize polar and non-polar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. Majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates in the two samples have distinctly different molecular characteristics. Specifically, organosulfates in the Los Angeles sample were dominated by isoprene- or monoterpene-derived products, while organosulfates of yet unknown origin in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degree of oxidation and unsaturation. The use of acetonitrile/toluene solvent facilitated identification of this type of organosulfates, suggesting they could be missed in previous studies relying on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the organosulfates detected in the Shanghai sample suggest that they may act as surfactants, and plausibly affect the surface tension and hygroscopicity of the atmospheric particulate matter. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors.

  2. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOE Patents [OSTI]

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  3. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    SciTech Connect (OSTI)

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.; Zhao, Rui; Hagler, Clay D.; Shukla, Anil K.; Carlson, Timothy S.; Adkins, Joshua N.; Camp, David G.; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.

    2014-09-02

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.

  4. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    E-Print Network [OSTI]

    Yin, Rongxin

    2010-01-01

    and Passive Building Thermal Storage Utilization. ” JournalControl of Passive Thermal Storage. ” ASHRAE Transactions,due to the high thermal storage during the pre-cooling

  5. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01

    Control of Building Thermal Storage. ” ASHRAE TransactionsControl of Building Thermal Storage. ” ASHRAE Transactionsshifting technology. Thermal storage can be achieved with

  6. Direct determination of the adiabatic ionization energy of NO2 as measured by guided ion-beam mass spectrometry

    E-Print Network [OSTI]

    Clemmer, David E.

    by examining qualitative potential-energy surfaces for the charge-transfer processes; I. INTRODUCTION During: + NO oc- curs efficiently at thermal energies, suggesting that IE( NO,) )IE(NO) = 9.264 36 + 0.000 06 e processes. They obtained IE(N0,) energy peak observed coupled with a vibra- tional

  7. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    SciTech Connect (OSTI)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola E-mail: paola.marigo@unipd.it

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ?}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ?}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ?}. At larger masses, the core-mass growth decreases steadily to ?10% at M {sub initial} = 3.4 M {sub ?}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ?}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ? 3 Myr and E = 1.2 × 10{sup 10} L {sub ?} yr for M {sub initial} ? 2 M {sub ?} (t ? 2 Myr for luminosities brighter than the red giant branch tip at log (L/L {sub ?}) > 3.4), decreasing to t = 0.4 Myr and E = 6.1 × 10{sup 9} L {sub ?} yr for stars with M {sub initial} ? 3.5 M {sub ?}. The implications of these results are discussed, especially with respect to general studies aimed at characterizing the integrated light output of TP-AGB stars in population synthesis models.

  8. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of ?-pinene and naphthalene oxidation products

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2015-01-05

    Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore »groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of ?-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec s cm?3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  9. Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels

    SciTech Connect (OSTI)

    Andersson, Anders D.; Uberuaga, Blas P.; Du, Shiyu; Liu, Xiang-Yang; Nerikar, Pankaj; Stanek, Christopher R.; Tonks, Michael; Millet, Paul; Biner, Bulent

    2012-06-04

    In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain boundaries derived from separate atomistic calculations, we simulate Xe redistribution for a few simple microstructures using finite element methods (FEM), as implemented in the MOOSE framework from Idaho National Laboratory. Thermal transport together with the power distribution determines the temperature distribution in the fuel rod and it is thus one of the most influential properties on nuclear fuel performance. The fuel thermal conductivity changes as function of time due to microstructure evolution (e.g. fission gas redistribution) and compositional changes. Using molecular dynamics simulations we have studied the impact of different types of grain boundaries and fission gas bubbles on UO{sub 2} thermal conductivity.

  10. Alkali metal ionization detector

    DOE Patents [OSTI]

    Bauerle, James E. (Plum Borough, PA); Reed, William H. (Monroeville, PA); Berkey, Edgar (Murrysville, PA)

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  11. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect (OSTI)

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  12. Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Olivares, Astrid M.; Laskin, Julia; Johnson, Grant E.

    2014-09-18

    The scalable synthesis of subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth and post-reduction etching are still not well understood. Herein, we demonstrate a temperature-controlled flow reactor for studying cluster formation in solution at well-defined conditions. Employing this technique methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with an adjustable length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates and products synthesized in real time was characterized using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged metal-ligand complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged metal-ligand complexes while hindering the growth of triply charged clusters. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of reduction synthesis in solution.

  13. Chemical Analysis of Soot Using Thermal Desorption/Pyrolysis Gas Chromatography/Mass Spectrometry

    Broader source: Energy.gov [DOE]

    A new method of soot analysis using thermal/pyrolysis GS-MS has provided a faster, more efficient analytical method to understand the surface chemistry of the soot.

  14. One-photon mass-analyzed threshold ionization spectroscopy of 2-bromopropene ,,2-C3H5Br...: Analysis of vibration

    E-Print Network [OSTI]

    Kim, Myung Soo

    electric field pulsed-field ionization PFI , and detected. By scan- ning the wavelength of the laser used be useful for spectral interpretation and is one of its main advantages, even though the fact that not much with diffuse intermediate states. The one-photon scheme was initially used to record ZEKE spectra of simple

  15. Simultaneous determination of mass and thermal accommodation coefficients from temporal evolution

    E-Print Network [OSTI]

    of Physics of the Polish Academy of Sciences, al.Lotnik´ow 32/46, 02-668 Warsaw, Poland E-mail: jakub: J. Phys. D: Appl. Phys. 1. Introduction The processes of evaporation and condensation coefficient with a so called evaporation (condensation) or mass accommodation coefficient C. Likewise

  16. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  17. Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3–] Ionic Liquid

    SciTech Connect (OSTI)

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2013-12-01

    Electrospray ionization of the fluorohydrogenate ionic liquid [1-ethyl-3-methylimidazolium][F(HF)2.3] ionic liquid was conducted to understand the nature of the anionic species as they exist in the gas phase. Abundant fluorohydrogenate clusters were produced; however, the dominant anion in the clusters was [FHF-], and not the fluoride-bound HF dimers or trimers that are seen in solution. Density functional theory (DFT) calculations suggest that HF molecules are bound to the clusters by about 30 kcal/mol. The DFT-calculated structures of the [FHF-]-bearing clusters show that the favored interactions of the anions are with the methynic and acetylenic hydrogen atoms on the imidazolium cation, forming planar structures similar to those observed in the solid state. A second series of abundant negative ions was also formed that contained [SiF5-] together with the imidazolium cation and the fluorohydrogenate anions that originate from reaction of the spray solution with silicate surfaces.

  18. Development and Application of an Electrospray Ionization Ion Mobility-mass Spectrometer Using an RF Ion Funnel and Periodic-focusing Ion Guide 

    E-Print Network [OSTI]

    Jeon, Junho

    2013-10-16

    A novel ion mobility-mass spectrometer was designed and built in order to achieve high transmission and high resolution for observing desolvated ion conformations of chemical and biological molecules in the gas phase. The instrument incorporates a...

  19. Development of matrix assisted laser desorption ionization-ion mobility-orthogonal time-of-flight mass spectrometry as a tool for proteomics 

    E-Print Network [OSTI]

    Ruotolo, Brandon Thomas

    2005-08-29

    Separations coupled to mass spectrometry (MS) are widely used for large-scale protein identification in order to reduce the adverse effects of analyte ion suppression, increase the dynamic range, and as a deconvolution technique for complex datasets...

  20. Time and space resolved measurement of the electron temperature, mass density and ionization state in the ablation plasma between two exploding Al wires

    SciTech Connect (OSTI)

    Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Hansen, S. B.

    2012-05-15

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from Greater-Than-Or-Equivalent-To 0.1g/cm{sup 3} and a few eV to less than 0.01 g/cm{sup 3} and 30 eV have been measured in experiments at Cornell University with two 40 {mu}m aluminum (Al) wires spaced 1 mm apart driven by {approx}150 kA peak current pulses with 100 ns rise time. The wire plasma was backlit by the 1.4-1.6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na-, and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to C-Like Al are observed. The spectrometer geometry and {approx}2{mu}m X-pinch source size provide 0.3 eV spectral resolution and 20 {mu}m spatial resolution enabling us to see 1s{yields} 2p satellite transitions as separate lines as well as O-, F-, and Ne-like 1s{yields} 3p transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within a factor of two and temperature to be measured within {+-}25%. A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume multiple plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path.

  1. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    SciTech Connect (OSTI)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-12-10

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  2. Modeling of Vertical Ground Loop Heat Exchangers with Variable Convective Resistance and Thermal Mass of the Fluid

    E-Print Network [OSTI]

    source heat pump (GSHP) systems. Thermal load profiles vary significantly from building to buildingModeling of Vertical Ground Loop Heat Exchangers with Variable Convective Resistance and Thermal-term behavior of ground loop heat exchangers (GLHE) is critical to the design and energy analysis of ground

  3. Ionization Efficiency in Electric Propulsion Devices Jerry L. Ross

    E-Print Network [OSTI]

    King, Lyon B.

    impulse, (s) M atomic mass, (kg) Ps power supply output, (W) Pion power required to ionize, (W) Pkin (power losses) above and beyond those arising from the ionization potential. This paper presents exhaust kinetic power, (W) Q average particle charge number q particle charge number Vd discharge voltage

  4. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung -Jin; Kim, Kwang -Bum; Chung, Kyung Yoon; Yang, Xiao -Qing; Nam, Kyung -Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygenmore »release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less

  5. Modeling of Vertical Ground Loop Heat Exchangers with Variable Convective Resistance and Thermal Mass of the Fluid

    E-Print Network [OSTI]

    Modeling of Vertical Ground Loop Heat Exchangers with Variable Convective Resistance and Thermal-term behavior of ground loop heat exchangers (GLHE) is critical to the design and energy analysis of ground in the tube to guarantee a low convective heat transfer resistance. However, for some antifreeze types

  6. A surface ionization source 

    E-Print Network [OSTI]

    Buzatu, Daniel J.

    1995-01-01

    The main part of the work described herein is the development and testing of a surface ionization source for use on a collinear fast beam laser spectroscopy apparatus. A description of the previously existing fast beam apparatus is given...

  7. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    SciTech Connect (OSTI)

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  8. Multiphoton ionization of large water clusters

    SciTech Connect (OSTI)

    Apicella, B.; Li, X.; Passaro, M.; Spinelli, N.; Wang, X.

    2014-05-28

    Water clusters are multimers of water molecules held together by hydrogen bonds. In the present work, multiphoton ionization in the UV range coupled with time of flight mass spectrometry has been applied to water clusters with up to 160 molecules in order to obtain information on the electronic states of clusters of different sizes up to dimensions that can approximate the bulk phase. The dependence of ion intensities of water clusters and their metastable fragments produced by laser ionization at 355 nm on laser power density indicates a (3+1)-photon resonance-enhanced multiphoton ionization process. It also explains the large increase of ionization efficiency at 355 nm compared to that at 266 nm. Indeed, it was found, by applying both nanosecond and picosecond laser ionization with the two different UV wavelengths, that no water cluster sequences after n = 9 could be observed at 266 nm, whereas water clusters up to m/z 2000 Th in reflectron mode and m/z 3000 Th in linear mode were detected at 355 nm. The agreement between our findings on clusters of water, especially true in the range with n > 10, and reported data for liquid water supports the hypothesis that clusters above a critical dimension can approximate the liquid phase. It should thus be possible to study clusters just above 10 water molecules, for getting information on the bulk phase structure.

  9. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect (OSTI)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

  10. EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Johnson, S.; Cordaro, J.; Holland, M.; Jones, V.

    2010-06-17

    Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability to refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.

  11. Evaluation of the exothermicity of the chemi-ionization reaction Sm + O ? SmO{sup +} + e{sup ?}

    SciTech Connect (OSTI)

    Cox, Richard M; Kim, JungSoo; Armentrout, P. B. E-mail: mheaven@emory.edu; Bartlett, Joshua; VanGundy, Robert A.; Heaven, Michael C. E-mail: mheaven@emory.edu; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A. E-mail: mheaven@emory.edu; Melko, Joshua J.

    2015-04-07

    The exothermicity of the chemi-ionization reaction Sm + O ? SmO{sup +} + e{sup ?} has been re-evaluated through the combination of several experimental methods. The thermal reactivity (300–650 K) of Sm{sup +} and SmO{sup +} with a range of species measured using a selected ion flow tube-mass spectrometer apparatus is reported and provides limits for the bond strength of SmO{sup +}, 5.661 eV ? D{sub 0}(Sm{sup +}-O) ? 6.500 eV. A more precise value is measured to be 5.72{sub 5} ± 0.07 eV, bracketed by the observed reactivity of Sm{sup +} and SmO{sup +} with several species using a guided ion beam tandem mass spectrometer (GIBMS). Combined with the established Sm ionization energy (IE), this value indicates an exothermicity of the title reaction of 0.08 ± 0.07 eV, ?0.2 eV smaller than previous determinations. In addition, the ionization energy of SmO has been measured by resonantly enhanced two-photon ionization and pulsed-field ionization zero kinetic energy photoelectron spectroscopy to be 5.7427 ± 0.0006 eV, significantly higher than the literature value. Combined with literature bond energies of SmO, this value indicates an exothermicity of the title reaction of 0.14 ± 0.17 eV, independent from and in agreement with the GIBMS result presented here. The evaluated thermochemistry also suggests that D{sub 0}(SmO) = 5.83 ± 0.07 eV, consistent with but more precise than the literature values. Implications of these results for interpretation of chemical release experiments in the thermosphere are discussed.

  12. A THERMAL INFRARED IMAGING STUDY OF VERY LOW MASS, WIDE-SEPARATION BROWN DWARF COMPANIONS TO UPPER SCORPIUS STARS: CONSTRAINING CIRCUMSTELLAR ENVIRONMENTS

    SciTech Connect (OSTI)

    Bailey, Vanessa; Hinz, Philip M.; Su, Kate Y. L.; Hoffmann, William F.; Rieke, George; Rodigas, Timothy; Skemer, Andrew; Vaitheeswaran, Vidhya [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)] [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)] [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Esposito, Simone; Pinna, Enrico; Puglisi, Alfio [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)] [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)] [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Jones, Terry [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States)] [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Kim, Jihun [College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721 (United States)] [College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721 (United States); Leisenring, Jarron; Meyer, Michael [Institut fuer Angewandte Physik, Eidgenoessische Technische Hochschule-Zuerich, CH-8093 (Switzerland)] [Institut fuer Angewandte Physik, Eidgenoessische Technische Hochschule-Zuerich, CH-8093 (Switzerland); Murray-Clay, Ruth; Skrutskie, Michael F. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States); Nelson, Matthew J., E-mail: vbailey@as.arizona.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); and others

    2013-04-10

    We present a 3-5 {mu}m LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low masses/mass ratios (M{sub BD} <25 M{sub Jup}; M{sub BD}/M{sub *} Almost-Equal-To 1%-2%) and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4 {mu}m and 24 {mu}m photometry to constrain the properties of the BDs and identify evidence for circumprimary/circumsecondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing that this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24 {mu}m excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4 {mu}m excess, nor does its primary; however, the system as a whole has a modest 24 {mu}m excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4 {mu}m colors of HIP 78530B match a spectral type of M3 {+-} 2, inconsistent with the M8 spectral type assigned based on its near-IR spectrum, indicating that it may be a low-mass star rather than a BD. We present new upper limits on additional low-mass companions in the system (<5 M{sub Jup} beyond 175 AU). Finally, we examine the utility of circumsecondary disks as probes of the formation histories of wide BD companions, finding that the presence of a disk may disfavor BD formation near the primary with subsequent outward scattering.

  13. ionization: Stratified symmetrical electron emission and resonantly structured ionization continuum

    E-Print Network [OSTI]

    Kaplan, Alexander

    ionization: Stratified symmetrical electron emission and resonantly structured ionization continuum, ionization produces an approximately symmetrical, stratified photoelectron cloud. S1050-2947 99 09701-2 PACS the pulse are related simply as exp (ieQ/ ) rj 0 , where the sum is taken over all the charged particles

  14. Alkali ionization detector

    DOE Patents [OSTI]

    Hrizo, John (Monroeville, PA); Bauerle, James E. (Plum Borough, PA); Witkowski, Robert E. (West Mifflin, PA)

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  15. Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant ionization

    E-Print Network [OSTI]

    de Vries, Mattanjah S.

    Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant;Abstract We have used two-color resonant two-photon ionization (2C-R2PI) mass spectrometry to discriminate demonstrated isomer discrimination of PAHs by chemical ionization mass spectrometry with carbon dioxide

  16. Current quark mass and nonzero-ness of chiral condensates in thermal Nambu-Jona-Lasinio model

    E-Print Network [OSTI]

    Bang-Rong Zhou

    2015-06-23

    The effect that the current quark mass $M_0$ may result in nonzero-ness of chiral condensates is systematically reexamined and analyzed in a two-flavor Nambu-Jona-Lasinio model simulating Quantum Chromodynamics (QCD) at temperature $T$ and finite quark chemical potential $\\mu$ without and with electrical neutrality (EN) condition and at any $T$ and $\\mu$ without EN condition. By means of a quantitative investigation of the order parameter $m$, it is shown that a nonzero $M_0$ is bound to lead to nonzero quark-antiquark condensates throughout chiral phase transitions , no matter whether the order parameter $m$ varies discontinuously or continuously. In fact, a complete disappearance of the quark-antiquark condensates are proven to demand the non-physical and unrealistic conditions $\\mu \\,\\geq$ or $\\gg\\, \\sqrt{\\Lambda^2+M_0^2}$ if $T=0$ and finite, or $T\\to \\infty$ if $\\mu<\\sqrt{\\Lambda^2+M_0^2}$, where $\\Lambda$ is the 3D momentum cut of the loop integrals. Theoretically these results show that when $M_0$ is included, we never have a complete restoration of dynamical (spontaneous) chiral symmetry breaking, including after a first order chiral phase transition at low $T$ and high $\\mu$. In physical reality, it is the nonzero-ness of the quark-antiquark condensates that leads to the appearance of a critical end point in the first order phase transition line and the crossover behavior at high $T$ and/or high $\\mu$ cases, rather than a possible tricritical point and a second order phase transition line. They also provide a basic reason for that one must consider the interplay between the chiral and diquark condensates in the research on color superconductor at zero $T$ and high $\\mu$ case. The research shows that how a source term of the Lagrangian (at present i.e. the current quark mass term) can greatly affect dynamical behavior of a physical system.

  17. Current quark mass and nonzero-ness of chiral condensates in thermal Nambu-Jona-Lasinio model

    E-Print Network [OSTI]

    Zhou, Bang-Rong

    2015-01-01

    The effect that the current quark mass $M_0$ may result in nonzero-ness of chiral condensates is systematically reexamined and analyzed in a two-flavor Nambu-Jona-Lasinio model simulating Quantum Chromodynamics (QCD) at temperature $T$ and finite quark chemical potential $\\mu$ without and with electrical neutrality (EN) condition and at any $T$ and $\\mu$ without EN condition. By means of a quantitative investigation of the order parameter $m$, it is shown that a nonzero $M_0$ is bound to lead to nonzero quark-antiquark condensates throughout chiral phase transitions , no matter whether the order parameter $m$ varies discontinuously or continuously. In fact, a complete disappearance of the quark-antiquark condensates are proven to demand the non-physical and unrealistic conditions $\\mu \\,\\geq$ or $\\gg\\, \\sqrt{\\Lambda^2+M_0^2}$ if $T=0$ and finite, or $T\\to \\infty$ if $\\mu<\\sqrt{\\Lambda^2+M_0^2}$, where $\\Lambda$ is the 3D momentum cut of the loop integrals. Theoretically these results show that when $M_0$ i...

  18. Does the thermal disc instability operate in active galactic nuclei?

    E-Print Network [OSTI]

    L. Burderi; A. R. King; E. Szuszkiewicz

    1998-03-19

    We examine all possible stationary, optically thick, geometrically thin accretion disc models relevant for active galactic nuclei (AGN) and identify the physical regimes in which they are stable against the thermal-viscous hydrogen ionization instability. Self-gravity and irradiation effects are included. We find that most if not all AGN discs are unstable. Observed AGN therefore represent the outburst state, although some or all quasars could constitute a steady population having markedly higher fuelling rates than other AGN. It has important implications for the AGN mass supply and for the presence of supermassive black holes in nearby spirals.

  19. Thermal decomposition of CH{sub 3}CHO studied by matrix infrared spectroscopy and photoionization mass spectroscopy

    SciTech Connect (OSTI)

    Vasiliou, AnGayle K. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Piech, Krzysztof M.; Reed, Beth; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Zhang Xu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 (United States); Nimlos, Mark R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Ahmed, Musahid; Golan, Amir; Kostko, Oleg [Chemical Sciences Division, LBNL MS 6R-2100, Berkeley, California 94720 (United States); Osborn, David L. [Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9055, Livermore, California 94551-0969 (United States); David, Donald E. [Integrated Instrument Design Facility, CIRES, University of Colorado, Boulder, Colorado 80309-0216 (United States); Urness, Kimberly N.; Daily, John W. [Center for Combustion and Environmental Research, Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309-0427 (United States); Stanton, John F. [Institute for Theoretical Chemistry, Department of Chemistry, University of Texas, Austin, Texas 78712 (United States)

    2012-10-28

    A heated SiC microtubular reactor has been used to decompose acetaldehyde and its isotopomers (CH{sub 3}CDO, CD{sub 3}CHO, and CD{sub 3}CDO). The pyrolysis experiments are carried out by passing a dilute mixture of acetaldehyde (roughly 0.1%-1%) entrained in a stream of a buffer gas (either He or Ar) through a heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 50-200 Torr with the SiC tube wall temperature in the range 1200-1900 K. Characteristic residence times in the reactor are 50-200 {mu}s after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 {mu}Torr. The reactor has been modified so that both pulsed and continuous modes can be studied, and results from both flow regimes are presented. Using various detection methods (Fourier transform infrared spectroscopy and both fixed wavelength and tunable synchrotron radiation photoionization mass spectrometry), a number of products formed at early pyrolysis times (roughly 100-200 {mu}s) are identified: H, H{sub 2}, CH{sub 3}, CO, CH{sub 2}=CHOH, HC{identical_to}CH, H{sub 2}O, and CH{sub 2}=C=O; trace quantities of other species are also observed in some of the experiments. Pyrolysis of rare isotopomers of acetaldehyde produces characteristic isotopic signatures in the reaction products, which offers insight into reaction mechanisms that occur in the reactor. In particular, while the principal unimolecular processes appear to be radical decomposition CH{sub 3}CHO (+M) {yields} CH{sub 3}+ H + CO and isomerization of acetaldehyde to vinyl alcohol, it appears that the CH{sub 2}CO and HCCH are formed (perhaps exclusively) by bimolecular reactions, especially those involving hydrogen atom attacks.

  20. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect (OSTI)

    Siegrist, R.L.; Lowe, K.S.; Murdoch, L.D.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  1. Chemical Analysis of Soot Using Thermal Desorption/Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Soot Using Thermal DesorptionPyrolysis Gas ChromatographyMass Spectrometry Chemical Analysis of Soot Using Thermal DesorptionPyrolysis Gas ChromatographyMass...

  2. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-01-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  3. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-07-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  4. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  5. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Mendez, Victor P. (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  6. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  7. Thermal, chemical, and mass-transport processes induced in abyssal sediments by the emplacement of nuclear waste: experimental and modeling results

    SciTech Connect (OSTI)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.

    1980-01-01

    This paper discusses heat and mass transport studies of marine red clay sediments being considered as a nuclear waste isolation medium. Numerical models indicate that for a maximum allowable sediment/canister interface temperature of 200 to 250/sup 0/C, the sediment can absorb about 1.5 kW initial power from waste in a 3 m long by 0.3 m dia canister buried 30 m in the sediment. Fluid displacement due to convection is found to be less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment/seawater mixtures indicate that the canister and waste form must be designed to resist a hot, acid (pH 3 to 4) oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions are not anticipated to effect the properties of the far field. Using sorption coefficient correlations, the migration of four nuclides /sup 239/Pu, /sup 137/Cs, /sup 129/I, and /sup 99/Tc were computer for a canister buried 30 m deep in a 60 m thick red clay sediment layer. It was found that the /sup 239/Pu and /sup 137/Cs are essentially completely contained in the sediments, while /sup 129/I and /sup 99/Tc broke through the 30 m of sediment in about 5000 years. The resultant peak injection rates of 4.6 x 10/sup -5/ ..mu..Ci/year-m/sup 2/ for /sup 129/I and 1.6 x 10/sup -2/ ..mu..Ci/year-m/sup 2/ for /sup 99/Tc were less than the natural radioactive flux of /sup 226/Ra (3.5 to 8.8 x 10/sup -4/ ..mu..Ci/year-m/sup 2/) and /sup 222/Rn (0.26 to 0.88 ..mu..Ci/year-m/sup 2/).

  8. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    E-Print Network [OSTI]

    Vertes, Akos

    Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12 to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser

  9. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  10. Analytical mass spectrometry. Abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  11. Analytical mass spectrometry

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  12. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  13. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, John K. (New Haven, CT)

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  14. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  15. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  16. Optical ionization detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Lowry, Mark E. (Castro Valley, CA)

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  17. Optical ionization detector

    DOE Patents [OSTI]

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  18. Field ionization from carbon nanofibers

    E-Print Network [OSTI]

    Adeoti, Bosun J

    2008-01-01

    The Micro Gas Analyzer project aims to develop power-efficient, high resolution, high sensitivity, portable and real-time gas sensors. We developed a field ionizer array based on gated CNTs. Arrays of CNTs are used because ...

  19. Ionizing Radiation Injury (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation applies to employers that have more than one employee who engages in activities which involve the presence of ionizing radiation. Employers with less than three employees can...

  20. Structural Changes and Thermal Stability of Charged LiNix Mny CozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygenmore »release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?-m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3-m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less

  1. Structural Changes and Thermal Stability of Charged LiNix Mny CozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bak, Seong-Min [Brookhaven National Lab. (BNL), Upton, NY (United States); Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhou, Yongning [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States); Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cho, Sung-Jin [Johnson Control Advanced Power Solution, Milwaukee, WI (United States); North Carolina A&T Univ., Greensboro, NC (United States). Joint School of Nano Science and Nano Engineering; Kim, Kwang-Bum [Yonsei Univ., Seoul, (Korea, Republic of). Dept of Material Science and Engineering; Chung, Kyung Yoon [Korea Inst. of Science and Technology (KIST), Seoul (Korea, Republic of); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Nam, Kyung-Wan [Dongguk Univ., Seoul (Korea, Republic of); Dept. of Energy and Materials Engineering

    2014-12-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?-m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3-m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  2. Effects of ionization distribution on plasma beam focusing characteristics in Hall thrusters

    SciTech Connect (OSTI)

    Ning Zhongxi; Liu Hui; Yu Daren [Plasma Propulsion Laboratory, Harbin Institute of Technology, Harbin 150001 (China); Zhou Zhongxiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)

    2011-11-28

    The relationship between ionization distribution and divergence of plasma beam in a Hall thruster is investigated using spectrum and probe methods. Experimental results indicate that the shift of ionization region towards the exit of channel causes the reduction of accelerating field and the enhancement of electron thermal pressure effect, which result in further deviation of equipotential lines to magnetic field lines and further increase in divergence of plasma beam. It is, therefore, suggested that to put the ionization region deep inside the channel and separate it from the acceleration region at the design, and development stage is helpful to improve the plasma beam focusing characteristics of a Hall thruster.

  3. Ionization and fragmentation of C60 by highly charged, high-energy xenon ions S. Cheng,* H. G. Berry,

    E-Print Network [OSTI]

    Bauer, Wolfgang

    Ionization and fragmentation of C60 by highly charged, high-energy xenon ions S. Cheng,* H. G 19 June 1996 C60 vapor was bombarded by 136 Xe35 and 136 Xe18 ions in the energy range 420­625 MeV to study the various ionization and fragmentation processes that occur. Since the center-of-mass energies

  4. I. IONIZATION COOLING A. Introduction

    E-Print Network [OSTI]

    McDonald, Kirk

    I. IONIZATION COOLING A. Introduction The muon beam at the end of the decay channel is very intense for beam cooling. Cooling by synchrotron radiation, conventional stochastic cooling and conventional electron cooling are all too slow. Optical stochastic cooling [1], electron cooling in a plasma discharge

  5. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  6. Linear electric field time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); Feldman, William C. (Los Alamos, NM)

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  7. Carbon nanotube-based field ionization vacuum

    E-Print Network [OSTI]

    Jang, Daniel, M. Eng. Massachusetts Institute of Technology

    2012-01-01

    We report the development of a novel micropump architecture that uses arrays of isolated vertical carbon nanotubes (CNT) to field ionize gas particles. The ionized gas molecules are accelerated to and implanted into a ...

  8. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, M. J.; Zoerb, M. C.; Campbell, N. R.; Zimmermann, K. J.; Blomquist, B. W.; Huebert, B. J.; Bertram, T. H.

    2015-10-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, ?-caryophyllene) as well as previously studied VOCs (i.e., isoprene, ?-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt?1) to DMS, isoprene, and ?-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through amore »combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (R2=0.80) over a wide range of sampling conditions.« less

  9. Design optimization of thermal paths in spacecraft systems

    E-Print Network [OSTI]

    Stout, Kevin Dale

    2013-01-01

    This thesis introduces a thermal design approach to increase thermal control system performance and decrease reliance on system resources, e.g., mass. Thermal design optimization has lagged other subsystems because the ...

  10. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore »by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  11. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States); Bak, Seong Min [Brookhaven National Lab. (BNL), Upton, NY (United States); Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, Xiao-Qing [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering; Nam, Kyung-Wan [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering] (ORCID:0000000162786369); Zhang, Lulu [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong); Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  12. Ionization probes of molecular structure and chemistry

    SciTech Connect (OSTI)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  13. Saha Ionization Formula and the Voids

    E-Print Network [OSTI]

    Mofazzal Azam

    2002-08-14

    The ultra-low density limit of Saha ionization formula suggests that, in this limit, matter would prefer to remain ionized.This has a very important implication for cosmic structures known as Voids.These are ultra-low density (much less than average density of matter in the Universe) regions in the galactic clusters and superclusters.The ionization formula implies that matter trapped in the Voids should be ionized.Therefore, we expect a very faint radiation glow from the Voids resulting from the motion of the charged particles.

  14. Silicate Emission Profiles from Low-Mass Protostellar Disks in the Orion Nebula: Evidence for Growth and Thermal Processing of Grains

    E-Print Network [OSTI]

    R. Y. Shuping; Marc Kassis; Mark Morris; Nathan Smith; John Bally

    2006-05-05

    We present 8--13 micron low resolution spectra (R~100) of 8 low-mass protostellar objects ("proplyds") in the Orion Nebula using the Long Wavelength Spectrometer (LWS) at the W. M. Keck Observatory. All but one of the sources in our sample show strong circumstellar silicate emission, with profiles that are qualitatively similar to those seen in some T Tauri and Herbig Ae/Be stars. The silicate profile in all cases is significantly flattened compared to the profile for typical interstellar dust, suggesting that the dominant emitting grains are significantly larger than those found in the interstellar medium. The 11.3-to-9.8 micron flux ratio--often used as an indicator of grain growth--is in the 0.8 to 1.0 range for all of our targets, indicating that the typical grain size is around a few microns in the surface layers of the attendant circumstellar disk for each object. Furthermore, the silicate profiles show some evidence of crystalline features, as seen in other young stellar objects. The results of our analysis show that the grains in the photoevaporating protostellar disks of Orion have undergone significant growth and perhaps some annealing, suggesting that grain evolution for these objects is not qualitatively different from other young stellar objects.

  15. The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

    SciTech Connect (OSTI)

    Bailey, Catherine N.

    2010-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c{sup 2}. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

  16. A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF He II REIONIZATION

    SciTech Connect (OSTI)

    Faucher-Giguere, Claude-Andre; Lidz, Adam; Zaldarriaga, Matias; Hernquist, Lars, E-mail: cgiguere@cfa.harvard.ed [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States)

    2009-10-01

    The ionizing background determines the ionization balance and the thermodynamics of the cosmic gas. It is therefore a fundamental ingredient to theoretical and empirical studies of both the intergalactic medium (IGM) and galaxy formation. We present here a new calculation of its spectrum that satisfies the empirical constraints we recently obtained by combining state-of-the-art luminosity functions and intergalactic opacity measurements. In our preferred model, star-forming galaxies and quasars each contribute substantially to the H I ionizing field at z < 3, with galaxies rapidly overtaking quasars at higher redshifts as quasars become rarer. In addition to our fiducial model, we explore the physical dependences of the calculated background and clarify how recombination emission contributes to the ionization rates. We find that recombinations do not simply boost the ionization rates by the number of re-emitted ionizing photons as many of these rapidly redshift below the ionization edges and have a distribution of energies. A simple analytic model that captures the main effects seen in our numerical radiative transfer calculations is given. Finally, we discuss the effects of He II reionization by quasars on both the spectrum of the ionizing background and on the thermal history of the IGM. In regions that have yet to be reionized, the spectrum is expected to be almost completely suppressed immediately above 54.4 eV, while a background of higher energy ({approx}>0.5 keV) photons permeates the entire universe owing to the frequency dependence of the photoionization cross section. We provide an analytical model of the heat input during He II reionization and its effects on the temperature-density relation.

  17. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  18. Ionization tube simmer current circuit

    DOE Patents [OSTI]

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  19. Ionization tube simmer current circuit

    DOE Patents [OSTI]

    Steinkraus, Jr., Robert F. (Livermore, CA)

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  20. Design and Analyisi of a Self-centered Cold Mass Support for the MICE Coupling Magnet

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Wu, Hong; Li, S. Y.; Guo, Xing Long; Zheng, Shi Xian; Green, Michael A.

    2011-05-04

    The Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils in seven modules, which are magnetically hooked together since there is no iron to shield the coils and the return flux. The RF coupling coil (RFCC) module consists of a superconducting coupling solenoid mounted around four conventional conducting 201.25 MHz closed RF cavities. The coupling coil will produce up to a 2.2 T magnetic field on the centerline to keep the beam within the RF cavities. The peak magnetic force on the coupling magnet from other magnets in MICE is up to 500 kN in longitudinal direction, which will be transferred to the base of the RF coupling coil (RFCC) module through a cold mass support system. A self-centered double-band cold mass support system with intermediate thermal interruption is applied to the coupling magnet, and the design is introduced in detail in this paper. The thermal and structural analysis on the cold mass support assembly has been carried out using ANSYS. The present design of the cold mass support can satisfy with the stringent requirements for the magnet center and axis azimuthal angle at 4.2 K and fully charged.

  1. Thermal engine

    SciTech Connect (OSTI)

    Karnes, T.E.; Trupin, R.J.

    1984-01-03

    A thermal engine utilizing a strip of nitinol material or other thermally responsive shape memory effect material to drive a reciprocating output shaft, said strip of material forming a common wall between two different alternating temperature sources which thermally cycle the material.

  2. Laser Desorption/Ionization of Transition Metal Atoms and Oxides from Solid Argon Lester Andrews,*, Andreas Rohrbacher, Christopher M. Laperle, and Robert E. Continetti

    E-Print Network [OSTI]

    Continetti, Robert E.

    Laser Desorption/Ionization of Transition Metal Atoms and Oxides from Solid Argon Lester Andrews of the laser-ablated metal atoms and O2 in excess argon during condensation at 10 K, have been laser desorbed of organic acid typically used as a matrix in matrix- assisted laser desorption/ionization (MALDI) mass

  3. Chemical oxidation of tryptic digests to improve sequence coverage in peptide mass fingerprint protein identification 

    E-Print Network [OSTI]

    Lucas, Jessica Elaine

    2004-09-30

    Peptide mass fingerprinting (PMF) of protein digests is a widely-accepted method for protein identification in MS-based proteomic studies. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) is the technique of choice in PMF...

  4. A study of the formation of cluster ions from metal acetates using plasma desorption mass spectrometry 

    E-Print Network [OSTI]

    Mendez Silvagnoli, Winston Reinaldo

    1995-01-01

    A novel application of desorption/ionization methods of mass spectrometry, e. g. plasma desorption mass spectrometry (PDMS), is the analysis of both the composition and structure of solid materials in one experiment. Cluster ions emitted from...

  5. Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational Preference

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational conformational isomers of propanal, cis and gauche, are investigated by the vacuum-UV mass- analyzed thresholdV and 9.9516 ( 0.0006 eV, respectively. cis-Propanal, which is the more stable conformer in the neutral

  6. Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant ionization

    E-Print Network [OSTI]

    de Vries, Mattanjah S.

    Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant between isomers of polycyclic aromatic hydrocarbons in the Murchison meteorite. We measured the 2C-R2PI: Resonant ionization; Jet cooling; Mass spectrometry; Polycyclic aromatic hydrocarbons; Murchison meteorite

  7. Competitive ionization processes of anthracene excited with a...

    Office of Scientific and Technical Information (OSTI)

    the ionization mechanism of large molecules under multi-photon ionization conditions, photo-electron spectroscopic studies on anthracene have been performed with electron imaging...

  8. Hot plasma associated with a coronal mass ejection

    SciTech Connect (OSTI)

    Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Miralles, M. P.; Raymond, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hara, H. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-11-20

    We analyze coordinated observations from the EUV Imaging Spectrometer (EIS) and X-Ray Telescope (XRT) on board Hinode of an X-ray Plasma Ejection (XPE) that occurred during the coronal mass ejection (CME) event of 2008 April 9. The XPE was trailing the CME core from behind, following the same trajectory, and could be identified both in EIS and XRT observations. Using the EIS spectrometer, we have determined the XPE plasma parameters, measuring the electron density, thermal distribution, and elemental composition. We have found that the XPE composition and electron density were very similar to those of the pre-event active region plasma. The XPE temperature was higher, and its thermal distribution peaked at around 3 MK; also, typical flare lines were absent from EIS spectra, indicating that any XPE component with temperatures in excess of 5 MK was likely either faint or absent. We used XRT data to investigate the presence of hotter plasma components in the XPE that could have gone undetected by EIS and found that—if at all present—these components have small emission measure values and their temperature is in the 8-12.5 MK range. The very hot plasma found in earlier XPE observations obtained by Yohkoh seems to be largely absent in this CME, although plasma ionization timescales may lead to non-equilibrium ionization effects that could make bright lines from ions formed in a 10 MK plasma not detectable by EIS. Our results supersede the XPE findings of Landi et al., who studied the same event with older response functions for the XRT Al-poly filter; the differences in the results stress the importance of using accurate filter response functions.

  9. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    SciTech Connect (OSTI)

    Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  10. (Resonance ionization spectroscopy and its applications)

    SciTech Connect (OSTI)

    Ramsey, J.M.

    1990-10-11

    The Fifth International Symposium in Resonance Ionization Spectroscopy and Its Applications was attended. The Joint Research Centre of the European Communities at Ispra, Italy was also visited. The traveler presented an invited talk, chaired a meeting session and gave an impromptu presentation on how current laser technology limits the development of commercial instrumentation based upon Resonance Ionization Spectroscopy. The conference was truely international with scientists from 19 countries and less than 1/4 from the US. The meeting also provided a health mixture of experimentalists and theoreticians. Technical developments reported included the use of electric field ionization from laser prepared Rydberg states as a way to reduce background signals and commercial development of an optical parametric oscillator for replacing pulsed dye laser. A speaker from the Soviet Union suggested their willingness to market hardware they have developed based upon the resonance ionization technique.

  11. The warm ionized medium in spiral galaxies

    E-Print Network [OSTI]

    Haffner, L M; Beckman, J E; Wood, K; Slavin, J D; Giammanco, C; Madsen, G J; Zurita, A; Reynolds, R J

    2009-01-01

    This article reviews observations and models of the diffuse ionized gas that permeates the disk and halo of our Galaxy and others. It was inspired by a series of invited talks presented during an afternoon scientific session of the 65th birthday celebration for Professor Carl Heiles held at Arecibo Observatory in August 2004. This review is in recognition of Carl's long standing interest in and advocacy for studies of the ionized as well as the neutral components of the interstellar medium.

  12. Apparatus for preparing a sample for mass spectrometry

    DOE Patents [OSTI]

    Villa-Aleman, E.

    1994-05-10

    An apparatus is described for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed. 1 figures.

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  14. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  15. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  16. X-ray Emission from Ionized Wind-Bubbles around Wolf-Rayet Stars

    E-Print Network [OSTI]

    Dwarkadas, Vikram V

    2015-01-01

    Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the star's evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. O...

  17. Synthesis and design of optimal thermal membrane distillation networks 

    E-Print Network [OSTI]

    Nyapathi Seshu, Madhav

    2006-10-30

    Thermal membrane distillation is one of the novel separation methods in the process industry. It involves the simultaneous heat and mass transfer through a hydrophobic semipermeable membrane through the use of thermal energy to bring about...

  18. Analysis of 3-panel and 4-panel microscale ionization sources

    SciTech Connect (OSTI)

    Natarajan, Srividya; Parker, Charles B.; Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Piascik, Jeffrey R.; Gilchrist, Kristin H. [Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, North Carolina 27709 (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, North Carolina 27709 (United States)

    2010-06-15

    Two designs of a microscale electron ionization (EI) source are analyzed herein: a 3-panel design and a 4-panel design. Devices were fabricated using microelectromechanical systems technology. Field emission from carbon nanotube provided the electrons for the EI source. Ion currents were measured for helium, nitrogen, and xenon at pressures ranging from 10{sup -4} to 0.1 Torr. A comparison of the performance of both designs is presented. The 4-panel microion source showed a 10x improvement in performance compared to the 3-panel device. An analysis of the various factors affecting the performance of the microion sources is also presented. SIMION, an electron and ion optics software, was coupled with experimental measurements to analyze the ion current results. The electron current contributing to ionization and the ion collection efficiency are believed to be the primary factors responsible for the higher efficiency of the 4-panel microion source. Other improvements in device design that could lead to higher ion source efficiency in the future are also discussed. These microscale ion sources are expected to find application as stand alone ion sources as well as in miniature mass spectrometers.

  19. A Climatology of the Tropospheric Thermal Stratification Using Saturation Potential Vorticity

    E-Print Network [OSTI]

    A Climatology of the Tropospheric Thermal Stratification Using Saturation Potential Vorticity the local thermal stratification. Convectively neutral air masses are common not only in the Tropics in winter. 1. Introduction The thermal stratification of the troposphere influ- ences the energies

  20. Memory in Nonlinear Ionization of Transparent Solids

    SciTech Connect (OSTI)

    Rajeev, P. P.; Simova, E.; Hnatovsky, C.; Taylor, R. S.; Rayner, D. M.; Corkum, P. B.; Gertsvolf, M.; Bhardwaj, V. R.

    2006-12-22

    We demonstrate a shot-to-shot reduction in the threshold laser intensity for ionization of bulk glasses illuminated by intense femtosecond pulses. For SiO{sub 2} the threshold change serves as positive feedback reenforcing the process that produced it. This constitutes a memory in nonlinear ionization of the material. The threshold change saturates with the number of pulses incident at a given spot. Irrespective of the pulse energy, the magnitude of the saturated threshold change is constant ({approx}20%). However, the number of shots required to reach saturation does depend on the pulse energy. Recognition of a memory in ionization is vital to understand multishot optical or electrical breakdown phenomena in dielectrics.

  1. Resonance ionization spectroscopy of zirconium atoms

    SciTech Connect (OSTI)

    Page, R.H.; Dropinski, S.C.; Worden, E.F. Jr.; Stockdale, J.A.D.

    1992-05-01

    We have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. Lifetimes of even-parity levels (measured with delayed-photoionization technique) range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10{sup {minus}17} cm{sup 2}; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10{sup {minus}15} cm{sup 2}. Members of Rydberg series converging to the 315 and 1323 cm{sup {minus}1} levels of Zr{sup +} were identified. ``Clumps`` of autoionizing levels are thought to be due to Rydberg-valence mixing.

  2. Ionization energies along beryllium isoelectronic sequence

    E-Print Network [OSTI]

    Malyshev, A V; Glazov, D A; Tupitsyn, I I; Shabaev, V M; Plunien, G

    2015-01-01

    Ionization energies for the ground state of berylliumlike ions with nuclear charge numbers in the range Z=16-96 are rigorously evaluated. The calculations merge the ab initio QED treatment in the first and second orders of the perturbation theory in the fine-structure constant $\\alpha$ with the third- and higher-order electron-correlation contributions evaluated within the Breit approximation. The nuclear recoil and nuclear polarization effects are taken into account. The accuracy of the ionization energies obtained has been significantly improved in comparison with previous calculations.

  3. Deflection Effects in Inner-Shell Ionization 

    E-Print Network [OSTI]

    Swafford, G. L.; Reading, John F.; Ford, A. Lewis; Fitchard, E.

    1977-01-01

    January 1977) Recently a method of calculating inner-shell ionization has been formulated in which Hartree-Pock wave functions are employed and all terms in the Born series retained. Results have so far been presented only in the energy region where... VOLUME 16, NUMBER 3 Deflection effects in inner-shell ionization* SEPTEMBER 1977 G. L. SwafRrd, J. F. Reading, A. L Ford, and E. Fitchard Cyclotron Institute and Department of Physics, Texas A&.M University, College Station, Texas 77843 (Received 10...

  4. Ion Sources and Mass Analyzers in Protein Characterization

    E-Print Network [OSTI]

    Richardson, David

    . Get molecules into the gas phase & ionize them. 2. Give the ions a defined energy or velocity. 3 of analyzers may not always be adequate to distinguish individual peaks. In this case, average masses are used/z are lost. The mass range is scanned as the voltages are swept from min to max, but at constant DC/RF ratio

  5. Muon Cooling via Ionization Andrea Kay Forget

    E-Print Network [OSTI]

    Cinabro, David

    1 Muon Cooling via Ionization Andrea Kay Forget Department of Physics, Wayne State University decay, as a result of their short lives many of the known cooling techniques (electron, stochastic, and laser cooling) cannot be used to properly cool muons that are being used in proposed accelerators

  6. Ionization for Three Dimensional Timedependent Point Interactions

    E-Print Network [OSTI]

    is that the survival probability of the # International School of Advanced Studies SISSA/ISAS, Trieste, Italy. E models in which a non­perturbative solution exists and study the survival probability. In this paper we#ects of multiphoton ionization of excited hydrogen atoms by microwave field, with a good agreement with experiments

  7. Theory of multiphoton ionization of atoms

    SciTech Connect (OSTI)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs.

  8. Composite scintillators for detection of ionizing radiation

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN) [Knoxville, TN; Stephan, Andrew Curtis (Knoxville, TN) [Knoxville, TN; Brown, Suree S. (Knoxville, TN) [Knoxville, TN; Wallace, Steven A. (Knoxville, TN) [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  9. Low pressure electrospray ionization system and process for effective transmission of ions

    DOE Patents [OSTI]

    Tang, Keqi (Richland, WA); Page, Jason S. (Kennewick, WA); Kelly, Ryan T. (Wet Richland, WA); Smith, Richard D. (Richland, WA)

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  10. Low pressure electrospray ionization system and process for effective transmission of ions

    DOE Patents [OSTI]

    Tang, Keqi (Richland, WA); Page, Jason S (Kennewick, WA); Kelly, Ryan T (West Richland, WA); Smith, Richard D (Richland, WA)

    2012-05-08

    Systems and methods that provide up to complete transmission of ions between coupled stages with low effective ion losses. An "interfaceless" electrospray ionization system is further described that operates an electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer. Furthermore, chambers maintained at different pressures can allow for more optimal operating conditions for an electrospray emitter and an ion guide.

  11. Atomic ionization by keV-scale pseudoscalar dark-matter particles

    SciTech Connect (OSTI)

    Dzuba, V. A.; Flambaum, V. V.; Pospelov, M.

    2010-05-15

    Using the relativistic Hartree-Fock approximation, we calculate the rates of atomic ionization by absorption of pseudoscalar particles in the mass range from 10 to {approx}50 keV. We present numerical results for atoms relevant for the direct dark-matter searches (e.g. Ar, Ge, I and Xe), as well as the analytical formula which fits numerical calculations with few per cent accuracy and may be used for multielectron atoms, molecules and condensed matter systems.

  12. Structural Changes and Thermal Stability of Charged LiNix Mny CozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy

    SciTech Connect (OSTI)

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?-m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3-m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  13. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    SciTech Connect (OSTI)

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung -Jin; Kim, Kwang -Bum; Chung, Kyung Yoon; Yang, Xiao -Qing; Nam, Kyung -Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  14. Quantum Theory for Cold Avalanche Ionization in Solids

    SciTech Connect (OSTI)

    Deng, H. X.; Zu, X. T.; Xiang, X.; Sun, K.

    2010-09-10

    A theory of photon-assisted impact ionization in solids is presented. Our theory makes a quantum description of the new impact ionization--cold avalanche ionization recently reported by P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner [Phys. Rev. Lett. 102, 083001 (2009)]. The present theory agrees with the experiments and can be reduced to the traditional impact ionization expression in the absence of a laser.

  15. Vacuum-ultraviolet ionization spectroscopy of the jet-cooled RNA-base Kyo-Won Choi, Joo-Hee Lee and Sang Kyu Kim*

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Vacuum-ultraviolet ionization spectroscopy of the jet-cooled RNA-base uracil Kyo-Won Choi, Joo accurately and precisely determined for the first time using a vacuum-ultraviolet mass-analyzed threshold be used for the clarification of the latter in this report. Here, we employ a vacuum-ultraviolet mass

  16. Ionization-induced annealing of pre-existing defects in silicon carbide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H; Chisholm, Matthew F; Liu, Peng; Xue, Haizhou; Weber, William J

    2015-01-01

    A long-standing objective in materials research is to find innovative ways to remove preexisting damage and heal fabrication defects or environmentally induced defects in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power, high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization processes results in a highly localized thermal spike that can effectively heal preexisting defects and restore the structural order. This work revealsmore »an innovative self-healing process using highly ionizing ions, and it describes a critical aspect to be considered in modeling SiC performance as either a functional or a structural material for device applications or high-radiation environments.« less

  17. Ionization source utilizing a multi-capillary inlet and method of operation

    DOE Patents [OSTI]

    Smith, Richard D.; Kim, Taeman; Udseth, Harold R.

    2004-10-12

    A multi-capillary inlet to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of ions and other charged particles. The multi-capillary inlet is juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure, it finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer, and finds its greatest advantages when deployed in conjunction with an electrodynamic (RF) ion funnel deployed within the interior of the mass spectrometer, particularly an ion funnel equipped with a jet disturber.

  18. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  19. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    15] O. A. Hamed, "THERMAL PERFORMANCE OF MULTISTAGE FLASHdesa4.aspx. [18] Encon, "Thermal Evaporators," June 2013. [http://www.evaporator.com/thermal-evaporator. [19] Y. Tian

  1. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  2. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    This requires no thermal storage tanks, but can have athe need for large thermal storage equipment, the evaporatorinclude analysis of thermal storage. A way of keeping the

  3. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  4. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    SciTech Connect (OSTI)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species [1, 3].

  5. Development of and Application of Plasmonic Nanomaterials for Mass Spectrometry Based Biosensing 

    E-Print Network [OSTI]

    Gamez, Roberto

    2014-05-05

    exhibited by gold (Au) and silver (Ag) nanomaterials have made for versatile platforms in a wide range of applications including surface plasmon biosensing techniques and laser desorption/ionization mass spectrometry (LDI-MS). A primary driver for this work...

  6. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    E-Print Network [OSTI]

    Isselhardt, Brett Hallen

    2011-01-01

    4.5 Uranium Isotope Ratio Measurements . . . . . .4.32 Uranium sputtered from three U-rich materials of varying uranium isotopic

  7. Alloy nanoparticle synthesis using ionizing radiation

    DOE Patents [OSTI]

    Nenoff, Tina M. (Sandia Park, NM); Powers, Dana A. (Albuquerque, NM); Zhang, Zhenyuan (Durham, NC)

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  8. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  9. Genetic variation in resistance to ionizing radiation

    SciTech Connect (OSTI)

    Ayala, F.J.

    1989-01-01

    The very reactive superoxide anion O[sub 2] is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20[sub 2][sup [minus

  10. Thermal Transport in Nanoporous Materials for Energy Applications

    E-Print Network [OSTI]

    Fang, Jin

    2012-01-01

    Thermal Conductivity Measurement . . . . . . . . . . . . .Thermal ConductivityThermal Conductivity . . . . . . . . . . . . . . . .Thermal

  11. ²?²Cf-plasma desorption mass spectrometry of RNA nucleosides 

    E-Print Network [OSTI]

    Piper, Duane Gilbert

    1976-01-01

    . The average energy of the fragments from Cf are 79 MeV for the heavy particle and 104 MeV for the light particle, The plasma de- 22 sorption technique utilizes this energy to ionize the solid target samples. Penetration of the fission fragment... by Cf-plasma desorption mass spectrometry. Sample molecules are 252 volatilized and ionized by high-energy Cf fission particles. The mass of sample ions is determined by accelerating the volatil- ized tons into a flight tube where the ions separate...

  12. Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules

    E-Print Network [OSTI]

    Hansen, Jonas L; Nielsen, Jens H; Stapelfeldt, Henrik; Dimitrovski, Darko; Madsen, Lars Bojer

    2011-01-01

    The yield of strong-field ionization, by a linearly polarized probe pulse, is studied experimentally and theoretically, as a function of the relative orientation between the laser field and the molecule. Experimentally, carbonyl sulfide, benzonitrile and naphthalene molecules are aligned in one or three dimensions before being singly ionized by a 30 fs laser pulse centered at 800 nm. Theoretically, we address the behaviour of these three molecules. We consider the degree of alignment and orientation and model the angular dependence of the total ionization yield by molecular tunneling theory accounting for the Stark shift of the energy level of the ionizing orbital. For naphthalene and benzonitrile the orientational dependence of the ionization yield agrees well with the calculated results, in particular the observation that ionization is maximized when the probe laser is polarized along the most polarizable axis. For OCS the observation of maximum ionization yield when the probe is perpendicular to the intern...

  13. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  14. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; Kruska, Karen

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperatures also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.

  15. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    SciTech Connect (OSTI)

    Kocisek, J.; Lengyel, J.; Farnik, M.

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13.7 eV is discussed in terms of an exciton transfer mechanism.

  16. Resonance ionization detection of combustion radicals

    SciTech Connect (OSTI)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  17. Waveshifters and Scintillators for Ionizing Radiation Detection

    SciTech Connect (OSTI)

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  18. Nonproliferation and safeguarding via ionization detection

    SciTech Connect (OSTI)

    Koster, J.E.; Johnson, J.P.; Steadman, P.

    1995-05-01

    A significant signature of the presence of special nuclear material (SNM) is ionizing radiation. SNM naturally decays with the emission of alpha particles, gamma rays, and neutrons. Detecting and monitoring these emissions is an important capability for international safeguards. A new detection method collects the ions produced by such radiation in ambient air. Alpha particles in particular are specific to heavy nuclei but have very short range. The ions produced by an alpha, however, can be transported tens of meters to an ion detector. These new monitors are rugged, very sensitive, respond in real time, and in most cases are quite portable.

  19. An empirical dependence of frequency in the oscillatory sorption of H2 and D2 in Pd on the first ionization potential of noble gases

    E-Print Network [OSTI]

    Lalik, Erwin

    2011-01-01

    Oscillatory heat evolution in sorption of H2 and D2 in Pd can be induced by admixture of ca. 10 % vol. of inert gases He, Ne, Ar, Kr or N2 to either isotope prior to its contact with palladium powder. The oscillations are represented in a form of calorimetric time series, recorded using gas flow-through microcalorimeter at the temperatures of 75 {\\deg}C for D2 and 106 {\\deg}C for H2. For both D2 and H2, the oscillation parameters changes as a function of the kind of inert gas used: the amplitude increases and the frequency decreases in passing from He to Kr. An empirical dependence of the oscillation frequencies observed for various admixtures and normalized with respect to Kr has been found. Accordingly, the frequency is a function of a product of the first ionization potential and the square root of atomic mass of the inert gas (He, Ne, Ar, Kr or N2). On the other hand, invariance of the thermal effects of sorption is evident from the integrated areas under the calorimetric time series yielding the molar he...

  20. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect (OSTI)

    M. L. Adamic; J. E. Olson; D. D. Jenson; J. G. Eisenmenger; M. G. Watrous

    2012-09-01

    This NA 22 funded research project investigated the transition of iodine isotopic analyses from thermal ionization mass spectrometry (TIMS) to an accelerator mass spectrometry (AMS) system. Previous work (Fiscal Year 2010) had demonstrated comparable data from TIMS and AMS. With AMS providing comparable data with improved background levels and vastly superior sample throughput, improvement in the sample extraction from environmental sample matrices was needed to bring sample preparation throughput closer to the operation level of the instrument. Previous research used an extraction chemistry that was not optimized for yield or refined for reduced labor to prove the principle. This research was done to find an extraction with better yield using less labor per sample to produce a sample ready for the AMS instrument. An extraction method using tetramethyl ammonium hydroxide (TMAH) was developed for removal of iodine species from high volume air filters. The TMAH with gentle heating was superior to the following three extraction methods: ammonium hydroxide aided by sonication, acidic and basic extraction aided by microwave, and ethanol mixed with sodium hydroxide. Taking the iodine from the extraction solvent to being ready for AMS analysis was accomplished by a direct precipitation, as well as, using silver wool to harvest the iodine from the TMAH. Portions of the same filters processed in FY 2010 were processed again with the improved extraction scheme followed by successful analysis by AMS at the Swiss Federal Institute of Technology. The data favorably matched the data obtained in 2010. The time required for analysis has been reduced over the aqueous extraction/AMS approach developed in FY 2010. For a hypothetical batch of 30 samples, the AMS methodology is about 10 times faster than the traditional gas phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than TIMS. This results from the fundamental mechanisms of ionization in the AMS system and which produces a beneficial cleanup of molecular interferences. Continued clean operation of the extraction process was demonstrated through blank analysis included with all sample sets analyzed. INL work showed improvement on the first year’s demonstration of AMS vs. TIMS. An improved extraction of high volume air filters followed by isotopic analysis by AMS, can be used successfully to make iodine measurements with results comparable to those obtained by filter combustion and TIMS analysis. More progress on the conversion from an extract solution to an AMS sample ready for analysis is still needed. Although the preparation scheme through AMS is already at a higher performing thoughput than TIMS, the chemical preparation cannot match the instrument capability for number of samples per day without further development.

  1. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  2. Ionized channel generation of an intense-relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A. (Albuquerque, NM); Leifeste, Gordon T. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM)

    1988-01-01

    A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.

  3. IONIZING RADIATION RISKS TO SATELLITE POWER SYSTEMS (SPS) WORKERS

    E-Print Network [OSTI]

    Lyman, J.T.

    2010-01-01

    of carcinogenesis at low-dose radiation. These include: theeffect of low-dose ionizing radiation. Different organs and1980). However, low doses of radiation may accelerate the

  4. Evolution of extreme resistance to ionizing radiation via genetic...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Published Article: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair Title: Evolution of extreme resistance to...

  5. Dielectric liquid ionization chambers for detecting fast neutrons

    E-Print Network [OSTI]

    Boyd, Erin M

    2008-01-01

    Three ionization chambers with different geometries have been constructed and filled with dielectric liquids for detection of fast neutrons. The three dielectric liquids studied were Tetramethylsilane (TMS), Tetramethylpentane ...

  6. Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen...

    Office of Scientific and Technical Information (OSTI)

    Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen, Kristoffer A. Los Alamos National Laboratory; Fontes, Christopher J. Los Alamos National Laboratory; Colgan,...

  7. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

    2012-05-20

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  8. Thermal effects in radiation processing

    SciTech Connect (OSTI)

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  9. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  10. IONIZING RADIATION FROM z = 4-10 GALAXIES

    SciTech Connect (OSTI)

    Razoumov, Alexei O. [Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Mary's University, Halifax, NS, B3H 3C3 (Canada); Sommer-Larsen, Jesper, E-mail: razoumov@ap.smu.c, E-mail: jslarsen@astro.ku.d [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2010-02-20

    We compute the escape of ionizing radiation from galaxies in the redshift interval z = 4-10, i.e., during and after the epoch of reionization, using a high-resolution set of galaxies, formed in fully cosmological simulations. The simulations invoke early, energetic feedback, and the galaxies evolve into a realistic population at z = 0. Our galaxies cover nearly four orders of magnitude in masses (10{sup 7.8}-10{sup 11.5} M{sub sun}) and more than five orders in star formation rates (10{sup -3.5}-10{sup 1.7} M{sub sun} yr{sup -1}), and we include an approximate treatment of dust absorption. We show that the source-averaged Lyman limit escape fraction at z = 10.4 is close to 80% declining monotonically with time as more massive objects build up at lower redshifts. Although the amount of dust absorption is uncertain to 1-1.5 dex, it is tightly correlated with metallicity; we find that dust is unlikely to significantly impact the observed UV output. These results support reionization by stellar radiation from low-luminosity dwarf galaxies and are also compatible with Lyman continuum observations and theoretical predictions at z {approx} 3-4.

  11. Washington State University Vancouver Mech 442/542 Advanced Thermal Systems Mechanical Engineering Spring 2013 Syllabus

    E-Print Network [OSTI]

    the conservation laws (e.g. mass, momentum, and energy) to thermal systems under steady-state and transient and thermal management, microchannel heat transfer, energy resources, renewable energy, thermal systems. Thermal energy systems 5. Energy resources and renewable energy #12;Washington State University Vancouver

  12. Effects of thermal fluctuations on thermal inflation

    E-Print Network [OSTI]

    Takashi Hiramatsu; Yuhei Miyamoto; Jun'ichi Yokoyama

    2014-12-25

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  14. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  15. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  16. Quark Masses

    SciTech Connect (OSTI)

    Gasser, Juerg

    2005-10-26

    In my talk, I reviewed some basic aspects of quark masses: what do they mean, how can they be determined, what is our present knowledge on them. The talk was addressed to non specialists in the field, and so is this write up.

  17. Characterization of ionized carbenes in the gas phase Robert Flammanga,

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Characterization of ionized carbenes in the gas phase Robert Flammanga, *, Minh Tho Nguyenb , Guy yet. This review is dealing with the characterization of such ionized carbenes and related ions years or so, will be divided in (1) the identification of carbenes RTMCTMR, (2) the characterization

  18. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  19. DNA Engine Thermal Cycler

    E-Print Network [OSTI]

    Raizada, Manish N.

    ® Peltier Thermal Cycler PTC-0200 DNA Engine Cycler Operations Manual Version 4.0 #12;ii Tech Support: 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi The DNA Engine® Peltier Thermal Cycler Introduction

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  1. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  2. Ionization source utilizing a jet disturber in combination with an ion funnel and method of operation

    DOE Patents [OSTI]

    Smith, Richard D. (Richland, WA); Kim, Taeman (Richland, WA); Tang, Keqi (Richland, WA); Udseth, Harold R. (Richland, WA)

    2003-06-24

    A jet disturber used in combination with an ion funnel to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of the ions and other charged particles. The jet disturber is positioned within an ion funnel and may be interfaced with a multi-capillary inlet juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure. The invention finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer.

  3. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect (OSTI)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  4. The effect of recombination radiation on the temperature and ionization state of partially ionized gas

    E-Print Network [OSTI]

    Rai?evi?, Milan; Schaye, Joop; Rahmati, Alireza

    2013-01-01

    A substantial fraction of all ionizing photons originate from radiative recombinations. However, in radiative transfer calculations this recombination radiation is often assumed to be absorbed 'on-the-spot' because for most methods the computational cost associated with the inclusion of gas elements as sources is prohibitive. We present a new, CPU and memory efficient implementation for the transport of ionizing recombination radiation in the TRAPHIC radiative transfer scheme. TRAPHIC solves the radiative transfer equation by tracing photon packets at the speed of light and in a photon-conserving manner in spatially adaptive smoothed particle hydrodynamics simulations. Our new implementation uses existing features of the TRAPHIC scheme to add recombination radiation at no additional cost in the limit in which the fraction of the simulation box filled with radiation approaches 1. We test the implementation by simulating an HII region in photoionization equilibrium and comparing to reference solutions presented...

  5. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect (OSTI)

    Yalin, Azer P., E-mail: ayalin@engr.colostate.edu; Dumitrache, Ciprian [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Wilvert, Nick [Sandia Laboratory, Albuquerque, New Mexico 87123 (United States); Joshi, Sachin [Cummins Inc., Columbus, Indiana 47201 (United States); Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-10-15

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266?nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064?nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ?10?ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  6. Isotope effect in tunnelling ionization of neutral hydrogen molecules

    E-Print Network [OSTI]

    Wang, X; Atia-Tul-Noor, A; Hu, B T; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2015-01-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates (O.I. Tolstikhin, H.J. Worner and T. Morishita, Phys. Rev. A 87, 041401(R) (2013) [1]). We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  7. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    SciTech Connect (OSTI)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-09

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  8. Thermally stable surfactants and compositions and methods of use thereof

    DOE Patents [OSTI]

    Chaiko, David J. (Woodridge, IL)

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  9. Spontaneous thermal Leptogenesis via Majoron oscillation

    E-Print Network [OSTI]

    Ibe, Masahiro

    2015-01-01

    A novel model of spontaneous Leptogenesis is investigated, where it takes place in the thermal equilibrium due to a background Nambu-Goldstone field in motion. In particular, we identify the Nambu-Goldstone field to be the Majoron which associates with spontaneous breakdown of (discrete) $B-L$ symmetry. In this scenario sufficient lepton number asymmetry is generated in primordial thermal bath without having $CP$-violating out-of-equilibrium decay of the heavy right-handed Majorana neutrinos. To obtain the observed baryon asymmetry, the neutrino masses are predicted in certain ranges, which can be translated into the effective mass of the neutrinoless double beta decay.

  10. Escape fraction of ionizing photons during reionization: Effects due to supernova feedback and runaway ob stars

    SciTech Connect (OSTI)

    Kimm, Taysun; Cen, Renyue [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States)

    2014-06-20

    The fraction of hydrogen ionizing photons escaping from galaxies into the intergalactic medium is a critical ingredient in the theory of reionization. We use two zoomed-in, high-resolution (4 pc), cosmological radiation hydrodynamic simulations with adaptive mesh refinement to investigate the impact of two physical mechanisms (supernova, SN, feedback, and runaway OB stars) on the escape fraction (f {sub esc}) at the epoch of reionization (z ? 7). We implement a new, physically motivated SN feedback model that can approximate the Sedov solutions at all (from the free expansion to snowplow) stages. We find that there is a significant time delay of about ten million years between the peak of star formation and that of escape fraction, due to the time required for the build-up and subsequent destruction of the star-forming cloud by SN feedback. Consequently, the photon number-weighted mean escape fraction for dwarf galaxies in halos of mass 10{sup 8}-10{sup 10.5} M {sub ?} is found to be ?f{sub esc}??11%, although instantaneous values of f {sub esc} > 20% are common when star formation is strongly modulated by the SN explosions. We find that the inclusion of runaway OB stars increases the mean escape fraction by 22% to ?f{sub esc}??14%. As SNe resulting from runaway OB stars tend to occur in less dense environments, the feedback effect is enhanced and star formation is further suppressed in halos with M{sub vir}?10{sup 9} M{sub ?} in the simulation with runaway OB stars compared with the model without them. While both our models produce enough ionizing photons to maintain a fully ionized universe at z ? 7 as observed, a still higher amount of ionizing photons at z ? 9 appears necessary to accommodate the high observed electron optical depth inferred from cosmic microwave background observations.

  11. Enhancing The Sensitivity of Miniaturized Quadrupole Mass Spectrometers Bodgan Wilamowski1

    E-Print Network [OSTI]

    Wilamowski, Bogdan Maciej

    and have high power requirements. The optimum solution would be to have a miniaturized portable mass is the distance between hyperbolic rods. 2ro o- o- o+o+ y x z (a) Heater Ionizer NeutralIons RF system mass filter in the space between the quadrupoles. To the right of curve X, light ions hit the left or right poles

  12. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    Institute for Research in the Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado C-130 aircraft study near Mexico City, showing high correlation with independent measurements high vacuum followed by electron impact ionization (EI) and mass analysis by a quadrupole mass

  13. Resonance ionization laser ion sources for on-line isotope separators...

    Office of Scientific and Technical Information (OSTI)

    Resonance ionization laser ion sources for on-line isotope separators (invited) Citation Details In-Document Search Title: Resonance ionization laser ion sources for on-line...

  14. Thermal Regimes of Northeast Streams

    E-Print Network [OSTI]

    Thermal Loading (USGS) Stormwater and Streams ­ Optimizing Stormwater Management to Protect the Thermal

  15. Resonant photo-ionization of Yb+ to Yb2+

    E-Print Network [OSTI]

    Simon Heugel; Martin Fischer; Vladimir Elman; Robert Maiwald; Markus Sondermann; Gerd Leuchs

    2015-12-07

    We demonstrate the controlled creation of a $\\mathrm{^{174}Yb^{2+}}$ ion by photo-ionizing $\\mathrm{^{174}Yb^+}$ with weak continuous-wave lasers at ultraviolet wavelengths. The photo-ionization is performed by resonantly exciting transitions of the $\\mathrm{^{174}Yb^+}$ ion in three steps. Starting from an ion crystal of two laser-cooled $\\mathrm{^{174}Yb^+}$ ions localized in a radio-frequency trap, the verification of the ionization process is performed by characterizing the properties of the resulting mixed-species ion-crystal. The obtained results facilitate fundamental studies of physics involving $\\mathrm{Yb^{2+}}$ ions.

  16. Ionization and scintillation of nuclear recoils in gaseous xenon

    E-Print Network [OSTI]

    J. Renner; V. M. Gehman; A. Goldschmidt; H. S. Matis; T. Miller; Y. Nakajima; D. Nygren; C. A. B. Oliveira; D. Shuman; V. Álvarez; F. I. G. Borges; S. Cárcel; J. Castel; S. Cebrián; A. Cervera; C. A. N. Conde; T. Dafni; T. H. V. T. Dias; J. Díaz; R. Esteve; P. Evtoukhovitch; L. M. P. Fernandes; P. Ferrario; A. L. Ferreira; E. D. C. Freitas; A. Gil; H. Gómez; J. J. Gómez-Cadenas; D. González-Díaz; R. M. Gutiérrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; F. J. Iguaz; I. G. Irastorza; M. A. Jinete; L. Labarga; A. Laing; I. Liubarsky; J. A. M. Lopes; D. Lorca; M. Losada; G. Luzón; A. Marí; J. Martín-Albo; A. Martínez; A. Moiseenko; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Muñoz Vidal; H. Natal da Luz; G. Navarro; M. Nebot-Guinot; R. Palma; J. Pérez; J. L. Pérez Aparicio; L. Ripoll; A. Rodríguez; J. Rodríguez; F. P. Santos; J. M. F. dos Santos; L. Seguí; L. Serra; A. Simón; C. Sofka; M. Sorel; J. F. Toledo; A. Tomás; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; J. A. Villar; R. C. Webb; J. White; N. Yahlali

    2014-09-09

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  17. Laser stripping of hydrogen atoms by direct ionization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brunetti, E.; Becker, W.; Bryant, H. C.; Jaroszynski, D. A.; Chou, W.

    2015-05-08

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.

  18. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    SciTech Connect (OSTI)

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  19. Multiple ionization of Ar by F{sup -} impact: Projectile-electron-loss and direct-ionization collision channels

    SciTech Connect (OSTI)

    Sant'Anna, M. M.; Zappa, F.; Santos, A. C. F.; Coelho, L. F. S.; Wolff, W.; Barros, A. L. F. de; Castro Faria, N. V. de [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro 21941-972 (Brazil)

    2006-08-15

    We have measured single- and multiple-target ionization cross sections for the F{sup -}+Ar collision system. Measurements of the final target and projectile charge states were performed in coincidence, separating the collision channels for single-, double-, and triple-projectile-electron loss and for direct ionization. The studied velocity region extends from v=0.46 to v=1.45 atomic units. Results are compared with existing H{sup -}+Ar data as well as with Ar multiple ionization by protons, electrons, and antiprotons. For the direct-ionization channel, ratios for multiple-to-single target ionization are similar to those found for H{sup +}+Ar collisions. For this channel multiple ionization is well described by independent single-ionization events by a frozen projectile. For the projectile-electron-loss collision channels, on the other hand, the correlation between projectile electrons and target electrons plays an important role. Our data show that the average final charge state of the target, , increases steeply with the final charge state of the projectile, while an independent-particle model (neglecting two-center electron-electron correlation) only accounts for small variations of .

  20. Thermal Effects of Moisture in Rigid Insulation Board 

    E-Print Network [OSTI]

    Crow, G. W.

    1992-01-01

    The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy...

  1. Thermal dileptons at SPS energies

    E-Print Network [OSTI]

    S. Damjanovic; for the NA60 Collaboration

    2008-05-27

    Clear signs of excess dileptons above the known sources were found at the SPS since long. However, a real clarification of these observations was only recently achieved by NA60, measuring dimuons with unprecedented precision in 158A GeV, In-In collisions. The excess mass spectrum in the region M rho -> mu+mu- annihilation. The associated rho spectral function shows a strong broadening, but essentially no shift in mass. In the region M>1 GeV, the excess is found to be prompt, not due to enhanced charm production. The inverse slope parameter Teff associated with the transverse momentum spectra rises with mass up to the rho, followed by a sudden decline above. While the initial rise, coupled to a hierarchy in hadron freeze-out, points to radial flow of a hadronic decay source, the decline above signals a transition to a low-flow source, presumably of partonic origin. The mass spectra show at low transverse momenta the steep rise towards low masses characteristic for Planck-like radiation. The polarization of the excess referred to the Collins Soper frame is found to be isotropic. All observations are consistent with the interpretation of the excess as thermal radiation.

  2. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, B.D.; Fought, E.R.

    1989-09-19

    A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

  3. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D. (Pleasanton, CA); Fought, Eric R. (Livermore, CA)

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  4. On The Thermal Consolidation Of Boom Clay

    E-Print Network [OSTI]

    Delage, Pierre; Cui, Yu-Jun

    2012-01-01

    When a mass of saturated clay is heated, as in the case of host soils surrounding nuclear waste disposals at great depth, the thermal expansion of the constituents generates excess pore pressures. The mass of clay is submitted to gradients of pore pressure and temperature, to hydraulic and thermal flows, and to changes in its mechanical properties. In this work, some of these aspects were experimentally studied in the case of Boom clay, so as to help predicting the response of the soil, in relation with investigations made in the Belgian underground laboratory at Mol. Results of slow heating tests with careful volume change measurements showed that a reasonable prediction of the thermal expansion of the clay-water system was obtained by using the thermal properties of free water. In spite of the density of Boom clay, no significant effect of water adsorption was observed. The thermal consolidation of Boom clay was studied through fast heating tests. A simple analysis shows that the hydraulic and thermal trans...

  5. A compact neutron generator using a field ionization source

    E-Print Network [OSTI]

    Persaud, Arun

    2012-01-01

    Handbook of Fast Neutron Generators Volume I (CRC Press,A compact neutron generator using a ?eld ionization sourcewell logging with neutron generators. 2 Due to the harsh en-

  6. Rules and Regulations for Control of Ionizing Radiation (Arkansas)

    Broader source: Energy.gov [DOE]

    The Rules and Regulations for Control of Ionizing Radiation are the Arkansas state laws made in accordance the federal Nuclear Regulatory Commission Rules. Any contractor with the US DOE or US...

  7. Selective enhancement of resonant multiphoton ionization with strong laser fields

    E-Print Network [OSTI]

    Li, Min; Luo, Siqiang; Zhou, Yueming; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2015-01-01

    High-resolution photoelectron momentum distributions of Xe atom ionized by 800-nm linearly polarized laser fields have been traced at intensities from 1.1*1013 W/cm2 to 3.5*1013 W/cm2 using velocity-map imaging techniques. At certain laser intensities, the momentum spectrum exhibits a distinct double-ring structure for low-order above-threshold ionization, which appears to be absent at lower or higher laser intensities. By investigating intensity-resolved photoelectron energy spectrum, we find that this double-ring structure originates from resonant multiphoton ionization involving multiple Rydberg states of atoms. Varying the laser intensity, we can selectively enhance multiphoton excitation of atomic Rydberg populations. The photoelectron angular distributions of multiphoton resonance are also investigated for the low-order above threshold ionization.

  8. 22.01 Introduction to Ionizing Radiation, Fall 2003

    E-Print Network [OSTI]

    Coderre, Jeffrey A.

    Introduction to basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. Discusses natural and man-made radiation sources, energy deposition and dose calculations, ...

  9. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  10. The Propagation of Photons in the Dilute Ionized Gas

    E-Print Network [OSTI]

    Yijia Zheng

    2013-05-02

    The dilute ionized gas is very popular in the Universe. Usually only the Compton interactions, the "Sunyaev-Zel'dovich" effect, were considered while photons propagated in this medium. In this paper the "soft-photon process" is considered. Due to the soft photons emitted during the propagation of a photon in the dilute ionized gas, the main photon (propagating in the original direction) will be redshifted. The formula to calculate this redshift is derived.

  11. Performance studies of scintillating ceramic samples exposed to ionizing radiation

    E-Print Network [OSTI]

    Dissertori, G; Nessi-Tedaldi, F; Pauss, F; Wallny, R

    2012-01-01

    Scintillating ceramics are a promising, new development for various applications in science and industry. Their application in calorimetry for particle physics experiments is expected to involve an exposure to high levels of ionizing radiation. In this paper, changes in performance have been measured for scintillating ceramic samples of different composition after exposure to penetrating ionizing radiation up to a dose of 38 kGy.

  12. Performance studies of scintillating ceramic samples exposed to ionizing radiation

    E-Print Network [OSTI]

    G. Dissertori; D. Luckey; F. Nessi-Tedaldi; F. Pauss; R. Wallny

    2012-11-16

    Scintillating ceramics are a promising, new development for various applications in science and industry. Their application in calorimetry for particle physics experiments is expected to involve an exposure to high levels of ionizing radiation. In this paper, changes in performance have been measured for scintillating ceramic samples of different composition after exposure to penetrating ionizing radiation up to a dose of 38 kGy.

  13. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect (OSTI)

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  14. Measurement of the top quark mass in the dilepton channel

    E-Print Network [OSTI]

    Baringer, Philip S.; Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.

    1999-07-14

    radiative corrections, the value of the top quark mass affects predic- tions of the standard model for many processes. For ex- ample, the prediction for the mass of the W boson varies by approximately 7 MeV1 for every 1 GeV change in the mass of the top... subdetectors that measure the trajectories of charged par- ticles: a vertex drift chamber, a transition radiation detector, a central drift chamber, and two forward drift chambers. These chambers also measure ionization to identify tracks from single charged...

  15. Discovering Inelastic Thermal-Relic Dark Matter at Colliders

    E-Print Network [OSTI]

    Izaguirre, Eder; Shuve, Brian

    2015-01-01

    Dark Matter particles with inelastic interactions are ubiquitous in extensions of the Standard Model, yet remain challenging to fully probe with existing strategies. We propose a series of powerful searches at hadron and lepton colliders that are sensitive to inelastic dark matter dynamics. In representative models, we find that the LHC and BaBar could offer strong sensitivity to the thermal-relic dark matter parameter space for dark matter masses between ~100 MeV-100 GeV and fractional mass-splittings above the percent level; future searches at Belle II with a dedicated monophoton trigger could also offer sensitivity to thermal-relic scenarios with masses below a few GeV. Thermal scenarios with either larger masses or splittings are largely ruled out; lower masses remain viable yet may be accessible with other search strategies.

  16. Thermal and Electrical Transport in Oxide Heterostructures

    E-Print Network [OSTI]

    Ravichandran, Jayakanth

    2011-01-01

    of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

  17. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  18. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

  19. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    time-varying solar energy inputs and thermal or powerthermal energy becomes apparent with the development of solar

  20. Large-scale shock-ionized and photo-ionized gas in M83: the impact of star formation

    E-Print Network [OSTI]

    Hong, Sungryong; Dopita, Michael A; Blair, William P; Whitmore, Bradley C; Balick, Bruce; Bond, Howard E; Carollo, Marcella; Disney, Michael J; Frogel, Jay A; Hall, Donald; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; O'Connell, Robert W; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I; Trauger, John T; Walker, Alistair R; Windhorst, Rogier A; Young, Erick T; Mutchler, Max

    2011-01-01

    We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 \\degA)/H{\\beta} vs. [S II](6716 \\deg A+6731 \\deg A)/H{\\alpha} with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (0.2" x 0.2") basis and compare it with several photo- and shock-ionization models. For the photo-ionized gas, we observe a gradual increase of the log([O III]/H{\\beta}) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photo-ionized from the shock-ionized component of the gas. We find that the shock-ionized H{\\alpha} emission ranges from ~2% to about 15-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is an horizontal distribution aro...

  1. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    SciTech Connect (OSTI)

    Higginbottom, Nick; Knigge, Christian; Matthews, James H. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Proga, Daniel [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sim, Stuart A., E-mail: nick_higginbottom@fastmail.fm [School of Mathematics and Physics, Queens University Belfast, University Road, Belfast, BT7 1NN (United Kingdom)

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  2. Multiwavelength Thermal Emission

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

  3. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  4. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  5. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  6. Novel Analytical Methods for Examining Biomolecular Complexes Using Electrospray Ionization Mass Spectrometry

    E-Print Network [OSTI]

    Flick, Tawnya Grace

    2012-01-01

    Annual Review of Analytical Chemistry; Annual Reviews: PaloD. ; Aebersold, R. Analytical Chemistry 2000, 72, 1112-1118.S. ; Amster, I. J. Analytical Chemistry 2006, 78, 3417-3423.

  7. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy

    E-Print Network [OSTI]

    Seeram, Navindra P; Lee, R; Scheuller, H S; Heber, D

    2006-01-01

    biological properties of strawberries as whole fruits ratherincreased by consumption of strawberries, spinach, red wine,Inhibitory effect of whole strawberries, garlic juice or

  8. Dilution-Free Analysis from Picoliter Droplets by Nano-Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Page, Jason S.; Marginean, Ioan; Tang, Keqi; Smith, Richard D.

    2009-09-01

    The expanding role of microfluidics for chemical and biochemical analysis is due to factors including the favorable scaling of separation performance with reduced channel dimensions,[1] flexibility afforded by computer-aided device design, and the ability to integrate multiple sample handling and analysis steps into a single platform.[2] Such devices enable smaller liquid volumes and sample sizes to be handled than can be achieved on the benchtop, where sub-microliter volumes are difficult to work with and where sample losses to the surfaces of multiple reaction vessels become prohibitive. A particularly attractive microfluidic platform for sample-limited analyses employs aqueous droplets or plugs encapsulated by an immiscible oil.[3,4] Each droplet serves as a discrete compartment or reaction chamber enabling, e.g., high throughput screening[5,6] and kinetic studies[7-9] of femto- to nanoliter samples, as well as the encapsulation[10-12] and lysis[10] of individual cells with limited dilution of the cellular contents

  9. Developments and Applications of Electrophoresis and Small Molecule Laser Desorption Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Hui Zhang

    2007-12-01

    Ultra-sensitive native fluorescence detection of proteins with miniaturized one- and two-dimensional polyacrylamide gel electrophoresis was achieved with laser side-entry excitation, which provides both high excitation power and low background level. The detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE was as low as 15 fg, which corresponds to 40 thousand molecules only. The average detection limit of six standard native proteins was 5 pg per band and the dynamic range spanned more than 3 orders of magnitude. Approximately 150 protein spots from 30 ng of total Escherichia coli extraction were detected on a 0.8 cm x 1 cm gel in two-dimensional separation. Estrogen-DNA adducts as 4-OHE{sub 1}(E{sub 2})-1-N3Ade and 4-OHEI(E2)-2-NacCys were hypothesized as early risk assessment of prostate and breast cancers. Capillary electrophoresis, luminescence/absorption spectroscopy and LC-MS were used to characterize and detect these adducts. Monoclonal antibodies against each individual adduct were developed and used to enrich such compounds from urine samples of prostate and breast cancer patients as well as healthy people. Adduct 4-OHE{sub 1}-1-N3Ade was detected at much higher level in urine from subjects with prostate cancer patients compared to healthy males. The same adduct and 4-OHEI-2-NacCys were also detected at a much higher level in urine from a woman with breast carcinoma than samples from healthy controls. These two DNA adducts may serve as novel biomarkers for early diagnostic of cancers. The adsorption properties of R-phycoerythrin (RPE), on the fused-silica surface were studied using capillary electrophoresis (CE) and single molecule spectroscopy. The band shapes and migration times were measured in CE. Adsorption and desorption events were recorded at the single-molecule level by imaging of the evanescent-field layer using total internal reflection. The adsorbed RPE molecules on the fused-silica prism surface were counted with confidence based on Imagej software. The capacity factor and desorption rate were estimated from the counting results. The mobility-based adsorption isotherms were constructed from both computer simulations and experiments to determine the capacity factor.

  10. Factors Affecting Quantitative Analysis in Laser Desorption/Laser Ionization Mass Spectrometry

    E-Print Network [OSTI]

    Zare, Richard N.

    for polycyclic aromatic hydrocarbons (PAHs), lower than many conventional analytical techniques.20,21 * To whom of trace organic compounds, particularly polycyclic aromatic hydrocarbons (PAHs). Recent efforts have of complex mixtures. µL2MS has been most widely used to detect polycyclic aromatic hydrocarbons (PAHs

  11. Nanophotonic Ionization for Ultratrace and Single-Cell Analysis by Mass Spectrometry

    E-Print Network [OSTI]

    Vertes, Akos

    , and explosives. Quantitation of resveratrol in red wine samples shows that the analysis of targeted analytes

  12. Resonant Two-Photon Ionization Mass Spectrometry of Jet-Cooled Phenolic Acids and

    E-Print Network [OSTI]

    de Vries, Mattanjah S.

    , protocatechuic acid, syringic acid, vanillic acid, and trans-resveratrol are vibronically resolved and distinct of antioxidants and secondary metabolites.1 trans-Resveratrol, a polyphenol, is produced by a variety of plants in trans-resveratrol in recent years due to its anticancer4 and antiaging5,6 effects as well as its

  13. DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. I. ESCAPE OF IONIZING PHOTONS

    SciTech Connect (OSTI)

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); Wise, John H. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA (United States); Turk, Matthew J. [Department of Astronomy and Astrophysics, Columbia University, New York, NY (United States); Abel, Tom, E-mail: me@jihoonkim.org [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA (United States)

    2013-10-01

    We describe a new method for simulating ionizing radiation and supernova feedback in the analogs of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve the radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3 × 10{sup 11} M{sub ?}, we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ?20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60° from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f{sub esc}(i), and how it evolves as the particle ages. We discover that the average escape fraction f{sub esc} is dominated by a small number of SFMC particles with high f{sub esc}(i). On average, the escape fraction from an SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myr. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump and from a galactic disk.

  14. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  15. Novel Boron Based Multilayer Thermal Neutron Detector

    E-Print Network [OSTI]

    M. SCHIEBER; O. KHAKHAN

    2010-06-09

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accordingly.

  16. Non-equilibrium of Ionization and the Detection of Hot Plasma in Nanoflare-heated Coronal Loops

    E-Print Network [OSTI]

    Fabio Reale; Salvatore Orlando

    2008-05-22

    Impulsive nanoflares are expected to transiently heat the plasma confined in coronal loops to temperatures of the order of 10 MK. Such hot plasma is hardly detected in quiet and active regions, outside flares. During rapid and short heat pulses in rarified loops the plasma can be highly out of equilibrium of ionization. Here we investigate the effects of the non-equilibrium of ionization (NEI) on the detection of hot plasma in coronal loops. Time-dependent loop hydrodynamic simulations are specifically devoted to this task, including saturated thermal conduction, and coupled to the detailed solution of the equations of ionization rate for several abundant elements. In our simulations, initially cool and rarified magnetic flux tubes are heated to 10 MK by nanoflares deposited either at the footpoints or at the loop apex. We test for different pulse durations, and find that, due to NEI effects, the loop plasma may never be detected at temperatures above ~5 MK for heat pulses shorter than about 1 min. We discuss some implications in the framework of multi-stranded nanoflare-heated coronal loops.

  17. The mean molecular mass of Titan's atmosphere

    E-Print Network [OSTI]

    Withers, Paul

    , Mars, Mars #12;Science Questions · Mean molecular mass (µ) -> Chemical composition · How did Titan form? · Current reservoirs of volatiles · Ethane/methane puddles/ocean · Thermal structure of atmosphere #12, delicate, etc ­ T/p sensors are simple, cheap, reliable · Is it possible to know µ based on simple

  18. Focused analyte spray emission apparatus and process for mass spectrometric analysis

    DOE Patents [OSTI]

    Roach, Patrick J. (Kennewick, WA); Laskin, Julia (Richland, WA); Laskin, Alexander (Richland, WA)

    2012-01-17

    An apparatus and process are disclosed that deliver an analyte deposited on a substrate to a mass spectrometer that provides for trace analysis of complex organic analytes. Analytes are probed using a small droplet of solvent that is formed at the junction between two capillaries. A supply capillary maintains the droplet of solvent on the substrate; a collection capillary collects analyte desorbed from the surface and emits analyte ions as a focused spray to the inlet of a mass spectrometer for analysis. The invention enables efficient separation of desorption and ionization events, providing enhanced control over transport and ionization of the analyte.

  19. Three Dimensional Structure and Energy Balance of a Coronal Mass Ejection

    E-Print Network [OSTI]

    J. -Y. Lee; J. C. Raymond; Y. -K. Ko; K. -S. Kim

    2008-10-27

    The Ultraviolet Coronagraph Spectrometer (UVCS) observed Doppler shifted material of a partial Halo Coronal Mass Ejection (CME) on December 13 2001. The observed ratio of [O V]/O V] is a reliable density diagnostic important for assessing the state of the plasma. Earlier UVCS observations of CMEs found evidence that the ejected plasma is heated long after the eruption. We have investigated the heating rates, which represent a significant fraction of the CME energy budget. The parameterized heating and radiative and adiabatic cooling have been used to evaluate the temperature evolution of the CME material with a time dependent ionization state model. The functional form of a flux rope model for interplanetary magnetic clouds was also used to parameterize the heating. We find that continuous heating is required to match the UVCS observations. To match the O VI-bright knots, a higher heating rate is required such that the heating energy is greater than the kinetic energy. The temperatures for the knots bright in Ly$\\alpha$ and C III emission indicate that smaller heating rates are required for those regions. In the context of the flux rope model, about 75% of the magnetic energy must go into heat in order to match the O VI observations. We derive tighter constraints on the heating than earlier analyses, and we show that thermal conduction with the Spitzer conductivity is not sufficient to account for the heating at large heights.

  20. Inner-shell and double ionization potentials of aminophenol isomers.

    SciTech Connect (OSTI)

    Kryzhevoi, N. V.; Santra, R.; Cederbaum, L. S.

    2011-01-01

    A comprehensive study of single and double core ionization potentials of the aminophenol molecule is reported. The role of relaxation, correlation, relativistic, and basis set effects in these potentials is clarified. Special attention is paid to the isomer dependence of the single and double core ionization potentials. Some of them are also compared with the respective values of the phenol and aniline molecules. It is shown that the core level single ionization potentials of the para-, meta-, and ortho-aminophenol molecules differ only slightly from each other, rendering these structural isomers challenging to distinguish for conventional x-ray photoelectron spectroscopy. In contrast, the energy needed to remove two core electrons from different atoms depends noticeably on the mutual arrangement and even on the relative orientations of the hydroxyl and amine groups. Together with the electrostatic repulsion between the two core holes, relaxation effects accompanying double core ionization play a crucial role here. The pronounced sensitivity of the double ionization potentials, therefore, enables a spectroscopic characterization of the electronic structure of aminophenol isomers by means of x-ray two-photon photoelectron spectroscopy.

  1. 3 omega method for specific heat and thermal conductivity measurements

    E-Print Network [OSTI]

    L. Lu; W. Yi; D. L. Zhang

    2002-02-06

    We present a 3 omega method for simultaneously measuring the specific heat and thermal conductivity of a rod- or filament-like specimen using a way similar to a four-probe resistance measurement. The specimen in this method needs to be electrically conductive and with a temperature-dependent resistance, for acting both as a heater to create a temperature fluctuation and as a sensor to measure its thermal response. With this method we have successfully measured the specific heat and thermal conductivity of platinum wire specimens at cryogenic temperatures, and measured those thermal quantities of tiny carbon nanotube bundles some of which are only 10^-9 g in mass.

  2. Ultra-low Q values for neutrino mass measurements

    E-Print Network [OSTI]

    Joachim Kopp; Alexander Merle

    2010-04-21

    We investigate weak nuclear decays with extremely small kinetic energy release (Q value) and thus extremely good sensitivity to the absolute neutrino mass scale. In particular, we consider decays into excited daughter states, and we show that partial ionization of the parent atom can help to tune Q values to low-Q decays might only be feasible if no ionization is required, and if future improvements in isotope production technology, nuclear mass spectroscopy, and atomic structure calculations are possible. Experiments using ions, however, are extremely challenging due to the large number of ions that must be stored. New precision data on nuclear excitation levels could help to identify further isotopes with low-Q decay modes and possibly less challenging requirements.

  3. Mass-loading of bow shock pulsar wind nebulae

    E-Print Network [OSTI]

    Morlino, G; Vorster, M J

    2015-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar. A fraction of interstellar neutrals penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of both non-relativistic and relativistic flow, and focusing on scales much larger than the stand-off distance, we find that a relatively small density of neutrals, as low as $n_{\\rm ISM}=10^{-4}\\,\\text{cm}^{-3}$, is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  4. Thermal stability of radiant black holes

    E-Print Network [OSTI]

    Parthasarathi Majumdar

    2006-04-06

    Beginning with a brief sketch of the derivation of Hawking's theorem of horizon area increase, based on the Raychaudhuri equation, we go on to discuss the issue as to whether generic black holes, undergoing Hawking radiation, can ever remain in stable thermal equilibrium with that radiation. We derive a universal criterion for such a stability, which relates the black hole mass and microcanonical entropy, both of which are well-defined within the context of the Isolated Horizon, and in principle calculable within Loop Quantum Gravity. The criterion is argued to hold even when thermal fluctuations of electric charge are considered, within a {\\it grand} canonical ensemble.

  5. Thermal metastabilities in the solar core

    E-Print Network [OSTI]

    Attila Grandpierre; Gabor Agoston

    2002-01-18

    Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

  6. Laser photoionization time-of-flight mass spectrometry of nitrated polycyclic aromatic hydrocarbons and nitrated heterocyclic compounds. Master's thesis

    SciTech Connect (OSTI)

    Noyes, R.A.

    1993-01-01

    Partial Contents: Laser Desorption-Laser Photoionization Time-of-Flight Mass Spectrometry; Basic Principles of TOFMS; Factors Affecting Flight Time; Source of Broadening; Laser Desorption; Theory of Multiphoton Ionization: Application to Mass Spectrometry; Quantum Theory of MPI; Time-Dependent Perturbation Theory; Time-Dependent Coefficients; Probability of a Two-Photon Process; and Attributes of R2PI.

  7. Genetic variation in resistance to ionizing radiation. [Annual report, 1989

    SciTech Connect (OSTI)

    Ayala, F.J.

    1989-12-31

    The very reactive superoxide anion O{sub 2} is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20{sub 2}{sup {minus}} + 2H {yields} H{sub 2}O{sub 2} + O{sub 2}. SOD had been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Evidence that genetic differences may affect sensitivity to ionizing radiation has been shown in Drosophila since differences have been shown to exist between strains and resistance to radiation can evolve under natural selection.

  8. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect (OSTI)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  9. A compact neutron generator using a field ionization source

    SciTech Connect (OSTI)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2011-10-31

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-#12;bers promise the high #12;eld-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of #12;field emitters with a density up to 10{sup 6} tips/cm{sup 2} and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  10. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  11. Effect of Surface Mass on Roof Thermal Performance 

    E-Print Network [OSTI]

    Wilkes, K. E.; Shipp, P. H.; Sanders, J. P.

    1988-01-01

    -rmrur.~ and nut nuua for tha Pmr Irt Mlly war. Twc hr1.d: bm&q T-r.rur.s CInm ter .r.d1sr1- BARE ROOF, MAY 1 -- MAY 7, 1986 *CAM 0- CmalwNs I70 BARE ROOF, MAY 1 -. MAY 7, 1986 wc1mu WUNY~ cwnms , ,---- ---"- .- - - nuc, MR. . -. El EXPWl...

  12. The design and analysis of a thermal mass groundwater flowmeter 

    E-Print Network [OSTI]

    Weathers, Lenly Joseph

    1990-01-01

    in the Graetz problem is dT 24o dz RpV c (35a) or in dimensionless form: dd 4 dX Pe (356) The second snd third assumptions require modification of the numerical algorithm. Hence, the algorithm described in the previous section is used for flowmeter...

  13. Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes

    SciTech Connect (OSTI)

    Chen, M.; Cormier-Michel, E.; Geddes, C.G.R.; Bruhwiler, D.L.; Yu, L.L.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.

    2013-03-01

    Methods for the calculation of laser tunneling ionization in explicit particle-in-cell codes used for modeling laser–plasma interactions are compared and validated against theoretical predictions. Improved accuracy is obtained by using the direct current form for the ionization rate. Multi level ionization in a single time step and energy conservation have been considered during the ionization process. The effects of grid resolution and number of macro-particles per cell are examined. Implementation of the ionization algorithm in two different particle-in-cell codes is compared for the case of ionization-based electron injection in a laser–plasma accelerator.

  14. Isothermal stress relaxation in electroplated Cu films. I. Mass transport measurements

    E-Print Network [OSTI]

    Huang, Rui

    Isothermal stress relaxation in electroplated Cu films. I. Mass transport measurements Dongwen Gan-boundary mass transport measured from isothermal stress relaxation in electroplated Cu thin films. Thermal stresses in electroplated Cu films with and without passivation, subjected to thermal cycling

  15. Simulated Photoevaporative Mass Loss from Hot Jupiters in 3D

    E-Print Network [OSTI]

    Tripathi, Anjali; Murray-Clay, Ruth A; Krumholz, Mark R

    2015-01-01

    Ionizing stellar photons heat the upper regions of planetary atmospheres, driving atmospheric mass loss. Gas escaping from several hot, hydrogen-rich planets has been detected using UV and X-ray transmission spectroscopy. Because these planets are tidally locked, and thus asymmetrically irradiated, escaping gas is unlikely to be spherically symmetric. In this paper, we focus on the effects of asymmetric heating on local outflow structure. We use the Athena code for hydrodynamics to produce 3D simulations of hot Jupiter mass loss that jointly model wind launching and stellar heating via photoionization. Our fiducial planet is an inflated, hot Jupiter with radius $R_p=2.14 R_{\\rm Jup}$ and mass $M_p = 0.53 M_{\\rm Jup}$. We irradiate the initially neutral, atomic hydrogen atmosphere with 13.6 eV photons and compute the outflow's ionization structure. There are clear asymmetries in the atmospheric outflow, including a neutral shadow on the planet's nightside. Given an incident ionizing UV flux comparable to that ...

  16. Studies of ground-state dynamics in isolated species by ionization-detected stimulated Raman techniques

    SciTech Connect (OSTI)

    Felker, P.M.

    1993-12-01

    First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  18. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  19. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    pp. 67-73, 2003. [17] "Energy Requirements of Desalinationof solar collectors and thermal energy storage in solarapplications," Applied Energy, pp. 538-553, 2013. [20] P. G.

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    C. Y. Zhao, "A review of solar collectors and thermal energya Passive Flat-Plate Solar Collector," International Journalof Flat Plate Solar Collector Equipped with Rectangular Cell

  1. Fast Thermal Simulation for Architecture Level Dynamic Thermal Management

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    Fast Thermal Simulation for Architecture Level Dynamic Thermal Management Pu Liu, Zhenyu Qi, Hang temperature by dynamic thermal managements becomes necessary. This paper proposes a novel approach to the thermal analysis at chip architecture level for efficient dynamic thermal management. Our new approach

  2. Chromosomal "Fingerprints" of Prior Exposure to Densely Ionizing Radiation

    E-Print Network [OSTI]

    Brenner, David Jonathan

    be detected and measured long after radiation exposure. Specifically, they produce an anomalously low ratio (F doses of densely ionizing radiation, such as a particles or neutrons. Consequently, determina- tion ion- izing radiation doses is an important societal and legal issue. Thus there has been considerable

  3. SOFT LASER DESORPTION IONIZATION -MALDI, DIOS AND NANOSTRUCTURES

    E-Print Network [OSTI]

    Vertes, Akos

    Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS AND NANOSTRUCTURES Akos Veites Department on and the method of rapid heating was proposed to minimize the latter (Beuhler, et al., 1974). Lasers with respect to the ultimate size of the biomolecules (m/z Laser Ablation and its

  4. Plasma ionization by annularly bounded helicon waves Masayuki Yanoa

    E-Print Network [OSTI]

    Walker, Mitchell

    Air Force mission designs require electric propulsion devices to operate at high thrust-to-powerPlasma ionization by annularly bounded helicon waves Masayuki Yanoa and Mitchell L. R. Walkerb. In addition, the power deposition as a function of excitation frequency is derived. The solution is validated

  5. Perturbations of ionization fractions at the cosmological recombination epoch

    E-Print Network [OSTI]

    B. Novosyadlyj

    2006-05-25

    A development of perturbations of number densities of ions and electrons during recombination epoch is analysed. The equations for relative perturbations of ionization fractions were derived from the system of equations for accurate computation of the ionization history of the early Universe given by Seager et al. (1999,2000). It is shown that strong dependence of ionization and recombination rates on the density and temperature of plasma provides the significant deviations of amplitudes of ionization fractions relative perturbations from ones of baryon matter density adiabatic perturbations. Such deviations are most prominent for cosmological adiabatic perturbations of scales larger than sound horizon at recombination epoch. The amplitudes of relative perturbations of number densities of electrons and protons at last scattering surface exceed by factor of $\\simeq$5 the amplitude of relative perturbation of baryons total number density, for helium ions this ratio reaches the value of $\\simeq$18. For subhorizon cosmological perturbations these ratios appear to be essentially lesser and depend on oscillation phase at the moment of decoupling. These perturbations of number densities of ions and electrons at recombination epoch do not contribute to the intrinsic plasma temperature fluctuations but cause the ''corrugation'' of last scattering surface in optical depth, $\\delta z_{dec}/(z_{dec}+1)\\approx -\\delta_b/3$, at scales larger than sound horizon. It may result into noticeable changes of precalculated values of CMB polarization pattern at several degrees angular scales.

  6. Ionization satellites of the ArHe dimer

    SciTech Connect (OSTI)

    Miteva, Tsveta; Klaiman, Shachar; Gokhberg, Kirill [Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Gromov, Evgeniy V., E-mail: Evgeniy.Gromov@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Laboratory of Quantum Chemistry, Computer Center, Irkutsk State University, K. Marks 1, 664003 Irkutsk (Russian Federation)

    2014-05-28

    Ionization satellites are key ingredients in the control of post ionization processes such as molecular dissociation and interatomic Coulombic decay. Here, using the high-level ab initio method of multi-reference configuration interaction up to triple excitations, we study the potential energy curves (PECs) of the ionization satellites of the ArHe dimer. With this model system, we demonstrate that the simple model used in alkaline earth metal and rare gas complexes to describe the satellites as a Rydberg electron moving on top of a dicationic core does not fully hold for the rare gas clusters. The more complex valence structure in the rare gas atom leads to the mixing of different electronic configurations of the dimer. This prevents one from assigning a single dicationic parent state to some of the ionization satellites. We further analyze the structure of the different PECs, demonstrating how the density of the Rydberg electron is reflected in the structure of the PEC wherever the simple model is applicable.

  7. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  8. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  9. Thermal radiation Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .00032, similarly for 2·T = 0.7·2500 = 1750 µmK4 this gives f0-2 = 0.03392. Thus for 0.4 - 0.7 µm, f1-2 = 0Thermal radiation revisited Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi Process Engineering

  10. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LASP's mechanical analysts also lead mechanical verification testing including: random vibration, forceMechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has

  11. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    E-Print Network [OSTI]

    Costes, Sylvain V

    2010-01-01

    germ cells and after low-dose gamma-radiation: relationshipsexposure to low doses of ionizing radiation. Mutat Res (after exposure to low doses of ionizing radiation. Mutat Res

  12. Intensity-resolved Above Threshold Ionization Yields of Atoms with Ultrashort Laser Pulses 

    E-Print Network [OSTI]

    Hart, Nathan Andrew

    2012-10-19

    The above threshold ionization (ATI) spectra provide a diversity of information about a laser-atom ionization process such as laser intensity, pulse duration, carrier envelope phase, and atomic energy level spacing. However, the spatial distribution...

  13. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  14. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  15. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anThermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  17. Nuclear thermal propulsion engine cost trade studies

    SciTech Connect (OSTI)

    Paschall, R.K. (Rocketdyne Division, Rockwell International Corporation, Mail Stop IB57, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

    1993-01-10

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp[gt]870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified.

  18. Nonlinear dynamics of ionization stabilization of atoms in intense laser fields

    E-Print Network [OSTI]

    Michael Norman; C. Chandre; T. Uzer; Peijie Wang

    2014-12-06

    We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using nonlinear dynamics. We provide an explanation for the lack of complete ionization at high intensity and for the decrease of the ionization probability as intensity is increased. We investigate the role of each part of the laser pulse (ramp-up, plateau, ramp-down) in this process. We emphasize the role of the choice for the ionization criterion, energy versus distance criterion.

  19. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  20. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  1. Laser desorption time-of-flight mass spectrometer DNA analyzer. Final report

    SciTech Connect (OSTI)

    Chen, C.H.W.; Martin, S.A.

    1997-02-01

    The objective of this project is the development of a laser desorption time-of-flight mass spectrometer DNA analyzer which can be broadly used for biomedical research. Tasks include: pulsed ion extraction to improve resolution; two-component matrices to enhance ionization; and solid phase DNA purification.

  2. Proteomic Analysis of Low Dose Arsenic and Ionizing Radiation Exposure on Keratinocytes

    E-Print Network [OSTI]

    Rocke, David M.

    Proteomic Analysis of Low Dose Arsenic and Ionizing Radiation Exposure on Keratinocytes Susanne R that keratinocytes responded to either low dose arsenic and/or low dose ionizing radiation exposure, resulting arsenic; human; ionizing radiation; keratinocyte; low dose *Corresponding author: Susanne Berglund

  3. Pulsed-field ionization spectroscopy of high Rydberg states ,,n=50200... -benzene...chromium

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Pulsed-field ionization spectroscopy of high Rydberg states ,,n=50­200... of bis,, 6 -benzene The ionization behavior of the high Rydberg states of bis 6 -benzene chromium in the presence of ac and/or dc are due to np Rydberg series. Based on the understanding of the ionization behavior of bis 6 -benzene

  4. Backward Raman amplification in a partially ionized gas A. A. Balakin,1

    E-Print Network [OSTI]

    and Aerospace Engineering, Princeton University, Princeton, New Jersey 08543, USA Received 30 March 2005 was accessed 10,11 . The experimental success was achieved using a gas jet of propane, subse- quently ionized of propane opens up the question of coupling in a partially ionized gas. Any additional ionization during

  5. Relativistic cross sections of the electron-impact ionization of heliumlike ions Tien-Yow Kuo1

    E-Print Network [OSTI]

    . A complete theoretical kinematic analysis of the electron- impact ionization process 29 and electron interest in atomic structure and collision mechanisms. In particular, knowledge of ionization cross

  6. Cosmological moduli problem in large volume scenario and thermal inflation

    SciTech Connect (OSTI)

    Choi, Kiwoon [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Park, Wan-Il [School of Physics, KIAS, Seoul 130-722 (Korea, Republic of); Shin, Chang Sub, E-mail: kchoi@kaist.ac.kr, E-mail: wipark@kias.re.kr, E-mail: csshin@apctp.org [APCTP, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2013-03-01

    We show that in a large volume scenario of type IIB string or F-theory compactifications, single thermal inflation provides only a partial solution to the cosmological problem of the light volume modulus. We then clarify the conditions for double thermal inflation, being a simple extension of the usual single thermal inflation scenario, to solve the cosmological moduli problem in the case of relatively light moduli masses. Using a specific example, we demonstrate that double thermal inflation can be realized in large volume scenario in a natural manner, and the problem of the light volume modulus can be solved for the whole relevant mass range. We also find that right amount of baryon asymmetry and dark matter can be obtained via a late-time Affleck-Dine mechanism and the decays of the visible sector NLSP to flatino LSP.

  7. A theoretical study of acoustic glitches in low-mass main-sequence stars

    SciTech Connect (OSTI)

    Verma, Kuldeep; Antia, H. M.; Basu, Sarbani; Mazumdar, Anwesh E-mail: antia@tifr.res.in E-mail: anwesh@tifr.res.in

    2014-10-20

    There are regions in stars, such as ionization zones and the interface between radiative and convective regions, that cause a localized sharp variation in the sound speed. These are known as 'acoustic glitches'. Acoustic glitches leave their signatures on the oscillation frequencies of stars, and hence these signatures can be used as diagnostics of these regions. In particular, the signatures of these glitches can be used as diagnostics for the position of the second helium ionization zone and that of the base of the envelope convection zone. With the help of stellar models, we study the properties of these acoustic glitches in main-sequence stars. We find that the acoustic glitch due to the helium ionization zone does not correspond to the dip in the adiabatic index ?{sub 1} caused by the ionization of He II, but to the peak in ?{sub 1} between the He I and He II ionization zones. We find that it is easiest to study the acoustic glitch that is due to the helium ionization zone in stars with masses in the range 0.9-1.2 M {sub ?}.

  8. Thermal Giant Gravitons

    E-Print Network [OSTI]

    Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand

    2012-01-01

    We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...

  9. Structural determination of intact proteins using mass spectrometry

    DOE Patents [OSTI]

    Kruppa, Gary (San Francisco, CA); Schoeniger, Joseph S. (Oakland, CA); Young, Malin M. (Livermore, CA)

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  10. The connection between mass loss and nucleosynthesis

    E-Print Network [OSTI]

    Jacco Th. van Loon

    2008-01-03

    I discuss the relationship between mass loss and nucleosynthesis on the Asymptotic Giant Branch (AGB). Because of thermal pulses and possibly other mixing processes, products of nucleosynthesis can be brought to the surface of AGB stars, increasingly so as the star becomes more luminous, cooler, and unstable against pulsation of its tenuous mantle. As a result, mass loss is at its most extreme when dredge-up is too. As the high rate of mass loss truncates AGB evolution, it determines the enrichment of interstellar space with the AGB nucleosynthesis products. The changing composition of the stellar atmosphere also affects the mass-loss process, most obviously in the formation of dust grains - which play an important role in driving the wind of AGB stars.

  11. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  12. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W (Phoenix, AZ); Williams, Peter (Phoenix, AZ); Krone, Jennifer Reeve (Granbury, TX)

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  13. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    SciTech Connect (OSTI)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  14. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    SciTech Connect (OSTI)

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA; Yang, Yuchen; Liu, Jason; Liu, Lin; Anders, André

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  15. Ionization-Induced Electron Trapping inUltrarelativistic Plasma Wakes

    SciTech Connect (OSTI)

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C.D.; Blumenfeld, I.; Decker, F.J.; Emma, P.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Auerbach, D.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; /UCLA

    2007-04-06

    The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

  16. Ionization of ethane, butane, and octane in strong laser fields

    SciTech Connect (OSTI)

    Palaniyappan, Sasi; Mitchell, Rob; Ekanayake, N.; Watts, A. M.; White, S. L.; Sauer, Rob; Howard, L. E.; Videtto, M.; Mancuso, C.; Wells, S. J.; Stanev, T.; Wen, B. L.; Decamp, M. F.; Walker, B. C.

    2010-10-15

    Strong-field photoionization of ethane, butane, and octane are reported at intensities from 10{sup 14} to 10{sup 17} W/cm{sup 2}. The molecular fragment ions, C{sup +} and C{sup 2+}, are created in an intensity window from 10{sup 14} to 10{sup 15} W/cm{sup 2} and have intensity-dependent yields similar to the molecular fragments C{sub m}H{sub n}{sup +} and C{sub m}H{sub n}{sup 2+}. In the case of C{sup +}, the yield is independent of the molecular parent chain length. The ionization of more tightly bound valence electrons in carbon (C{sup 3+} and C{sup 4+}) has at least two contributing mechanisms, one influenced by the parent molecule size and one resulting from the tunneling ionization of the carbon ion.

  17. X-ray reflection spectra from ionized slabs

    E-Print Network [OSTI]

    R. R. Ross; A. C. Fabian; A. J. Young

    1999-02-23

    X-ray reflection spectra are an important component in the X-ray spectra of many active galactic nuclei and Galactic black hole candidates. It is likely that reflection takes place from highly ionized surfaces of the accretion disc in some cases. This can lead to strong Comptonization of the emergent iron, and other, absorption and emission features. We present such reflection spectra here, computed in a self-consistent manner with the method described by Ross and Fabian. In particular we emphasise the range where the ionization parameter (the flux to density ratio) \\xi is around and above 10^4. Such spectra may be relevant to the observed spectral features found in black hole candidates such as Cygnus X-1 in the low/hard state.

  18. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect (OSTI)

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  19. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  20. Colliding ionization injection in a beam driven plasma accelerator

    E-Print Network [OSTI]

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  1. Thermally Polymerized Rylene Nanoparticles

    E-Print Network [OSTI]

    Andrew, Trisha Lionel

    Rylene dyes functionalized with varying numbers of phenyl trifluorovinyl ether (TFVE) moieties were subjected to a thermal emulsion polymerization to yield shape-persistent, water-soluble chromophore nanoparticles. Perylene ...

  2. Thermal Insulation Systems 

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  3. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  4. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  5. Thermal Resonance Fusion

    E-Print Network [OSTI]

    Bao-Guo Dong

    2015-07-07

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at different resonance energy given by the WKB method is shown that indicates the thermal resonance fusion mode, especially combined with the tunnel effect, is possible and feasible. But the penetrating probability decreases very sharply when the input resonance energy decreases less than 3 keV, so for thermal resonance fusion, the key point is to increase the resonance peak or make the resonance sharp enough to the acceptable energy level by the suitable compound catalysts, and it is better to reach up more than 3 keV to make the penetrating probability larger than 10^{-10}.

  6. Design and Performance of a High-Flux Electrospray Ionization Source for Ion Soft-Landing

    SciTech Connect (OSTI)

    Gunaratne, Kalupathirannehelage Don D.; Prabhakaran, Venkateshkumar; Ibrahim, Yehia M.; Norheim, Randolph V.; Johnson, Grant E.; Laskin, Julia

    2015-01-01

    We report the design and evaluation of a new high-intensity electrospray ionization source for ion soft-landing experiments. The source incorporates a dual ion funnel, which enables operation with a higher gas load through an expanded heated inlet into the additional first region of differential pumping. This capability allowed us to examine the effect of the inner diameter (ID) of the heated stainless steel inlet on the total ion current transmitted through the dual funnel interface and, more importantly, the mass-selected ion current delivered to the deposition target. The ion transmission of the dual funnel is similar to the transmission of the single funnel used in our previous soft landing studies. However, substantially higher ion currents were obtained using larger ID heated inlets and an orthogonal inlet geometry, in which the heated inlet is positioned perpendicular to the direction of ion propagation through the instrument. The highest ion currents were obtained using the orthogonal geometry and a 1.4 mm ID heated inlet. The corresponding stable deposition rate of ~1 ?g of mass-selected ions per day will facilitate future studies focused on the controlled deposition of biological molecules on substrates and preparation of materials for studies in catalysis, energy storage, and self-assembly

  7. Thermal Resonance Fusion

    E-Print Network [OSTI]

    Dong, Bao-Guo

    2015-01-01

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at dif...

  8. A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules

    E-Print Network [OSTI]

    Connolly Jr, Harold C.

    A model of the thermal processing of particles in solar nebula shocks: Application to the cooling for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves are accounted for in their ef fects on the mass, momentum and energy fluxes. Also, besides thermal exchange

  9. High-resolution ionization detector and array of such detectors

    DOE Patents [OSTI]

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  10. Multiphoton inner-shell ionization of the carbon atom

    E-Print Network [OSTI]

    Rey, H F

    2015-01-01

    We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 10$^{17}$ W/cm$^2$, ionization is dominated by single-photon emission of a $2\\ell$ electron, with two-photon emission of a 1s electron accounting for about 2-3\\% of all emission processes, and two-photon emission of $2\\ell$ contributing about 0.5-1\\%. Three-photon emission of a 1s electron is estimated to contribute about 0.01-0.03\\%. Around a photon energy of 225 eV, two-photon emission of a 1s electron, leaving C$^+$ in either 1s2s2p$^3$ or 1s2p$^4$ is resonantly enhanced by intermediate 1s2s$^2$2p$^3$ states. The results demonstrate the capability of time-dependent R-matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.

  11. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress

    E-Print Network [OSTI]

    Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress Anthony J. Bellantuono1 thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained

  12. Linear electronic field time-of-flight ion mass spectrometers

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM)

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  13. Feedback in low-mass galaxies in the early Universe

    E-Print Network [OSTI]

    Erb, Dawn K

    2015-01-01

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized--the last major phase transition in the Universe.

  14. Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage

    E-Print Network [OSTI]

    Adrian L. Melott; Brian C. Thomas

    2009-02-02

    Based on the intensity and rates of various kinds of intense ionizing radiation events such as supernovae and gamma-ray bursts, it is likely that the Earth has been subjected to one or extinction level events during the Phanerozoic. These induce changes in atmospheric chemistry so that the level of Solar ultraviolet-B radiation reaching the surface and near-surface waters may be doubled for up to a decade. This UVB level is known from experiment to be more than enough to kill off many kinds of organisms, particularly phytoplankton. It could easily induce a crash of the photosynthetic-based food chain in the oceans. Regularities in the latitudinal distribution of damage are apparent in simulations of the atmospheric changes. We previously proposed that the late Ordovician extinction is a plausible candidate for a contribution from an ionizing radiation event, based on environmental selectivity in trilobites. To test a null hypothesis based on this proposal, we confront latitudinal differential extinction rates predicted from the simulations with data from a published analysis of latitudinal gradients in the Ordovician extinction. The pattern of UVB damage always shows a strong maximum at some latitude, with substantially lower intensity to the north and south of this maximum. We find that the pattern of damage predicted from our simulations is consistent with the data assuming a burst approximately over the South Pole, and no further north than -75 degrees. We predict that any land mass (such as parts of north China, Laurentia, and New Guinea) which then lay north of the equator should be a refuge from UVB effects, and show a different pattern of extinction in the first strike of the end-Ordovician extinction, if induced by such a radiation event.

  15. A preliminary report on the photoionization efficiency spectrum, ionization energy and heat of formation of Br{sub 2}O; and the appearance energy of BrO{sup +} (Br{sub 2}O)

    SciTech Connect (OSTI)

    Thorn, R.P. Jr.; Monks, P.S.; Stief, L.J.; Kuo, S.C.; Zhang, Z.; Klemm, R.B.

    1995-08-01

    We report experimental results for the photoionization efficiency (PIE) spectrum of Br{sub 2}O along with the ionization energy (derived form the ionization threshold) and the appearance energy (AE) of BrO{sup +} (Br{sub 2}O). A value for the heat of formation of Br{sub 2}O is derived form the AE result. Experiments were performed by employing a discharge flow-photoionization mass spectrometer (DF-PIMS) apparatus coupled to beamline U-11 at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory.

  16. Thermal Lens Spectroscopy Mladen Franko

    E-Print Network [OSTI]

    Reid, Scott A.

    Thermal Lens Spectroscopy Mladen Franko Laboratory of Environmental Research, University of Nova-beam Instruments 5 3.3 Differential Thermal Lens Instruments 7 3.4 Multiwavelength and Tunable Thermal Lens Spectrometers 8 3.5 Circular Dichroism TLS Instruments 9 3.6 Miniaturization of Thermal Lens Instruments 9 4

  17. PHYSICAL REVIEW A 84, 043429 (2011) Orientation dependence of the ionization of CO and NO in an intense femtosecond

    E-Print Network [OSTI]

    Kling, Matthias

    2011-01-01

    on this idea was proposed, which proposes favored ionization of carbonyl sulfide (OCS) for an orientation

  18. Efficient Photo-heating Algorithms in Time-dependent Photo-ionization Simulations

    E-Print Network [OSTI]

    Lee, Kai-Yan; Lundqvist, Peter

    2015-01-01

    We present an extension to the time-dependent photo-ionization code C$^2$-Ray to calculate photo-heating in an efficient and accurate way. In C$^2$-Ray, the thermal calculation demands relatively small time-steps for accurate results. We describe two novel methods to reduce the computational cost associated with small time-steps, namely, an adaptive time-step algorithm and an asynchronous evolution approach. The adaptive time-step algorithm determines an optimal time-step for the next computational step. It uses a fast ray-tracing scheme to quickly locate the relevant cells for this determination and only use these cells for the calculation of the time-step. Asynchronous evolution allows different cells to evolve with different time-steps. The asynchronized clocks of the cells are synchronized at the times where outputs are produced. By only evolving cells which may require short time-steps with these short time-steps instead of imposing them to the whole grid, the computational cost of the calculation can be...

  19. DEVELOPMENT OF A RESONANCE IONIZATION SPECTROSCOPY ION-TRANSPORT PROBE

    E-Print Network [OSTI]

    Gratta, Giorgio

    called neutrinoless double beta decay (0u(3(3) would constitute an absolute neutrino mass measurement

  20. Thermal efficiency of single-pass solar air collector

    SciTech Connect (OSTI)

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  1. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  2. Electromagnetic Nature of Thermo-Mechanical Mass-Energy Transfer Due to Photon Diffusive Re-Emission and Propagation

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    (parabolic differential equation), allowing infinite speed of thermal energy propagation (i.e., a change mass-energy equivalence with `thermon' quasi-particle leading to inertia of heat transfer. Thermal research and applications, related to the conclusions deduced and open questions posed. www.kostic.niu.edu/Nature_of_Thermal_and_Mechanical_Energy

  3. Detailed Analysis of Thermal Mass Effects in a Code-Traceable DOE-2 Simulation of the 2000 IECC for a Single-Family Residence in Texas: A Project for Texas' Senate Bill 5 Legislation for Reducing Pollution in Nonattainment and Affected Areas 

    E-Print Network [OSTI]

    Kim, S.; Haberl, J. S.

    2008-07-18

    Case DOE-2e Model (IECC1105.inp) ....................................................... 7 2.1.1 House Dimension / Heating and Cooling Controls..................................... 7 2.1.2 Thermal Properties of IECC1105.inp... ......................................................... 7 2.2 Refined Base Case DOE-2e Model (IECC1303.inp).......................................... 8 2.2.1 Thermal properties of wall construction..................................................... 8 2.2.2 The comparison of original IECC1105.inp...

  4. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³?Cs at 0.13, 2.4, 21, and 222 mGy d?¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore »affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d?¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  5. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina [Stockholm Univ. (Sweden); Univ. of Georgia, Aiken, SC (United States); Scott, David E. [Univ. of Georgia, Aiken, SC (United States); Tsyusko, Olga [Univ. of Georgia, Aiken, SC (United States); Univ. of Kentucky, Lexington, KY (United States); Coughlin, Daniel P. [Univ. of Georgia, Aiken, SC (United States); Hinton, Thomas G. [Univ. of Georgia, Aiken, SC (United States); Inst. of Radiation Protection and Nuclear Safety, Cadarache (France); Amendola, Roberto [ENEA, (Italy)

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³?Cs at 0.13, 2.4, 21, and 222 mGy d?¹, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d?¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  6. The Bulk Channel in Thermal Gauge Theories

    E-Print Network [OSTI]

    Harvey B. Meyer

    2010-02-17

    We investigate the thermal correlator of the trace of the energy-momentum tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral function in that channel, whose low-frequency part determines the bulk viscosity. We focus on the thermal modification of the spectral function, $\\rho(\\omega,T)-\\rho(\\omega,0)$. Using the operator-product expansion we give the high-frequency behavior of this difference in terms of thermodynamic potentials. We take into account the presence of an exact delta function located at the origin, which had been missed in previous analyses. We then combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean correlator to determine the intervals of frequency where the spectral density is enhanced or depleted by thermal effects. We find evidence that the thermal spectral density is non-zero for frequencies below the scalar glueball mass $m$ and is significantly depleted for $m\\lesssim\\omega\\lesssim 3m$.

  7. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  8. Thermal noise driven computing

    E-Print Network [OSTI]

    Laszlo B. Kish

    2006-10-28

    The possibility of a new type of computing, where thermal noise is the information carrier and the clock in a computer, is studied. The information channel capacity and the lower limit of energy requirement/dissipation are studied in a simple digital system with zero threshold voltage, for the case of error probability close to 0.5, when the thermal noise is equal to or greater than the digital signal. In a simple hypothetical realization of a thermal noise driven gate, the lower limit of energy needed to generate the digital signal is 1.1*kT/bit. The arrangement has potentially improved energy efficiency and it is free of leakage current, crosstalk and ground plane electromagnetic interference problems. Disadvantage is the large number of redundancy elements needed for low-error operation.

  9. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  10. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  11. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  12. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  13. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  14. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  15. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  16. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  17. Cermet fuel thermal conductivity 

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01

    VITA 36 37 40 40 40 40 44 45 47 48 LIST OF FIGURES Figure Unit cell for derivation of model Page Heat Conduction Solution 22 3 Fission Gas Release Model 26 4A Metal Matrix Thermal Conductivity 4B Ceramic Fuel Thermal Conductivity 5... is based on the simple heat conduction equation. It is assumed that there is a uniform distribution of fuel particles in a regular array. A unit cell consists of a cube of matrix material of side length L, containing a spherical fuel particle of radius, r...

  18. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  19. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    SciTech Connect (OSTI)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels, E.

    2006-05-15

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.

  20. Thermal dilepton rates from quenched lattice QCD

    E-Print Network [OSTI]

    H. -T. Ding; A. Francis; O. Kaczmarek; F. Karsch; E. Laermann; S. Mukherjee; M. Müller; W. Soeldner

    2013-01-30

    We present new lattice results on the continuum extrapolation of the vector current correlation function. Lattice calculations have been carried out in the deconfined phase at a temperature of 1.1 Tc, extending our previous results at 1.45 Tc, utilizing quenched non-perturbatively clover-improved Wilson fermions and light quark masses. A systematic analysis on multiple lattice spacings allows to perform the continuum limit of the correlation function and to extract spectral properties in the continuum limit. Our current analysis suggests the results for the electrical conductivity are proportional to the temperature and the thermal dilepton rates in the quark gluon plasma are comparable for both temperatures. Preliminary results of the continuum extrapolated correlation function at finite momenta, which relates to thermal photon rates, are also presented.

  1. Thermal neutron capture gamma-rays

    SciTech Connect (OSTI)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  2. INSTABILITY OF MAGNETIZED IONIZATION FRONTS SURROUNDING H II REGIONS

    SciTech Connect (OSTI)

    Kim, Jeong-Gyu; Kim, Woong-Tae, E-mail: jgkim@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-12-20

    An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes the transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF threaded by parallel magnetic fields, by neglecting the effects of recombination within the ionized gas. We find that weak D-type IFs always have the post-IF magnetosonic Mach number M{sub M2}?1. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor ? by a factor of 1 + 1/(2?{sub 1}) compared to the unmagnetized case, with ?{sub 1} denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations owing to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber, as well as the upstream flow speed, and approximately to ?{sup 1/2}. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when M{sub M2}{sup 2}<2/(2?{sub 1}?1). When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable.

  3. EFFECTS OF DUST GROWTH AND SETTLING ON THE IONIZATION BY RADIONUCLIDES. I. FORMULATION AND RESULTS IN A QUIESCENT STATE OF PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    Umebayashi, Toyoharu; Katsuma, Norihito; Nomura, Hideko

    2013-02-10

    We investigate the evolution of the ionization rates by the decay of radionuclides in protoplanetary disks at the early stage of planet formation where size growth and settling of dust particles proceed extensively. Because most of the nuclides to ionize gas, such as short-lived nuclide {sup 26}Al and long-lived one {sup 40}K, are refractory elements, they are contained in the solid material of dust particles. Thus, the ionization by these nuclides is affected by the following three processes: (1) the change of the relative abundance of dust particles due to the settling toward the midplane of the disk, (2) the energy loss of emitted energetic particles inside the solid material of dust particles, and (3) the absorption of energetic particles by the other dust particles located nearby. In this series of papers we comprehensively investigate the basic physical processes, calculate the settling and size growth of dust particles numerically, and clarify the evolution of the ionization rates relative to their initial values in various disk models at this stage. In this paper we investigate the energy-loss processes concerning dust particles, formulate the coalescence equation for settling particles, and apply them to quiescent disk models that are similar to the solar nebula. For simplicity, dust particles are assumed to be compact spheres that remain perfect sticking for mutual collisions. Because the settling of dust particles is not appreciable in the first 10{sup 3} yr, the ionization rate varies little except in the outermost part near the disk surface. As the settling proceeds, the rate around the midplane increases considerably. The maximum ionization rates by {sup 26}Al in the minimum mass solar nebula are about 100, 51, and 14 times larger than their initial values for the orbits R = 0.5, 1, and 5 AU, respectively, which are close to or exceed the ionization rate by cosmic ray in the interstellar medium. The rates by {sup 40}K also increase by factors of about 36, 19, and 5 at the same orbits. In the inner orbital regions, these rates exceed the rates by the attenuated cosmic rays by an order of magnitude. The rates in the residual parts decrease extensively as time goes by, because amounts of the floating dust particles decrease continuously.

  4. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

  5. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  6. Photo-ionization and residual electron effects in guided streamers

    SciTech Connect (OSTI)

    Wu, S.; Lu, X. Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-15

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ?10{sup 8?}cm{sup ?3} is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  7. Plasma-assisted catalytic ionization using porous nickel plate

    SciTech Connect (OSTI)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-09-15

    Hydrogen atomic pair ions, i.e., H{sup +} and H{sup -} ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H{sup -} ions.

  8. Breakdown of the Dipole Approximation in Strong-Field Ionization

    E-Print Network [OSTI]

    A. Ludwig; J. Maurer; B. W. Mayer; C. R. Phillips; L. Gallmann; U. Keller

    2014-10-02

    We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10$^{13}$ W/cm$^2$. Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a comparison with semi-classical simulations, we identify the combined action of the magnetic field of the laser pulse and the Coulomb potential as origin of our observations.

  9. The Influence of Chemi-ionization and Recombination Processes on Spectral Line Shapes in Stellar Atmospheres

    E-Print Network [OSTI]

    Mihajlov, Anatolij A; Sreckovic, Vladimir A; Dimitrijevic, Milan S

    2011-01-01

    In this work, the chemi-ionization processes in atom- Rydberg atom collisions, as well as the corresponding chemi-recombination processes are considered as factors of influence on the atom exited-state populations in weakly ionized layers of stellar atmospheres. The presented results are related to the photospheres of the Sun and some M red dwarfs as well as weakly ionized layers of DB white dwarfs atmospheres. It has been found that the mentioned chemi ionization/recombination processes dominate over the relevant concurrent electron-atom and electron-ion ionization and recombination process in all parts of considered stellar atmospheres. The obtained results demonstrate the fact that the considered chemi ionization/recombination processes must have a very significant influence on the optical properties of the stellar atmospheres. Thus, it is shown that these processes and their importance for non-local thermodynamic equilibrium (non-LTE) modeling of the solar atmospheres should be investigated further.

  10. A LUMPED-PARAMETER DYNAMIC MODEL OF A THERMAL REGENERATOR FOR FREE-PISTON STIRLING ENGINES

    E-Print Network [OSTI]

    Barth, Eric J.

    A LUMPED-PARAMETER DYNAMIC MODEL OF A THERMAL REGENERATOR FOR FREE-PISTON STIRLING ENGINES Mark the mass flow, piston dynamics, and control volume behavior inside a free-piston Stirling engine. A new model for a Stirling engine thermal regenerator that incorporates a dynamically changing temperature

  11. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  12. Solar thermal financing guidebook

    SciTech Connect (OSTI)

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  13. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  14. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes

    E-Print Network [OSTI]

    Zhang, Teng

    2015-01-01

    The realization of phononic computing is held hostage by the lack of high performance thermal devices. Here we show through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (< 20 oC) across the device, which is a significant advantage over other thermal diodes which need temperature biases on the order of the operating temperature. Taking this into consideration, we show that the dimensionless temperature-scaled rectification factors of the polymer nanofiber diodes range from 12 to 25 - much larger than other thermal diodes (< 8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized t...

  15. Thermal and Nonthermal X-Ray Emission in SNR RCW 86

    E-Print Network [OSTI]

    K. J. Borkowski; J. Rho; S. P. Reynolds; K. K. Dyer

    2000-06-10

    Supernova remnants may exhibit both thermal and nonthermal X-ray emission. Such remnants can be distinguished by the weakness of their X-ray lines, because of the presence of a strong nonthermal X-ray continuum. RCW 86 is a remnant with weak lines, resulting in low and peculiar abundances when thermal models alone are used to interpret its X-ray spectrum. This indicates the presence of a strong nonthermal synchrotron continuum. We analyze ASCA X-ray spectra of RCW 86 with the help of both nonequilibrium ionization thermal models and nonthermal synchrotron models. A two-temperature thermal model and a simple nonthermal model with an exponential cutoff (plus interstellar absorption) give reasonable results. We obtain blast wave velocity of 800 km/s, the shock ionization age of 1-3x10^11 s/cm^3, and the break in nonthermal spectra at 2-4x10^16 Hz. The strength of nonthermal continuum correlates well with the radio brightness in the bright SW section of the remnant. This is convincing evidence for X-ray synchrotron emission in RCW 86.

  16. Resonance overlap structure in the microwave ionization of the hydrogen atom

    SciTech Connect (OSTI)

    Farrelly, D.; Uzer, T.

    1988-12-01

    The microwave ionization of the hydrogen atom involves most of the open issues concerning classical and quantum chaos. Much recent research has considered quasi-one-dimensional extended states for which ionization thresholds have been estimated using a classical picture in which ionization proceeds through the overlap of an infinity of nonlinear resonances. Using a canonical transformation to Deprit's ''Lissajous elements'' which makes the two-dimensional nature of the problem explicit, an accurate and improved ionization threshold, compared to previous resonance overlap criteria, is obtained through the overlap of only two nonlinear resonances in the one-dimensional limit.

  17. The effect of photo-ionization on the cooling rates of enriched, astrophysical plasmas

    E-Print Network [OSTI]

    Robert P. C. Wiersma; Joop Schaye; Britton D. Smith

    2008-11-04

    Radiative cooling is central to a wide range of astrophysical problems. Despite its importance, cooling rates are generally computed using very restrictive assumptions, such as collisional ionization equilibrium and solar relative abundances. We simultaneously relax both assumptions and investigate the effects of photo-ionization of heavy elements by the meta-galactic UV/X-ray background and of variations in relative abundances on the cooling rates of optically thin gas in ionization equilibrium. We find that photo-ionization by the meta-galactic background radiation reduces the net cooling rates by up to an order of magnitude for gas densities and temperatures typical of the shock-heated intergalactic medium and proto-galaxies. In addition, photo-ionization changes the relative contributions of different elements to the cooling rates. We conclude that photo-ionization by the ionizing background and heavy elements both need to be taken into account in order for the cooling rates to be correct to order of magnitude. Moreover, if the rates need to be known to better than a factor of a few, then departures of the relative abundances from solar need to be taken into account. We propose a method to compute cooling rates on an element-by-element basis by interpolating pre-computed tables that take photo-ionization into account. We provide such tables for a popular model of the evolving UV/X-ray background radiation, computed using the photo-ionization package CLOUDY.

  18. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    E-Print Network [OSTI]

    Bowring, D.L.

    2014-01-01

    ON A CAVITY WITH BERYLLIUM WALLS FOR MUON IONIZATION COOLINGFabricating a cavity with beryllium walls would mitigatepillbox RF cavity with beryllium walls, in order to evaluate

  19. Investigation and modeling of impact ionization spatial-transient effects in silicon devices

    E-Print Network [OSTI]

    Chau, Quan Nghia

    2012-01-01

    and Chenming Hu, “A Thermal Activation View of Low Voltageand Chenming Hu, “A Thermal Activation View of Low Voltage

  20. Organic materials and devices for detecting ionizing radiation

    DOE Patents [OSTI]

    Doty, F. Patrick (Livermore, CA); Chinn, Douglas A. (Livermore, CA)

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  1. A Complete Relativistic Ionized Accretion Disc in Cygnus X-1

    E-Print Network [OSTI]

    A. J. Young; A. C. Fabian; R. R. Ross; Y. Tanaka

    2001-03-14

    The galactic black hole candidate Cygnus X-1 is observed to be in one of two X-ray spectral states; either the low/hard (low soft X-ray flux and a flat power law tail) or high/soft (high blackbody-like soft X-ray flux and a steep power law tail) state. The physical origin of these two states is unclear. We present here a model of an ionized accretion disc, the spectrum of which is blurred by relativistic effects, and fit it to the ASCA, Ginga and EXOSAT data of Cygnus X-1 in both spectral states. We confirm that relativistic blurring provides a much better fit to the low/hard state data and, contrary to some previous results, find the data of both states to be consistent with an ionized thin accretion disc with a reflected fraction of unity extending to the innermost stable circular orbit around the black hole. Our model is an alternative to those which, in the low/hard state, require the accretion disc to be truncated at a few tens of Schwarzschild radii, within which there is a Thomson-thin, hot accretion flow. We suggest a mechanism that may cause the changes in spectral state.

  2. Collision dynamics of proton with formaldehyde: Fragmentation and ionization

    SciTech Connect (OSTI)

    Wang, Jing; Gao, Cong-Zhang; Beijing Radiation Center, Beijing 100875 ; Calvayrac, Florent; Zhang, Feng-Shou; Beijing Radiation Center, Beijing 100875; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000

    2014-03-28

    Using time-dependent density functional theory, applied to the valence electrons and coupled non-adiabatically to molecular dynamics of the ions, we study the ionization and fragmentation of formaldehyde in collision with a proton. Four different impact energies: 35 eV, 85 eV, 135 eV, and 300 eV are chosen in order to study the energy effect in the low energy region, and ten different incident orientations at 85 eV are considered for investigating the steric effect. Fragmentation ratios, single, double, and total electron ionization cross sections are calculated. For large impact parameters, these results are close to zero irrespective of the incident orientations due to a weak projectile-target interaction. For small impact parameters, the results strongly depend on the collision energy and orientation. We also give the kinetic energy releases and scattering angles of protons, as well as the cross section of different ion fragments and the corresponding reaction channels.

  3. On the Escape of Ionizing Radiation from Starbursts

    E-Print Network [OSTI]

    Heckman, T; Meurer, G; Leitherer, C; Calzetti, D; Martin, C L

    2001-01-01

    Far-ultraviolet spectra obtained with $FUSE$ show that the strong $CII\\lambda$1036 interstellar absorption-line is essentially black in five of the UV-brightest local starburst galaxies. Since the opacity of the neutral ISM below the Lyman-edge will be significantly larger than in the $CII$ line, these data provide strong constraints on the escape of ionizing radiation from these starbursts. Interpreted as a a uniform absorbing slab, the implied optical depth at the Lyman edge is huge ($\\tau_0 \\geq 10^2$). Alternatively, the areal covering factor of opaque material is typically $\\geq$ 94%. Thus, the fraction of ionizing stellar photons that escape the ISM of each galaxy is small: our conservative estimates typically yield $f_{esc} \\leq 6%$. Inclusion of extinction due to dust will further decrease $f_{esc}$. An analogous analysis of the rest-UV spectrum of the star-forming galaxy $MS 1512-CB58$ at $z$ =2.7 leads to similar constraints on $f_{esc}$. These new results agree with the constraints provided by dire...

  4. Thermal, chemical, and mechanical cookoff modeling

    SciTech Connect (OSTI)

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  5. Performance parameters of a liquid filled ionization chamber array

    SciTech Connect (OSTI)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.; Chofor, N.; Harder, D.; Willborn, K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluated using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within ±0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of ±2.6% from the reference condition for the setup used. The ?-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 ± 0.25) mm at 6 MV and (0.74 ± 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup ?1}, respectively. For the inner 5 × 5 cm{sup 2} region and the outer 11 × 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup ?1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.

  6. Spatially-Resolved Analysis of Glycolipids and Metabolites in Living Synechococcus sp. PCC7002 Using Nanospray Desorption Electrospray Ionization

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Geydebrekht, Oleg V.; Pinchuk, Grigoriy E.; Konopka, Allan; Laskin, Julia

    2013-04-07

    Microorganisms release a diversity of organic compounds that couple interspecies metabolism, enable communication, or provide benefits to other microbes. Increased knowledge of microbial metabolite production will contribute to understanding of the dynamic microbial world and can potentially lead to new developments in drug discovery, biofuel production, and clinical research. Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization technique that enables detailed chemical characterization of molecules from a specific location on a surface without special sample pretreatment. Due to its ambient nature, living bacterial colonies growing on agar plates can be rapidly and non-destructively analyzed. We performed spatially resolved nano-DESI analysis of living Synechococcus sp. PCC 7002 colonies on agar plates. We use high resolution mass spectrometry and MS/MS analysis of the living Synechococcus sp. PCC 7002 colonies to detect metabolites and lipids, and confirm their identities. We found that despite the high salt content of the agar (osmolarity ca. 700 mM), nano-DESI analysis enables detailed characterization of metabolites produced by the colony. Using this technique, we identified several glycolipids found on the living colonies and examined the effect of the age of the colony on the chemical gradient of glucosylglycerol secreted onto agar.

  7. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    SciTech Connect (OSTI)

    Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China)] [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China)

    2014-03-15

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.

  8. Dynamics of oscillating scalar field in thermal environment

    E-Print Network [OSTI]

    Kyohei Mukaida; Kazunori Nakayama

    2013-04-24

    There often appear coherently oscillating scalar fields in particle physics motivated cosmological scenarios, which may have rich phenomenological consequences. Scalar fields should somehow interact with background thermal bath in order to decay into radiation at an appropriate epoch, but introducing some couplings to the scalar field makes the dynamics complicated. We investigate in detail the dynamics of a coherently oscillating scalar field, which has renormalizable couplings to another field interacting with thermal background. The scalar field dynamics and its resultant abundance are significantly modified by taking account of following effects : (1) thermal correction to the effective potential, (2) dissipation effect on the scalar field in thermal bath, (3) non-perturbative particle production events and (4) formation of non-topological solitons. There appear many time scales depending on the scalar mass, amplitude, couplings and the background temperature, which make the efficiencies of these effects non-trivial.

  9. Thermal slow evolution of compact objects

    E-Print Network [OSTI]

    Becerra, L; Nunez, L A

    2013-01-01

    We present a comparative study on the gravitational dissipative collapse for local and nonlocal anisotropic spherical matter configurations in the slow contraction approximation. The matter contents are radiant, anisotropic (unequal stresses) spherical local and nonlocal fluids, where the heat flux is described by causal thermodynamics, leading to a consistent determination of the temperature. It is found that both, local and nonlocal, matter configurations exhibit thermal peeling when most of the radiated energy comes from the outer layers of the distribution. This peeling occurs when different signs in the velocity of fluid elements appears, giving rise to the splitting of the matter configuration. This effect emerges as a combination of convection mass transfer and radiation flux, but is the intense radiation field at the outer layers of the object that causes of the peeling. This effect seems to be more violent for nonlocal configurations and it is very sensible to the initial mass of the energy flux prof...

  10. Thermal Modeling of Lundell Alternators

    E-Print Network [OSTI]

    Tang, Sai Chun

    Thermal analysis of Lundell alternators used in automobiles is presented. An analytical thermal model for Lundell alternators is proposed, and procedures for acquiring the model parameters are elucidated. Based on the ...

  11. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  12. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    the other hand, energy transfer by thermal radiation betweenit was shown that energy transfer by thermal radi- ationpyroelectric energy conversion and nanoscale thermal

  13. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  14. Modeling thermal comfort in stratified environments

    E-Print Network [OSTI]

    Zhang, H.; Huizenga, C.; Arens, Edward A; Yu, T.

    2005-01-01

    non-uniform thermal environments", European Journal of7730, 1994, Moderate Thermal Environments – Determination offor assessing complex thermal environments,” Building and

  15. Evolving opportunities for providing thermal comfort

    E-Print Network [OSTI]

    Brager, Gail; Zhang, Hui; Arens, Edward

    2015-01-01

    field measurement of thermal environment and questionnaireand non-uniform thermal environments, PhD Thesis, Center forPerception of transient thermal environments: Pleasure and

  16. Thermal Transport in Graphene Multilayers and Nanoribbons

    E-Print Network [OSTI]

    Subrina, Samia

    2011-01-01

    1 CHAPTER 2 Thermal transport atvalues of graphene’s thermal conductivity and different1 Thermal conductivity : metals and non - metallic

  17. Evolving opportunities for providing thermal comfort

    E-Print Network [OSTI]

    Brager, Gail; Zhang, Hui; Arens, Edward

    2015-01-01

    control in offices for thermal comfort and energy savings.ANSI/ASHRAE 55-2013: Thermal environmental conditions forA global database of thermal comfort field experiments.

  18. Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

    E-Print Network [OSTI]

    Wang, Zhaojie

    2012-01-01

    35, (3-6), Dames, C. ; Chen, G. , Thermal Conductivity ofProperties of Matter: Thermal conductivity: nonmetallicSociety), Dames, C. ; Chen, G. , Thermal Conductivity of

  19. Thermal Conduction in Graphene and Graphene Multilayers

    E-Print Network [OSTI]

    Ghosh, Suchismita

    2009-01-01

    1 1.2 Thermal transport atxv Introduction xii 1.1 Thermal conductivity and65 4.13 Thermal conductivity of graphene as a function of

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Energy can be saved and thermal pollution reduced if a totalnatural flow, and thermal pollution caused by simultaneousStored Heat Energy and Thermal Pollution Daily stored heat

  1. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    Reduction of air and thermal pollution are additionalsubsidence or upliftu thermal pollution, water chemistry,or ponds to avoid thermal pollution. Because periods of heat

  2. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    the possibility of thermal stratification, i.e. the tendencyratio is very large. Thermal stratification A simple model (ef- fects of thermal stratification. This ideal- ized model

  3. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management...

  4. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    the prob- lem of seasonal storage of thermal energy (Matheyto study seasonal storage of thermal energy: winter storagewithin the Seasonal Thermal Energy Storage Program managed

  5. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  6. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

  7. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

  8. Molecular beam-thermal hydrogen desorption from palladium

    SciTech Connect (OSTI)

    Lobo, R. F. M.; Berardo, F. M. V.; Ribeiro, J. H. F.

    2010-04-15

    Among the most efficient techniques for hydrogen desorption monitoring, thermal desorption mass spectrometry is a very sensitive one, but in certain cases can give rise to uptake misleading results due to residual hydrogen partial pressure background variations. In this work one develops a novel thermal desorption variant based on the effusive molecular beam technique that represents a significant improvement in the accurate determination of hydrogen mass absorbed on a solid sample. The enhancement in the signal-to-noise ratio for trace hydrogen is on the order of 20%, and no previous calibration with a chemical standard is required. The kinetic information obtained from the hydrogen desorption mass spectra (at a constant heating rate of 1 deg. C/min) accounts for the consistency of the technique.

  9. AN IONIZED OUTFLOW FROM AB AUR, A HERBIG AE STAR WITH A TRANSITIONAL DISK

    SciTech Connect (OSTI)

    Rodríguez, Luis F.; Zapata, Luis A.; Ortiz-León, Gisela N.; Loinard, Laurent [Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Macías, Enrique; Anglada, Guillem, E-mail: l.rodriguez@crya.unam.mx [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain)

    2014-09-20

    AB Aur is a Herbig Ae star with a transitional disk. Transitional disks present substantial dust clearing in their inner regions, most probably because of the formation of one or more planets, although other explanations are still viable. In transitional objects, accretion is found to be about an order of magnitude smaller than in classical full disks. Since accretion is believed to be correlated with outflow activity, centimeter free-free jets are expected to be present in association with these systems, at weaker levels than in classical protoplanetary (full) systems. We present new observations of the centimeter radio emission associated with the inner regions of AB Aur and conclude that the morphology, orientation, spectral index, and lack of temporal variability of the centimeter source imply the presence of a collimated, ionized outflow. The radio luminosity of this radio jet is, however, about 20 times smaller than that expected for a classical system of similar bolometric luminosity. We conclude that centimeter continuum emission is present in association with stars with transitional disks, but at levels than are becoming detectable only with the upgraded radio arrays. On the other hand, assuming that the jet velocity is 300 km s{sup –1}, we find that the ratio of mass loss rate to accretion rate in AB Aur is ?0.1, similar to that found for less evolved systems.

  10. Off-line studies of the laser ionization of yttrium at the IGISOL facility

    E-Print Network [OSTI]

    T. Kessler; I. D. Moore; Y. Kudryavtsev; K. Perajarvi; A. Popov; P. Ronkanen; T. Sonoda; B. Tordoff; K. D. A. Wendt; J. Aysto

    2007-09-26

    A laser ion source is under development at the IGISOL facility, Jyvaskyla, in order to address deficiencies in the ion guide technique. The key elements of interest are those of a refractory nature, whose isotopes and isomers are widely studied using both laser spectroscopic and high precision mass measurement techniques. Yttrium has been the first element of choice for the new laser ion source. In this work we present a new coupled dye-Ti:Sapphire laser scheme and give a detailed discussion of the results obtained from laser ionization of yttrium atoms produced in an ion guide via joule heating of a filament. The importance of not only gas purity, but indeed the baseline vacuum pressure in the environment outside the ion guide is discussed in light of the fast gas phase chemistry seen in the yttrium system. A single laser shot model is introduced and is compared to the experimental data in order to extract the level of impurities within the gas cell.

  11. SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES

    SciTech Connect (OSTI)

    Lepri, Susan T.; Laming, J. Martin; Rakowski, Cara E.; Von Steiger, Rudolf

    2012-12-01

    The 2005 January 21 interplanetary coronal mass ejection (ICME) observed by multiple spacecraft at L1 was also observed from January 21-February 4 at Ulysses (5.3 AU). Previous studies of this ICME have found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event allows us to study spatial variation across the ICME and relate it to the eruption at the Sun. In order to examine the spatial dependence of the heating in this ICME, we present an analysis and comparison of the heavy ion composition observed during the passage of the ICME at L1 and at Ulysses. Using SWICS, we compare the heavy ion composition across the two different observation cuts through the ICME and compare it with predictions for heating during the eruption based on models of the time-dependent ionization balance throughout the event.

  12. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  13. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  14. Light Quark Mass Reweighting

    E-Print Network [OSTI]

    Qi Liu; Norman H. Christ; Chulwoo Jung

    2012-06-01

    We present a systematic study of the effectiveness of light quark mass reweighting. This method allows a single lattice QCD ensemble, generated with a specific value of the dynamical light quark mass, to be used to determine results for other, nearby light dynamical quark masses. We study two gauge field ensembles generated with 2+1 flavors of dynamical domain wall fermions with light quark masses m_l=0.02 (m_\\pi=620 MeV) and m_l=0.01 (m_\\pi=420 MeV). We reweight each ensemble to determine results which could be computed directly from the other and check the consistency of the reweighted results with the direct results. The large difference between the 0.02 and 0.01 light quark masses suggests that this is an aggressive application of reweighting as can be seen from fluctuations in the magnitude of the reweighting factor by four orders of magnitude. Never-the-less, a comparison of the reweighed topological charge, average plaquette, residual mass, pion mass, pion decay constant, and scalar correlator between these two ensembles shows agreement well described by the statistical errors. The issues of the effective number of configurations and finite sample size bias are discussed. An examination of the topological charge distribution implies that it is more favorable to reweight from heavier mass to lighter quark mass.

  15. Nuclear Masses in Astrophysics

    E-Print Network [OSTI]

    Christine Weber; Klaus Blaum; Hendrik Schatz

    2008-12-09

    Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.

  16. Multiple mass solvers

    E-Print Network [OSTI]

    B. Jegerlehner

    1997-08-29

    We present a general method to construct multiple mass solvers from standard algorithms. As an example, the BiCGstab-M algorithm is derived.

  17. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect (OSTI)

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-01

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  18. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    SciTech Connect (OSTI)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Tripp, Todd M.; Katz, Neal [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Lehner, Nicolas [Department of Physics and Astronomy, University of Notre Dame, South Bend, IN (United States); O'Meara, John M. [Department of Chemistry and Physics, Saint Michael's College, Colchester, VT (United States); Ford, Amanda Brady [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Weinberg, David H., E-mail: jwerk@ucolick.org [Department of Astronomy, The Ohio State University, Columbus, OH (United States)

    2014-09-01

    We analyze the physical conditions of the cool, photoionized (T ?10{sup 4} K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ? L* galaxies at z ? 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n {sub H} {sub II}/n {sub H} ? 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R {sub vir}, we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n {sub H} = (10{sup –4.2±0.25})(R/R {sub vir}){sup –0.8±0.3}. Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M{sub CGM}{sup cool}>6.5×10{sup 10} M {sub ?} for the volume within R < R {sub vir}. Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10{sup 12} M {sub ?} scale.

  19. ,{ MO. REV. NO. THERMAL DESIGN

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ,{ MO. REV. NO. LRRR 300 THERMAL DESIGN FINAL REPORT ATM-931 PAGE i OF iv DATE 1 S Dec 1970 The results of thermal design/analyses performed on the 300 corner Laser Ranging Retro-Reflector (LRRR 300 performance profiles are contained herein, The entire LRRR thermal design effort is des- cribed commendng

  20. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  1. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  2. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  3. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  4. Observation of multiple ionization pathways for OCS in an intense laser field resolved by three-dimensional covariance mapping and visualized by hierarchical ionization topology

    E-Print Network [OSTI]

    Bryan, W A; Newell, W R; Sanderson, J H

    2006-01-01

    The two- and three-body Coulomb explosion of carbonyl sulfide (OCS) by 790 nm, 50 fs laser pulses focussed to $\\approx $ 10$^{16}$ Wcm$^{-2}$ has been investigated by three-dimensional covariance mapping technique. For the first time in a triatomic molecule, a single charge state, in this case the trication, has been observed to dissociate into two distinct energy channels. With the aid of a three dimensional visualization technique to reveal the ionization hierarchy, evidence is presented for the existence of two sets of ionization pathways resulting from these two initial states. While one group of ions can be modeled using a Classical enhanced ionization model, the second group, consisting of mainly asymmetric channels, can not. The results provide clear evidence that an enhanced ionization approach must also be accompanied by an appreciation of the effects of excited ionic states and multi-electronic processes.

  5. Observation of multiple ionization pathways for OCS in an intense laser field resolved by three-dimensional covariance mapping and visualized by hierarchical ionization topology

    E-Print Network [OSTI]

    W. A. Bryan; W. R. Newell; J. H. Sanderson; A. J. Langley

    2006-10-10

    The two- and three-body Coulomb explosion of carbonyl sulfide (OCS) by 790 nm, 50 fs laser pulses focussed to $\\approx $ 10$^{16}$ Wcm$^{-2}$ has been investigated by three-dimensional covariance mapping technique. For the first time in a triatomic molecule, a single charge state, in this case the trication, has been observed to dissociate into two distinct energy channels. With the aid of a three dimensional visualization technique to reveal the ionization hierarchy, evidence is presented for the existence of two sets of ionization pathways resulting from these two initial states. While one group of ions can be modeled using a Classical enhanced ionization model, the second group, consisting of mainly asymmetric channels, can not. The results provide clear evidence that an enhanced ionization approach must also be accompanied by an appreciation of the effects of excited ionic states and multi-electronic processes.

  6. Observation of multiple ionization pathways for OCS in an intense laser field resolved by three-dimensional covariance mapping and visualized by hierarchical ionization topology

    SciTech Connect (OSTI)

    Bryan, W. A.; Newell, W. R.; Sanderson, J. H.; Langley, A. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Physics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2006-11-15

    The two- and three-body Coulomb explosion of carbonyl sulfide (OCS) by 790 nm, 50 fs laser pulses focused to {approx_equal}10{sup 16} W cm{sup -2} has been investigated by the three-dimensional covariance mapping technique. In a triatomic molecule, a single charge state, in this case the trication, has been observed to dissociate into two distinct energy channels. With the aid of a three-dimensional visualization technique to reveal the ionization hierarchy, evidence is presented for the existence of two sets of ionization pathways resulting from these two initial states. While one group of ions can be modeled using a classical enhanced ionization model, the second group, consisting of mainly asymmetric channels, cannot. The results provide clear evidence that an enhanced ionization approach must also be accompanied by an appreciation of the effects of excited ionic states and multielectronic processes.

  7. Multiscale thermal transport.

    SciTech Connect (OSTI)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  8. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    SciTech Connect (OSTI)

    Auluck, S. K. H. E-mail: skauluck@barc.gov.in

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  9. Gas Chromatography -Mass Spectrometry

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

  10. The Origins of Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-07-30

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  11. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  12. Seismic mass Top electrode

    E-Print Network [OSTI]

    Kraft, Michael

    assembly process. For the measurements of the physical dimensions of the seismic mass a micrometer was usedSeismic mass Top electrode Bottom electrode x C1 C2 Chapter 4: The Micromachined Sensing Element supplied by Druck, Ltd., Groby, Leics. The manufacturing process at Druck was still in its experimental

  13. The Origins of Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  14. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Cameron, Christopher Stan (Sanford, NC)

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  15. Bounds on the Mobility of Electrons in Weakly Ionized Plasmas A. Rokhlenko, Department of Mathematics

    E-Print Network [OSTI]

    Bounds on the Mobility of Electrons in Weakly Ionized Plasmas A. Rokhlenko, Department energy of electrons, driven by an external field in a weakly ionized plasma (swarm approximation. The bounds prove rigorously that it is possible to increase the electron mobility by the addition of suitably

  16. A Liquid Xenon Ionization Chamber in an All-fluoropolymer Vessel

    SciTech Connect (OSTI)

    LePort, F.; Pocar, A.; Bartoszek, L.; DeVoe, R.; Fierlinger, P.; Flatt, B.; Gratta, G.; Green, M.; Montero Diez, M.; Neilson, R.; O'Sullivan, K.; Wodin, J.; Woisard, D.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank, W., Jr.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; /Stanford U., Phys. Dept. /Applied Plastics Technology, Bristol/Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U. /Moscow, ITEP; ,

    2007-02-26

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector.

  17. Impact-ionization field-effect-transistor based biosensors for ultra-sensitive detection of biomolecules

    E-Print Network [OSTI]

    Impact-ionization field-effect-transistor based biosensors for ultra-sensitive detection online 21 May 2013) The phenomenon of impact-ionization is proposed to be leveraged for a novel biosensor field-effect-transistor (IFET) based biosensor, it is possible to obtain an increase in sensitivity

  18. MEASURING AN ERUPTIVE PROMINENCE AT LARGE DISTANCES FROM THE SUN. I. IONIZATION AND EARLY EVOLUTION

    E-Print Network [OSTI]

    Howard, Tim

    MEASURING AN ERUPTIVE PROMINENCE AT LARGE DISTANCES FROM THE SUN. I. IONIZATION AND EARLY EVOLUTION characteristics at it moves away from the Sun. The prominence reaches complete ionization, or at least a state for an accompanying paper that reports on measurements of the prominence at large distances from the Sun using

  19. Ionization probability of atoms and molecules sputtered from a cesium covered silver surface

    E-Print Network [OSTI]

    Wucher, Andreas

    Ionization probability of atoms and molecules sputtered from a cesium covered silver surface S that the dependence of the AgCs ion fraction on the cesium surface concentration does not follow the ionization conditions by a rastered 10 keV Xe ion beam and subsequently covered with cesium by deposition from

  20. Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2

    E-Print Network [OSTI]

    Thumm, Uwe

    Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2 J. Wu­4], where the photon energy is shared by the freed electrons and the nuclear fragments. For the molecular ionization [10­15], and the imaging of inter- nuclear distance using nuclear kinetic energy release spec- tra