National Library of Energy BETA

Sample records for thermal ionization mass

  1. GoAmazon2014-15 Thermal Desorption Chemical Ionization Mass Spectromer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 GoAmazon 201415 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field ... DOESC-ARM-16-003 GoAmazon 201415 Thermal Desorption Chemical Ionization Mass ...

  2. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass...

    Office of Scientific and Technical Information (OSTI)

    Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report Citation Details In-Document Search Title: GoAmazon 201415 Thermal Desorption Chemical Ionization ...

  3. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Patents [OSTI]

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  4. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer

    Office of Scientific and Technical Information (OSTI)

    (TDCIMS) Field Campaign Report (Technical Report) | SciTech Connect GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report Citation Details In-Document Search Title: GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate

  5. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Siegfried, M.

    2015-10-14

    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For this study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.

  6. GoAmazon2014-15 Thermal Desorption Chemical Ionization Mass Spectromer (TDCIMS)

    Office of Scientific and Technical Information (OSTI)

    6-003 GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report JN Smith April 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  7. Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  8. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    SciTech Connect (OSTI)

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.; White, Byron M.

    2015-05-01

    135Cs/137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide variety of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2?) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/137Cs ratio measurements currently reported for soil samples at the femtogram level.

  9. Improvement in Thermal-Ionization Mass Spectrometry (TIMS) using Total Flash Evaporation (TFE) method for lanthanides isotope ratio measurements in transmutation targets

    SciTech Connect (OSTI)

    Mialle, S.; Gourgiotis, A.; Aubert, M.; Stadelmann, G.; Gautier, C.; Isnard, H.

    2011-07-01

    The experiments involved in the PHENIX french nuclear reactor to obtain precise and accurate data on the total capture cross sections of the heavy isotopes and fission products require isotopic ratios measurements with uncertainty of a few per mil. These accurate isotopic ratio measurements are performed with mass spectrometer equipped with multi-collector system. The major difficulty for the analyses of these actinides and fission products is the low quantity of the initial powder enclosed in steel container (3 to 5 mg) and the very low quantities of products formed (several {mu}g) after irradiation. Specific analytical developments are performed by Thermal Ionization Mass Spectrometry (TIMS) to be able to analyse several nanograms of elements with this technique. A specific method of acquisition named Total Flash Evaporation was adapted in this study in the case of lanthanide measurements for quantity deposited on the filament in the order of 2 ng and applied on irradiated fuel. To validate the analytical approach and discuss about the accuracy of the data, the isotopic ratios obtained by TIMS are compared with other mass spectrometric techniques such as Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). (authors)

  10. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOE Patents [OSTI]

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  11. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOE Patents [OSTI]

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  12. Electron Ionization Mass Spectrum of Tellurium Hexafluoride

    SciTech Connect (OSTI)

    Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.

    2015-05-18

    The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.

  13. Method for analyzing the mass of a sample using a cold cathode ionization source mass filter

    DOE Patents [OSTI]

    Felter, Thomas E.

    2003-10-14

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  14. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  15. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  16. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  17. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2011-06-21

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  18. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  19. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  20. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, In vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2011-11-29

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation (LA) with electrospray ionization (ESI).

  1. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2014-08-19

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  2. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2012-10-30

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  3. Analysis of perchlorate in groundwater by electrospray ionization mass spectrometry/mass spectrometry

    SciTech Connect (OSTI)

    Koester, C.J.; Beller, H.R.; Halden, R.U.

    2000-05-01

    An electrospray ionization mass spectrometry/mass spectrometry (ESI/MS/MS) method was developed to measure part-per-billion ({micro}g/L) concentrations of perchlorate in groundwater. Selective and sensitive perchlorate detection was achieved by operating the mass spectrometer in the negative ionization mode and by using MS/MS to monitor the CIO{sub 4}{sup {minus}} to ClO{sub 3}{sup {minus}} transition. The method of standard additions was used to address the considerable signal suppression caused by anions that are typically present in groundwater, such as bicarbonate and sulfate. ESI-MS/MS analysis was rapid, accurate, reproducible, and provided a detection limit of 0.5 {micro}g/L perchlorate in groundwater. Accuracy and precision of the ESI/MS/MS method were assessed by analyzing performance evaluation samples in a groundwater matrix and by comparing ion chromatography (IC) and ESI/MS/MS results for local groundwater samples. Results for the performance evaluation samples differed from the certified values by 4--13%, and precision ranged from 3 to 10% (relative standard deviation). The IC and ESI/MS/MS results were statistically indistinguishable for perchlorate concentrations above the detection limits of both methods.

  4. ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

    SciTech Connect (OSTI)

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin; Wunschel, David S.

    2014-02-02

    ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

  5. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  6. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  7. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect (OSTI)

    Isselhardt, B H

    2011-09-06

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  8. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    SciTech Connect (OSTI)

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho E-mail: hlkim@kangwon.ac.kr

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  9. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-01-01

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  10. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-01-01

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creating a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.

  11. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  12. Effect of neutrino rest mass on ionization equilibrium freeze-out

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  13. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect (OSTI)

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  14. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect (OSTI)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  15. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOE Patents [OSTI]

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  16. Electron impact and chemical ionization mass spectral analysis of a volatile uranyl derivative

    SciTech Connect (OSTI)

    Reutter, D.J.; Hardy, D.R.

    1981-01-01

    Quadrupole mass spectral analysis of the volatile uranium ligand complex bis (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato) dioxouranium-di-n-butyl sulfoxide is described utilizing electron impact (EI) and methane chemical ionization (CI) ion sources. All major ions are tentatively identified and the potential usefulness of this complex for determining uranium isotope /sup 235/U//sup 238/U abundance is demonstrated.

  17. SEARCH FOR IONIZED JETS TOWARD HIGH-MASS YOUNG STELLAR OBJECTS

    SciTech Connect (OSTI)

    Guzman, Andres E.; Garay, Guido; Brooks, Kate J.; Voronkov, Maxim A.

    2012-07-01

    We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets toward high-mass young stellar objects (HMYSOs). Here we report observations at 1.4, 2.4, 4.8, and 8.6 GHz, made with angular resolutions of about 7'', 4'', 2'', and 1'', respectively, toward six objects of a sample of 33 southern HMYSOs thought to be in very early stages of evolution. The objects in the sample were selected from radio and infrared catalogs by having positive radio spectral indices and being luminous (L{sub bol} > 2 Multiplication-Sign 10{sup 4} L{sub Sun }), but underluminous in radio emission compared with that expected from its bolometric luminosity. This criterion makes the radio sources good candidates for being ionized jets. As part of this systematic search, two ionized jets have been discovered: one previously published and the other reported here. The rest of the observed candidates correspond to three hypercompact H II regions and two ultracompact H II regions. The two jets discovered are associated with two of the most luminous (7 Multiplication-Sign 10{sup 4} and 1.0 Multiplication-Sign 10{sup 5} L{sub Sun }) HMYSOs known to harbor this type of object, showing that the phenomena of collimated ionized winds appear in the formation process of stars at least up to masses of {approx}20 M{sub Sun} and provide strong evidence for a disk-mediated accretion scenario for the formation of high-mass stars. From the incidence of jets in our sample, we estimate that the jet phase in high-mass protostars lasts for {approx}4 Multiplication-Sign 10{sup 4} yr.

  18. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect (OSTI)

    Perdian, David C.

    2009-08-19

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  19. Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Thomas, Mathew; Laskin, Julia

    2014-02-04

    Mass spectrometry imaging (MSI) has been extensively used for determining spatial distributions of molecules in biological samples, and there is increasing interest in using MSI for quantification. Nanospray desorption electrospray ionization, or nano-DESI, is an ambient MSI technique where a solvent is used for localized extraction of molecules followed by nanoelectrospray ionization. Doping the nano-DESI solvent with carefully selected standards enables online quantification during MSI experiments. In this proof-of-principle study, we demonstrate this quantification approach can be extended to provide shotgun-like quantification of phospholipids in thin brain tissue sections. Specifically, two phosphatidylcholine (PC) standards were added to the nano-DESI solvent for simultaneous imaging and quantification of 22 PC species observed in nano-DESI MSI. Furthermore, by combining the quantitative data obtained in the individual pixels, we demonstrate quantification of these PC species in seven different regions of a rat brain tissue section.

  20. Imaging of Lipids and Metabolites Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela; Laskin, Julia

    2015-01-17

    In recent years, mass spectroscopy imaging (MSI) has emerged as a foundational technique in metabolomics and drug screening providing deeper understanding of complex mechanistic pathways within biochemical systems and biological organisms. We have been invited to contribute a chapter to a new Springer series volume, entitled Mass Spectrometry Imaging of Small Molecules. The volume is planned for the highly successful lab protocol series Methods in Molecular Biology, published by Humana Press, USA. The volume is aimed to equip readers with step-by-step mass spectrometric imaging protocols and bring rapidly maturing methods of MS imaging to life science researchers. The chapter will provide a detailed protocol of ambient MSI by use of nanospray desorption electrospray ionization.

  1. Toward a Fieldable Atomic Mass Spectrometer for Safeguards Applications: Sample Preparation and Ionization

    SciTech Connect (OSTI)

    Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth; Jones, Sarah MH; Manard, Benjamin T.

    2014-10-31

    The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for the development of new methods to detect misuse at nuclear fuel cycle facilities such as reprocessing and enrichment plants. At enrichment plants, for example, the IAEA’s contemporary safeguards approaches are based on a combination of routine and random inspections that include collection of UF6 samples from in-process material and selected cylinders for subsequent analyses. These analyses include destructive analysis (DA) in a laboratory (typically by mass spectrometry [MS]) for isotopic characterization, and environmental sampling (ES) for subsequent laboratory elemental and isotopic analysis (also both typically by MS). One area of new method development includes moving this kind of isotope ratio analytical capability for DA and ES activities into the field. Some of the reasons for these developments include timeliness of results, avoidance of hazardous material shipments, and guidance for additional sample collecting. However, this capability does not already exist for several reasons, such as that most lab-based chemical and instrumental methods rely on laboratory infrastructure (highly trained staff, power, space, hazardous material handling, etc.) and require significant amounts of consumables (power, compressed gases, etc.). In addition, there are no currently available, fieldable instruments for atomic or isotope ratio analysis. To address these issues, Pacific Northwest National Laboratory (PNNL) and collaborator, Clemson University, are studying key areas that limit the fieldability of isotope ratio mass spectrometry for atomic ions: sample preparation and ionization, and reducing the physical size of a fieldable mass spectrometer. PNNL is seeking simple and robust techniques that could be effectively used by inspectors who may have no expertise in analytical MS. In this report, we present and describe the preliminary findings for three candidate techniques: matrix-assisted laser desorption/ionization (MALDI) MS, liquid sampling-atmospheric pressure glow discharge (LS-APGD), and laser ablation/ionization (LAI) MS at atmospheric pressure. Potential performance metrics for these techniques will be presented, including detectability, response, isotope ratio accuracy and precision, and ease of use.

  2. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-06-09

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-?m-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography.

  3. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    SciTech Connect (OSTI)

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2014-01-01

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  4. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    SciTech Connect (OSTI)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  5. Wall loss of atomic nitrogen determined by ionization threshold mass spectrometry

    SciTech Connect (OSTI)

    Sode, M. Schwarz-Selinger, T.; Jacob, W.; Kersten, H.

    2014-11-21

    In the afterglow of an inductively coupled N{sub 2} plasma, relative N atom densities are measured by ionization threshold mass spectrometry as a function of time in order to determine the wall loss time t{sub wN} from the exponential decay curves. The procedure is performed with two mass spectrometers on different positions in the plasma chamber. t{sub wN} is determined for various pressures, i.e., for 3.0, 5.0, 7.5, and 10?Pa. For this conditions also the internal plasma parameters electron density n{sub e} and electron temperature T{sub e} are determined with the Langmuir probe and the rotational temperature T{sub rot}{sup N{sub 2}} of N{sub 2} is determined with the optical emission spectroscopy. For T{sub rot}{sup N{sub 2}}, a procedure is presented to evaluate the spectrum of the transition ?{sup ?}=0??{sup ?}=2 of the second positive system (C{sup 3}?{sub u}?B{sup 3}?{sub g}) of N{sub 2}. With this method, a gas temperature of 610?K is determined. For both mass spectrometers, an increase of the wall loss times of atomic nitrogen with increasing pressure is observed. The wall loss time measured with the first mass spectrometer in the radial center of the cylindrical plasma vessel increases linearly from 0.31?ms for 3?Pa to 0.82?ms for 10?Pa. The wall loss time measured with the second mass spectrometer (further away from the discharge) is about 4 times higher. A model is applied to describe the measured t{sub wN.} The main loss mechanism of atomic nitrogen for the considered pressure is diffusion to the wall. The surface loss probability ?{sub N} of atomic nitrogen on stainless steel was derived from t{sub wN} and is found to be 1 for the present conditions. The difference in wall loss times measured with the mass spectrometers on different positions in the plasma chamber is attributed to the different diffusion lengths.

  6. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  7. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  8. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lorenz, Matthias; Ovchinnikova, Olga S; Van Berkel, Gary J

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant materials.

  9. Subgrid models for mass and thermal diffusion in turbulent mixing

    SciTech Connect (OSTI)

    Sharp, David H; Lim, Hyunkyung; Li, Xiao - Lin; Gilmm, James G

    2008-01-01

    We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without resolving the Batchelor scale, allows a feasible approach to the modeling of high Schmidt number flows.

  10. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance ofmore » ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.« less

  11. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    SciTech Connect (OSTI)

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance of ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.

  12. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  13. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  14. Efficient mass-selective three-photon ionization of zirconium atoms

    DOE Patents [OSTI]

    Page, Ralph H.

    1994-01-01

    In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.

  15. Efficient mass-selective three-photon ionization of zirconium atoms

    DOE Patents [OSTI]

    Page, R.H.

    1994-12-27

    In an AVLIS process, [sup 91]Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength [lambda][sub 1], selectively raising [sup 91]Zr atoms to an odd-parity E[sub 1] energy level in the range of 16000--19000 cm[sup [minus]1], are irradiated by a laser beam having a wavelength [lambda][sub 2] to raise the atoms from an E[sub l] level to an even-parity E[sub 2] energy level in the range of 35000--37000 cm[sup [minus]1] and are irradiated by a laser beam having a wavelength [lambda][sub 3] to cause a resonant transition of atoms from an E[sub 2] level to an autoionizing level above 53506 cm[sup [minus]1][lambda][sub 3] wavelengths of 5607, 6511 or 5756 [angstrom] will excite a zirconium atom from an E[sub 2] energy state of 36344 cm[sup [minus]1] to an autoionizing level; a [lambda][sub 3] wavelength of 5666 [angstrom] will cause an autoionizing transition from an E[sub 2] level of 36068 cm[sup [minus]1]; and a [lambda][sub 3] wavelength of 5662 [angstrom] will cause an ionizing resonance of an atom at an E[sub 2] level of 35904 cm[sup [minus]1]. 4 figures.

  16. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect (OSTI)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  17. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect (OSTI)

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 0.39 for Ar and 10.86 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 10{sup 11} and 5.0 10{sup 11} molecule s{sup ?1} cm{sup ?3} of C{sub 2}H{sub 5}{sup } (ethyl) and t-C{sub 4}H{sub 9}{sup } (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  18. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    SciTech Connect (OSTI)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small mass ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.

  19. Three-Dimensional Imaging of Lipids and Metabolites in Tissues by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Cha, Jeeyeon; Dey, Sudhansu K.; yang, Pengxiang; Prieto, Mari; Laskin, Julia

    2015-03-01

    Abstract Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI) an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pre-treatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/?m at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ~150 ?m in less than 4.5 hours. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine metabolites associated with cell growth are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.

  20. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small massmore » ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  1. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    SciTech Connect (OSTI)

    Yang, Rui Gudipati, Murthy S.

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this shockwave mediated surface resonance enhanced subsurface ablation technique as two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers. This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processesablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings.

  2. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  3. Utilizing the Inherent Electrolysis in a Chip-Based Nanoelectrospray Emitter System to Facilitate Selective Ionization and Mass Spectrometric Analysis of Metallo Alkylporphyrins

    SciTech Connect (OSTI)

    Van Berkel, Gary J; Kertesz, Vilmos

    2012-01-01

    A commercially available chip-based infusion nanoelectrospray ionization system was used to ionize metallo alkylporphyrins for mass spectrometric detection and structure elucidation by mass spectrometry. Different ionic forms of model compounds (nickel (II), vanadyl (II), copper (II) and cobalt (II) octaethylporphyrin) were created by using two different types of conductive pipette tips supplied with the device. These pipette tips provide the conductive contact to solution at which the electrolysis process inherent to electrospray takes places in the device. The original unmodified, bare carbon-impregnated plastic pipette tips, were exploited to intentionally electrochemically oxidize (ionize) the porphyrins to form molecular radical cations for detection. Use of modified pipette tips, with a surface coating devised to inhibit analyte mass transport to the surface, was shown to limit the ionic species observed in the mass spectra of these porphyrins largely, but not exclusively, to the protonated molecule. Under the conditions of these experiments, the effective upper potential limit for oxidation with the uncoated pipette tip was 1.1 V or less and the coated pipette tips effectively prevented the oxidation of analytes with redox potentials greater than about 0.25 V. Product ion spectra of either molecular ionic species could be used to determine the alkyl chain length on the porphyrin macrocycle. The utility of this electrochemical ionization approach for the analysis of naturally occurring samples was demonstrated using nickel geoporphyrin fractions isolated from Gilsonite bitumen. Acquiring neutral loss spectra as a means to improve the specificity of detection in these complex natural samples was also illustrated.

  4. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect (OSTI)

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  5. The slow ionized wind and rotating disklike system that are associated with the high-mass young stellar object G345.4938+01.4677

    SciTech Connect (OSTI)

    Guzmn, Andrs E.; Garay, Guido; Bronfman, Leonardo; Mardones, Diego; Rodrguez, Luis F.; Moran, James; Brooks, Kate J.; Nyman, Lars-ke; Sanhueza, Patricio

    2014-12-01

    We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40?, H42?, and H50? emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 165623959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings imply electron densities of 5 10{sup 7} cm{sup 3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (?3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.

  6. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect (OSTI)

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  7. The COS/UVES absorption survey of the Magellanic stream. III. Ionization, total mass, and inflow rate onto the Milky Way

    SciTech Connect (OSTI)

    Fox, Andrew J.; Thom, Christopher; Tumlinson, Jason; Ely, Justin; Kumari, Nimisha [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wakker, Bart P.; Hernandez, Audra K.; Haffner, L. Matthew [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Barger, Kathleen A.; Lehner, Nicolas; Howk, J. Christopher [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Richter, Philipp [Institut fr Physik und Astronomie, Universitt Potsdam, Haus 28, Karl-Liebknecht-Strasse 24/25, D-14476, Potsdam (Germany); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Charlton, Jane C. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Westmeier, Tobias [ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Misawa, Toru [School of General Education, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Rodriguez-Hidalgo, Paola, E-mail: afox@stsci.edu [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON M3J 1P3 (Canada)

    2014-06-01

    Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 of the 21 cm emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is ?11,000 deg{sup 2}, or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be ?2.0 10{sup 9} M {sub ?} (d/55 kpc){sup 2}, with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ?0.5-1.0 Gyr, it will represent an average inflow rate of ?3.7-6.7 M {sub ?} yr{sup 1}, potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona.

  8. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    SciTech Connect (OSTI)

    Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

    2010-05-14

    This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

  9. Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole A.; Bateman, Adam P.; Nguyen, Tran B.; Bones, David L.; Nizkorodov, Sergey; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-08-21

    Aerosol samples collected in the urban areas of Shanghai and Los Angeles were analyzed by nanospray-desorption electrospray ionization mass spectrometry (nano-DESI MS) with high mass resolution (m/?m=100,000). Solvent mixtures of acetonitrile/water and acetonitrile/toluene were used to extract and ionize polar and non-polar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. Majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates in the two samples have distinctly different molecular characteristics. Specifically, organosulfates in the Los Angeles sample were dominated by isoprene- or monoterpene-derived products, while organosulfates of yet unknown origin in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degree of oxidation and unsaturation. The use of acetonitrile/toluene solvent facilitated identification of this type of organosulfates, suggesting they could be missed in previous studies relying on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the organosulfates detected in the Shanghai sample suggest that they may act as surfactants, and plausibly affect the surface tension and hygroscopicity of the atmospheric particulate matter. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors.

  10. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    SciTech Connect (OSTI)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola E-mail: paola.marigo@unipd.it

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ?}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ?}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ?}. At larger masses, the core-mass growth decreases steadily to ?10% at M {sub initial} = 3.4 M {sub ?}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ?}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ? 3 Myr and E = 1.2 10{sup 10} L {sub ?} yr for M {sub initial} ? 2 M {sub ?} (t ? 2 Myr for luminosities brighter than the red giant branch tip at log (L/L {sub ?}) > 3.4), decreasing to t = 0.4 Myr and E = 6.1 10{sup 9} L {sub ?} yr for stars with M {sub initial} ? 3.5 M {sub ?}. The implications of these results are discussed, especially with respect to general studies aimed at characterizing the integrated light output of TP-AGB stars in population synthesis models.

  11. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOE Patents [OSTI]

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  12. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    SciTech Connect (OSTI)

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.; Zhao, Rui; Hagler, Clay D.; Shukla, Anil K.; Carlson, Timothy S.; Adkins, Joshua N.; Camp, David G.; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.

    2014-09-02

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.

  13. Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels

    SciTech Connect (OSTI)

    Andersson, Anders D.; Uberuaga, Blas P.; Du, Shiyu; Liu, Xiang-Yang; Nerikar, Pankaj; Stanek, Christopher R.; Tonks, Michael; Millet, Paul; Biner, Bulent

    2012-06-04

    In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain boundaries derived from separate atomistic calculations, we simulate Xe redistribution for a few simple microstructures using finite element methods (FEM), as implemented in the MOOSE framework from Idaho National Laboratory. Thermal transport together with the power distribution determines the temperature distribution in the fuel rod and it is thus one of the most influential properties on nuclear fuel performance. The fuel thermal conductivity changes as function of time due to microstructure evolution (e.g. fission gas redistribution) and compositional changes. Using molecular dynamics simulations we have studied the impact of different types of grain boundaries and fission gas bubbles on UO{sub 2} thermal conductivity.

  14. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    SciTech Connect (OSTI)

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.

  15. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2015-01-05

    Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore » groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec s cm−3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  16. Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Olivares, Astrid M.; Laskin, Julia; Johnson, Grant E.

    2014-09-18

    The scalable synthesis of subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth and post-reduction etching are still not well understood. Herein, we demonstrate a temperature-controlled flow reactor for studying cluster formation in solution at well-defined conditions. Employing this technique methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with an adjustable length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates and products synthesized in real time was characterized using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged metal-ligand complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged metal-ligand complexes while hindering the growth of triply charged clusters. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of reduction synthesis in solution.

  17. Analytical instruments, ionization sources, and ionization methods

    DOE Patents [OSTI]

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  18. Communication: Transfer ionization in a thermal reaction of a cation and anion: Ar{sup +} with Br{sup −} and I{sup −}

    SciTech Connect (OSTI)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Johnsen, Rainer

    2013-11-07

    We present experimental evidence that reactions of argon cations Ar{sup +} with the halogen anions Br{sup −} and I{sup −} do not occur exclusively by mutual neutralization, but also produce the cations Br{sup +} or I{sup +} ions by transfer ionization (TI). The experiments were carried out in flowing-afterglow plasmas at gas temperatures between and 300 and 500 K, and employed a variant of the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The measured TI rate coefficients are 1.9 ± 0.6 × 10{sup −9} cm{sup 3} s{sup −1} and 1.1 ± {sub 0.3}{sup 0.8}× 10{sup −9} cm{sup 3} s{sup −1} for the Br{sup −} and I{sup −} reactions, respectively. We find that the TI rate coefficients decline with temperature as T{sup −0.5} to T{sup −1}. No indication of TI was found in the reaction with Cl{sup −}, where it is endoergic.

  19. Alkali metal ionization detector

    DOE Patents [OSTI]

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  20. CONSTRAINTS ON THE SPACETIME GEOMETRY AROUND 10 STELLAR-MASS BLACK HOLE CANDIDATES FROM THE DISK'S THERMAL SPECTRUM

    SciTech Connect (OSTI)

    Kong, Lingyao; Li, Zilong; Bambi, Cosimo

    2014-12-20

    In a previous paper, one of us (C. Bambi) described a code to compute the thermal spectrum of geometrically thin and optically thick accretion disks around generic stationary and axisymmetric black holes, which are not necessarily of the Kerr type. As the structure of the accretion disk and the propagation of electromagnetic radiation from the disk to the distant observer depend on the background metric, the analysis of the thermal spectrum of thin disks can be used to test the actual nature of black hole candidates. In this paper, we consider the 10 stellar-mass black hole candidates for which the spin parameter has already been estimated from the analysis of the disk's thermal spectrum under the assumption of the Kerr background, and we translate the measurements reported in the literature into constraints on the spin parameter-deformation parameter plane. The analysis of the disk's thermal spectrum can be used to estimate only one parameter of the geometry close to the compact object; therefore, it is not possible to get independent measurements of both the spin and the deformation parameters. The constraints obtained here will be used in combination with other measurements in future work with the final goal of breaking the degeneracy between the spin and possible deviations from the Kerr solution and thus test the Kerr black hole hypothesis.

  1. Ionization chamber

    DOE Patents [OSTI]

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  2. Ionization chamber

    DOE Patents [OSTI]

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  3. IONIZATION CHAMBER

    DOE Patents [OSTI]

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  4. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect (OSTI)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  5. Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3] Ionic Liquid

    SciTech Connect (OSTI)

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2013-12-01

    Electrospray ionization of the fluorohydrogenate ionic liquid [1-ethyl-3-methylimidazolium][F(HF)2.3] ionic liquid was conducted to understand the nature of the anionic species as they exist in the gas phase. Abundant fluorohydrogenate clusters were produced; however, the dominant anion in the clusters was [FHF-], and not the fluoride-bound HF dimers or trimers that are seen in solution. Density functional theory (DFT) calculations suggest that HF molecules are bound to the clusters by about 30 kcal/mol. The DFT-calculated structures of the [FHF-]-bearing clusters show that the favored interactions of the anions are with the methynic and acetylenic hydrogen atoms on the imidazolium cation, forming planar structures similar to those observed in the solid state. A second series of abundant negative ions was also formed that contained [SiF5-] together with the imidazolium cation and the fluorohydrogenate anions that originate from reaction of the spray solution with silicate surfaces.

  6. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  7. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  8. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    SciTech Connect (OSTI)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-12-10

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  9. Molecular Characterization of S- and N-containing Organic Constituents in Ambient Aerosols by negative ion mode High-Resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect (OSTI)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-27

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day were collected in Bakersfield, CA on June 20-24 with a collection time of 6 hours per sample. Four characteristic groups of organic constituents were identified in the samples: compounds containing carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen-(CHON), and both nitrogen- and sulfur-containing organics (CHONS). Within the groups, organonitrates, organosulfates, and nitroxy organosulfates were assigned based on accurate mass measurements and elemental ratio comparisons. Changes in the chemical composition of the aerosol samples were observed throughout the day. The number of observed CHO compounds increased in the afternoon samples, suggesting regional photochemical processing as a source. The average number of CHOS compounds had the smallest changes throughout the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHON and CHONS) had greater numbers of compounds in the night and morning samples, indicating that nitrate radical chemistry was likely a source for those compounds. Most of the compounds were found in submicron particles. The size distribution of CHON compounds was bimodal. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources.

  10. Time and space resolved measurement of the electron temperature, mass density and ionization state in the ablation plasma between two exploding Al wires

    SciTech Connect (OSTI)

    Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Hansen, S. B.

    2012-05-15

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from Greater-Than-Or-Equivalent-To 0.1g/cm{sup 3} and a few eV to less than 0.01 g/cm{sup 3} and 30 eV have been measured in experiments at Cornell University with two 40 {mu}m aluminum (Al) wires spaced 1 mm apart driven by {approx}150 kA peak current pulses with 100 ns rise time. The wire plasma was backlit by the 1.4-1.6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na-, and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to C-Like Al are observed. The spectrometer geometry and {approx}2{mu}m X-pinch source size provide 0.3 eV spectral resolution and 20 {mu}m spatial resolution enabling us to see 1s{yields} 2p satellite transitions as separate lines as well as O-, F-, and Ne-like 1s{yields} 3p transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within a factor of two and temperature to be measured within {+-}25%. A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume multiple plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path.

  11. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

    SciTech Connect (OSTI)

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-10-26

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

  12. Investigating Enhanced Thorium Ionization in TIMS Using Re/Pt Porous Ion Emitters

    SciTech Connect (OSTI)

    Floyd E. Stanley III; K. J. Spencer; D. S. Schwartz; M. G. Watrous; J. E. Delmore

    2014-03-01

    Thermal ionization mass spectrometry (TIMS) is a widely used, benchmark method in the isotopic analysis of actinides relevant to various nuclear and geological fields. Despite significant previous use and inherent advantages, however, poor sample ionization continues to hamper the use of TIMS in the measurement of trace species; actinide ionization efficiencies frequently fall below 0.1 % using traditional instrument sources. Factors leading to poor ionization are compounded in the measurement of several highly refractory metals (e.g. U and Th) that may provide key signatures data in non-proliferation, safeguards and forensics efforts. Herein, a relatively new TIMS ion source strategy, employing porous ion emitters (PIEs) atop traditional filament assemblies, is investigated for the first time as a straightforward means of enhancing the ionization of Th, which is arguably a worst case scenario for TIMS-based actinide measurements. These sources yielded up to 410% greater Th sample utilization, relative to previously published values and in-house measurements collected using traditional methods. Accompanying scanning electron microscopy (SEM) investigations provide preliminary insight into possible mechanisms of PIE functioning and explore the impacts that extended heating have on the constructed source’s structure and composition.

  13. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung -Jin; Kim, Kwang -Bum; Chung, Kyung Yoon; Yang, Xiao -Qing; Nam, Kyung -Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygenmore » release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3¯m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less

  14. Electrospray Ionization Mass Spectrometry of hexanitrohexaazaisowurtzi...

    Office of Scientific and Technical Information (OSTI)

    Fourier transform infrared (FTIR) spectroscopy has been used to identify different crystal ... The major adduct ions observed under negative ion conditions were (M+Cl)- at mz 473 and ...

  15. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    SciTech Connect (OSTI)

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  16. LoCuSS: A COMPARISON OF CLUSTER MASS MEASUREMENTS FROM XMM-NEWTON AND SUBARU-TESTING DEVIATION FROM HYDROSTATIC EQUILIBRIUM AND NON-THERMAL PRESSURE SUPPORT

    SciTech Connect (OSTI)

    Zhang, Yu-Ying; Okabe, Nobuhiro; Finoguenov, Alexis; Smith, Graham P.; Sanderson, Alastair J. R.; Piffaretti, Rocco; Valdarnini, Riccardo; Evrard, August E.; Mazzotta, Pasquale; Marrone, Daniel P.

    2010-03-10

    We compare X-ray hydrostatic and weak-lensing mass estimates for a sample of 12 clusters that have been observed with both XMM-Newton and Subaru. At an over-density of DELTA = 500, we obtain 1 - M {sup X}/M {sup WL} = 0.01 +- 0.07 for the whole sample. We also divided the sample into undisturbed and disturbed sub-samples based on quantitative X-ray morphologies using asymmetry and fluctuation parameters, obtaining 1 - M {sup X}/M {sup WL} = 0.09 +- 0.06 and -0.06 +- 0.12 for the undisturbed and disturbed clusters, respectively. In addition to non-thermal pressure support, there may be a competing effect associated with adiabatic compression and/or shock heating which leads to overestimate of X-ray hydrostatic masses for disturbed clusters, for example, in the famous merging cluster A1914. Despite the modest statistical significance of the mass discrepancy, on average, in the undisturbed clusters, we detect a clear trend of improving agreement between M {sup X} and M {sup WL} as a function of increasing over-density, M{sup X}/M{sup WL}=(0.908+-0.004)+(0.187+-0.010){center_dot} log{sub 10}(DELTA/500). We also examine the gas mass fractions, f{sub gas} = M {sup gas}/M {sup WL}, finding that they are an increasing function of cluster radius, with no dependence on dynamical state, in agreement with predictions from numerical simulations. Overall, our results demonstrate that XMM-Newton and Subaru are a powerful combination for calibrating systematic uncertainties in cluster mass measurements.

  17. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect (OSTI)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

  18. Multiphoton ionization of large water clusters

    SciTech Connect (OSTI)

    Apicella, B.; Li, X.; Passaro, M.; Spinelli, N.; Wang, X.

    2014-05-28

    Water clusters are multimers of water molecules held together by hydrogen bonds. In the present work, multiphoton ionization in the UV range coupled with time of flight mass spectrometry has been applied to water clusters with up to 160 molecules in order to obtain information on the electronic states of clusters of different sizes up to dimensions that can approximate the bulk phase. The dependence of ion intensities of water clusters and their metastable fragments produced by laser ionization at 355 nm on laser power density indicates a (3+1)-photon resonance-enhanced multiphoton ionization process. It also explains the large increase of ionization efficiency at 355 nm compared to that at 266 nm. Indeed, it was found, by applying both nanosecond and picosecond laser ionization with the two different UV wavelengths, that no water cluster sequences after n = 9 could be observed at 266 nm, whereas water clusters up to m/z 2000 Th in reflectron mode and m/z 3000 Th in linear mode were detected at 355 nm. The agreement between our findings on clusters of water, especially true in the range with n > 10, and reported data for liquid water supports the hypothesis that clusters above a critical dimension can approximate the liquid phase. It should thus be possible to study clusters just above 10 water molecules, for getting information on the bulk phase structure.

  19. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect (OSTI)

    Siegrist, R.L.; Lowe, K.S.; Murdoch, L.D.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  20. Alkali ionization detector

    DOE Patents [OSTI]

    Hrizo, John (Monroeville, PA); Bauerle, James E. (Plum Borough, PA); Witkowski, Robert E. (West Mifflin, PA)

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  1. Thermal, chemical, and mass-transport processes induced in abyssal sediments by the emplacement of nuclear waste: experimental and modeling results

    SciTech Connect (OSTI)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.

    1980-01-01

    This paper discusses heat and mass transport studies of marine red clay sediments being considered as a nuclear waste isolation medium. Numerical models indicate that for a maximum allowable sediment/canister interface temperature of 200 to 250/sup 0/C, the sediment can absorb about 1.5 kW initial power from waste in a 3 m long by 0.3 m dia canister buried 30 m in the sediment. Fluid displacement due to convection is found to be less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment/seawater mixtures indicate that the canister and waste form must be designed to resist a hot, acid (pH 3 to 4) oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions are not anticipated to effect the properties of the far field. Using sorption coefficient correlations, the migration of four nuclides /sup 239/Pu, /sup 137/Cs, /sup 129/I, and /sup 99/Tc were computer for a canister buried 30 m deep in a 60 m thick red clay sediment layer. It was found that the /sup 239/Pu and /sup 137/Cs are essentially completely contained in the sediments, while /sup 129/I and /sup 99/Tc broke through the 30 m of sediment in about 5000 years. The resultant peak injection rates of 4.6 x 10/sup -5/ ..mu..Ci/year-m/sup 2/ for /sup 129/I and 1.6 x 10/sup -2/ ..mu..Ci/year-m/sup 2/ for /sup 99/Tc were less than the natural radioactive flux of /sup 226/Ra (3.5 to 8.8 x 10/sup -4/ ..mu..Ci/year-m/sup 2/) and /sup 222/Rn (0.26 to 0.88 ..mu..Ci/year-m/sup 2/).

  2. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-01-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  3. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-07-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  4. Evaluation of the exothermicity of the chemi-ionization reaction Sm + O → SmO{sup +} + e{sup −}

    SciTech Connect (OSTI)

    Cox, Richard M; Kim, JungSoo; Armentrout, P. B. E-mail: mheaven@emory.edu; Bartlett, Joshua; VanGundy, Robert A.; Heaven, Michael C. E-mail: mheaven@emory.edu; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A. E-mail: mheaven@emory.edu; Melko, Joshua J.

    2015-04-07

    The exothermicity of the chemi-ionization reaction Sm + O → SmO{sup +} + e{sup −} has been re-evaluated through the combination of several experimental methods. The thermal reactivity (300–650 K) of Sm{sup +} and SmO{sup +} with a range of species measured using a selected ion flow tube-mass spectrometer apparatus is reported and provides limits for the bond strength of SmO{sup +}, 5.661 eV ≤ D{sub 0}(Sm{sup +}-O) ≤ 6.500 eV. A more precise value is measured to be 5.72{sub 5} ± 0.07 eV, bracketed by the observed reactivity of Sm{sup +} and SmO{sup +} with several species using a guided ion beam tandem mass spectrometer (GIBMS). Combined with the established Sm ionization energy (IE), this value indicates an exothermicity of the title reaction of 0.08 ± 0.07 eV, ∼0.2 eV smaller than previous determinations. In addition, the ionization energy of SmO has been measured by resonantly enhanced two-photon ionization and pulsed-field ionization zero kinetic energy photoelectron spectroscopy to be 5.7427 ± 0.0006 eV, significantly higher than the literature value. Combined with literature bond energies of SmO, this value indicates an exothermicity of the title reaction of 0.14 ± 0.17 eV, independent from and in agreement with the GIBMS result presented here. The evaluated thermochemistry also suggests that D{sub 0}(SmO) = 5.83 ± 0.07 eV, consistent with but more precise than the literature values. Implications of these results for interpretation of chemical release experiments in the thermosphere are discussed.

  5. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  6. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  7. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  8. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  9. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  10. Structural Changes and Thermal Stability of Charged LiNix Mny CozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygenmorerelease. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?-m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3-m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.less

  11. Ionization detection system for aerosols

    DOE Patents [OSTI]

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  12. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, John K. (New Haven, CT)

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  13. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  14. Optical ionization detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Lowry, Mark E. (Castro Valley, CA)

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  15. Optical ionization detector

    DOE Patents [OSTI]

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  16. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  17. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  18. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.; Gan, Jinping; Kertesz, Vilmos

    2015-11-03

    Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed themore » same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.« less

  19. Welding arc gap ionization device

    DOE Patents [OSTI]

    Schweikhardt, George M.

    1976-01-01

    An alpha emitting isotope is positioned near the tip of a TIG welding electrode so that the alpha radiation can provide an ionized path between the electrode and the workpiece.

  20. Resonance ionization for analytical spectroscopy

    DOE Patents [OSTI]

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  1. Lesson 4 - Ionizing Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 - Ionizing Radiation Lesson 4 - Ionizing Radiation Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure. Specific topics covered in this lesson include: Types of radiation Non-ionizing Ionizing Forms of ionizing

  2. Linear electric field time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  3. Continuous time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  4. THERMALLY OPERATED VAPOR VALVE

    DOE Patents [OSTI]

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  5. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    SciTech Connect (OSTI)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  6. Mass spectroscopic apparatus and method

    DOE Patents [OSTI]

    Bomse, David S.; Silver, Joel A.; Stanton, Alan C.

    1991-01-01

    The disclosure is directed to a method and apparatus for ionization modulated mass spectrometric analysis. Analog or digital data acquisition and processing can be used. Ions from a time variant source are detected and quantified. The quantified ion output is analyzed using a computer to provide a two-dimensional representation of at least one component present within an analyte.

  7. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOE Patents [OSTI]

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  8. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, M. J.; Zoerb, M. C.; Campbell, N. R.; Zimmermann, K. J.; Blomquist, B. W.; Huebert, B. J.; Bertram, T. H.

    2015-10-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, ?-caryophyllene) as well as previously studied VOCs (i.e., isoprene, ?-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt?1) to DMS, isoprene, and ?-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through amorecombination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (R2=0.80) over a wide range of sampling conditions.less

  9. Chiral transition and mesonic excitations for quarks with thermal...

    Office of Scientific and Technical Information (OSTI)

    We study the effect of a thermal quark mass, msub T, on the chiral phase transition and ... D QUARKS; EXCITATION; LANDAU DAMPING; MASS; PARTICLE DECAY; PHASE TRANSFORMATIONS; ...

  10. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    SciTech Connect (OSTI)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to compare internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.

  11. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less

  12. Miniaturized Mass Spectrometer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-time exhaust gas analysis for automotive applications leak detection, residual gas analysis thermal desorption mass spectroscopy environmental analysis for liquid and gas...

  13. Thermally induced mechanical and permeability changes around...

    Office of Scientific and Technical Information (OSTI)

    A numerical investigation is conducted on the impacts of the thermal loading history on the evolution of mechanical response and permeability field of a fractured rock mass ...

  14. Thermal stability in the blended lithium manganese oxide Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25C-580C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250C. Formation of MnO with rocksalt structure started at 520C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  15. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  16. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore » by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  17. Design and Analyisi of a Self-centered Cold Mass Support for the MICE Coupling Magnet

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Wu, Hong; Li, S. Y.; Guo, Xing Long; Zheng, Shi Xian; Green, Michael A.

    2011-05-04

    The Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils in seven modules, which are magnetically hooked together since there is no iron to shield the coils and the return flux. The RF coupling coil (RFCC) module consists of a superconducting coupling solenoid mounted around four conventional conducting 201.25 MHz closed RF cavities. The coupling coil will produce up to a 2.2 T magnetic field on the centerline to keep the beam within the RF cavities. The peak magnetic force on the coupling magnet from other magnets in MICE is up to 500 kN in longitudinal direction, which will be transferred to the base of the RF coupling coil (RFCC) module through a cold mass support system. A self-centered double-band cold mass support system with intermediate thermal interruption is applied to the coupling magnet, and the design is introduced in detail in this paper. The thermal and structural analysis on the cold mass support assembly has been carried out using ANSYS. The present design of the cold mass support can satisfy with the stringent requirements for the magnet center and axis azimuthal angle at 4.2 K and fully charged.

  18. Competitive ionization processes of anthracene excited with a femtosecond

    Office of Scientific and Technical Information (OSTI)

    pulse in the multi-photon ionization regime (Journal Article) | SciTech Connect Competitive ionization processes of anthracene excited with a femtosecond pulse in the multi-photon ionization regime Citation Details In-Document Search Title: Competitive ionization processes of anthracene excited with a femtosecond pulse in the multi-photon ionization regime To clarify the ionization mechanism of large molecules under multi-photon ionization conditions, photo-electron spectroscopic studies on

  19. Ionization probes of molecular structure and chemistry

    SciTech Connect (OSTI)

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  20. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  1. The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

    SciTech Connect (OSTI)

    Bailey, Catherine N.

    2010-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c{sup 2}. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

  2. Hot plasma associated with a coronal mass ejection

    SciTech Connect (OSTI)

    Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Miralles, M. P.; Raymond, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hara, H. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-11-20

    We analyze coordinated observations from the EUV Imaging Spectrometer (EIS) and X-Ray Telescope (XRT) on board Hinode of an X-ray Plasma Ejection (XPE) that occurred during the coronal mass ejection (CME) event of 2008 April 9. The XPE was trailing the CME core from behind, following the same trajectory, and could be identified both in EIS and XRT observations. Using the EIS spectrometer, we have determined the XPE plasma parameters, measuring the electron density, thermal distribution, and elemental composition. We have found that the XPE composition and electron density were very similar to those of the pre-event active region plasma. The XPE temperature was higher, and its thermal distribution peaked at around 3 MK; also, typical flare lines were absent from EIS spectra, indicating that any XPE component with temperatures in excess of 5 MK was likely either faint or absent. We used XRT data to investigate the presence of hotter plasma components in the XPE that could have gone undetected by EIS and found thatif at all presentthese components have small emission measure values and their temperature is in the 8-12.5 MK range. The very hot plasma found in earlier XPE observations obtained by Yohkoh seems to be largely absent in this CME, although plasma ionization timescales may lead to non-equilibrium ionization effects that could make bright lines from ions formed in a 10 MK plasma not detectable by EIS. Our results supersede the XPE findings of Landi et al., who studied the same event with older response functions for the XRT Al-poly filter; the differences in the results stress the importance of using accurate filter response functions.

  3. Ionization tube simmer current circuit

    DOE Patents [OSTI]

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  4. Ionization tube simmer current circuit

    DOE Patents [OSTI]

    Steinkraus, Jr., Robert F.

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  5. Apparatus for preparing a sample for mass spectrometry

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed.

  6. Apparatus for preparing a sample for mass spectrometry

    DOE Patents [OSTI]

    Villa-Aleman, E.

    1994-05-10

    An apparatus is described for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed. 1 figures.

  7. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    SciTech Connect (OSTI)

    Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  8. Final Report: Ionization chemistry of high temperature molecular...

    Office of Scientific and Technical Information (OSTI)

    Final Report: Ionization chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular ...

  9. Evolution of extreme resistance to ionizing radiation via genetic...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair Prev Next Title: Evolution of extreme resistance to ionizing ...

  10. Ionization of Rb Rydberg atoms in the attractive nsnp dipole-dipole potential

    SciTech Connect (OSTI)

    Park, Hyunwook; Shuman, E. S.; Gallagher, T. F.

    2011-11-15

    We have observed the ionization of a cold gas of Rb Rydberg atoms which occurs when nsns van der Waals pairs of ns atoms of n{approx_equal} 40 on a weakly repulsive potential are transferred to an attractive dipole-dipole nsnp potential by a microwave transition. Comparing the measurements to a simple model shows that the initial 300-{mu}K thermal velocity of the atoms plays an important role. Excitation to a repulsive dipole-dipole potential does not lead to more ionization on a 15-{mu}s time scale than leaving the atoms in the weakly repulsive nsns state. This observation is slightly surprising since a radiative transition must occur to allow ionization in the latter case. Finally, by power broadening of the microwave transition, to allow transitions from the initial nsns state to the nsnp state over a broad range of internuclear spacings, it is possible to accelerate markedly the evolution to a plasma.

  11. (Resonance ionization spectroscopy and its applications)

    SciTech Connect (OSTI)

    Ramsey, J.M.

    1990-10-11

    The Fifth International Symposium in Resonance Ionization Spectroscopy and Its Applications was attended. The Joint Research Centre of the European Communities at Ispra, Italy was also visited. The traveler presented an invited talk, chaired a meeting session and gave an impromptu presentation on how current laser technology limits the development of commercial instrumentation based upon Resonance Ionization Spectroscopy. The conference was truely international with scientists from 19 countries and less than 1/4 from the US. The meeting also provided a health mixture of experimentalists and theoreticians. Technical developments reported included the use of electric field ionization from laser prepared Rydberg states as a way to reduce background signals and commercial development of an optical parametric oscillator for replacing pulsed dye laser. A speaker from the Soviet Union suggested their willingness to market hardware they have developed based upon the resonance ionization technique.

  12. MASS SPECTROMETER

    DOE Patents [OSTI]

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  13. GAS IONIZING AND COMPRESSING DEVICE

    DOE Patents [OSTI]

    Little, E.M.; Thomson, D.B.; Josephson, V.; Scott, F.R.

    1961-08-22

    A device is described for producing high energy gaseous plasmas. The device consists of a unitary refractory vessel having tapered end portions, a cylindrical middle portion, and means for spontaneously generating oppositely propelled plasma masses from the tapered end portions to a collision zone in the cylindrical middle portion. The means come from the spontaneous generation of diverging magnetic fields in the end portions and an axial magnetic field in the cylindrical portion. (AEC)

  14. Gas amplified ionization detector for gas chromatography

    DOE Patents [OSTI]

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  15. Molecular dynamics simulation of Coulomb explosion, melting and shock wave creation in silicon after an ionization pulse

    SciTech Connect (OSTI)

    Li, Zhongyu; Shao, Lin; Chen, Di; Wang, Jing

    2014-04-14

    Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion is linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.

  16. Highly ionized physical vapor deposition plasma source working at very low pressure

    SciTech Connect (OSTI)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-04-02

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti{sup +} and Ti{sup ++} peaks are observed in the mass scan spectra). This corresponds well with high plasma density n{sub e} {approx} 10{sup 18} m{sup -3}, measured during the HiPIMS pulse.

  17. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. II. DISCOVERY OF A DOUBLE INFRARED CLUSTER IN II Zw 40

    SciTech Connect (OSTI)

    Beck, Sara; Lahad, Ohr; Turner, Jean; Lacy, John; Greathouse, Thomas

    2013-04-10

    The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense H II region containing Almost-Equal-To 14, 000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5 {mu}m [S IV] emission line with effective spectral resolutions, including thermal broadening, of {approx}25 and {approx}3 km s{sup -1} and spatial resolution {approx}1''. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km s{sup -1}. The second feature is {approx}44 km s{sup -1} redward of the first and has FWHM 32 km s{sup -1}. We argue that these are two giant embedded clusters, and estimate their masses to be Almost-Equal-To 3 Multiplication-Sign 10{sup 5} M{sub Sun} and Almost-Equal-To 1.5 Multiplication-Sign 10{sup 5} M{sub Sun }. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.

  18. Heavy resid asphaltene characterization using high resolution and laser desorption mass spectrometry

    SciTech Connect (OSTI)

    Hunt, J.E.; Kim, Y.; Winans, R.E.

    1995-12-31

    Resid is the nondistillable portion of crude oil, generally thought to consist largely of unsaturated molecules of considerable size and ring number. Such molecules must be upgraded to more saturated compounds if they are to be used as fuel sources. Current processing of resid is performed though coking, thermal and catalytic cracking, deasphalting and hydroprocessing. Thermal treatments, however, produce large quantities of low-value coke and hydroprocessing is expensive. Asphaltenes comprise the most process resistant portion of the resid. They contain high concentrations of heteroatoms and a high degree of unsaturation. Because these undesirable characteristics are concentrated in asphaltenes, finding an improved method of upgrading asphaltenes is a prerequisite to improving the upgrading of whole resid to viable fuel. Asphaltenes have, at present, only an operational definition. They are insoluble in straight chain saturated hydrocarbons. Very little is known about the structure of compounds in asphaltenes. They are a highly diverse group of compounds that are resistant to analysis by conventional methods. Conclusions about the structures of asphaltenes tends to be speculative. In this study desorption electron impact (HREIMS), chemical ionization high resolution mass spectrometry (HRCIMS), and laser desorption mass spectrometry (LD) have been applied to deasphalted oils (DAO) and asphaltenes derived from heavy Maya resid. LD data should yield information on the high molecular weight aromatic compounds, while HRMS can provide molecular characterization.

  19. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    SciTech Connect (OSTI)

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung -Jin; Kim, Kwang -Bum; Chung, Kyung Yoon; Yang, Xiao -Qing; Nam, Kyung -Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  20. Structural Changes and Thermal Stability of Charged LiNix Mny CozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy

    SciTech Connect (OSTI)

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?-m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3-m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  1. Memory in Nonlinear Ionization of Transparent Solids

    SciTech Connect (OSTI)

    Rajeev, P. P.; Simova, E.; Hnatovsky, C.; Taylor, R. S.; Rayner, D. M.; Corkum, P. B.; Gertsvolf, M.; Bhardwaj, V. R.

    2006-12-22

    We demonstrate a shot-to-shot reduction in the threshold laser intensity for ionization of bulk glasses illuminated by intense femtosecond pulses. For SiO{sub 2} the threshold change serves as positive feedback reenforcing the process that produced it. This constitutes a memory in nonlinear ionization of the material. The threshold change saturates with the number of pulses incident at a given spot. Irrespective of the pulse energy, the magnitude of the saturated threshold change is constant ({approx}20%). However, the number of shots required to reach saturation does depend on the pulse energy. Recognition of a memory in ionization is vital to understand multishot optical or electrical breakdown phenomena in dielectrics.

  2. Resonance ionization spectroscopy of zirconium atoms

    SciTech Connect (OSTI)

    Page, R.H.; Dropinski, S.C.; Worden, E.F. Jr.; Stockdale, J.A.D.

    1992-05-01

    We have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. Lifetimes of even-parity levels (measured with delayed-photoionization technique) range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10{sup {minus}17} cm{sup 2}; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10{sup {minus}15} cm{sup 2}. Members of Rydberg series converging to the 315 and 1323 cm{sup {minus}1} levels of Zr{sup +} were identified. ``Clumps`` of autoionizing levels are thought to be due to Rydberg-valence mixing.

  3. Ionization-chamber smoke detector system

    DOE Patents [OSTI]

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  4. SUPERFAST THERMALIZATION OF PLASMA

    DOE Patents [OSTI]

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  5. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    SciTech Connect (OSTI)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species [1, 3].

  6. Atomic ionization by keV-scale pseudoscalar dark-matter particles

    SciTech Connect (OSTI)

    Dzuba, V. A.; Flambaum, V. V.; Pospelov, M.

    2010-05-15

    Using the relativistic Hartree-Fock approximation, we calculate the rates of atomic ionization by absorption of pseudoscalar particles in the mass range from 10 to {approx}50 keV. We present numerical results for atoms relevant for the direct dark-matter searches (e.g. Ar, Ge, I and Xe), as well as the analytical formula which fits numerical calculations with few per cent accuracy and may be used for multielectron atoms, molecules and condensed matter systems.

  7. Low pressure electrospray ionization system and process for effective transmission of ions

    DOE Patents [OSTI]

    Tang, Keqi; Page, Jason S.; Kelly, Ryan T.; Smith, Richard D.

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  8. Low pressure electrospray ionization system and process for effective transmission of ions

    DOE Patents [OSTI]

    Tang, Keqi; Page, Jason S; Kelly, Ryan T; Smith, Richard D

    2012-05-08

    Systems and methods that provide up to complete transmission of ions between coupled stages with low effective ion losses. An "interfaceless" electrospray ionization system is further described that operates an electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer. Furthermore, chambers maintained at different pressures can allow for more optimal operating conditions for an electrospray emitter and an ion guide.

  9. MASS SPECTROMETRY

    DOE Patents [OSTI]

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  10. Theory of multiphoton ionization of atoms

    SciTech Connect (OSTI)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs.

  11. WARPED IONIZED HYDROGEN IN THE GALAXY

    SciTech Connect (OSTI)

    Cersosimo, J. C.; Figueroa, N. Santiago; Velez, S. Figueroa; Soto, C. Lozada; Mader, S.; Azcarate, D.

    2009-07-01

    We report observations of the H166{alpha} ({nu} = 1424.734 MHz) radio recombination line (RRL) emission from the Galactic plane in the longitude range l = 267 deg. - 302 deg. and latitude range b = -3.{sup 0}0 to +1.{sup 0}5. The line emission observed describes the Carina arm in the Galactic azimuth range from {theta} = 260 deg. to 190 deg. The structure is located at negative latitudes with respect to the formal Galactic plane. The observations are combined with RRL data from the first Galactic quadrant. Both quadrants show the signature of the warp for the ionized gas, but an asymmetry of the distribution is noted. In the fourth quadrant, the gas is located between Galactic radii R {approx} 7 and 10 kpc, and the amplitude of the warp is seen from the midplane to z {approx} -150 pc. In the first quadrant, the gas is found between R {approx} 8 and 13-16 kpc, and flares to z {approx} +350 pc. We confirm the warp of the ionized gas near the solar circle. The distribution of the ionized gas is compared with the maximum intensity H I emission (0.30 < n{sub HI} < 0.45 cm{sup -3}) at intervals of the Galactic ring. The ionized material is correlated with the H I maximum intensity in both quadrants, and both components show the same tilted behavior with respect to the mid-Galactic plane.

  12. Composite scintillators for detection of ionizing radiation

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S. [Knoxville, TN; Wallace, Steven A. [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  13. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  14. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D'Silva, Arthur

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  15. Quark Masses

    SciTech Connect (OSTI)

    Gasser, Juerg

    2005-10-26

    In my talk, I reviewed some basic aspects of quark masses: what do they mean, how can they be determined, what is our present knowledge on them. The talk was addressed to non specialists in the field, and so is this write up.

  16. A study of electron recombination using highly ionizing particles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7) Eliminate lightly ionizing ptcls by requiring T calo > 0.5 T range Collection Induction Time ADC Select Highly Ionizing Particles Wire time time ANT 2013 Baller 13 Particle...

  17. Ionization source utilizing a multi-capillary inlet and method of operation

    DOE Patents [OSTI]

    Smith, Richard D.; Kim, Taeman; Udseth, Harold R.

    2004-10-12

    A multi-capillary inlet to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of ions and other charged particles. The multi-capillary inlet is juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure, it finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer, and finds its greatest advantages when deployed in conjunction with an electrodynamic (RF) ion funnel deployed within the interior of the mass spectrometer, particularly an ion funnel equipped with a jet disturber.

  18. Quantum Theory for Cold Avalanche Ionization in Solids

    SciTech Connect (OSTI)

    Deng, H. X.; Zu, X. T.; Xiang, X.; Sun, K.

    2010-09-10

    A theory of photon-assisted impact ionization in solids is presented. Our theory makes a quantum description of the new impact ionization--cold avalanche ionization recently reported by P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner [Phys. Rev. Lett. 102, 083001 (2009)]. The present theory agrees with the experiments and can be reduced to the traditional impact ionization expression in the absence of a laser.

  19. Method and apparatus to monitor a beam of ionizing radiation

    DOE Patents [OSTI]

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  20. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect (OSTI)

    M. L. Adamic; J. E. Olson; D. D. Jenson; J. G. Eisenmenger; M. G. Watrous

    2012-09-01

    This NA 22 funded research project investigated the transition of iodine isotopic analyses from thermal ionization mass spectrometry (TIMS) to an accelerator mass spectrometry (AMS) system. Previous work (Fiscal Year 2010) had demonstrated comparable data from TIMS and AMS. With AMS providing comparable data with improved background levels and vastly superior sample throughput, improvement in the sample extraction from environmental sample matrices was needed to bring sample preparation throughput closer to the operation level of the instrument. Previous research used an extraction chemistry that was not optimized for yield or refined for reduced labor to prove the principle. This research was done to find an extraction with better yield using less labor per sample to produce a sample ready for the AMS instrument. An extraction method using tetramethyl ammonium hydroxide (TMAH) was developed for removal of iodine species from high volume air filters. The TMAH with gentle heating was superior to the following three extraction methods: ammonium hydroxide aided by sonication, acidic and basic extraction aided by microwave, and ethanol mixed with sodium hydroxide. Taking the iodine from the extraction solvent to being ready for AMS analysis was accomplished by a direct precipitation, as well as, using silver wool to harvest the iodine from the TMAH. Portions of the same filters processed in FY 2010 were processed again with the improved extraction scheme followed by successful analysis by AMS at the Swiss Federal Institute of Technology. The data favorably matched the data obtained in 2010. The time required for analysis has been reduced over the aqueous extraction/AMS approach developed in FY 2010. For a hypothetical batch of 30 samples, the AMS methodology is about 10 times faster than the traditional gas phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than TIMS. This results from the fundamental mechanisms of ionization in the AMS system and which produces a beneficial cleanup of molecular interferences. Continued clean operation of the extraction process was demonstrated through blank analysis included with all sample sets analyzed. INL work showed improvement on the first years demonstration of AMS vs. TIMS. An improved extraction of high volume air filters followed by isotopic analysis by AMS, can be used successfully to make iodine measurements with results comparable to those obtained by filter combustion and TIMS analysis. More progress on the conversion from an extract solution to an AMS sample ready for analysis is still needed. Although the preparation scheme through AMS is already at a higher performing thoughput than TIMS, the chemical preparation cannot match the instrument capability for number of samples per day without further development.

  1. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  2. Alloy nanoparticle synthesis using ionizing radiation

    DOE Patents [OSTI]

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  3. Genetic variation in resistance to ionizing radiation

    SciTech Connect (OSTI)

    Ayala, F.J.

    1989-01-01

    The very reactive superoxide anion O[sub 2] is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20[sub 2][sup [minus

  4. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  5. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    SciTech Connect (OSTI)

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-08-20

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s{sup -1}. Their high speeds allow them to travel {approx}0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f{sub esc}, from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f{sub esc} as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f{sub esc} by factors of Almost-Equal-To 1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  6. Erratum: Chiral transition and mesonic excitations for quarks with thermal

    Office of Scientific and Technical Information (OSTI)

    masses [Phys. Rev. D 75, 011901 (2007)] (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Erratum: Chiral transition and mesonic excitations for quarks with thermal masses [Phys. Rev. D 75, 011901 (2007)] Citation Details In-Document Search Title: Erratum: Chiral transition and mesonic excitations for quarks with thermal masses [Phys. Rev. D 75, 011901 (2007)] No abstract prepared. Authors: Hidaka, Yoshimasa ; Kitazawa, Masakiyo Publication Date: 2007-05-01

  7. MAINTAINING HIGH RESOLUTION MASS SPECTROMETRY CAPABILITIES FOR NATIONAL NUCLEAR SECURITY ADMINISTRATION APPLICATIONS

    SciTech Connect (OSTI)

    Wyrick, S.; Cordaro, J.; Reeves, G.; Mcintosh, J.; Mauldin, C.; Tietze, K.; Varble, D.

    2011-06-06

    The Department of Energy (DOE) National Nuclear Security Administration (NNSA) has a specialized need for analyzing low mass gas species at very high resolutions. The currently preferred analytical method is electromagnetic sector mass spectrometry. This method allows the NNSA Nuclear Security Enterprise (NSE) to resolve species of similar masses down to acceptable minimum detection limits (MDLs). Some examples of these similar masses are helium-4/deuterium and carbon monoxide/nitrogen. Through the 1980s and 1990s, there were two vendors who supplied and supported these instruments. However, with declining procurements and down turns in the economy, the supply of instruments, service and spare parts from these vendors has become less available, and in some cases, nonexistent. The largest NSE user of this capability is the Savannah River Site (SRS), located near Aiken, South Carolina. The Research and Development Engineering (R&DE) Group in the Savannah River National Laboratory (SRNL) investigated the areas of instrument support that were needed to extend the life cycle of these aging instruments. Their conclusions, as to the focus areas of electromagnetic sector mass spectrometers to address, in order of priority, were electronics, software and hardware. Over the past 3-5 years, the R&DE Group has designed state of the art electronics and software that will allow high resolution legacy mass spectrometers, critical to the NNSA mission, to be operated for the foreseeable future. The funding support for this effort has been from several sources, including the SRS Defense Programs, NNSA Readiness Campaign, Pantex Plant and Sandia National Laboratory. To date, electronics systems have been upgraded on one development system at SRNL, two production systems at Pantex and one production system at Sandia National Laboratory. An NSE working group meets periodically to review strategies going forward. The R&DE Group has also applied their work to the electronics for a Thermal Ionization Mass Spectrometer (TIMS) instrument, which applies a similar mass spectrometric technology for resolving high mass isotopes, such as plutonium and uranium. Due to non-compete clauses for DOE, all work has been performed and applied to instruments which are obsolete and are no longer supported by the original vendor.

  8. Wavelength and Intensity Dependence of Short Pulse Laser Xenon Double Ionization between 500 and 2300 nm

    SciTech Connect (OSTI)

    Gingras, G.; Tripathi, A.; Witzel, B.

    2009-10-23

    The wavelength and intensity dependence of xenon ionization with 50 fs laser pulses has been studied using time-of-flight mass spectrometry. We compare the ion yield distribution of singly and doubly charged xenon with the Perelomov-Popov-Terent'ev (PPT) theory, Perelomov, Popov, and Terent'ev, Zh. Eksp. Teor. Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)], in the regime between 500 and 2300 nm. The intensity dependence for each wavelength is measured in a range between 1x10{sup 13} and 1x10{sup 15} W/cm{sup 2}. The Xe{sup +}-ion signal is in good agreement with the PPT theory at all used wavelengths. In addition we demonstrate that ionic 5s5p{sup 6} {sup 2}S state is excited by an electron impact excitation process and contributes to the nonsequential double ionization process.

  9. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    SciTech Connect (OSTI)

    Kocisek, J.; Lengyel, J.; Farnik, M.

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13.7 eV is discussed in terms of an exciton transfer mechanism.

  10. Waveshifters and Scintillators for Ionizing Radiation Detection

    SciTech Connect (OSTI)

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  11. Resonance ionization detection of combustion radicals

    SciTech Connect (OSTI)

    Cool, T.A.

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  12. Kinetics following addition of sulfur fluorides to a weakly ionized plasma from 300 to 500 K: Rate constants and product determinations for ion-ion mutual neutralization and thermal electron attachment to SF{sub 5}, SF{sub 3}, and SF{sub 2}

    SciTech Connect (OSTI)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, A. A.; Hazari, Nilay; Luzik, Eddie D. Jr.

    2010-12-21

    Rate constants for several processes including electron attachment to SF{sub 2}, SF{sub 3}, and SF{sub 5} and individual product channels of ion-ion mutual neutralization between SF{sub 6}{sup -}, SF{sub 5}{sup -}, and SF{sub 4}{sup -} with Ar{sup +} were determined by variable electron and neutral density attachment mass spectrometry. The experiments were conducted with a series of related neutral precursors (SF{sub 6}, SF{sub 4}, SF{sub 5}Cl, SF{sub 5}C{sub 6}H{sub 5}, and SF{sub 3}C{sub 6}F{sub 5}) over a temperature range of 300-500 K. Mutual neutralization rate constants for SF{sub 6}{sup -}, SF{sub 5}{sup -}, and SF{sub 4}{sup -} with Ar{sup +} are reported with uncertainties of 10-25% and show temperature dependencies in agreement with the theoretical value of T{sup -0.5}. Product branching in the mutual neutralizations is temperature independent and dependent on the electron binding energy of the anion. A larger fraction of product neutrals from the SF{sub 6}{sup -} mutual neutralization (0.9 {+-}0.1) are dissociated than in the SF{sub 5}{sup -} mutual neutralization (0.65 {+-} 0.2), with the SF{sub 4}{sup -} (0.7 {+-} 0.3) likely lying in between. Electron attachment to SF{sub 5} (k= 2.0 x 10{sup -8} {+-}{sub 1}{sup 2} cm{sup 3} s{sup -1} at 300 K) and SF{sub 3} (4 {+-} 3 x 10{sup -9} cm{sup 3} s{sup -1} at 300 K) show little temperature dependence. Rate constants of electron attachment to closed-shell SF{sub n} species decrease as the complexity of the neutral decreases.

  13. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  14. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  15. Hand and shoe monitor using air ionization probes

    DOE Patents [OSTI]

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  16. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D.; Fought, Eric R.

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  17. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, B.D.; Fought, E.R.

    1989-09-19

    A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

  18. Pulsed Ionization Source for Ion Mobility Spectrometers - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffusion-limited resolution. In addition, the radioactive ion sources used in many IMSs present potential safety and hazardous waste disposal issues. Other ionization sources...

  19. Ionized channel generation of an intense-relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A.; Leifeste, Gordon T.; Shope, Steven L.

    1988-01-01

    A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.

  20. Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen...

    Office of Scientific and Technical Information (OSTI)

    Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen, Kristoffer A. Los Alamos National Laboratory; Fontes, Christopher J. Los Alamos National Laboratory; Colgan,...

  1. Competitive ionization processes of anthracene excited with a...

    Office of Scientific and Technical Information (OSTI)

    Electron kinetic energy distributions below a few eV reveal that three kinds of ionization ... ELECTRONS; INTERNAL CONVERSION; KINETIC ENERGY; LASERS; MULTI-PHOTON PROCESSES; ...

  2. Dwarf Galaxies with Ionizing Radiation Feedback II: Spatially...

    Office of Scientific and Technical Information (OSTI)

    Star Formation Relation Citation Details In-Document Search Title: Dwarf Galaxies with Ionizing Radiation Feedback II: Spatially-resolved Star Formation Relation Authors: Kim, ...

  3. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  4. Frustrated incomplete donor ionization in ultra-low resistivity germanium films

    SciTech Connect (OSTI)

    Xu, Chi; Menndez, J.; Senaratne, C. L.; Kouvetakis, J.

    2014-12-08

    The relationship between carrier concentration and donor atomic concentration has been determined in n-type Ge films doped with P. The samples were carefully engineered to minimize non-active dopant incorporation by using specially designed P(SiH{sub 3}){sub 3} and P(GeH{sub 3}){sub 3} hydride precursors. The in situ nature of the doping and the growth at low temperatures, facilitated by the Ge{sub 3}H{sub 8} and Ge{sub 4}H{sub 10} Ge sources, promote the creation of ultra-low resistivity films with flat doping profiles that help reduce the errors in the concentration measurements. The results show that Ge deviates strongly from the incomplete ionization expected when the donor atomic concentration exceeds N{sub d}?=?10{sup 17}?cm{sup ?3}, at which the energy separation between the donor and Fermi levels ceases to be much larger than the thermal energy. Instead, essentially full ionization is seen even at the highest doping levels beyond the solubility limit of P in Ge. The results can be explained using a model developed for silicon by Altermatt and coworkers, provided the relevant model parameter is properly scaled. The findings confirm that donor solubility and/or defect formation, not incomplete ionization, are the major factors limiting the achievement of very high carrier concentrations in n-type Ge. The commercially viable chemistry approach applied here enables fabrication of supersaturated and fully ionized prototypes with potential for broad applications in group-IV semiconductor technologies.

  5. The CRC handbook of thermal engineering

    SciTech Connect (OSTI)

    Kreith, F.

    1999-12-01

    This book is not a traditional handbook. Engineers in industry need up-to-date, accessible information on the applications of heat and mass transfer. This book is the answer. Contents include: (1) emphasis on applications in thermal design and computer solutions of thermal engineering problems; (2) an introduction to the use of the Second Law of Thermodynamics in analysis, optimization, and economics; (3) information on topics of current interest--in a form convenient and accessible to the average engineer; (4) three chapters of background material--enough to review the basic principles needed to understand specific thermal applications; and (5) extensive treatment of computational tools and numerical analysis.

  6. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

    2012-05-20

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  7. Ionization source utilizing a jet disturber in combination with an ion funnel and method of operation

    DOE Patents [OSTI]

    Smith, Richard D.; Kim, Taeman; Tang, Keqi; Udseth, Harold R.

    2003-06-24

    A jet disturber used in combination with an ion funnel to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of the ions and other charged particles. The jet disturber is positioned within an ion funnel and may be interfaced with a multi-capillary inlet juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure. The invention finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer.

  8. Method and apparatus for multispray emitter for mass spectrometry

    DOE Patents [OSTI]

    Smith, Richard D.; Tang, Keqi; Lin, Yuehe

    2004-12-14

    A method and apparatus that utilizes two or more emitters simultaneously to form an electrospray of a sample that is then directed into a mass spectrometer, thereby increasing the total ion current introduced into an electrospray ionization mass spectrometer, given a liquid flow rate of a sample. The method and apparatus are most conveniently constructed as an array of spray emitters fabricated on a single chip, however, the present invention encompasses any apparatus wherein two or more emitters are simultaneously utilized to form an electrospray of a sample that is then directed into a mass spectrometer.

  9. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect (OSTI)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  10. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect (OSTI)

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  11. Spectroscopy of triply and quadruply ionized states of mercury

    SciTech Connect (OSTI)

    Huttula, M.; Huttula, S.-M.; Lablanquie, P.; Palaudoux, J.; Penent, F.; Andric, L.; Eland, J. H. D.

    2011-03-15

    Multielectron coincidence spectroscopy has been used to study multiple ionization of atomic mercury. The binding energies of triply and quadruply ionized states of Hg have been determined from three- and fourfold electron coincidences. Relativistic ab initio theory has been used to calculate the state energies and predict the experimental findings.

  12. Thermally stable surfactants and compositions and methods of use thereof

    DOE Patents [OSTI]

    Chaiko, David J. (Woodridge, IL)

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  13. Escape fraction of ionizing photons during reionization: Effects due to supernova feedback and runaway ob stars

    SciTech Connect (OSTI)

    Kimm, Taysun; Cen, Renyue

    2014-06-20

    The fraction of hydrogen ionizing photons escaping from galaxies into the intergalactic medium is a critical ingredient in the theory of reionization. We use two zoomed-in, high-resolution (4 pc), cosmological radiation hydrodynamic simulations with adaptive mesh refinement to investigate the impact of two physical mechanisms (supernova, SN, feedback, and runaway OB stars) on the escape fraction (f {sub esc}) at the epoch of reionization (z ? 7). We implement a new, physically motivated SN feedback model that can approximate the Sedov solutions at all (from the free expansion to snowplow) stages. We find that there is a significant time delay of about ten million years between the peak of star formation and that of escape fraction, due to the time required for the build-up and subsequent destruction of the star-forming cloud by SN feedback. Consequently, the photon number-weighted mean escape fraction for dwarf galaxies in halos of mass 10{sup 8}-10{sup 10.5} M {sub ?} is found to be ?f{sub esc}??11%, although instantaneous values of f {sub esc} > 20% are common when star formation is strongly modulated by the SN explosions. We find that the inclusion of runaway OB stars increases the mean escape fraction by 22% to ?f{sub esc}??14%. As SNe resulting from runaway OB stars tend to occur in less dense environments, the feedback effect is enhanced and star formation is further suppressed in halos with M{sub vir}?10{sup 9} M{sub ?} in the simulation with runaway OB stars compared with the model without them. While both our models produce enough ionizing photons to maintain a fully ionized universe at z ? 7 as observed, a still higher amount of ionizing photons at z ? 9 appears necessary to accommodate the high observed electron optical depth inferred from cosmic microwave background observations.

  14. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    SciTech Connect (OSTI)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-09

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  15. Dilution-Free Analysis from Picoliter Droplets by Nano-Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Page, Jason S.; Marginean, Ioan; Tang, Keqi; Smith, Richard D.

    2009-09-01

    The expanding role of microfluidics for chemical and biochemical analysis is due to factors including the favorable scaling of separation performance with reduced channel dimensions,[1] flexibility afforded by computer-aided device design, and the ability to integrate multiple sample handling and analysis steps into a single platform.[2] Such devices enable smaller liquid volumes and sample sizes to be handled than can be achieved on the benchtop, where sub-microliter volumes are difficult to work with and where sample losses to the surfaces of multiple reaction vessels become prohibitive. A particularly attractive microfluidic platform for sample-limited analyses employs aqueous droplets or plugs encapsulated by an immiscible oil.[3,4] Each droplet serves as a discrete compartment or reaction chamber enabling, e.g., high throughput screening[5,6] and kinetic studies[7-9] of femto- to nanoliter samples, as well as the encapsulation[10-12] and lysis[10] of individual cells with limited dilution of the cellular contents

  16. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  17. Laser stripping of hydrogen atoms by direct ionization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brunetti, E.; Becker, W.; Bryant, H. C.; Jaroszynski, D. A.; Chou, W.

    2015-05-08

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.

  18. Focused analyte spray emission apparatus and process for mass spectrometric analysis

    DOE Patents [OSTI]

    Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

    2012-01-17

    An apparatus and process are disclosed that deliver an analyte deposited on a substrate to a mass spectrometer that provides for trace analysis of complex organic analytes. Analytes are probed using a small droplet of solvent that is formed at the junction between two capillaries. A supply capillary maintains the droplet of solvent on the substrate; a collection capillary collects analyte desorbed from the surface and emits analyte ions as a focused spray to the inlet of a mass spectrometer for analysis. The invention enables efficient separation of desorption and ionization events, providing enhanced control over transport and ionization of the analyte.

  19. AN INITIAL MASS FUNCTION STUDY OF THE DWARF STARBURST GALAXY NGC 4214

    SciTech Connect (OSTI)

    Andrews, J. E.; Calzetti, D.; Chandar, R.; Lee, J. C.; Whitmore, B.; Elmegreen, B. G.; Kennicutt, R. C.; Kissel, J. S.; Da Silva, Robert L.; Krumholz, Mark R.; O'Connell, R. W.; Dopita, M. A.; Frogel, Jay A.; Kim, Hwihyun E-mail: callzetti@astro.umass.edu

    2013-04-10

    The production rate of ionizing photons in young ({<=}8 Myr), unresolved stellar clusters in the nearby irregular galaxy NGC 4214 is probed using multi-wavelength Hubble Space Telescope WFC3 data. We normalize the ionizing photon rate by the cluster mass to investigate the upper end of the stellar initial mass function (IMF). We have found that within the uncertainties the upper end of the stellar IMF appears to be universal in this galaxy, and that deviations from a universal IMF can be attributed to stochastic sampling of stars in clusters with masses {approx}<10{sup 3} M{sub Sun }. Furthermore, we have found that there does not seem to be a dependence of the maximum stellar mass on the cluster mass. We have also found that for massive clusters, feedback may cause an underrepresentation in H{alpha} luminosities, which needs to be taken into account when conducting this type of analysis.

  20. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOE Patents [OSTI]

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  1. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect (OSTI)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  2. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  3. Laser photoionization time-of-flight mass spectrometry of nitrated polycyclic aromatic hydrocarbons and nitrated heterocyclic compounds. Master's thesis

    SciTech Connect (OSTI)

    Noyes, R.A.

    1993-01-01

    Partial Contents: Laser Desorption-Laser Photoionization Time-of-Flight Mass Spectrometry; Basic Principles of TOFMS; Factors Affecting Flight Time; Source of Broadening; Laser Desorption; Theory of Multiphoton Ionization: Application to Mass Spectrometry; Quantum Theory of MPI; Time-Dependent Perturbation Theory; Time-Dependent Coefficients; Probability of a Two-Photon Process; and Attributes of R2PI.

  4. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  5. Detailed and simplified nonequilibrium helium ionization in the solar atmosphere

    SciTech Connect (OSTI)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no

    2014-03-20

    Helium ionization plays an important role in the energy balance of the upper chromosphere and transition region. Helium spectral lines are also often used as diagnostics of these regions. We carry out one-dimensional radiation-hydrodynamics simulations of the solar atmosphere and find that the helium ionization is set mostly by photoionization and direct collisional ionization, counteracted by radiative recombination cascades. By introducing an additional recombination rate mimicking the recombination cascades, we construct a simplified three-level helium model atom consisting of only the ground states. This model atom is suitable for modeling nonequilibrium helium ionization in three-dimensional numerical models. We perform a brief investigation of the formation of the He I 10830 and He II 304 spectral lines. Both lines show nonequilibrium features that are not recovered with statistical equilibrium models, and caution should therefore be exercised when such models are used as a basis for interpretating observations.

  6. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect (OSTI)

    Itl, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the CC{sub ?} bond and the presence of the CNH{sub 2}{sup +} fragment.

  7. Radiation and ionization energy loss simulation for the GDH sum...

    Office of Scientific and Technical Information (OSTI)

    loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab Citation Details In-Document Search Title: Radiation and ionization energy loss simulation for the ...

  8. Epicyclic helical channels for parametric resonance ionization cooling

    SciTech Connect (OSTI)

    Johson, Rolland Paul; Derbenev, Yaroslav

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  9. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  10. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  11. Evolution of extreme resistance to ionizing radiation via genetic

    Office of Scientific and Technical Information (OSTI)

    adaptation of DNA repair (Journal Article) | DOE PAGES Published Article: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair « Prev Next » Title: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair Authors: Byrne, Rose T. ; Klingele, Audrey J. ; Cabot, Eric L. ; Schackwitz, Wendy S. ; Martin, Jeffrey A. ; Martin, Joel ; Wang, Zhong ; Wood, Elizabeth A. ; Pennacchio, Christa ; Pennacchio, Len A. ; Perna, Nicole

  12. Fe Atomic Data for Non-equilibrium Ionization Plasmas (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Fe Atomic Data for Non-equilibrium Ionization Plasmas Citation Details In-Document Search Title: Fe Atomic Data for Non-equilibrium Ionization Plasmas No abstract prepared. Authors: Eriksen, Kristoffer A. [1] ; Fontes, Christopher J. [1] ; Colgan, James P. [1] ; Zhang, Honglin [1] ; Hungerford, Aimee L. [1] ; Fryer, Christopher L. [1] ; Hughes, John P. [2] ; Smith, Randall K. [3] ; Badenes, Carles [4] + Show Author Affiliations Los Alamos National Laboratory Rutgers

  13. Final Report: Ionization chemistry of high temperature molecular fluids

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Final Report: Ionization chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular fluids With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an

  14. Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation Print Wednesday, 30 June 2010 00:00 Understanding charge-transfer processes at the atomic level of nanoscale systems is of the utmost importance for designing nanodevices based on quantum-dot structures, nanotubes, or two-dimensional graphene sheets. Researchers from Western Michigan University, Berkeley Lab, and other international research

  15. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  16. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  17. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  18. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect (OSTI)

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  19. Paths and ionization losses of proton energy in different substances

    SciTech Connect (OSTI)

    Vasilovskiy, I.M.; Karpov, I.I.; Petrukhin, V.I.; Prokoshkin, Yu.D.

    1986-02-14

    Ionization energy losses of charged particles in a substance are described by the well-known Bethe-Bloch formula. However, the magnitudes of the ionization potentials in region of low proton energies (E < 100 MeV) for heavy elements prove to be considerably larger than those at high energies. Thus, studies of ionization losses in the region of high energies are the main source of the experimental information necessary for the correction of the Bethe-Bloch formula and determination of magnitudes of ionization potentials I. The purpose of this work was to measure the magnitudes of ionization losses dE/ds, paths R and ionization potentials I at a proton energy of E 670 MeV. The measurements were taken by the relative method for different substances of x, and the magnitudes of q sub x=(dE/ds) sub x/(dE/ds) sub Al and px=R sub x/R sub Al were found. Quantities qx and px weakly depend on the energy E where at E=200-600 MeV, a=(2-4).10-2 for different substances. The proton energy was determined with an accuracy of 2 MeV.

  20. Ionization-induced annealing of pre-existing defects in silicon carbide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H.; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Weber, William J.

    2015-01-01

    A long-standing objective in materials research is to find innovative ways to remove preexisting damage and heal fabrication defects or environmentally induced defects in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power, high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization processes results in a highly localized thermal spike that can effectively heal preexisting defects and restore the structural order. This work revealsmore » an innovative self-healing process using highly ionizing ions, and it describes a critical aspect to be considered in modeling SiC performance as either a functional or a structural material for device applications or high-radiation environments.« less

  1. Nonlinear mechanical resonators for ultra-sensitive mass detection

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Nonlinear mechanical resonators for ultra-sensitive mass detection Citation Details In-Document Search Title: Nonlinear mechanical resonators for ultra-sensitive mass detection The fundamental sensitivity limit of an appropriately scaled down mechanical resonator can approach one atomic mass unit when only thermal noise is present in the system. However, operation of such nanoscale mechanical resonators is very challenging due to minuteness of their

  2. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured (temporal) surface temperature data. The predicted effusivity is a direct function of depth, not an average or convolved parameter, so it is an accurate (and more sensitive) representation of local property along depth.« less

  3. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  4. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  5. Cross-plane thermal properties of transition metal dichalcogenides

    SciTech Connect (OSTI)

    Muratore, C.; Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 ; Varshney, V.; Universal Technology Corporation, Dayton, Ohio 45432 ; Gengler, J. J.; Spectral Energies LLC, Dayton, Ohio 45431 ; Hu, J. J.; Bultman, J. E.; University of Dayton Research Institute, Dayton, Ohio 45469 ; Smith, T. M.; Shamberger, P. J.; Roy, A. K.; Voevodin, A. A.; Qiu, B.; Ruan, X.

    2013-02-25

    In this work, we explore the thermal properties of hexagonal transition metal dichalcogenide compounds with different average atomic masses but equivalent microstructures. Thermal conductivity values of sputtered thin films were compared to bulk crystals. The comparison revealed a >10 fold reduction in thin film thermal conductivity. Structural analysis of the films revealed a turbostratic structure with domain sizes on the order of 5-10 nm. Estimates of phonon scattering lengths at domain boundaries based on computationally derived group velocities were consistent with the observed film microstructure, and accounted for the reduction in thermal conductivity compared to values for bulk crystals.

  6. DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. I. ESCAPE OF IONIZING PHOTONS

    SciTech Connect (OSTI)

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J.; Wise, John H.; Turk, Matthew J.; Abel, Tom

    2013-10-01

    We describe a new method for simulating ionizing radiation and supernova feedback in the analogs of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve the radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3 10{sup 11} M{sub ?}, we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ?20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60 from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f{sub esc}(i), and how it evolves as the particle ages. We discover that the average escape fraction f{sub esc} is dominated by a small number of SFMC particles with high f{sub esc}(i). On average, the escape fraction from an SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myr. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump and from a galactic disk.

  7. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2008-11-05

    The software program generates 3D volume distribution of thermal effusivity within a test material from one—sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneoirs materials to produce 3D images similar to those obtained from 3D X—ray CT (all previous thepnal—imaging software can only produce 20 results) . Because thermal effusivity is an Intrisic material property that is related to material constituent, density, conductivity,more » etc., quantitative imaging of eftusivity allowed direct visualization of material’s internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one—sided, non contact and sensitive to material’s thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one—sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured (temporal) surface temperature data. The predicted effusivity is a direct function of depth, not an average or convolved parameter, so it is an accurate (and more sensitive) representation of local property along depth.« less

  8. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  9. THE EFFECT OF GALACTIC PROPERTIES ON THE ESCAPE FRACTION OF IONIZING PHOTONS

    SciTech Connect (OSTI)

    Fernandez, Elizabeth R.; Shull, J. Michael E-mail: michael.shull@colorado.edu

    2011-04-10

    The escape fraction, f{sub esc}, of ionizing photons from early galaxies is a crucial parameter for determining whether the observed galaxies at z {>=} 6 are able to reionize the high-redshift intergalactic medium. Previous attempts to measure f{sub esc} have found a wide range of values, varying from less than 0.01 to nearly 1. Rather than finding a single value of f{sub esc}, we clarify through modeling how internal properties of galaxies affect f{sub esc} through the density and distribution of neutral hydrogen within the galaxy, along with the rate of ionizing photons' production. We find that the escape fraction depends sensitively on the covering factor of clumps, along with the density of the clumped and interclump medium. One must therefore be cautious when dealing with an inhomogeneous medium. Fewer high-density clumps lead to a greater escape fraction than more numerous low-density clumps. When more ionizing photons are produced in a starburst, f{sub esc} increases, as photons escape more readily from the gas layers. Large variations in the predicted escape fraction, caused by differences in the hydrogen distribution, may explain the large observed differences in f{sub esc} among galaxies. Values of f{sub esc} must also be consistent with the reionization history. High-mass galaxies alone are unable to reionize the universe, because f{sub esc} >1 would be required. Small galaxies are needed to achieve reionization, with greater mean escape fraction in the past.

  10. Structural determination of intact proteins using mass spectrometry

    DOE Patents [OSTI]

    Kruppa, Gary; Schoeniger, Joseph S.; Young, Malin M.

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  11. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  12. Inner-shell and double ionization potentials of aminophenol isomers.

    SciTech Connect (OSTI)

    Kryzhevoi, N. V.; Santra, R.; Cederbaum, L. S.

    2011-01-01

    A comprehensive study of single and double core ionization potentials of the aminophenol molecule is reported. The role of relaxation, correlation, relativistic, and basis set effects in these potentials is clarified. Special attention is paid to the isomer dependence of the single and double core ionization potentials. Some of them are also compared with the respective values of the phenol and aniline molecules. It is shown that the core level single ionization potentials of the para-, meta-, and ortho-aminophenol molecules differ only slightly from each other, rendering these structural isomers challenging to distinguish for conventional x-ray photoelectron spectroscopy. In contrast, the energy needed to remove two core electrons from different atoms depends noticeably on the mutual arrangement and even on the relative orientations of the hydroxyl and amine groups. Together with the electrostatic repulsion between the two core holes, relaxation effects accompanying double core ionization play a crucial role here. The pronounced sensitivity of the double ionization potentials, therefore, enables a spectroscopic characterization of the electronic structure of aminophenol isomers by means of x-ray two-photon photoelectron spectroscopy.

  13. Laser desorption time-of-flight mass spectrometer DNA analyzer. Final report

    SciTech Connect (OSTI)

    Chen, C.H.W.; Martin, S.A.

    1997-02-01

    The objective of this project is the development of a laser desorption time-of-flight mass spectrometer DNA analyzer which can be broadly used for biomedical research. Tasks include: pulsed ion extraction to improve resolution; two-component matrices to enhance ionization; and solid phase DNA purification.

  14. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  15. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  16. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  17. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology ... could result in a 4 - 6 percent gain in overall system efficiency. ...

  18. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  19. Genetic variation in resistance to ionizing radiation. [Annual report, 1989

    SciTech Connect (OSTI)

    Ayala, F.J.

    1989-12-31

    The very reactive superoxide anion O{sub 2} is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20{sub 2}{sup {minus}} + 2H {yields} H{sub 2}O{sub 2} + O{sub 2}. SOD had been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Evidence that genetic differences may affect sensitivity to ionizing radiation has been shown in Drosophila since differences have been shown to exist between strains and resistance to radiation can evolve under natural selection.

  20. Studies of ground-state dynamics in isolated species by ionization-detected stimulated Raman techniques

    SciTech Connect (OSTI)

    Felker, P.M.

    1993-12-01

    First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.

  1. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  2. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  3. A theoretical study of acoustic glitches in low-mass main-sequence stars

    SciTech Connect (OSTI)

    Verma, Kuldeep; Antia, H. M.; Basu, Sarbani; Mazumdar, Anwesh E-mail: antia@tifr.res.in E-mail: anwesh@tifr.res.in

    2014-10-20

    There are regions in stars, such as ionization zones and the interface between radiative and convective regions, that cause a localized sharp variation in the sound speed. These are known as 'acoustic glitches'. Acoustic glitches leave their signatures on the oscillation frequencies of stars, and hence these signatures can be used as diagnostics of these regions. In particular, the signatures of these glitches can be used as diagnostics for the position of the second helium ionization zone and that of the base of the envelope convection zone. With the help of stellar models, we study the properties of these acoustic glitches in main-sequence stars. We find that the acoustic glitch due to the helium ionization zone does not correspond to the dip in the adiabatic index ?{sub 1} caused by the ionization of He II, but to the peak in ?{sub 1} between the He I and He II ionization zones. We find that it is easiest to study the acoustic glitch that is due to the helium ionization zone in stars with masses in the range 0.9-1.2 M {sub ?}.

  4. A compact neutron generator using a field ionization source

    SciTech Connect (OSTI)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2011-10-31

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-#12;bers promise the high #12;eld-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of #12;field emitters with a density up to 10{sup 6} tips/cm{sup 2} and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  5. Thermally actuated wedge block

    DOE Patents [OSTI]

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  6. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  7. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  8. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  9. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  11. Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes

    SciTech Connect (OSTI)

    Chen, M.; Cormier-Michel, E.; Geddes, C.G.R.; Bruhwiler, D.L.; Yu, L.L.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.

    2013-03-01

    Methods for the calculation of laser tunneling ionization in explicit particle-in-cell codes used for modeling laserplasma interactions are compared and validated against theoretical predictions. Improved accuracy is obtained by using the direct current form for the ionization rate. Multi level ionization in a single time step and energy conservation have been considered during the ionization process. The effects of grid resolution and number of macro-particles per cell are examined. Implementation of the ionization algorithm in two different particle-in-cell codes is compared for the case of ionization-based electron injection in a laserplasma accelerator.

  12. Linear electronic field time-of-flight ion mass spectrometers

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM)

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  13. Cosmological moduli problem in large volume scenario and thermal inflation

    SciTech Connect (OSTI)

    Choi, Kiwoon; Park, Wan-Il; Shin, Chang Sub E-mail: wipark@kias.re.kr

    2013-03-01

    We show that in a large volume scenario of type IIB string or F-theory compactifications, single thermal inflation provides only a partial solution to the cosmological problem of the light volume modulus. We then clarify the conditions for double thermal inflation, being a simple extension of the usual single thermal inflation scenario, to solve the cosmological moduli problem in the case of relatively light moduli masses. Using a specific example, we demonstrate that double thermal inflation can be realized in large volume scenario in a natural manner, and the problem of the light volume modulus can be solved for the whole relevant mass range. We also find that right amount of baryon asymmetry and dark matter can be obtained via a late-time Affleck-Dine mechanism and the decays of the visible sector NLSP to flatino LSP.

  14. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  15. High resolution resonance ionization imaging detector and method

    DOE Patents [OSTI]

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  16. Ionization monitor with improved ultra-high megohm resistor

    DOE Patents [OSTI]

    Burgess, Edward T.

    1988-11-05

    An ionization monitor measures extremely small currents using a resistor containing a beta emitter to generate ion-pairs which are collected as current when the device is used as a feedback resistor in an electrometer circuit. By varying the amount of beta emitter, the resistance of the resistor may be varied.

  17. MEMS based pyroelectric thermal energy harvester

    DOE Patents [OSTI]

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  18. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  19. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  20. Viscuous Mech Behavior of Rock Mass Under Therm Stress

    Energy Science and Technology Software Center (OSTI)

    1998-10-14

    VISCOT is a nonlinear, transient , thermal-stress, finite-element program designed to determine the viscoelastic, viscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. A major application of VISCOT in conjunction with a SCEPTER heat transfer code, e.g. DOT-BPMD, is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent, nonlinear deformations are expected to occur. Such problems include room and canister scale studies during the excavation,more » operation, and long term, post closure stages in a salt repository.« less

  1. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    SciTech Connect (OSTI)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels, E.

    2006-05-15

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.

  2. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  3. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  4. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  5. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  6. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  7. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  8. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  9. The Origins of Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-07-30

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  10. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  11. The Origins of Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  12. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    SciTech Connect (OSTI)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  13. Thermal efficiency of single-pass solar air collector

    SciTech Connect (OSTI)

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  14. Design and Performance of a High-Flux Electrospray Ionization Source for Ion Soft-Landing

    SciTech Connect (OSTI)

    Gunaratne, Kalupathirannehelage Don D.; Prabhakaran, Venkateshkumar; Ibrahim, Yehia M.; Norheim, Randolph V.; Johnson, Grant E.; Laskin, Julia

    2015-01-01

    We report the design and evaluation of a new high-intensity electrospray ionization source for ion soft-landing experiments. The source incorporates a dual ion funnel, which enables operation with a higher gas load through an expanded heated inlet into the additional first region of differential pumping. This capability allowed us to examine the effect of the inner diameter (ID) of the heated stainless steel inlet on the total ion current transmitted through the dual funnel interface and, more importantly, the mass-selected ion current delivered to the deposition target. The ion transmission of the dual funnel is similar to the transmission of the single funnel used in our previous soft landing studies. However, substantially higher ion currents were obtained using larger ID heated inlets and an orthogonal inlet geometry, in which the heated inlet is positioned perpendicular to the direction of ion propagation through the instrument. The highest ion currents were obtained using the orthogonal geometry and a 1.4 mm ID heated inlet. The corresponding stable deposition rate of ~1 μg of mass-selected ions per day will facilitate future studies focused on the controlled deposition of biological molecules on substrates and preparation of materials for studies in catalysis, energy storage, and self-assembly

  15. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  16. Ionization-Induced Electron Trapping inUltrarelativistic Plasma Wakes

    SciTech Connect (OSTI)

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C.D.; Blumenfeld, I.; Decker, F.J.; Emma, P.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Auerbach, D.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; /UCLA

    2007-04-06

    The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

  17. Electron- and proton-induced ionization of pyrimidine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Champion, Christophe; Quinto, Michele; Weck, Philippe F

    2015-03-27

    This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less

  18. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect (OSTI)

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  19. Electron- and proton-induced ionization of pyrimidine

    SciTech Connect (OSTI)

    Champion, Christophe; Quinto, Michele; Weck, Philippe F

    2015-03-27

    This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.

  20. Ionization of ethane, butane, and octane in strong laser fields

    SciTech Connect (OSTI)

    Palaniyappan, Sasi; Mitchell, Rob; Ekanayake, N.; Watts, A. M.; White, S. L.; Sauer, Rob; Howard, L. E.; Videtto, M.; Mancuso, C.; Wells, S. J.; Stanev, T.; Wen, B. L.; Decamp, M. F.; Walker, B. C.

    2010-10-15

    Strong-field photoionization of ethane, butane, and octane are reported at intensities from 10{sup 14} to 10{sup 17} W/cm{sup 2}. The molecular fragment ions, C{sup +} and C{sup 2+}, are created in an intensity window from 10{sup 14} to 10{sup 15} W/cm{sup 2} and have intensity-dependent yields similar to the molecular fragments C{sub m}H{sub n}{sup +} and C{sub m}H{sub n}{sup 2+}. In the case of C{sup +}, the yield is independent of the molecular parent chain length. The ionization of more tightly bound valence electrons in carbon (C{sup 3+} and C{sup 4+}) has at least two contributing mechanisms, one influenced by the parent molecule size and one resulting from the tunneling ionization of the carbon ion.

  1. SINTERED REFRACTORY MASS

    DOE Patents [OSTI]

    Williams, A.E.

    1955-09-01

    A method is given for joining sintered masses of refractory compounds. It consists in maintaining the masses in contact with each other by application of a moderate pressure, while they are at sintering temperature. The sintered masses are subjected to am applied pressure of about 1/2 to 1 ton per square inch of the surface in contact for about 10 minutes, and the temperature employed may be fropn about 1400 deg C to 2000 deg C. Refractory oxides to which the invention may be applied are beryllia, alumina, thoria, and magnesia.

  2. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    SciTech Connect (OSTI)

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA; Yang, Yuchen; Liu, Jason; Liu, Lin; Anders, Andr

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  3. Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation Print Understanding charge-transfer processes at the atomic level of nanoscale systems is of the utmost importance for designing nanodevices based on quantum-dot structures, nanotubes, or two-dimensional graphene sheets. Researchers from Western Michigan University, Berkeley Lab, and other international research facilities investigated charge-transfer processes and subsequent ion fragmentation dynamics in nanoclusters

  4. Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation Print Understanding charge-transfer processes at the atomic level of nanoscale systems is of the utmost importance for designing nanodevices based on quantum-dot structures, nanotubes, or two-dimensional graphene sheets. Researchers from Western Michigan University, Berkeley Lab, and other international research facilities investigated charge-transfer processes and subsequent ion fragmentation dynamics in nanoclusters

  5. Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation Print Understanding charge-transfer processes at the atomic level of nanoscale systems is of the utmost importance for designing nanodevices based on quantum-dot structures, nanotubes, or two-dimensional graphene sheets. Researchers from Western Michigan University, Berkeley Lab, and other international research facilities investigated charge-transfer processes and subsequent ion fragmentation dynamics in nanoclusters

  6. Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation Print Understanding charge-transfer processes at the atomic level of nanoscale systems is of the utmost importance for designing nanodevices based on quantum-dot structures, nanotubes, or two-dimensional graphene sheets. Researchers from Western Michigan University, Berkeley Lab, and other international research facilities investigated charge-transfer processes and subsequent ion fragmentation dynamics in nanoclusters

  7. Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation Print Understanding charge-transfer processes at the atomic level of nanoscale systems is of the utmost importance for designing nanodevices based on quantum-dot structures, nanotubes, or two-dimensional graphene sheets. Researchers from Western Michigan University, Berkeley Lab, and other international research facilities investigated charge-transfer processes and subsequent ion fragmentation dynamics in nanoclusters

  8. Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site-Selective Ionization in Nanoclusters Affects Subsequent Fragmentation Print Understanding charge-transfer processes at the atomic level of nanoscale systems is of the utmost importance for designing nanodevices based on quantum-dot structures, nanotubes, or two-dimensional graphene sheets. Researchers from Western Michigan University, Berkeley Lab, and other international research facilities investigated charge-transfer processes and subsequent ion fragmentation dynamics in nanoclusters

  9. A preliminary report on the photoionization efficiency spectrum, ionization energy and heat of formation of Br{sub 2}O; and the appearance energy of BrO{sup +} (Br{sub 2}O)

    SciTech Connect (OSTI)

    Thorn, R.P. Jr.; Monks, P.S.; Stief, L.J.; Kuo, S.C.; Zhang, Z.; Klemm, R.B.

    1995-08-01

    We report experimental results for the photoionization efficiency (PIE) spectrum of Br{sub 2}O along with the ionization energy (derived form the ionization threshold) and the appearance energy (AE) of BrO{sup +} (Br{sub 2}O). A value for the heat of formation of Br{sub 2}O is derived form the AE result. Experiments were performed by employing a discharge flow-photoionization mass spectrometer (DF-PIMS) apparatus coupled to beamline U-11 at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory.

  10. Stable isotope, site-specific mass tagging for protein identification

    DOE Patents [OSTI]

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  11. DC Resistivity Survey (Mise-A-La-Masse) | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png DC Resistivity Survey (Mise-A-La-Masse): No definition has been...

  12. Self-consistent chemical model of partially ionized plasmas

    SciTech Connect (OSTI)

    Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E.

    2011-01-15

    A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

  13. High-resolution ionization detector and array of such detectors

    DOE Patents [OSTI]

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  14. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  15. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  16. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  17. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  18. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  19. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  20. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  1. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  2. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  3. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  4. THERMAL FISSION REACTOR COMPOSITIONS AND METHOD OF FABRICATING SAME

    DOE Patents [OSTI]

    Blainey, A.

    1959-10-01

    A body is presented for use in a thermal fission reactor comprising a sintered compressed mass of a substance of the group consisting of uranium, thorium, and oxides and carbides of uranium and thorium, enclosed in an envelope of a sintered, compacted, heat-conductive material of the group consisting of beryllium, zirconium, and oxides and carbides of beryllium and zirconium.

  5. An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments

    SciTech Connect (OSTI)

    Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; Prost, Spencer A.; Lamarche, Brian L.; Leach, Franklin E.; Auberry, Kenneth J.; Smith, Richard D.; Koppenaal, David W.; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2015-09-18

    Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DC voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.

  6. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  7. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  8. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  9. First Diode for Thermal Management of Micro and Macro Devices - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal First Diode for Thermal Management of Micro and Macro Devices Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryAlex Zettl, Arun Majumdar and colleagues at Berkeley Lab have invented the first solid state thermal rectifier. The device consists of a boron nitride nanotube (BNNT) loaded at one end with a high mass density material - specifically, trimethyl cyclopentadienyl platinum (C9H16Pt). The researchers achieved thermal

  10. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    SciTech Connect (OSTI)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Tripp, Todd M.; Katz, Neal [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Lehner, Nicolas [Department of Physics and Astronomy, University of Notre Dame, South Bend, IN (United States); O'Meara, John M. [Department of Chemistry and Physics, Saint Michael's College, Colchester, VT (United States); Ford, Amanda Brady [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Dav, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Weinberg, David H., E-mail: jwerk@ucolick.org [Department of Astronomy, The Ohio State University, Columbus, OH (United States)

    2014-09-01

    We analyze the physical conditions of the cool, photoionized (T ?10{sup 4} K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ? L* galaxies at z ? 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n {sub H} {sub II}/n {sub H} ? 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R {sub vir}, we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n {sub H} = (10{sup 4.20.25})(R/R {sub vir}){sup 0.80.3}. Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M{sub CGM}{sup cool}>6.510{sup 10} M {sub ?} for the volume within R < R {sub vir}. Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10{sup 12} M {sub ?} scale.

  11. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    SciTech Connect (OSTI)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms. Analysis of low concentration ions, at the ppm level, required a separate analysis using ion ejection techniques. Chemical ionization due to the formation of the MH{sup +} ion or MD{sup +} increased the complexity of the spectra compared to magnetic sector mass spectra and formation of the protonated or deuterated complex was a dynamic function of the trap ion concentration. This made quantitative measurement more of a challenge. However, the resolution of the instrument was far superior to any other mass spectrometry technique that has been applied to the analysis of the hydrogen isotopes. The piezo-electric picoliter injection device offers a new way of submitting small quantities of atmospheric pressure sample gas for analysis. The new software had many improvements over the previous version but significant flaws in the beta codes remain that make the prototype units less than ideal. The instrument is a promising new technology that experience will likely improve. Unfortunately, Siemens has concluded that the technology will not be a commercial success and has decided to stop producing this product.

  12. Molecular beam-thermal hydrogen desorption from palladium

    SciTech Connect (OSTI)

    Lobo, R. F. M.; Berardo, F. M. V.; Ribeiro, J. H. F.

    2010-04-15

    Among the most efficient techniques for hydrogen desorption monitoring, thermal desorption mass spectrometry is a very sensitive one, but in certain cases can give rise to uptake misleading results due to residual hydrogen partial pressure background variations. In this work one develops a novel thermal desorption variant based on the effusive molecular beam technique that represents a significant improvement in the accurate determination of hydrogen mass absorbed on a solid sample. The enhancement in the signal-to-noise ratio for trace hydrogen is on the order of 20%, and no previous calibration with a chemical standard is required. The kinetic information obtained from the hydrogen desorption mass spectra (at a constant heating rate of 1 deg. C/min) accounts for the consistency of the technique.

  13. Thermal, chemical, and mechanical cookoff modeling

    SciTech Connect (OSTI)

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  14. EFFECTS OF DUST GROWTH AND SETTLING ON THE IONIZATION BY RADIONUCLIDES. I. FORMULATION AND RESULTS IN A QUIESCENT STATE OF PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    Umebayashi, Toyoharu; Katsuma, Norihito; Nomura, Hideko

    2013-02-10

    We investigate the evolution of the ionization rates by the decay of radionuclides in protoplanetary disks at the early stage of planet formation where size growth and settling of dust particles proceed extensively. Because most of the nuclides to ionize gas, such as short-lived nuclide {sup 26}Al and long-lived one {sup 40}K, are refractory elements, they are contained in the solid material of dust particles. Thus, the ionization by these nuclides is affected by the following three processes: (1) the change of the relative abundance of dust particles due to the settling toward the midplane of the disk, (2) the energy loss of emitted energetic particles inside the solid material of dust particles, and (3) the absorption of energetic particles by the other dust particles located nearby. In this series of papers we comprehensively investigate the basic physical processes, calculate the settling and size growth of dust particles numerically, and clarify the evolution of the ionization rates relative to their initial values in various disk models at this stage. In this paper we investigate the energy-loss processes concerning dust particles, formulate the coalescence equation for settling particles, and apply them to quiescent disk models that are similar to the solar nebula. For simplicity, dust particles are assumed to be compact spheres that remain perfect sticking for mutual collisions. Because the settling of dust particles is not appreciable in the first 10{sup 3} yr, the ionization rate varies little except in the outermost part near the disk surface. As the settling proceeds, the rate around the midplane increases considerably. The maximum ionization rates by {sup 26}Al in the minimum mass solar nebula are about 100, 51, and 14 times larger than their initial values for the orbits R = 0.5, 1, and 5 AU, respectively, which are close to or exceed the ionization rate by cosmic ray in the interstellar medium. The rates by {sup 40}K also increase by factors of about 36, 19, and 5 at the same orbits. In the inner orbital regions, these rates exceed the rates by the attenuated cosmic rays by an order of magnitude. The rates in the residual parts decrease extensively as time goes by, because amounts of the floating dust particles decrease continuously.

  15. Plasma-assisted catalytic ionization using porous nickel plate

    SciTech Connect (OSTI)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-09-15

    Hydrogen atomic pair ions, i.e., H{sup +} and H{sup -} ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H{sup -} ions.

  16. Runaway electrons in a fully and partially ionized nonideal plasma

    SciTech Connect (OSTI)

    Ramazanov, T.S.; Turekhanova, K.M.

    2005-10-01

    This paper reports on a study of electron runaway for a nonideal plasma in an external electric field. Based on pseudopotential models of nonideal fully and partially ionized plasmas, the friction force was derived as a function of electron velocities. Dependences of the electron free path on plasma density and nonideality parameters were obtained. The impact of the relative number of runaway electrons on their velocity and temperature was considered for classical and semiclassical models of a nonideal plasma. It has been shown that for the defined intervals of the coupled plasma parameter, the difference between the relative numbers of runaway electron values is essential for various plasma models.

  17. Structure factors for tunneling ionization rates of diatomic molecules

    SciTech Connect (OSTI)

    Saito, Ryoichi; Tolstikhin, Oleg I.; Madsen, Lars Bojer; Morishita, Toru

    2015-05-15

    Within the leading-order, single-active-electron, and frozen-nuclei approximation of the weak-field asymptotic theory, the rate of tunneling ionization of a molecule in an external static uniform electric field is determined by the structure factor for the highest occupied molecular orbital. We present the results of systematic calculations of structure factors for 40 homonuclear and heteronuclear diatomic molecules by the Hartree–Fock method using a numerical grid-based approach implemented in the program X2DHF.

  18. Photo-ionization and residual electron effects in guided streamers

    SciTech Connect (OSTI)

    Wu, S.; Lu, X. Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-15

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ?10{sup 8?}cm{sup ?3} is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  19. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOE Patents [OSTI]

    Karl, Jr., Robert R. (Los Alamos, NM)

    1990-01-01

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  20. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  1. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. [Idaho Falls, ID; Detering, Brent A. [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  2. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  3. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  4. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  5. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  6. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  7. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II)

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II) Citation Details In-Document Search Title: EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II) We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the

  8. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  9. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  10. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...

  11. Spatially-Resolved Analysis of Glycolipids and Metabolites in Living Synechococcus sp. PCC7002 Using Nanospray Desorption Electrospray Ionization

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Geydebrekht, Oleg V.; Pinchuk, Grigoriy E.; Konopka, Allan; Laskin, Julia

    2013-04-07

    Microorganisms release a diversity of organic compounds that couple interspecies metabolism, enable communication, or provide benefits to other microbes. Increased knowledge of microbial metabolite production will contribute to understanding of the dynamic microbial world and can potentially lead to new developments in drug discovery, biofuel production, and clinical research. Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization technique that enables detailed chemical characterization of molecules from a specific location on a surface without special sample pretreatment. Due to its ambient nature, living bacterial colonies growing on agar plates can be rapidly and non-destructively analyzed. We performed spatially resolved nano-DESI analysis of living Synechococcus sp. PCC 7002 colonies on agar plates. We use high resolution mass spectrometry and MS/MS analysis of the living Synechococcus sp. PCC 7002 colonies to detect metabolites and lipids, and confirm their identities. We found that despite the high salt content of the agar (osmolarity ca. 700 mM), nano-DESI analysis enables detailed characterization of metabolites produced by the colony. Using this technique, we identified several glycolipids found on the living colonies and examined the effect of the age of the colony on the chemical gradient of glucosylglycerol secreted onto agar.

  12. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  13. Organic materials and devices for detecting ionizing radiation

    DOE Patents [OSTI]

    Doty, F. Patrick; Chinn, Douglas A.

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  14. Collision dynamics of proton with formaldehyde: Fragmentation and ionization

    SciTech Connect (OSTI)

    Wang, Jing; Gao, Cong-Zhang; Beijing Radiation Center, Beijing 100875 ; Calvayrac, Florent; Zhang, Feng-Shou; Beijing Radiation Center, Beijing 100875; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000

    2014-03-28

    Using time-dependent density functional theory, applied to the valence electrons and coupled non-adiabatically to molecular dynamics of the ions, we study the ionization and fragmentation of formaldehyde in collision with a proton. Four different impact energies: 35 eV, 85 eV, 135 eV, and 300 eV are chosen in order to study the energy effect in the low energy region, and ten different incident orientations at 85 eV are considered for investigating the steric effect. Fragmentation ratios, single, double, and total electron ionization cross sections are calculated. For large impact parameters, these results are close to zero irrespective of the incident orientations due to a weak projectile-target interaction. For small impact parameters, the results strongly depend on the collision energy and orientation. We also give the kinetic energy releases and scattering angles of protons, as well as the cross section of different ion fragments and the corresponding reaction channels.

  15. Modeling of ionizing radiation effects in short-channel MOSFETs

    SciTech Connect (OSTI)

    Wilson, C.L.; Blue, J.L.

    1982-12-01

    The effect of ionizing radiation on short-channel MOSFETs is modeled using a charge-sheet approach. The primary effect of ionizing radiation is the introduction of oxide trapped charge (OTC) and interface trapped charge (ITC). Using a two-dimensional charge-sheet model, transistors with channel lengths between 4.65 ..mu..m and 0.27 ..mu..m were studied. A range of net OTC and ITC values of + 4.0 X 10/sup 11/ cm/sup -2/ corresponding to a dose of approximately 10/sup 6/ rad (SiO/sub 2/) was used to study total dose effects. ITC and OTC cause significant effects in each region of operation. In the subthreshold region, the sensitivity of drain current to these charges is exponential. A more realistic model must include the energy distribution of the ITC charge as well as two-dimensional charge sharing effects. In the triode region, the effects of ITC and OTC are indistinguishable from two-dimensional charge sharing effects.

  16. ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z {approx} 3-4: LOOKING FOR ANALOGS OF 'STELLAR RE-IONIZERS'

    SciTech Connect (OSTI)

    Vanzella, Eros; Cristiani, Stefano; Nonino, Mario; Guo Yicheng; Giavalisco, Mauro; Grazian, Andrea; Castellano, Marco; Fontana, Adriano; Giallongo, Emanuele; Pentericci, Laura; Galametz, Audrey; Dickinson, Mark; Faber, S. M.; Newman, Jeffrey; Siana, Brian D.

    2012-05-20

    We use the spatially resolved, multi-band photometry in the GOODS South field acquired by the CANDELS project to constrain the nature of candidate Lyman continuum (LyC) emitters at redshift z {approx} 3.7 identified using ultradeep imaging below the Lyman limit (1{sigma} limit of Almost-Equal-To 30 AB in a 2'' diameter aperture). In 19 candidates out of a sample of 20 with flux detected at >3{sigma} level, the light centroid of the candidate LyC emission is offset from that of the Lyman break galaxy (LBG) by up to 1.''5. We fit the spectral energy distribution of the LyC candidates to spectral population synthesis models to measure photometric redshifts and the stellar population parameters. We also discuss the differences in the UV colors between the LBG and the LyC candidates, and how to estimate the escape fraction of ionizing radiation (f{sub esc}) in cases, like in most of our galaxies, where the LyC emission is spatially offset from the host galaxy. In all but one case we conclude that the candidate LyC emission is most likely due to lower redshift interlopers. Based on these findings, we argue that the majority of similar measurements reported in the literature need further investigation before it can be firmly concluded that LyC emission is detected. Our only surviving LyC candidate is an LBG at z = 3.795, which shows the bluest (B - V) color among LBGs at similar redshift, a stellar mass of M {approx} 2 Multiplication-Sign 10{sup 9} M{sub Sun }, weak interstellar absorption lines, and a flat UV spectral slope with no Ly{alpha} in emission. We estimate its f{sub esc} to be in the range 25%-100%, depending on the dust and intergalactic attenuation.

  17. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect (OSTI)

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Z?, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter ?(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1?atm, 10?atm, and 100?atm in the temperature range from 6000?K to 60?000?K. For a given value of non-equilibrium parameter, the relationship of Z? with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  18. SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES

    SciTech Connect (OSTI)

    Lepri, Susan T.; Laming, J. Martin; Rakowski, Cara E.; Von Steiger, Rudolf

    2012-12-01

    The 2005 January 21 interplanetary coronal mass ejection (ICME) observed by multiple spacecraft at L1 was also observed from January 21-February 4 at Ulysses (5.3 AU). Previous studies of this ICME have found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event allows us to study spatial variation across the ICME and relate it to the eruption at the Sun. In order to examine the spatial dependence of the heating in this ICME, we present an analysis and comparison of the heavy ion composition observed during the passage of the ICME at L1 and at Ulysses. Using SWICS, we compare the heavy ion composition across the two different observation cuts through the ICME and compare it with predictions for heating during the eruption based on models of the time-dependent ionization balance throughout the event.

  19. Performance parameters of a liquid filled ionization chamber array

    SciTech Connect (OSTI)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.; Chofor, N.; Harder, D.; Willborn, K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluated using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within 0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of 2.6% from the reference condition for the setup used. The ?-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 0.25) mm at 6 MV and (0.74 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup ?1}, respectively. For the inner 5 5 cm{sup 2} region and the outer 11 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup ?1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.

  20. Resonance overlap structure in the microwave ionization of the hydrogen atom

    SciTech Connect (OSTI)

    Farrelly, D.; Uzer, T.

    1988-12-01

    The microwave ionization of the hydrogen atom involves most of the open issues concerning classical and quantum chaos. Much recent research has considered quasi-one-dimensional extended states for which ionization thresholds have been estimated using a classical picture in which ionization proceeds through the overlap of an infinity of nonlinear resonances. Using a canonical transformation to Deprit's ''Lissajous elements'' which makes the two-dimensional nature of the problem explicit, an accurate and improved ionization threshold, compared to previous resonance overlap criteria, is obtained through the overlap of only two nonlinear resonances in the one-dimensional limit.

  1. Method for calibrating mass spectrometers

    DOE Patents [OSTI]

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  2. Smoldering combustion hazards of thermal insulation materials

    SciTech Connect (OSTI)

    Ohlemiller, T.J.; Rogers, F.E.

    1980-07-01

    Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

  3. Devices with extended area structures for mass transfer processing of fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.

    2009-04-21

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  4. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W.; Cameron, Christopher Stan

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  5. Twisted mass finite volume effects

    SciTech Connect (OSTI)

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  6. Single event mass spectrometry

    DOE Patents [OSTI]

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  7. Nanoscale mass conveyors

    DOE Patents [OSTI]

    Regan, Brian C.; Aloni, Shaul; Zettl, Alexander K.

    2008-03-11

    A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

  8. A computational model for thermal fluid design analysis of nuclear thermal rockets

    SciTech Connect (OSTI)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated.

  9. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    SciTech Connect (OSTI)

    Auluck, S. K. H. E-mail: skauluck@barc.gov.in

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and wind pressure resisting its motion. The resulting sheath velocity, or the numerically proportional drive parameter, is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  10. Small system for tritium accelerator mass spectrometry

    DOE Patents [OSTI]

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  11. Small system for tritium accelerator mass spectrometry

    DOE Patents [OSTI]

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  12. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect (OSTI)

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  13. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  14. Photoionization Mass Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoionization Mass Spectroscopy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  15. Heat and mass transfer in open-cycle OTEC systems

    SciTech Connect (OSTI)

    Bharathan, D.; Kreith, F.; Owens, W.L.; Schlepp, D.

    1984-01-01

    The temperature difference between surface and deep water in the oceans represents a vast resource of thermal energy. A promising method of harnessing this resource is the open-cycle ocean thermal energy conversion (OC-OTEC) system, which utilizes steam evaporated from the surface water to power the turbine. In this paper the state of the art of heat and mass transfer related to evaporation and condensation of steam at low pressures in OC-OTEC is summarized and relevant research issues are discussed.

  16. Solution mass measurement

    SciTech Connect (OSTI)

    Ford, W.; Marshall, R.S.; Osborn, L.C.; Picard, R.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the efforts to develop and demonstrate a solution mass measurement system for use at the Los Alamos Plutonium Facility. Because of inaccuracy of load cell measurements, our major effort was directed towards the pneumatic bubbler tube. The differential pressure between the air inlet to the bubbler tube and the glovebox interior is measured and is proportional to the solution mass in the tank. An inexpensive, reliable pressure transducer system for measuring solution mass in vertical, cylindrical tanks was developed, tested, and evaluated in a laboratory test bed. The system can withstand the over- and underpressures resulting from solution transfer operations and can prevent solution backup into the measurement pressure transducer during transfers. Drifts, noise, quantization error, and other effects limit the accuracy to 30 g. A transportable calibration system using a precision machined tank, pneumatic bubbler tubes, and a Ruska DDR 6000 electromanometer was designed, fabricated, tested, and evaluated. Resolution of the system is +-3.5 g out of 50 kg. The calibration error is 5 g, using room-temperature water as the calibrating fluid. Future efforts will be directed towards in-plant test and evaluation of the tank measurement systems. 16 figures, 3 tables.

  17. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  18. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  19. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  20. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  1. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  2. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  3. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  4. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  5. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  6. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  7. Observation of multiple ionization pathways for OCS in an intense laser field resolved by three-dimensional covariance mapping and visualized by hierarchical ionization topology

    SciTech Connect (OSTI)

    Bryan, W. A.; Newell, W. R.; Sanderson, J. H.; Langley, A. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Physics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2006-11-15

    The two- and three-body Coulomb explosion of carbonyl sulfide (OCS) by 790 nm, 50 fs laser pulses focused to {approx_equal}10{sup 16} W cm{sup -2} has been investigated by the three-dimensional covariance mapping technique. In a triatomic molecule, a single charge state, in this case the trication, has been observed to dissociate into two distinct energy channels. With the aid of a three-dimensional visualization technique to reveal the ionization hierarchy, evidence is presented for the existence of two sets of ionization pathways resulting from these two initial states. While one group of ions can be modeled using a classical enhanced ionization model, the second group, consisting of mainly asymmetric channels, cannot. The results provide clear evidence that an enhanced ionization approach must also be accompanied by an appreciation of the effects of excited ionic states and multielectronic processes.

  8. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide ...

  9. Thermomechanical measurements on thermal microactuators. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal ... SANDIA NATIONAL LABORATORIES; SILICON; VALIDATION Microactuators.; Ceramic ...

  10. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  11. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  12. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOE Patents [OSTI]

    Wise, Marcus B.; Buchanan, Michelle V.

    1989-01-01

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electroncially programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity.

  13. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOE Patents [OSTI]

    Wise, M.B.; Buchanan, M.V.

    1988-05-19

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.

  14. 6D Muon Ionization Cooling with an Inverse Cyclotron

    SciTech Connect (OSTI)

    Summers, D. J.; Bracker, S. B.; Cremaldi, L. M.; Godang, R.; Palmer, R. B.

    2006-03-20

    A large admittance sector cyclotron filled with LiH wedges surrounded by helium or hydrogen gas is explored. Muons are cooled as they spiral adiabatically into a central swarm. As momentum approaches zero, the momentum spread also approaches zero. Long bunch trains coalesce. Energy loss is used to inject the muons into the outer rim of the cyclotron. The density of material in the cyclotron decreases adiabatically with radius. The sector cyclotron magnetic fields are transformed into an azimuthally symmetric magnetic bottle in the center. Helium gas is used to inhibit muonium formation by positive muons. Deuterium gas is used to allow captured negative muons to escape via the muon catalyzed fusion process. The presence of ionized gas in the center may automatically neutralize space charge. When a bunch train has coalesced into a central swarm, it is ejected axially with an electric kicker pulse.

  15. Detailed Investigations of Interactions between Ionizing Radiation and Neutral Gases

    SciTech Connect (OSTI)

    Landers, Allen L

    2014-03-31

    We are investigating phenomena that stem from the many body dynamics associated with ionization of an atom or molecule by photon or charged particle. Our program is funded through the Department of Energy EPSCoR Laboratory Partnership Award in collaboration with Lawrence Berkeley National Laboratory. We are using variations on the well established COLTRIMS technique to measure ions and electrons ejected during these interactions. Photoionization measurements take place at the Advanced Light Source at LBNL as part of the ALS-COLTRIMS collaboration with the groups of Reinhard Drner at Frankfurt and Ali Belkacem at LBNL. Additional experiments on charged particle impact are conducted locally at Auburn University where we are studying the dissociative molecular dynamics following interactions with either ions or electrons over a velocity range of 1 to 12 atomic units.

  16. Theory of multiphoton and tunnel ionization in a bichromatic field

    SciTech Connect (OSTI)

    Bagulov, D. S.; Kotelnikov, I. A.

    2013-01-15

    The imaginary-time method [6, 7] is used to calculate the multiphoton and tunnel ionization probabilities for atoms in a laser radiation field part of which is converted into the second harmonic. We assume that the first harmonic has a linear or elliptical polarization and the second harmonic is polarized linearly, with its polarization vector making an arbitrary angle with that of the first harmonic. The mean momentum of the photoelectrons knocked out from atoms is shown to depend on the phase shift between the first and second harmonics and their mutual polarization and to be identically equal to zero for a monochromatic field. An important difference between the case of elliptical polarization and the case of linear polarization of both harmonics is the absence of conditions under which the conditions for dominance of one of the two generation mechanisms considered here can be identified during the generation of terahertz radiation from the region of optical breakdown in a gas.

  17. Ionization detector, electrode configuration and single polarity charge detection method

    DOE Patents [OSTI]

    He, Zhong

    1998-01-01

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

  18. Ionization detector, electrode configuration and single polarity charge detection method

    DOE Patents [OSTI]

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  19. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect (OSTI)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  20. Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications

    SciTech Connect (OSTI)

    Macheret, Sergey

    2005-05-16

    The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the 'reverse energy bypass' scheme. MHD power generation on board reentry vehicles is also discussed.

  1. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    SciTech Connect (OSTI)

    Luo, Tianhuan; Li, D.; Virostek, S.; Palmer, R.; Stratakis, Diktys; Bowring, D.

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  2. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect (OSTI)

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  3. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  4. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  5. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  6. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  7. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  8. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  9. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  10. DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS

    SciTech Connect (OSTI)

    Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J. E-mail: ercolano@usm.lmu.de

    2013-02-10

    We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M {sub *} = 0.7 M {sub Sun} and 0.1 M {sub Sun }. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with M {sub disk}/M {sub *} = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L{sub X} /L {sub *} Almost-Equal-To 10{sup -3.5}, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 {mu}m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only {approx}5%-10% of the total disk mass; (3) the accretion rate ( M-dot ) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10{sup -2}; and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii.

  11. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  12. Process management using component thermal-hydraulic function classes

    DOE Patents [OSTI]

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  13. Traveling-wave device with mass flux suppression

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2000-01-01

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  14. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Moore, Troy K.

    1988-01-01

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  15. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  16. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  17. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  18. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  19. IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS

    SciTech Connect (OSTI)

    Blanc, Guillermo A.; Kewley, Lisa; Vogt, Frédéric P. A.; Dopita, Michael A.

    2015-01-10

    We present a new method for inferring the metallicity (Z) and ionization parameter (q) of H II regions and star-forming galaxies using strong nebular emission lines (SELs). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photoionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics, the method is flexible and not tied to a particular photoionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extragalactic H II regions, we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local H II regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photoionization models in the literature can be in good (∼30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically ∼0.2 dex lower than both RL and photoionization-model-based abundances.

  20. Energy Grasses for the Masses

    Broader source: Energy.gov [DOE]

    Breakout Session 1-D: The Pitch Energy Grasses for the Masses Jason Force, Chief Executive Officer, Iron Goat Technology, Inc.

  1. Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters

    SciTech Connect (OSTI)

    Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.

    2014-09-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

  2. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  3. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  4. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physical properties of the substance of interest, and (3) transformation rates in soil. Our particular focus is on approaches for constructing soil-transport algorithms and soil-transport parameters for incorporation within multimedia fate models. We show how MTC's can be developed to construct a simple two-compartment air-soil system. We then demonstrate how a multi-layer-box-model approach for soil-mass balance converges to the exact analytical solution for concentration and mass balance. Finally, we demonstrate and evaluate the performance of the algorithms in a model with applications to the specimen chemicals benzene, hexachlorobenzene, lindane gammahexachlorocyclohexane, benzo(a)pyrene, nickel, and copper.

  5. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    SciTech Connect (OSTI)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.

  6. Matrix Effects in Biological Mass Spectrometry Imaging: Identification and Compensation

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Stevens, Susan; Stenzel-Poore, Mary; Laskin, Julia

    2014-07-21

    Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we introduce an experimental approach that efficiently compensates for matrix effects in nanospray desorption electrospray ionization (nano-DESI) MSI without introducing any complexity into the experimental protocol. We demonstrate compensation for matrix effects in nano-DESI MSI of phosphatidylcholine (PC) in normal and ischemic mouse brain tissue by doping the nano-DESI solvent with PC standards. Specifically, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model with an ischemic region localized to one hemisphere of the brain. Due to similar suppression in ionization of endogenous PC molecules extracted from the tissue and PC standards added to the solvent, matrix effects are eliminated by normalizing the intensity of the sodium and potassium adducts of endogenous PC to the intensity of the corresponding adduct of the PC standard. This approach efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.

  7. Chemical Analysis of Soot Using Thermal Desorption/Pyrolysis Gas

    Broader source: Energy.gov (indexed) [DOE]

    Chromatography/Mass Spectrometry | Department of Energy A new method of soot analysis using thermal/pyrolysis GS-MS has provided a faster, more efficient analytical method to understand the surface chemistry of the soot. PDF icon p-15_lewis.pdf More Documents & Publications Accelerated Extraction of Diesel Particulate Matter SOF CX-008636: Categorical Exclusion Determination Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report

  8. Thermal axion production in the primordial quark-gluon plasma

    SciTech Connect (OSTI)

    Graf, Peter; Steffen, Frank Daniel

    2011-04-01

    We calculate the rate for thermal production of axions via scattering of quarks and gluons in the primordial quark-gluon plasma. To obtain a finite result in a gauge-invariant way that is consistent to leading order in the strong gauge coupling, we use systematic field theoretical methods such as hard thermal loop resummation and the Braaten-Yuan prescription. The thermally produced yield, the decoupling temperature, and the density parameter are computed for axions with a mass below 10 meV. In this regime, with a Peccei-Quinn scale above 6x10{sup 8} GeV, the associated axion population can still be relativistic today and can coexist with the axion cold dark matter condensate.

  9. Mass spectrometers for studying the ionic and neutral composition of the upper layers of the atmosphere

    SciTech Connect (OSTI)

    Shutov, M.D.

    1984-04-01

    The investigation of the ionic and neutral composition of the upper layers of the atmosphere and outer space which is of interest for solving theoretical and applied problems of astrophysics, geophysics, space biology, and other closely-tied areas of science is discussed. The upper layers of the atmosphere are of practical significance for launching rockets and artificial satellites, for which the nature of movement depends on the structure and composition of the atmosphere. The study of the chemical composition of the ionosphere, the degree of ionization of the upper layers of the atmosphere at different latitudes and different times of day, and the dependence of ionization on the action of ultraviolet and corpuscular radiation is necessary to study the processes of the propagation of radio waves, and to explain the chemical and photochemical reaction which cause the ionosphere to exist. The most modern methods of study the composition of the mass spectral method which is a direct method and is especially valuable at great altitudes to study the composition of the upper atmosphere is considered. The mass spectrometric method is the only one to analyze the composition of ionizing gases.

  10. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    6 Number of companies expecting to introduce new solar new solar thermal collector products in 2010 Low-Temperature Collectors 4 Medium-Temperature Collectors 16 High-Temperature Collectors 11 Noncollector Components 12 Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." New Product Type Number of Companies Source: U.S. Energy Information Administration,

  11. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    8 Employment in the solar thermal collector industry, 2000 - 2009 2000 284 2001 256 2002 356 2003 287 2004 317 2005 353 2006 1,069 2007 686 2008 1,083 2009 1,321 Year Person-Years Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  12. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  13. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  14. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    SciTech Connect (OSTI)

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  15. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  16. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  17. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with ‘Kalwall’ building panels. An added feature of the “Kalwall” system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  18. Primordial black holes with mass 10{sup 16}?10{sup 17} g and reionization of the Universe

    SciTech Connect (OSTI)

    Belotsky, K.M.; Kirillov, A.A. E-mail: kirillov-aa@yandex.ru

    2015-01-01

    Primordial black holes (PBHs) with mass 10{sup 16}?10{sup 17} g almost escape constraints from observations so could essentially contribute to dark matter density. Hawking evaporation of such PBHs produces with a steady rate ?- and e{sup }-radiations in MeV energy range, which can be absorbed by ordinary matter. Simplified estimates show that a small fraction of evaporated energy had to be absorbed by baryonic matter what can turn out to be enough to heat the matter so it is fully ionized at the redshift z?5...10. The result is found to be close to a borderline case where the effect appears, what makes it sensitive to the approximation used. In our approximation, degree of gas ionization reaches 50-100% by z?5 for PBH mass (3...7)נ10{sup 16} g with their abundance corresponding to the upper limit.

  19. Design and Prototyping of an Ionization Profile Monitor for the SNS Accumulator Ring

    SciTech Connect (OSTI)

    Bartkoski, Dirk A; Deibele, Craig E; Polsky, Yarom

    2014-12-01

    An ionization profile monitor (IPM) has been designed for the Spallation Neutron Source (SNS) accumulator ring. Utilizing ionized electrons produced by beam-gas ionization, the SNS IPM uses a 120 kV bias potential to overcome beam space charge and accelerate electrons towards a movable particle detector. A 300 G magnetic field is used to confine the transverse electron motion, resulting in profile errors at the estimated 7% level. With a system bandwidth of 17.5 MHz. The SNS IPM is capable of measuring turn-by-turn beam profiles for a fully accumulated beam. This paper presents a description of the system and design.

  20. Optical phase and the ionization-dissociation dynamics of excited H{sub 2}

    SciTech Connect (OSTI)

    Kirrander, A.; Fielding, H. H.; Jungen, Ch.

    2010-01-14

    We investigate the influence of optical phase on the dynamics of hydrogen molecules excited to a spectral region with competition between predominantly rotational ionization, and dissociation. We show that an appropriate choice of optical phase changes the relative timing of the ionization and dissociation. Furthermore, the temporal width of the ionization and dissociation fluxes can also be controlled, in a matter-wave analogy of transform-limited optical pulses. The close link between the optical phase and the photoinduced electronic and molecular dynamics has important implications for femtochemistry.

  1. Isotope fractionation in surface ionization ion source of alkaline-earth iodides

    SciTech Connect (OSTI)

    Suzuki, T.; Kanzaki, C.; Nomura, M.; Fujii, Y.

    2012-02-15

    The relationship between the isotope fractionation of alkaline-earth elements in the surface ionization ion source and the evaporation filament current, i.e., filament temperature, was studied. It was confirmed that the isotope fractionation depends on the evaporation filament temperature; the isotope fractionation in the case of higher temperature of filament becomes larger. The ionization and evaporation process in the surface ionization ion source was discussed, and it was concluded that the isotope fractionation is suppressed by setting at the lower temperature of evaporation filament because the dissociations are inhibited on the evaporation filament.

  2. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  3. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1993-01-01

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

  4. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1993-12-21

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.

  5. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Laboratory Mass Spectrometer Laboratory A look inside the recently updated Mass Spectrometer Facility managed by Staff Scientish Hao Zhang

  6. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  7. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  8. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  9. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  10. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect (OSTI)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  11. Ceramic thermal barrier coating for rapid thermal cycling applications

    DOE Patents [OSTI]

    Scharman, Alan J.; Yonushonis, Thomas M.

    1994-01-01

    A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

  12. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 (Btu per square foot per day) Low- High Temperature Temperature Liquid/air Parabolic Year Metallic and Nonmetallic Air ICS/Thermosi phon Flat-Plate (Pumped) Evaculated Tube Concentrator Paraboloic Dish/Trough 2009 1,139 971 913 981 973 2,196 1,262 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." Medium-Temperature Type Liquid

  13. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  14. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  15. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  16. Electric Motor Thermal Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ape030_bennion_2012_o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

  17. Effective polarization interaction potential 'charge-atom' for partially ionized dense plasma

    SciTech Connect (OSTI)

    Ramazanov, T.S.; Dzhumagulova, K.N.; Omarbakiyeva, Y.A.

    2005-09-15

    The pseudopotentials of particle interaction, taking into account quantum-mechanical effects of diffraction at short distances and also screening effects at large distances, are obtained for a partially ionized plasma. The dielectric function method was used.

  18. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    SciTech Connect (OSTI)

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; Smith, Richard D.; Tang, Keqi

    2014-12-01

    Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utility of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.

  19. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect (OSTI)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  20. Radiography used to image thermal explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October » Radiography used to image thermal explosions Radiography used to image thermal explosions Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the explosion. October 9, 2012 Tabletop X-ray radiography of a thermal explosion. Tabletop X-ray radiography of a thermal explosion. Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the

  1. The effects of ionizing radiation on Reillex trademark HPQ, a new macroporous polyvinylpyridine resin, and on four conventional polystyrene anion exchange resins

    SciTech Connect (OSTI)

    Marsh, S.F.

    1990-11-01

    This study compares the effects of ionizing radiation on Reillex{trademark} HPQ, a recently available macroporous copolymer of 1-methyl-4-vinylpyridine/divinylbenzene, and on four conventional strong-base polystyrene anion exchange resins. The polystyrene resins investigated included one gel type, Dowex{trademark} 1 {times} 4, and three macroporous resins: Dow{trademark} MSA-1, Amberlite{trademark} IRA-900, and Lewatit{trademark} MP-500-FK. Each resin, in 7 M nitric acid, was subjected to seven different levels of {sup 60}Co gamma radiation ranging from 100 to 1000 megarads. Irradiated resins were measured for changes in dry weight, wet volume, chloride and Pu(IV) exchange capacities, and thermal stability. In separate experiments, each resin was subjected to approximately 340 megarads of in situ alpha particles from sorbed plutonium. Resin damage from alpha particles was less than half that caused by gamma rays, which may be a consequence of different production rates of radiolytic nitrite and nitro radicals in the two systems. Reillex{trademark} HPQ resin provided the greatest radiation stability, whereas Lewatit{trademark} MP-500-FK was the least stable of the resins tested. Thermogravimetric analyses of dry, nitrate-form resin revealed that dry Reillex{trademark} HPQ resin offered the best thermal stability for absorbed gamma doses to 370 megarads, but the worst thermal stability after exposures of 550 megarads or more. 25 refs., 11 figs., 13 tabs.

  2. Ionizing radiation post-curing of objects produced by stereolithography and other methods

    DOE Patents [OSTI]

    Howell, David H.; Eberle, Claude C.; Janke, Christopher J.

    2000-01-01

    An object comprised of a curable material and formed by stereolithography or another three-dimensional prototyping method, in which the object has undergone initial curing, is subjected to post-curing by ionizing radiation, such as an electron beam having a predetermined beam output energy, which is applied in a predetermined dosage and at a predetermined dose rate. The post-cured object exhibits a property profile which is superior to that which existed prior to the ionizing radiation post-curing.

  3. Method of Control o Multiple Contraction in the volume of Weakly Ionized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma by Standing Acoustic Wave Excitation. | Princeton Plasma Physics Lab Method of Control o Multiple Contraction in the volume of Weakly Ionized Plasma by Standing Acoustic Wave Excitation. This invention is a process that uses a standing acoustic wave in the volume of weakly ionized plasma to control the initiation of contraction (transition to arc) in certain designated places - the antimodes of the standing wave. No.: M-876 Inventor(s): Igor Kaganovich

  4. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    SciTech Connect (OSTI)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  5. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    41 388 2009 10,511 809 2,307 32 980 - No data reported. ... disclosed. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector ...

  6. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Total 5,517,291 3,455,846 100.00 - No data reported. ... rounding. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector ...

  7. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    7 Import shipments of solar thermal collectors by type, 2000 ... 687 - 5,517 2009 1,987 715 754 3,456 - No data reported. ... Source: U.S. Energy Information Administration, Form ...

  8. Co-registered Topographical, Band Excitation Nanomechanical and Mass Spectral Imaging using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ovchinnikova, Olga S; Kertesz, Vilmos; Jesse, Stephen; Van Berkel, Gary J

    2015-01-01

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. The basic instrumental setup and operation are discussed and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less

  9. Thermal-Mechanical Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of thermal-mechanical research includes: Single and two phase heat transfer Nanomaterial synthesis Heat transfer fluids Engine and power electronics cooling Thermal energy...

  10. Plasma-Thermal Synthesis - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Synthesis Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Thermal Synthesis process improves the conversion process...

  11. Plutonium Hexafluoride Thermal Decomposition Rates (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Plutonium Hexafluoride Thermal Decomposition Rates Citation Details In-Document Search Title: Plutonium Hexafluoride Thermal Decomposition Rates Uranium and plutonium may be ...

  12. Amulaire Thermal Technology | Open Energy Information

    Open Energy Info (EERE)

    Amulaire Thermal Technology Jump to: navigation, search Name: Amulaire Thermal Technology Address: 11555 Sorrento Valley Road Place: San Diego, California Zip: 92121 Region:...

  13. A nanostructure thermal property measurement platform. (Conference...

    Office of Scientific and Technical Information (OSTI)

    side of the central heater), and this feature permits identification of possible changes in thermal conductance along the wire and measurement of the thermal contact resistance. ...

  14. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel ...

  15. Stewart Thermal Ltd | Open Energy Information

    Open Energy Info (EERE)

    Thermal Ltd Jump to: navigation, search Name: Stewart Thermal Ltd Place: United Kingdom Sector: Biomass Product: Provides specialist advice in the field of biomass energy....

  16. Alumni | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Visit Website Bo Qiu ThermalMechanical Engineer, Intel Corporation Visit Website Veronika Rinnerbauer Innovation Management, Bosch Visit Website Nitin Shukla Thermal Testing ...

  17. Nextreme Thermal Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Nextreme Thermal Solutions Inc Jump to: navigation, search Name: Nextreme Thermal Solutions Inc Place: North Carolina Zip: 27709-3981 Product: String representation "Manufactures...

  18. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual ...

  19. Review of Thermally Activated Technologies, July 2004

    Broader source: Energy.gov [DOE]

    Status of various thermally activated technologies (TATs); includes fuel-fired and waste-heat-fired applications of thermally driven cooling systems, heat pumps, and bottoming cycles.

  20. Thermal Design and Characterization of Heterogeneously Integrated...

    Office of Scientific and Technical Information (OSTI)

    with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after ...

  1. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Ruiz, L. Hildebrandt; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ionmoreintensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMSvacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that OS C is a more robust metric of oxidation than O : C, likely since OS C is not affected by hydration or dehydration, either in the atmosphere or during analysis.less

  2. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C and H : C values is smaller (12% and 4% respectively) for synthetic mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OSC values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OSC units). This indicates that OSC is a more robust metric of oxidation than O : C, likely since OSC is not affected by hydration or dehydration, either in the atmosphere or during analysis.« less

  3. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that OS C is a more robust metric of oxidation than O : C, likely since OS C is not affected by hydration or dehydration, either in the atmosphere or during analysis.« less

  4. Method for the depth corrected detection of ionizing events from a co-planar grids sensor

    DOE Patents [OSTI]

    De Geronimo, Gianluigi; Bolotnikov, Aleksey E.; Carini, Gabriella

    2009-05-12

    A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.

  5. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    SciTech Connect (OSTI)

    Wu, Yue; Zhang, Zhili; Jiang, Naibo; Roy, Sukesh; Gord, James R.

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  6. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  7. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  8. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  9. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment Information 2008 2009 Complete Collector Systems Shipped 63,961 75,066 Thousand Square Feet 4,058 5,995 Percent of Total Shipments 24 43 Number of Companies 46 62 Revenue of Systems (Thousand Dollars) 47,523 159,085 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  10. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    9 Companies involved in solar thermal collector related activities by type, 2008 and 2009 Type of Activity 2008 2009 Collector or System Design 45 59 Prototype Collector Development 27 27 Prototype System Development 23 23 Wholesale Distribution 58 61 Retail Distribution 29 31 Installation 21 27 Noncollector System Component Manufacture 26 32 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  11. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  12. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  13. Weak and compact radio emission in early massive star formation regions: an ionized jet toward G11.110.12P1

    SciTech Connect (OSTI)

    Rosero, V.; Hofner, P.; McCoy, M.; Kurtz, S.; Loinard, L.; Carrasco-Gonzlez, C.; Rodrguez, L. F.; Menten, K. M.; Wyrowski, F.; Araya, E. D.; Cesaroni, R.; Ellingsen, S. P.

    2014-12-01

    We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.110.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 ?m), which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.110.12P1 core.

  14. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    SciTech Connect (OSTI)

    Gasper, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F.; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  15. Method of isotope separation by chemi-ionization

    DOE Patents [OSTI]

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  16. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  17. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  18. Appendix MASS: Performance Assessment Modeling Assumptions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix MASS-2014 Performance Assessment Modeling Assumptions United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix MASS Table of Contents MASS-1.0 Introduction MASS-2.0 Summary of Changes in Performance Assessment MASS-2.1 FEPs Assessment MASS-2.2 Monitoring MASS-2.3 Experimental Activities MASS-2.3.1 Steel Corrosion Investigations MASS-2.3.2 Waste Shear Strength Investigations MASS-2.3.3

  19. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  20. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01

    A thermal energy storage system comprising a germanium phase change material and a graphite container.