National Library of Energy BETA

Sample records for thermal insulation radiation

  1. Radiative transfer and thermal performance levels in foam insulation boardstocks

    E-Print Network [OSTI]

    Moreno, John David

    1991-01-01

    The validity of predictive models for the thermal conductivity of foam insulation is established based on the fundamental geometry of the closed-cell foam. The extinction coefficient is experimentally and theoretically ...

  2. Thermal Insulation Systems 

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  3. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  4. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  5. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  6. Electrically insulated MLI and thermal anchor

    SciTech Connect (OSTI)

    Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Koidea, Yoshihiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hatakenaka, Ryuta; Miyakita, Takeshi [Japan Aerospace Exploration and Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2014-01-29

    The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter method and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.

  7. Degradation of Structural Alloys Under Thermal Insulation 

    E-Print Network [OSTI]

    McIntyre, D. R.

    1984-01-01

    Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

  8. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect (OSTI)

    Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  9. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  10. Impact of Thermally Insulated Floors 

    E-Print Network [OSTI]

    Alghimlas, F.; Omar, E. A.

    2004-01-01

    INSULATED FLOORS E. Al-Sayed Omar Associate Research Scientist Kuwait Institute for Scientific Research P.O. Box 24885, 13109 Safat, Kuwait F. Alghimlas * Research Associate Kuwait Institute for Scientific Research P.O. Box 24885, 13109 Safat..., Kuwait * fghimlas@kisr.edu.kw ABSTRACT Presently in Kuwait the code of practice for energy conservation in the air conditioned buildings implemented by the Ministry of Electricity and Water (MEW) which has been in effect since 1983 has...

  11. Thermal-performance study of liquid metal fast breeder reactor insulation

    SciTech Connect (OSTI)

    Shiu, Kelvin K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

  12. DOE Issues Request for Information on Advanced Thermal Insulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on advanced thermal insulation for sub-ambient temperature alternative fuel storage systems. This RFI requests information regarding how to maintain vacuum stability of...

  13. Glass fiber composition. [for use as thermal insulation

    DOE Patents [OSTI]

    Wolf, G.A.; Kupfer, M.J.

    1980-12-19

    The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

  14. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  15. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1995-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  16. Thermal radiation Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .00032, similarly for 2·T = 0.7·2500 = 1750 µmK4 this gives f0-2 = 0.03392. Thus for 0.4 - 0.7 µm, f1-2 = 0Thermal radiation revisited Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi Process Engineering

  17. Composite multilayer insulations for thermal protection of aerospace vehicles

    SciTech Connect (OSTI)

    Kourtides, D.A.; Pitts, W.C.

    1989-02-01

    Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of alumininum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.

  18. Thermal Effects of Moisture in Rigid Insulation Board 

    E-Print Network [OSTI]

    Crow, G. W.

    1992-01-01

    The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy...

  19. THERMAL CONDUCTIVITY OF POWDER INSULATIONS FOR CRYOGENIC STORAGE

    E-Print Network [OSTI]

    Chang, Ho-Myung

    THERMAL CONDUCTIVITY OF POWDER INSULATIONS FOR CRYOGENIC STORAGE VESSELS Y. S. Choi1 '3 , M. N of the present work was to develop a precise instrument for measuring the thermal conductivity of powder cylinder is thermally anchored to the coldhead of a single stage Gifford-McMahon cryocooler, while

  20. Thermal Insulation Performance in the Process Industries: Facts and Fallacies 

    E-Print Network [OSTI]

    Tye, R. P.

    1985-01-01

    stream_source_info ESL-IE-85-05-54.pdf.txt stream_content_type text/plain stream_size 24703 Content-Encoding ISO-8859-1 stream_name ESL-IE-85-05-54.pdf.txt Content-Type text/plain; charset=ISO-8859-1 THERMAL INSULATION... PERFORMANCE IN 'mE PROCESS INDUSTRIES: FACTS AND FALLACIES R.P. Tye Dynatech RID Company, Cambridge, MA, U.S.A. ABSTRACT The efficient use of thermal insulation materials and systems for design of cryogenic and elevated temperature process...

  1. The use of coated micropowders to reduce radiation heat transfer in foam insulation

    E-Print Network [OSTI]

    Marge, Arlene Lanciani

    1991-01-01

    Polyurethane foam is the most effective insulation currently available for buildings. Chlorofluorocarbon (CFC) blowing agents, which have low thermal conductivities, contribute highly to the effectiveness of this insulation. ...

  2. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m[sup 2] at an insulating vacuum of 10[sup [minus]6]torr.

  3. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m{sup 2} at an insulating vacuum of 10{sup {minus}6}torr.

  4. Performance of Thermal Insulation Containing Microencapsulated Phase Change Material

    SciTech Connect (OSTI)

    Kosny, Jan [ORNL] [ORNL; Yarbrough, David [R & D Services] [R & D Services; Syed, Azam M [ORNL] [ORNL

    2007-01-01

    The objective of this study is dynamic thermal performance microencapsulated phase change material (PCM) blended with loose-fill cellulose insulation. Dynamic hot-box testing and heat-flux measurements have been made for loose-fill cellulose insulation with and without uniformly distributed microencapsulated PCM. The heat flux measurements were made with a heat-flow-meter (HFM) apparatus built in accordance with ASTM C 518. Data were obtained for 1.6 lb{sub m}/ft{sup 3} cellulose insulation containing 0 to 40 wt% PCM. Heat-flux data resulting from a rapid increase in the temperature on one side of a test specimen initially at uniform temperature were analyzed to access the effect of PCM on total heat flow. The heat flux was affected by the PCM for about 100 minutes after the temperature increase. The total heat flow during this initial period decreased linearly with PCM content from 6.5 Btu/ft{sup 2} at 0% PCM to 0.89 Btu/ft{sup 2} for 40 wt% PCM. The cellulose insulation with PCM discharged heat faster than the untreated cellulose when the hot-side temperature of the test specimen was reduced. In addition, hot-box apparatus built in accordance with ASTM C 1363 was utilized for dynamic hot-box testing of a wood stud wall assembly containing PCM-enhanced cellulose insulation. Experimental data obtained for wood-frame wall cavities containing cellulose insulation with PCM was compared with results obtained from cavities containing only cellulose insulation.

  5. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  6. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect (OSTI)

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  7. Thermal insulation for buildings. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (Contains 250 citations and includes a subject term index and title list.)

  8. Thermal radiation and conduction in microscale structures. Final report

    SciTech Connect (OSTI)

    Tien, C.L.

    1998-09-02

    The general objective of the current research program is to achieve a better understanding of the fundamental mechanisms of thermal radiation and heat conduction in microscale structures commonly encountered in engineering applications. Specifically, the program includes both experimental and analytical investigations of radiative heat transfer in microstructures, conductive heat transfer in micro devices, and short-pulse laser material interactions. Future work is planned to apply the knowledge of microscale heat transfer gained in this project to developing thermal insulating aerogel materials, thermal design schemes for quantum well lasers, and short-pulse laser micro-fabrication techniques. A listing of publications by Chang-Lin Tien is included.

  9. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    the other hand, energy transfer by thermal radiation betweenit was shown that energy transfer by thermal radi- ationpyroelectric energy conversion and nanoscale thermal

  10. Photon Clusters in Thermal Radiation

    E-Print Network [OSTI]

    Aleksey Ilyin

    2014-10-30

    Within the framework of Bose-Einstein statistics, it is shown that the blackbody radiation, in addition to single photons, contains photon clusters, or coalescent photons. The probability to find a k-photon cluster versus radiation frequency and temperature is found, as well as the statistics of clusters. Spectra of photon-cluster radiation are calculated as functions of blackbody temperature. The Planck's radiation law is derived based on the existence of photon clusters. The possibility of experimental observation of photon clusters in thermal radiation is discussed.

  11. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  12. Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations R. Arambakam 2013 Keywords: Radiative heat transfer Dual-scale modeling Insulation media Fibrous media a b s t r a c a fiber diameter for which radiation heat transfer through a fibrous media is min- imal, ranging between 3

  13. Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the ZonalGEF Method

    E-Print Network [OSTI]

    Yuen, Walter W.

    Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal­GEF Method Walter to analyze radiative heat transfer in high porosity insulation materials which have a large scattering. Radiative heat transfer in this class of material is nonlocalized in the optically thick limit

  14. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  15. Heat Transfer Characteristics of the Wet Thermal Insulator with Multi-layer

    SciTech Connect (OSTI)

    Jong-Won Kim; Goon-Cherl Park; Tae-Wan Kim; Doo-Jeong Lee

    2006-07-01

    SMART developed in KAERI is an integral type nuclear cogeneration reactor. SMART uses a nitrogen-filled gas pressurizer so that the steam partial pressure should be minimized and the pressurizer should be under low temperature condition. To sustain the low temperature condition, the wet thermal insulator and pressurizer cooler are installed in the pressurizer. Since the performance of wet thermal insulator is an important parameter to determine the size of the pressurizer cooler, it is important to evaluate the insulation performance of the wet thermal insulator. The wet thermal insulators with 20 layers are installed in SMART. In the design of SMART, the empirical correlation by Adamovich was used to estimate the thermal resistance of the wet thermal insulator. However, the experimental condition and results are not clear so that this correlation should be verified. To analyze the heat transfer characteristics of the multi-layer wet thermal insulator, natural convective heat transport through horizontal and vertical water-filled layers is investigated. Experiments and numerical analyses have been performed to evaluate the heat transfer rates through multi-layer and verify Adamovich correlation. In addition, a new multi-layer correlation was obtained. (authors)

  16. Liquid cooled fiber thermal radiation receiver

    DOE Patents [OSTI]

    Butler, B.L.

    1985-03-29

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  17. Thermal effects in radiation processing

    SciTech Connect (OSTI)

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  18. A new approach to low-conductivity, environmentally acceptable thermal insulation. Final report

    SciTech Connect (OSTI)

    Buckley, B.; Day, J.; Ferrero-Heredia, M.; Shanklin, E.; Varadarajan, G.; Woodruff, L.

    1996-02-01

    The object of this work was to develop a low-conductivity, economical, environmentally benign insulation. Specific objectives were to develop the following: (1) a very low conductivity use as ``super insulation`` in refrigerators, and (2) a general-purpose insulation for buildings and other applications. The technical goals of this work were to minimize gas phase, solid phase, and radiative conductivity. The novel approach pursued to achieve low gas phase conductivity was to blow foam with a removable gas or vapor, encapsulate the foam panel in a pouch made with a barrier film, and introduce a very low conductivity gas as the insulating gas phase. For super insulation and general-purpose insulation, the gases of choice were xenon and krypton, respectively. To control cost, the gases were present at low pressure, and the insulating panel was encapsulated with an impermeable polymeric film. Solid-phase conductivity was minimized by using low-density, open-cell, polyurethane foam. For super insulation, radiative heat transfer was impeded by placing aluminized Mylar films between relatively transparent 70-mil foam slabs. For general-purpose insulation, it was projected to impede radiative heat transfer by achieving the same very small cell size with open-cell CO{sub 2}-blown foam as is now achieved with closed-cell CO{sub 2}-blown foam.

  19. Development of a simplified thermal analysis procedure for insulating glass units 

    E-Print Network [OSTI]

    Klam, Jeremy Wayne

    2009-06-02

    A percentage of insulating glass (IG) units break each year due to thermally induced perimeter stresses. The glass industry has known about this problem for many years and an ASTM standard has recently been developed for ...

  20. Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock

    E-Print Network [OSTI]

    Kissock, Kelly

    1 Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock tanks and reducing thermal mass. A companion paper, Energy Efficiency Process Heating: Managing Air Flow of the oven/furnace. Reducing the quantity of energy lost to thermal mass in a process heating system saves

  1. Sierra Designs 20 degrees F Wild Bill Climashield Sleeping Bag ClimashieldTM HL, a high-loft continuous filament insulation, offers excellent thermal

    E-Print Network [OSTI]

    Walker, Lawrence R.

    -loft continuous filament insulation, offers excellent thermal efficiency, durability and water resistance Chest

  2. Thermal insulation for Buildings. September 1982-September 1988 (Citations from the COMPENDEX data base). Report for September 1982-September 1988

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (This updated bibliography contains 244 citations, 92 of which are new entries to the previous edition.)

  3. Use of coconut fiber as a low-cost thermal insulator

    SciTech Connect (OSTI)

    Kochhar, G.S.; Manohar, K. [Univ. of the West Indies, St. Augustine (Trinidad and Tobago)

    1997-11-01

    Cost is one of the major factors to be considered when choosing a thermal insulator. Design engineers continuously strive to provide the best at the lowest possible cost. In the tropics climate conditions are essentially hot and humid and a cause for daily discomfort. To some extent, air-conditioning of buildings has solved this problem. The major deterrent to air-conditioning is the exorbitant cost of imported thermal insulation materials. This has prompted a search for local, low-cost but effective thermal insulation for buildings. Coconut fiber is available at minimal cost from the copra industry in Trinidad, as it is a waste product from the coconut. The viability of using coconut fiber as building thermal insulation was explored by conducting thermal conductivity tests on 200 mm X 400 mm X 60 mm thick slab-like specimens. The test equipment used was a locally designed constant temperature hot box apparatus. This apparatus was designed to test slab-like specimens under steady-state conditions. The reliability if this experimental set up was checked using Gypsum Plaster. The thermal conductivity test results for coconut fiber over the density range 30 kg/m{sup 3} to 115 kg/m{sup 3} showed the characteristic hooked shape graph for fibrous material. For the 60 mm thick specimens at a mean temperature of 39 C, a minimum thermal conductivity of 0.058 W/mK occurred at an optimum density of 85 kg/m{sup 3}. The thermal conductivity of commonly used industrial insulators, namely loose-fill expanded vermiculite, cellular glass and blanket fiber glass, at a mean temperature of 38 C are 0.066 W/mK, 0.061 W/mK and 0.052 W/mK respectively. When compared, these results show that air dried coconut fiber has far reaching potential for use as an effective building thermal insulation.

  4. Advanced thermal insulation for energy efficient buildings : structural performance of aerogel composite panels

    E-Print Network [OSTI]

    Goutierre, Thomas

    2011-01-01

    Aerogels are well known as exceptional thermal insulators. Thermal conductivities of 9 to 10 mW/m.K have been achieved at atmospheric pressure, and a moderate vacuum (between 1/3 and 1/10 of an atmosphere) can lower this ...

  5. Thermal self-oscillations in radiative heat exchange

    E-Print Network [OSTI]

    Dyakov, Sergey; Yan, Min; Qiu, Min

    2014-01-01

    We report the effect of relaxation-type self-induced temperature oscillations in the system of two parallel plates of SiO$_2$ and VO$_2$ which exchange heat by thermal radiation in vacuum. The nonlinear feedback in the self-oscillating system is provided by metal-insulator transition in VO$_2$. Using the method of fluctuational electrodynamics we show that under the action of external laser of a constant power, the temperature of VO$_2$ plate oscillates around its phase transition value.

  6. Measurements of the apparent thermal conductivity of multi-layer insulation between 20 K and 90 K

    SciTech Connect (OSTI)

    Hurd, Joseph A.; Van Sciver, Steven W.

    2014-01-29

    NASA has the need to efficiently store cryogenic propellants in space for long periods of time. One method to improve storage efficiency is to use multi-layer insulation (MLI), a technique that minimizes the boiling rate due to radiation heat transfer. Typically, the thermal performance of MLI is determined by measuring the rate of evaporation of liquid nitrogen from a calibrated cryostat. The main limitation with this method is that testing conditions are restricted by the boiling temperature of the LN{sub 2}, which may not match the requirements of the application. The Multi-Layer Insulation Thermal Conductivity Experiment (MIKE) at the National High Magnetic Field Laboratory is capable of measuring the effective thermal conductivity of MLI at variable boundary temperatures. MIKE uses cryo-refrigerators to control boundary temperatures in the calorimeter and a calibrated thermal link to measure the heat load. To make the measurements requested by NASA, MIKE needed to be recalibrated for the 20 K to 90 K range. Also, due to the expectation of a lower heat transfer rate, the heat load support rod material was changed to one with a lower thermal conductivity to ensure the temperature difference seen on the cold rod could be measurable at the estimated heat load. Presented are the alterations to MIKE including calibration data and heat load measurements on new load-bearing MLI supplied by NASA.

  7. Metal stud wall systems -- Thermal disaster, or modern wall systems with highly efficient thermal insulation?

    SciTech Connect (OSTI)

    Kosny, J.; Christian, J.E.; Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Buildings Technology Center

    1997-11-01

    Because steel has higher thermal conductivity than wood and intense heat transfer occurs through the metal wall components, thermal performances of a metal stud wall are significantly lower than for similar wood stud walls. A reduction of the in-cavity R-value caused by the wood studs is about 10% in wood stud walls. That is why metal stud walls are believed to be considerably less thermally effective than similar made of wood. However, properly designed metal stud walls can be as thermally effective as wood stud walls. Relatively high R-values may be achieved by installing insulating sheathing, which is widely used as a remedy for a weak thermal performance of metal stud walls. A series of the promising metal stud wall configurations is analyzed using results of finite difference computer modeling and guarded hotbox tests. Some of these walls were designed and tested in the ORNL Building Technology Center, some were tested in other laboratories, and some walls were developed and forgotten long time ago. Also, a novel concept of combined foam-metal studs is considered. The main aim of the present paper is to prove that it is possible to build metal stud walls which perform as well as wood stud walls. The key lies in designing; metal stud wall systems have to be treated in a special way with particular consideration to the high thermal conduction of metal components. In the discussed collection of the efficient metal stud wall configurations, reductions of the in-cavity R-value caused by metal studs are between 10 and 20%.

  8. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, Roger B. (Penn Twp., PA); Fero, Arnold H. (New Kensington, PA); Sejvar, James (Murrysville, PA)

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  9. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  10. Plasma-activated direct bonding of diamond-on-insulator wafers to thermal oxide grown silicon wafers

    E-Print Network [OSTI]

    Akin, Tayfun

    Plasma-activated direct bonding of diamond-on-insulator wafers to thermal oxide grown silicon microscopy, profilometer and wafer bow measurements. Plasma-activated direct bonding of DOI wafers to thermal September 2010 Keywords: Diamond-on-insulator Plasma activation Ultrananocrystalline diamond Direct bonding

  11. Analytical Monte Carlo Ray Tracing simulation of radiative heat transfer through bimodal fibrous insulations with translucent fibers

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Analytical Monte Carlo Ray Tracing simulation of radiative heat transfer through bimodal fibrous-state radiative heat transfer through fibrous insulation materials. The simulations are conducted in 3-D disor radiation and conduc- tion to be the only modes of heat transfer in fibrous insulation materials

  12. Recent Experiences with Corrosion Beneath Thermal Insulation in a Chemical Plant 

    E-Print Network [OSTI]

    Long, V. C.; Crawley, P. G.

    1984-01-01

    Corrosion of carbon and stainless steels under wet thermal insulation can be a serious problem and can be especially prevalent in the humid Gulf Coast area. This paper discusses an inspection program that has been in progress since late 1982 at a 10...

  13. Validation of the thermal effect of roof with the Spraying and green plants in an insulated building

    SciTech Connect (OSTI)

    Zhou, Nan; Gao, Weijun; Nishida, Masaru; Ojima, Toshio

    2004-08-08

    In recent years, roof-spraying and rooftop lawns have proven effective on roofs with poor thermal insulation. However, the roofs of most buildings have insulating material to provide thermal insulation during the winter. The effects of insulation has not previously been quantified. In this study, the authors collected measurements of an insulated building to quantify the thermal effects of roof-spraying and rooftop lawns. Roof-spraying did not significantly reduce cooling loads and required significant amounts of water. The conclusion is that roof spraying is not suitable for buildings with well-insulated roofs. Rooftop lawns, however, significantly stabilized the indoor temperature while additionally helping to mitigate the heat island phenomenon.

  14. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    E-Print Network [OSTI]

    Zhou, Ao

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, ...

  15. Steady-State Thermal Performance Evaluation of Steel-Framed Wall Assembly with Local Foam Insulation

    SciTech Connect (OSTI)

    Kosny, Jan [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL

    2010-01-01

    During January and May, 2009, two configurations of steel-framed walls constructed with conventional 2 4 steel studs insulated with R-19 ~14cm. (5.5-in. thick) and R-13 ~9cm. (3.5-in. thick) fiberglass insulation batts were tested in the Oak Ridge National Laboratory (ORNL) guarded hot-box using ASTM C1363 test procedure. The first test wall used conventional 2 4 steel studs insulated with 2.5-cm. (1-in.) thick foam profiles, called stud snugglers. These stud snugglers converted the 2 4 wall assembly into a 2 6 assembly allowing application of R-19 fiberglass insulation. The second wall tested for comparison was a conventional 2 4 steel stud wall using R-13 insulation batts. Further, numerical simulations were performed in order to evaluate the steady-state thermal performance of various wood- and steel-framed wall assemblies. The effects of adding the stud-snugglers to the wood and steel studs were also investigated numerically. Different combinations of insulation and framing factor were used in the simulations.

  16. Active Thermal Extraction of Near-field Thermal Radiation

    E-Print Network [OSTI]

    Ding, Ding

    2015-01-01

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. Our study demonstrates a new approach to manipulate thermal radiation that could find applications in thermal management.

  17. "Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"

    SciTech Connect (OSTI)

    White, Shannon O. [Aspen Aerogel, Inc.; Demko, Jonathan A [ORNL; Tomich, A. [Aspen Aerogel, Inc.

    2010-01-01

    High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

  18. Multilayer insulation (MLI) in the Superconducting Super Collider: A practical engineering approach to physical parameters governing MLI thermal performance

    SciTech Connect (OSTI)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-03-01

    Multilayer insulation (MLI) is employed in cryogenic devices to control the heat load of those devices. The physics defining the thermal performance of an MLI system is extremely complex due to the thermal dynamics of numerous interdependent parameters which in themselves contribute differently depending on whether boundary conditions are transient or steady-state. The Multilayer Insulation system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film, fabricated in the form of blankets, and installed as blankets to the 4.5K cold mass, and the 20K and 80K thermal radiation shields. Approximately 40,000 blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket will be nearly 56 feet long by 6 feet wide and will consist of as many as 32 reflective and 31 spacer layers of material. Discussed are MLI material choices, and the physical parameters which contribute to the operational performance of MLI systems. Disclosed is a method for fabricating MLI blankets by employing a large diameter winding mandrel having a circumference sufficient for the required blanket length. The blanket fabrication method assures consistency in mass produced MLI blankets by providing positive control of the dimensional parameters which contribute to the MLI blanket thermal performance. The fabrication method can be used to mass produce prefabricated MLI blankets that by virtue of the product have inherent features of dimensional stability, three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 9 refs., 4 figs., 2 tabs.

  19. Thermal radiation, radiation force and dynamics of a polarizable particle

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2015-08-26

    We discuss basic expressions and interrelations between various physical quantities describing the fluctuation-electromagnetic interaction of a small polarizable particle during relativistic motion relative to the blackbody radiation, namely tangential radiation force, rate of heating, intensity of thermal radiation/absorption, the change of the rest mass of a particle, and acceleration. We obtain an explicit formula for the frictional force acting on the particle in its rest frame and discuss its connection with the particle acceleration and the tangential force given in the reference frame of background radiation. The criticism of our previous results in recent paper by A. I. Volokitin (Phys. Rev. A81, 2015, 032505) is refuted.

  20. Modulation and amplification of radiative far field heat transfer : towards a simple radiative thermal transistor

    E-Print Network [OSTI]

    Joulain, Karl; Drevillon, Jeremie; Ben-Abdallah, Philippe

    2015-01-01

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see, that the more the material is reflective in the metallic state, the more switching effect is realized whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO2 that exhibits an insulator-metallic transition at 68{\\textdegree}C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. F...

  1. Photodetectors with passive thermal radiation control

    DOE Patents [OSTI]

    Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Dodson, Brian W. (Albuquerque, NM)

    2001-10-02

    A new class of photodetectors which include means for passive shielding against undesired thermal radiation is disclosed. Such devices can substitute in applications currently requiring cooled optical sensors, such as IR detection and imaging. This description is included for purposes of searching, and is not intended to limit or otherwise influence the interpretation of the present invention.

  2. THERMAL RADIATION SUMMARY (Rees Chapter 2)

    E-Print Network [OSTI]

    Sandwell, David T.

    words this approximation is good when viewing thermal emissions from the Earth over the microwave band. Microwave radiometers can measure the power received L at an antenna. This is sometimes called). Solar radiation at the top of the atmosphere is well approximated by a blackbody spectrum (yellow

  3. Design and calibration of a test facility for MLI thermal performance measurements below 80K. [Multilayer insulation (MLI)

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  4. Thermal insulation for buildings. September 1982-May 1990 (A Bibliography from the COMPENDEX data base). Report for September 1982-May 1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (This updated bibliography contains 299 citations, 55 of which are new entries to the previous edition.)

  5. Thermal radiation in photonic crystals Marian Florescu,1,2,

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    Thermal radiation in photonic crystals Marian Florescu,1,2, * Kurt Busch,3 and Jonathan P. Dowling2 2007; published 17 May 2007 We analyze the properties of thermal radiation in photonic crystals. In addition, we show that the central quantity that deter- mines these thermal radiation characteristics

  6. Thermal radiation from Lorentzian traversable wormholes

    E-Print Network [OSTI]

    Prado Martin-Moruno; Pedro F. Gonzalez-Diaz

    2009-07-23

    In this paper we show that, analogously to as it occurs for black holes, there exist three well-defined laws for Lorentzian wormhole thermodynamics and that these laws are related with a thermal phantom-like radiation process coming from the wormhole throat. It is argued that the existence of wormholes could be manifested by means such a radiation. These results are obtained by analyzing the Hayward formalism of spherically symmetric solutions containing trapping horizons, the phenomenon of phantom accretion onto wormholes and the development of phantom thermodynamics.

  7. Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC

    SciTech Connect (OSTI)

    Albert F. Zeller

    2012-12-28

    The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

  8. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    eld radiative heat transfer dominates radiation transferstudy Far field radiation Heat transfer coefficient, h r (W/nanoscale radiation to enhance radiative heat transfer. The

  9. The Analysis of Dynamic Thermal Performance of Insulated Wall and Building Cooling Energy Consumption in Guangzhou 

    E-Print Network [OSTI]

    Zhao, L.; Li, X.; Li, L.; Gao, Y.

    2006-01-01

    ST. The simulation predictions indicate that reductions in the cooling load and maximum cooling demand are obtained when the insulation is added in the wall, but the potential of energy saving is quite limited when the wall only is insulated....

  10. Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation 

    E-Print Network [OSTI]

    Na, W.; Zou, P.

    2006-01-01

    The steel-jacketed steam heating pipeline employs vacuum insulation to improve the insulating effect and reduce the corrosion, and hence increases the heat transfer efficiency of the heating network and building energy efficiency. It is important...

  11. A COMPARISON OF TWO THERMAL INSULATION AND STRUCTURAL MATERIALS FOR USE IN TYPE B PACKAGINGS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-16

    This paper presents the summary of design features and test results of two Type B Shipping Package prototype configurations comprising different insulating materials developed by the Savannah River National Laboratory (SRNL) for the Department of Energy. The materials evaluated, a closed-cell polyurethane foam and a vacuformed ceramic fiber material, were selected to provide adequate structural protection to the package containment vessel during Normal Conditions of Transport (NCT) and Hypothetical Accident Condition (HAC) events and to provide thermal protection during the HAC fire. Polyurethane foam has been used in shipping package designs for many years because of the stiffness it provides to the structure and because of the thermal protection it provides during fire scenarios. This comparison describes how ceramic fiber material offers an alternative to the polyurethane foam in a specific overpack design. Because of the high operating temperature ({approx}2,300 F) of the ceramic material, it allows for contents with higher heat loads to be shipped than is possible with polyurethane foam. Methods of manufacturing and design considerations using the two materials will be addressed.

  12. Thermal characteristics and durability of sealed insulated glass units incorporating muntin bars under ultraviolet exposure

    SciTech Connect (OSTI)

    Elmahdy, A.H. [National Research Council of Canada, Ottawa, Ontario (Canada). Inst. for Research in Construction

    1998-10-01

    Recent developments in glazing manufacturing have resulted in the introduction of a variety of glazing systems to meet the consumers demand and, in many cases, with better thermal performance than conventional glazing. Insulating glass (IG) units are now available where air is replaced with argon and other heavy gases (or mixtures of gases), low emissivity coatings on glass or plastic films, and muntin bars in the cavity between the sheets of glass. Muntin bars are made of various materials such as aluminum (anodized or painted), vinyl, or silicone foam. Although muntin bars are used for aesthetic reasons, they may cause adverse effects on the IG units performance, which may be attributed to the improper preparation of the muntin bars or the use of interior paints. Ultraviolet (fogging) tests were performed on a number of argon-filled IG units with and without muntin bars. The test results indicate that most of the IG units with muntin bars fail the UV test when viewed at off-angle. Meanwhile, when viewed at right angle, most of the IG units with muntin bars passed the UV test. Test results also showed that the R-value and condensation resistance of IG units with muntin bars are 4% to 7% lower than those units without muntin bars. The thermal bridging effect of the muntin bars contribute to the lower glass surface temperature in the area adjacent to the muntin bars.

  13. Thermal performance measurements of a 100 percent polyester MLI (multilayer insulation) system for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs.

  14. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  15. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  16. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOE Patents [OSTI]

    Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  17. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    Rytov, S. M. , 1953. Theory of Electrical Fluctuation andRadiation Based on the theory of electrical ?uctuation and

  18. Investigation of nanoscale thermal radiation : theory and experiments

    E-Print Network [OSTI]

    Narayanaswamy, Arvind

    2007-01-01

    The ability to control the radiative properties of objects is of prime importance in diverse areas like solar and thermophotovoltaic energy conversion, narrowband thermal emitters, and camouflage in military applications. ...

  19. Theory of Light Emission in Sonoluminescence as Thermal Radiation

    E-Print Network [OSTI]

    Wang-Kong Tse; P. T. Leung

    2006-06-14

    Based on the model proposed by Hilgenfeldt {\\it at al.} [Nature {\\bf 398}, 401 (1999)], we present here a comprehensive theory of thermal radiation in single-bubble sonoluminescence (SBSL). We first invoke the generalized Kirchhoff's law to obtain the thermal emissivity from the absorption cross-section of a multilayered sphere (MLS). A sonoluminescing bubble, whose internal structure is determined from hydrodynamic simulations, is then modelled as a MLS and in turn the thermal radiation is evaluated. Numerical results obtained from simulations for argon bubbles show that our theory successfully captures the major features observed in SBSL experiments.

  20. Cost-Energy Dynamics of Thermal Insulation: Potential Energy Savings and Policy Recommendations 

    E-Print Network [OSTI]

    Phung, D. L.; Plaza, H.

    1980-01-01

    and manufacturing sectors are assessed. A hypothetical $10 billion insulation budget is determined to save 0.5 quad/yr of energy for the next 10 to 15 years, resulting in conservation energy costing less than $2/MMBtu. It is argued that public subsidies to energy...

  1. Polylogarithmic representation of radiative and thermodynamic properties of thermal radiation in a given spectral range: II. Real-body radiation

    E-Print Network [OSTI]

    Fisenko, Anatoliy I

    2015-01-01

    The general analytical expressions for the thermal radiative and thermodynamic properties of a real-body are obtained in a finite range of frequencies at different temperatures. The frequency dependence of the spectral emissivity is represented as a power series. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and total emissivity are expressed in terms of the polylogarithm functions. The general expressions for the thermal radiative and thermodynamic functions are applied for the study of thermal radiation of liquid and solid zirconium carbide. These functions are calculated using experimental data for the frequency dependence of the normal spectral emissivity in the visible-near infrared range at the melting (freezing) point. The gaps between the thermal radiative and thermodynamic functions of liquid and solid zirconium carbide are observed. The g...

  2. Thermal performance measurements of a 100 percent polyester MLI (multilayer insulation) system for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Boroski, W.N.; Gonczy, J.D.; Niemann, R.C.

    1989-09-01

    Thermal performance measurements of a 100 percent polyester multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) were conducted in a Heat Leak Test Facility (HLTF) under three experimental test arrangements. Each experiment measured the thermal performance of a 32-layer MLI blanket instrumented with twenty foil sensors to measure interstitial layer temperatures. Heat leak values and sensor temperatures were monitored during transient and steady state conditions under both design and degraded insulating vacuums. Heat leak values were measured using a heatmeter. MLI interstitial layer temperatures were measured using Cryogenic Linear Temperature Sensors (CLTS). Platinum resistors monitored system temperatures. High vacuum was measured using ion gauges; degraded vacuum employed thermocouple gauges. A four-wire system monitored instrumentation sensors and calibration heaters. An on-line computerized data acquisition system recorded and processes data. This paper reports on the instrumentation and experimental preparation used in carrying out these measurements. In complement with this paper is an associate paper bearing the same title head, but with the title extension Part 2: Laboratory results (300K--80K). 13 refs., 7 figs.

  3. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect (OSTI)

    Fallahi, A.; Duraschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  4. Emission of non-thermal microwave radiation by a Martian dust storm Christopher Ruf,1

    E-Print Network [OSTI]

    Ruf, Christopher

    #12;Emission of non-thermal microwave radiation by a Martian dust storm Christopher Ruf,1 Nilton O report evidence for the emission of non-thermal microwave radiation by a deep Martian dust storm, S. Gross, L. Skjerve, and B. Cantor (2009), Emission of non-thermal microwave radiation by a Martian

  5. The Space Shuttle design presented many thermal insulation challenges. The system not only had to perform well, it had to integrate

    E-Print Network [OSTI]

    to exceedingly high temperatures and needed reusable, lightweight, low-cost thermal protection. The vehicle also Steinetz Ice Detection Prevents Catastrophic Problems Charles Stevenson Aerogel-based Insulation System broke apart and collided with the surface of the vehicle, they recombined in an exothermic reaction

  6. Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide

    SciTech Connect (OSTI)

    Huber-Rodriguez, Benjamin; Ji, Heng; Chen, Chih-Wei [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States); Kwang, Siu Yi [Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Hardy, Will J. [Applied Physics Program, Rice Quantum Institute, Rice University, Houston, Texas 77005 (United States); Morosan, Emilia [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005 (United States); Natelson, Douglas [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005 (United States); Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States)

    2014-09-29

    The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO{sub 2} material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO{sub 2} powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.

  7. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect (OSTI)

    Ueno, Ai; Suzuki, Yuji [Department of Mechanical Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-03-03

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  8. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect (OSTI)

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  9. Hawking non-thermal and Purely thermal radiations of Kerr-de Sitter black hole by Hamilton-Jacobi method

    E-Print Network [OSTI]

    M. Ilias Hossain; M. Atiqur Rahman

    2013-08-31

    Incorporating Parikh and Wilczek's opinion to the Kerr de-Sitter (KdS) black hole Hawking non-thermal and purely thermal radiations have been investigated using Hamilton-Jacobi method. We have taken the background spacetime of KdS black hole as dynamical, involving the self-gravitation effect of the emitted particles, energy and angular momentum has been taken as conserved and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The explored results gives a correction to the Hawking radiation of KdS black hole.

  10. Hawking Non-thermal and Thermal Radiations of Schwarzschild Anti-de Sitter Black Hole by Hamilton-Jacobi method

    E-Print Network [OSTI]

    M. Atiqur Rahman; M. Ilias Hossain

    2012-05-07

    The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek\\rq s opinion and gives a correction to the Hawking radiation of SAdS black hole.

  11. The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation 

    E-Print Network [OSTI]

    Suardin, Jaffee Arizon

    2009-05-15

    Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One...

  12. Radiative Thermal Noise for Transmissive Optics in Gravitational-Wave Detectors

    E-Print Network [OSTI]

    Sheila Dwyer; Stefan W. Ballmer

    2014-08-07

    Radiative losses have traditionally been neglected in the calculation of thermal noise of transmissive optical elements because for the most commonly used geometries they are small compared to losses due to thermal conduction. We explore the use of such transmissive optical elements in extremely noise-sensitive environments such as the arm cavities of future gravitational-wave interferometers. This drives us to a geometry regime where radiative losses are no longer negligible. In this paper we derive the thermo-refractive noise associated with such radiative losses and compare it to other known sources of thermal noise.

  13. Normal shock solutions to the viscous shock layer equations including thermal, chemical, thermodynamic, and radiative nonequilibrium 

    E-Print Network [OSTI]

    Mott, David Ray

    1993-01-01

    An existing axisymmetric body viscous shock layer code including chemical, thermal, and thermodynamic nonequilibrium and nonequilibrium radiative gasdynamic coupling is adapted to simulate the one-dimensional flow within a shock tube. A suitable...

  14. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOE Patents [OSTI]

    Kee, Robert J. (864 Lucille St., Livermore, CA 94550); Ting, Aili (7329 Stonedale Dr., Pleasanton, CA 94558)

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  15. Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-15

    We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

  16. Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer

    SciTech Connect (OSTI)

    Xu, G.; McGrath, P.B. [Clarkson Univ., Potsdam, NY (United States). Electrical and computer Engineering Dept.; Burns, C.W. [Niagara Mohawk Power Corp., Syracuse, NY (United States). Research and Development Dept.

    1996-12-31

    Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some of the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.

  17. Thermal radiation of laser heated niobium clusters Nb{sub N}{sup +}, 8 ? N ? 22

    SciTech Connect (OSTI)

    Hansen, Klavs [Department of Physics, University of Gothenburg, 41296 Gothenburg (Sweden); Li, Yejun; Kaydashev, Vladimir; Janssens, Ewald [Laboratory of Solid State Physics and Magnetism, KU Leuven, B-3001 Leuven (Belgium)

    2014-07-14

    The thermal radiation from small, laser heated, positively charged niobium clusters has been measured. The emitted power was determined by the quenching effect on the metastable decay, employing two different experimental protocols. The radiative power decreases slightly with cluster size and shows no strong size-to-size variations. The magnitude is 40–50 keV/s at the timescale of several microseconds, which is the measured crossover time from evaporative to radiative cooling.

  18. Bridging conduction and radiation : investigating thermal transport in nanoscale gaps

    E-Print Network [OSTI]

    Chiloyan, Vazrik

    2015-01-01

    Near field radiation transfer between objects separated by small gaps is a widely studied field in heat transfer and has become more important than ever. Many technologies such as heat assisted magnetic recording, aerogels, ...

  19. Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems

    E-Print Network [OSTI]

    Milorad Boji?; Dragan Cvetkovi?; Marko Mileti?; Jovan Maleševi?; Harry Boyer

    2012-12-18

    The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

  20. Radiation and Thermal Ageing of Nuclear Waste Glass

    SciTech Connect (OSTI)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  1. Catalytic combustion in internal combustion engines: A possible explanation for the Woschni effect in thermally-insulated diesel engines. Interim report

    SciTech Connect (OSTI)

    Jones, R.L.

    1996-11-15

    This report describes research undertaken to determine if catalytic combustion effects occur with the use of zirconia (ZrO{sub 2}) thermal barrier coatings (TBCs), or other coatings, in diesel engines, and if so, whether these effects have significant impact upon engine combustion, fuel economy, or pollutant emissions. A simple furnace system was used to identify catalytic combustion effects in the ignition and combustion of propane/air mixtures over catalyst-doped m-ZrO{sub 2} spheres. Three classes of catalysts were examined: zirconia-stabilizing oxides (CeO{sub 2}, Y{sub 2}O{sub 3}, MgO), transition metal oxides (Co{sub 3}O{sub 4}, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}), and noble metals (Pt). Each class exhibited characteristic combustion effects, with the ignition temperature increasing, e.g., from approximately 2000 deg C for Pt to 5500 deg C for the stabilizing oxides. The results suggest that the Woschni effect, a controversial phenomenon wherein thermal-insulating measures are postulated to actually increase heat transfer from the diesel combustion chamber, may be only a manifestation of catalytic combustion. Previous research on catalytic combustion in internal combustion engines is briefly reviewed and discussed. An earlier version of this report is to be published in J. Surface and Coatings Technology as `Catalytic Combustion Effects on m-ZrO{sub 2} Doped with Various Metal Nitrates.`

  2. Thermal Radiation from Heavy Ion Collisions at RHIC

    E-Print Network [OSTI]

    Jan-e Alam

    2007-03-19

    The direct photon spectrum measured by the PHENIX collaboration in Au + Au collisions at sqrt{s_{NN}}=200 GeV has been analyzed. It has been shown that the data can be reproduced reasonably well by assuming a deconfined state of thermalized quarks and gluons. The effects of the equation of state on the value of the initial temperature have been studied. The modifications of hadronic properties at non-zero temperature have been taken in to account.

  3. Confined Thermal Multicharged Ions Produced by Synchrotron Radiation 

    E-Print Network [OSTI]

    Church, David A.; Kravis, S. D.; Sellin, I. A.; Levin, J. C.; Short, R. T.; Meron, M.; Johnson, B. M.; Jones, K. W.

    1987-01-01

    Brookhaven National Laboratory, Upton, New York 11973 (Received 2 April 1987) Synchrotron x rays have been used to produce a confined multicharged ion gas near room tem- perature. Comparison of charge-state-number observations characteristic of ion... formation and of ion storage, together with measurements of Ar-to-Ar~+ electron-transfer rate coefficients, provide information to estimate time constants for relaxation to thermal equilibrium and other stored-ion properties important to further...

  4. A uniformly moving and rotating polarizable particle in thermal radiation field: frictional force and torque, radiation and heating

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2015-04-07

    We study the fluctuation-electromagnetic interaction and dynamics of a small polarizable particle with own rotation and relativistic velocity moving in a vacuum background of arbitrary temperature. A full set of equations describing decelerating tangential force, frictional torque (at arbitrary direction of angular velocity) and intensity of nonthermal and thermal radiation is obtained, along with equations describing the particle dynamics and kinetics of heating. An interplay between different parameters is discussed. Numerical calculations are given in the case of graphite particles.

  5. Mechanical Properties, Thermal Stability and Radiation Damage of Ferritic Steels Processed by Thermal Mechanical Treatments 

    E-Print Network [OSTI]

    Song, Miao

    2014-08-04

    for extending the operation life of current reactors and the design of generation IV nuclear reactors and future fusion reactors. Due to their superior radiation tolerance, ferrite steels are currently the primary candidate under examination for generation IV...

  6. Thermal evolution of a radiating anisotropic star with shear

    E-Print Network [OSTI]

    N F Naidu; M Govender; K S Govinder

    2005-12-02

    We study the effects of pressure anisotropy and heat dissipation in a spherically symmetric radiating star undergoing gravitational collapse. An exact solution of the Einstein field equations is presented in which the model has a Friedmann-like limit when the heat flux vanishes. The behaviour of the temperature profile of the evolving star is investigated within the framework of causal thermodynamics. In particular, we show that there are significant differences between the relaxation time for the heat flux and the relaxation time for the shear stress.

  7. Author's personal copy Thermal radiators with embedded pulsating heat pipes: Infra-red thermography

    E-Print Network [OSTI]

    Khandekar, Sameer

    Author's personal copy Thermal radiators with embedded pulsating heat pipes: Infra-red thermography December 2010 Accepted 9 January 2011 Available online 18 January 2011 Keywords: Pulsating heat pipes t With the aim of exploring potential applications of Pulsating Heat Pipes (PHP), for space/terrestrial sectors

  8. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  9. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, Marion M. (Knoxville, TN); Mihalczo, John T. (Oak Ridge, TN); Blakeman, Edward D. (Oak Ridge, TN)

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  10. Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint

    SciTech Connect (OSTI)

    Ridouane, E. H.; Bianchi, M.

    2011-08-01

    Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

  11. PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons in graphene

    E-Print Network [OSTI]

    2012-01-01

    -field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange blackbodies in the far field. In general, the radiative heat transfer between two bodies at temperatures T1PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons

  12. Proceedings of Eurotherm78 Computational Thermal Radiation in Participating Media II 5-7 April 2006, Poitiers, France

    E-Print Network [OSTI]

    2006, Poitiers, France A diffusion-based approximate model for radiation heat transfer in a solar An approximate method for fast calculations of the radiation heat transfer in a solar thermochemical reactor cavity is proposed. The two-step method with separate calculations for solar and thermal radiation

  13. Enhanced thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith

    Broader source: Energy.gov [DOE]

    Emissions performance comparison of conventional catalytic converter with multi-channel catalytic converter (ceramic fiber insulation layers introduced into ceramic monolith of three-way catalytic converter)

  14. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  15. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  16. Hybrid optical-thermal devices and materials for light manipulation and radiative cooling

    E-Print Network [OSTI]

    Boriskina, Svetlana V; Hsu, Wei-Chun; Weinstein, Lee; Huang, Xiaopeng; Loomis, James; Xu, Yanfei; Chen, Gang

    2015-01-01

    We report on optical design and applications of hybrid meso-scale devices and materials that combine optical and thermal management functionalities owing to their tailored resonant interaction with light in visible and infrared frequency bands. We outline a general approach to designing such materials, and discuss two specific applications in detail. One example is a hybrid optical-thermal antenna with sub-wavelength light focusing, which simultaneously enables intensity enhancement at the operating wavelength in the visible and reduction of the operating temperature. The enhancement is achieved via light recycling in the form of whispering-gallery modes trapped in an optical microcavity, while cooling functionality is realized via a combination of reduced optical absorption and radiative cooling. The other example is a fabric that is opaque in the visible range yet highly transparent in the infrared, which allows the human body to efficiently shed energy in the form of thermal emission. Such fabrics can find...

  17. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    SciTech Connect (OSTI)

    Vora, Heli; Nielsen, Bent; Du, Xu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York (United States)

    2014-02-21

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  18. Thermal Effects of Rotation in Random Classical Zero-Point Radiation

    E-Print Network [OSTI]

    Yefim S. Levin

    2007-04-27

    The rotating reference system, two-point correlation functions, and energy density are used as the basis for investigating thermal effects observed by a detector rotating through random classical zero-point radiation. The RS consists of Frenet -Serret orthogonal tetrads where the rotating detector is at rest and has a constant acceleration vector. The CFs and the energy density at the rotating reference system should be periodic with rotation period because CF and energy density measurements is one of the tools the detector can use to justify the periodicity of its motion. The CFs have been calculated for both electromagnetic and massless scalar fields in two cases, with and without taking this periodicity into consideration. It turned out that only periodic CFs have some thermal features and particularly the Planck's factor with the temperature T= h w /k . Regarding to the energy density of both electromagnetic and massless scalar field it is shown that the detector rotating in the zero-point radiation observes not only this original zero-point radiation but, above that, also the radiation which would have been observed by an inertial detector in the thermal bath with the Plank's spectrum at the temperature T. This effect is masked by factor 2/3(4 gamma^2-1) for the electromagnetic field and 2/9 (4 gamma ^2-1) for the massless scalar field, where the Lorentz factor gamma=(1 - v^2 / c^2)^(1/2). Appearance of these masking factors is connected with the fact that rotation is defined by two parameters, angular velocity w and the radius of rotation, in contrast with a uniformly accelerated linear motion which is defined by only one parameter, acceleration a. Our calculations involve classical point of view only and to the best of our knowledge these results have not been reported in quantum theory yet.

  19. Quantum corrected non-thermal radiation spectrum from the tunnelling mechanism

    E-Print Network [OSTI]

    Subenoy Chakraborty; Subhajit Saha; Christian Corda

    2015-05-28

    Tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH) emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda) introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking's periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.

  20. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  1. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  2. High temperature thermal insulating composite

    DOE Patents [OSTI]

    Brassell, Gilbert W. (Golden, CO); Lewis, Jr., John (Oak Ridge, TN)

    1983-01-01

    A composite contains in one region graphite flakes and refractory fibers in arbonized polymeric resin and in an adjacent region a gradually diminishing weight proportion of graphite flakes, refractory fibers, and the same carbonized resin.

  3. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    SciTech Connect (OSTI)

    Katsumata, Toru, E-mail: katsumat@toyo.jp; Morita, Kentaro; Komuro, Shuji; Aizawa, Hiroaki [Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900 K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.

  4. Method and apparatus for thermal management of vehicle exhaust systems

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1995-01-01

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.

  5. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect (OSTI)

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  6. Insulation Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    House Where and How Much How Much Insulation Do I Already Have? Air Sealing Moisture Control and Ventilation Insulation Installation, the Retrofit Challenge Precautions Attics...

  7. Structure and method for controlling the thermal emissivity of a radiating object

    DOE Patents [OSTI]

    DeSteese, John G.; Antoniak, Zenen I.; White, Michael; Peters, Timothy J.

    2004-03-30

    A structure and method for changing or controlling the thermal emissivity of the surface of an object in situ, and thus, changing or controlling the radiative heat transfer between the object and its environment in situ, is disclosed. Changing or controlling the degree of blackbody behavior of the object is accomplished by changing or controlling certain physical characteristics of a cavity structure on the surface of the object. The cavity structure, defining a plurality of cavities, may be formed by selectively removing material(s) from the surface, selectively adding a material(s) to the surface, or adding an engineered article(s) to the surface to form a new radiative surface. The physical characteristics of the cavity structure that are changed or controlled include cavity area aspect ratio, cavity longitudinal axis orientation, and combinations thereof. Controlling the cavity area aspect ratio may be by controlling the size of the cavity surface area, the size of the cavity aperture area, or a combination thereof. The cavity structure may contain a gas, liquid, or solid that further enhances radiative heat transfer control and/or improves other properties of the object while in service.

  8. Effect of Thermal Radiation on Melting Times of DT Ice Layers in Polymer-Capsule Targets for IFE Reactors

    SciTech Connect (OSTI)

    Gosnell, Timothy R.; Hoffer, James K. [Los Alamos National Laboratory (United States)

    2004-06-15

    Estimates of the time-to-melt for cryogenic DT inertial fusion targets in the presence of thermal radiation are presented. This time is defined as that required for thermal radiation in a hypothetical reactor to raise the temperature of small polymer capsules containing solid DT by 1 K and to fully liquefy the contents. The time estimates are in turn based on estimates of the infrared absorption spectra of both solid DT and the polymer capsule material. Assuming typical target dimensions and rapid equilibration of the target temperature, the estimates show that the absorption of thermal radiation and subsequent heating of likely capsule materials will dominate the corresponding quantities of DT ice and thus that the former effect largely determines the time-to-melt of the target. Specific estimates are made for capsules fabricated from Kapton{sup TM} polyimide. Comparisons are also made for capsules coated with reflective metal coatings, and the potential benefit of these coatings is discussed.

  9. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA)

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  10. On linearization and preconditioning for radiation diffusion coupled to material thermal conduction equations

    SciTech Connect (OSTI)

    Feng, Tao, E-mail: fengtao2@mail.ustc.edu.cn [School of Mathematical Sciences, University of Science and Technology of China, Hefei 230052 (China) [School of Mathematical Sciences, University of Science and Technology of China, Hefei 230052 (China); Graduate School of China Academy Engineering Physics, Beijing 100083 (China); An, Hengbin, E-mail: an_hengbin@iapcm.ac.cn [National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)] [National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Yu, Xijun, E-mail: yuxj@iapcm.ac.cn [National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)] [National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Li, Qin, E-mail: liqin@lsec.cc.ac.cn [Chinese Academy of Mathematics and Systems Science, Beijing 100190 (China)] [Chinese Academy of Mathematics and Systems Science, Beijing 100190 (China); Zhang, Rongpei, E-mail: zhangrongpei@163.com [Graduate School of China Academy Engineering Physics, Beijing 100083 (China)] [Graduate School of China Academy Engineering Physics, Beijing 100083 (China)

    2013-03-01

    Jacobian-free Newton–Krylov (JFNK) method is an effective algorithm for solving large scale nonlinear equations. One of the most important advantages of JFNK method is that there is no necessity to form and store the Jacobian matrix of the nonlinear system when JFNK method is employed. However, an approximation of the Jacobian is needed for the purpose of preconditioning. In this paper, JFNK method is employed to solve a class of non-equilibrium radiation diffusion coupled to material thermal conduction equations, and two preconditioners are designed by linearizing the equations in two methods. Numerical results show that the two preconditioning methods can improve the convergence behavior and efficiency of JFNK method.

  11. Shear mixing in stellar radiative zones I. Effect of thermal diffusion and chemical stratification

    E-Print Network [OSTI]

    Prat, Vincent

    2014-01-01

    Turbulent transport of chemical elements in radiative zones of stars is taken into account in current stellar evolution codes thanks to phenomenologically derived diffusion coefficients. Recent local numerical simulations (Prat & Ligni\\`eres 2013, A&A, 551, L3) suggest that the coefficient for radial turbulent diffusion due to radial differential rotation satisfies $D_{\\rm t}\\simeq0.058\\kappa/Ri$, in qualitative agreement with Zahn's model. However, this model does not apply when differential rotation is strong with respect to stable thermal stratification or when chemical stratification has a significant dynamical effect, a situation encountered at the outer boundary of nuclear burning convective cores. We extend our numerical study to consider the effects of chemical stratification and of strong shear, and compare with prescriptions used in stellar evolution codes. We perform local, direct numerical simulations of stably stratified, homogeneous, sheared turbulence in the Boussinesq approximation. Th...

  12. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    designed for optimal thermal storage after extracting theand hot water for thermal storage. 2. Theory and Backgroundnot as ideal for thermal storage. An insulated reservoir

  13. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    SciTech Connect (OSTI)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang; Dowling, Jonathan

    2005-09-15

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strong reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.

  14. Insulation for a Thermionic Microbattery

    SciTech Connect (OSTI)

    James P. Blanchard

    2004-09-19

    Microelectronmechanical Systems (MEMS) have not gained wide use because they lack the on-device power required by many important applications. To supply this need power, on can consider power from fossil fuels, but nuclear sources provide an intriguing option in terms of power density and lifetime. In order to make use of alpha particles, one is forced to use thermal approaches because diodes are damaged by the high energy of the alpha particles, one is forced to use thermal approaches because diodes are damaged by the high energy of the alphas. One difficulty, though, is that the surface to volume ration increases as we move to smaller scales and heat losses thus become significant at MEMS scales. Hence, efficient microscale insulation is needed to permit high overall efficiencies. This research explores concepts for one variety of microscale insulation created using MEMS fabrication techniques.

  15. High Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  16. Measure Guideline. Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  17. Measure Guideline: Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  18. Near-field thermal radiative transfer and thermoacoustic effects from vapor plumes produced by pulsed CO{sub 2} laser ablation of bulk water

    SciTech Connect (OSTI)

    Kudryashov, S. I.; Lyon, Kevin; Allen, S. D.

    2006-12-15

    Submillimeter deep heating of bulk water by thermal radiation from ablative water plumes produced by a 10.6 {mu}m transversely excited atmospheric CO{sub 2} laser and the related acoustic generation has been studied using a contact time-resolved photoacoustic technique. Effective penetration depths of thermal radiation in water were measured as a function of incident laser fluence and the corresponding plume temperatures were estimated. The near-field thermal and thermoacoustic effects of thermal radiation in laser-ablated bulk water and their potential near-field implications are discussed.

  19. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  20. Thermal radiation and blackbody radiation drag of a large-sized perfectly black particle moving with relativistic velocity

    E-Print Network [OSTI]

    Kyasov, A A

    2015-01-01

    We have developed a self-consistent description of the radiation heat transfer and dynamics of large perfectly black spherical bodies with sizes much greater than the characteristic wavelength of radiation moving in a photon gas with relativistic velocity. The results can be important in astrophysics.

  1. Topological Insulators & Superconductors

    E-Print Network [OSTI]

    Topological Insulators & Superconductors New Frontiers in Low-Dimensional Systems Program 3-5 November 2010 Jadwin Hall, Fourth Floor, Room 407 Topological Insulators and Superconductors have quickly Insulators and Superconductors will gather the world- leading researchers in this field to present recent

  2. Thermal radiation in non-static curved spacetimes: quantum mechanical path integrals and configuration space topology

    E-Print Network [OSTI]

    M. E. Ortiz; F. Vendrell

    1998-06-19

    A quantum mechanical path integral derivation is given of a thermal propagator in non-static Gui spacetime. The thermal nature of the propagator is understood in terms of homotopically non-trivial paths in the configuration space appropriate to tortoise coordinates. The connection to thermal emission from collapsing black holes is discussed.

  3. Thermal properties of organic and inorganic aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

    1994-03-01

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

  4. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  5. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  6. Laminated insulators having heat dissipation means

    DOE Patents [OSTI]

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

    1980-04-24

    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  7. Sheath insulator final test report, TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  8. Insulation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    What does this mean for me? Properly installed insulation reduces heating and cooling costs by reducing heat losses and gains through a home's building envelope. The type...

  9. Vacuum Insulation for Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sized vacuum capsules integrated with standard low-e coated flexible window plastics. - Near-term impact path: quantify insulation, transparency, cost, and other...

  10. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that fills building cavities densely enough to reduce airflow can also reduce convective heat loss. Unlike traditional insulation materials, radiant barriers are highly reflective...

  11. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions between the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power and power density can be significantly increased, without losing the passive heat removal feature. This paper will introduce the concept of using DRACS to enhance VHTR passive safety and economics. Three design options will be discussed, depending on the cooling pipe locations. Analysis results from a lumped volume based model and CFD simulations will be presented.

  12. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  13. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation

    SciTech Connect (OSTI)

    Wang, Fuqiang; Shuai, Yong; Yuan, Yuan; Yang, Guo; Tan, Heping [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)

    2010-10-15

    In the parabolic trough concentrator with tube receiver system, the heat transfer fluid flowing through the tube receiver can induce high thermal stress and deflection. In this study, the eccentric tube receiver is introduced with the aim to reduce the thermal stresses of tube receiver. The ray-thermal-structural sequential coupled numerical analyses are adopted to obtain the concentrated heat flux distributions, temperature distributions and thermal stress fields of both the eccentric and concentric tube receivers. During the sequential coupled numerical analyses, the concentrated heat flux distribution on the bottom half periphery of tube receiver is obtained by Monte-Carlo ray tracing method, and the fitting function method is introduced for the calculated heat flux distribution transformation from the Monte-Carlo ray tracing model to the CFD analysis model. The temperature distributions and thermal stress fields are obtained by the CFD and FEA analyses, respectively. The effects of eccentricity and oriented angle variation on the thermal stresses of eccentric tube receiver are also investigated. It is recommended to adopt the eccentric tube receiver with optimum eccentricity and 90 oriented angle as tube receiver for the parabolic trough concentrator system to reduce the thermal stresses. (author)

  14. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  15. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  16. On the oxidation of high-temperature alloys, and its role in failure of thermal barrier coatings

    E-Print Network [OSTI]

    Loeffel, Kaspar Andreas

    2013-01-01

    Thermal barrier coating (TBC) systems are applied to superalloy turbine blades to provide thermal insulation and oxidation protection. A TBC system consists of (a) an outer oxide layer that imparts thermal insulation, and ...

  17. Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    E-Print Network [OSTI]

    Moncada-Villa, Edwin; Garcia-Vidal, Francisco J; Garcia-Martin, Antonio; Cuevas, Juan Carlos

    2015-01-01

    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semicond...

  18. Experimental methodology for non-thermal effects of electromagnetic radiation on biologics

    E-Print Network [OSTI]

    Cox, Felicia C. A. I

    2006-01-01

    Appropriate equipment is needed for research on the effects of radio-frequency radiation from radio-frequency identification (RF-ID) systems on biological materials. In the present study, a complete test system comprising ...

  19. Higher Order Discontinuous Finite Element Methods for Discrete Ordinates Thermal Radiative Transfer 

    E-Print Network [OSTI]

    Maginot, Peter G

    2015-07-28

    The linear discontinuous finite element method (LDFEM) is the current work horse of the radiation transport community. The popularity of LDFEM is a result of LDFEM (and its Q1 multi-dimensional extensions) being both ...

  20. Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium

    E-Print Network [OSTI]

    O'Gorman, Paul Ambrose

    Convective available potential energy (CAPE) is shown to increase rapidly with warming in simulations of radiative-convective equilibrium over a wide range of surface temperatures. The increase in CAPE implies a systematic ...

  1. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, Roland R. (Lansdale, PA); Bond, James A. (Exton, PA)

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  2. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  3. Effect of gas radiation and property variation on the performance of thermal regenerators 

    E-Print Network [OSTI]

    Gadiraju, Srinivasa Varma

    1991-01-01

    Variation of Thermal Conductivity of Magnesite . . . 25 3. 6 Variation of Thermal Conductivity of Fireclay Brick 25 3. 7. a. Local Heat Flux Variation with Dimensionless Time from [17), for p=0. 01, 7=0. 1, K, =75 3. 7. b. Local Heat Flux Variation... with Dimensionless 28 Time from Current Model, for p=0. 01, 7=0. 1, K, =75 . 28 3. 8. a. Local Heat Flux Variation with Dimensionless Time from [17], for /=0. 1, 7=0. 1, K, =75 3. 8. b. Local Heat Flux Variation with Dimensionless Time from Current Model...

  4. Adding Insulation to an Existing Home | Department of Energy

    Energy Savers [EERE]

    Incentives for Your Home References High Performance Insulation Professionals Cellulose Insulation Information: Cellulose Insulation Manufacturers Association...

  5. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  6. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  7. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, David B. (Auburn, CA)

    1992-01-01

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

  8. Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments

    E-Print Network [OSTI]

    heat transfer from the flame to the fuel bed is negligible. Radiative effects are more significant], the basic approach to modeling Sf is to equate the heat flux per unit area from the gas to the fuel surface Colloquium topic area: 7. Microgravity combustion Keywords: Microgravity-Experiments, Microgravity

  9. Method and apparatus for thermal management of vehicle exhaust systems

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1995-12-26

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.

  10. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  11. Probing the thermal character of analogue Hawking radiation for shallow water waves?

    E-Print Network [OSTI]

    Florent Michel; Renaud Parentani

    2014-09-15

    We study and numerically compute the scattering coefficients of shallow water waves blocked by a stationary counterflow. When the flow is transcritical, the coefficients closely follow Hawking's prediction according to which black holes should emit a thermal spectrum. We study how the spectrum deviates from thermality when reducing the maximal flow velocity, with a particular attention to subcritical flows since these have been recently used to test Hawking's prediction. For such flows, we show that the emission spectrum is strongly suppressed, and that its Planckian character is completely lost. For low frequencies, we also show that the scattering coefficients are dominated by elastic hydrodynamical channels. Our numerical results reproduce rather well the observations made by S. Weinfurtner {\\it et al.} in the Vancouver experiment. Nevertheless, we propose a new interpretation of what has been observed, as well as new experimental tests.

  12. Natural radiation in fly ashes from coal thermal power stations in Spain

    SciTech Connect (OSTI)

    Baro, J.; Sanchez-Reyes, A.; Chinchon, J.S.; Lopez-Soler, A.; Vazquez, E.; Yague, A.

    1988-01-01

    Specific activity in samples of fly ashes from Spanish coal thermal power stations at Abono (Asturias), Andorra (Teruel), Alcudia (Mallorca) and Cercs (Barcelona) was analysed by gamma ray spectrometry. The values obtained permit us to quantify the presence of different natural radionuclides from /sup 232/Th, /sup 238/U, /sup 235/U series and /sup 40/K. The models are defined on the basis of these data to calculate the dosimetric impact caused by the use of fly ashes in the concrete.

  13. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 2. 7. Thermal radiation injury

    SciTech Connect (OSTI)

    Pearse, H.E.; Kingsley, H.D.; Schilling, J.A.; Hogg; Blakney, R.M.

    1985-09-01

    Information concerning the flash burn resulting from an atomic bomb explosion was necessary to understand the lesion, its systematic effects, and prevention and treatment of these effects. In order to reproduce similar sources in the laboratory, it was essential to know the characteristics of the energy producing the biological effect. In order to obtain this information, anesthetized experimental animals were placed in shielded positions at varying distances from bomb zero to cover a wide range of thermal-radiation intensities. Small areas of each animal's skin were exposed through aperture plates which were designed to analyze burn production as a function of time, intensity, and spectrum. Protection of the animal by fabrics covering the skin was also evaluated. Following exposure, animals were retrieved from the exposure stations and transported to a laboratory for analysis of the burn lesions by description, color photography, and microscopic study of biopsy materials.

  14. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which saves money. Structural Insulated Panels Structural insulated panels (SIPs) are prefabricated insulated structural elements for use in building walls, ceilings, floors,...

  15. Basement Insulation Systems - Building America Top Innovation...

    Office of Environmental Management (EM)

    Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation...

  16. Improved DC Gun Insulator Assembly

    SciTech Connect (OSTI)

    Sah, R.; Dudas, A.; Neubauer, M. L.; Poelker, M.; Surles-Law, K. E.L.

    2010-05-23

    Many user fa­cil­i­ties such as syn­chrotron ra­di­a­tion light sources and free elec­tron lasers re­quire ac­cel­er­at­ing struc­tures that sup­port elec­tric fields of 10-100 MV/m, es­pe­cial­ly at the start of the ac­cel­er­a­tor chain where ce­ram­ic in­su­la­tors are used for very high gra­di­ent DC guns. These in­su­la­tors are dif­fi­cult to man­u­fac­ture, re­quire long com­mis­sion­ing times, and often ex­hib­it poor re­li­a­bil­i­ty. Two tech­ni­cal ap­proach­es to solv­ing this prob­lem will be in­ves­ti­gat­ed. First­ly, in­vert­ed ce­ram­ics offer so­lu­tions for re­duced gra­di­ents be­tween the elec­trodes and ground. An in­vert­ed de­sign will be pre­sent­ed for 350 kV, with max­i­mum gra­di­ents in the range of 5-10 MV/m. Sec­ond­ly, novel ce­ram­ic man­u­fac­tur­ing pro­cess­es will be stud­ied, in order to pro­tect triple junc­tion lo­ca­tions from emis­sion, by ap­ply­ing a coat­ing with a bulk re­sis­tiv­i­ty. The pro­cess­es for cre­at­ing this coat­ing will be op­ti­mized to pro­vide pro­tec­tion as well as be used to coat a ce­ram­ic with an ap­pro­pri­ate gra­di­ent in bulk re­sis­tiv­i­ty from the vac­u­um side to the air side of an HV stand­off ce­ram­ic cylin­der. Ex­am­ple in­su­la­tor de­signs are being com­put­er mod­elled, and in­su­la­tor sam­ples are being man­u­fac­tured and test­ed

  17. Thermal properties of advanced aerogel insulation

    E-Print Network [OSTI]

    Cohen, Ellann

    2011-01-01

    Buildings consume too much energy. For example, 16.6% of all the energy used in the United States goes towards just the heating and cooling of buildings. Many governments, organizations, and companies are setting very ...

  18. THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2011-01-01

    Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

  19. THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2011-01-01

    C.G. , "Heat Transport and Solar Transmission Through aspecific heat mirror properties. Those transmission losses

  20. THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2011-01-01

    Flat Plate Solar Collectors", Solar~. 11· 151-158, (1975).atten- tion in solar collector and passive solar heatingCoeff·icients in Solar Collectors", Bulletin .Q_f the

  1. THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2011-01-01

    Coeff·icients in Solar Collectors", Bulletin .Q_f theof Flat Plate Solar Collectors", Solar~. 11· 151-158, (attracted atten- tion in solar collector and passive solar

  2. Converting normal insulators into topological insulators via tuning orbital levels

    E-Print Network [OSTI]

    Shi, Wu-Jun

    Tuning the spin-orbit coupling strength via foreign element doping and modifying bonding strength via strain engineering are the major routes to convert normal insulators to topological insulators. We here propose an ...

  3. Quantum mechanical path integrals and thermal radiation in static curved spacetimes

    E-Print Network [OSTI]

    F. Vendrell

    1999-06-03

    The propagator of a spinless particle is calculated from the quantum mechanical path integral formalism in static curved spacetimes endowed with event-horizons. A toy model, the Gui spacetime, and the 2D and 4D Schwarzschild black holes are considered. The role of the topology of the coordinates configuration space is emphasised in this framework. To cover entirely the above spacetimes with a single set of coordinates, tortoise coordinates are extended to complex values. It is shown that the homotopic properties of the complex tortoise configuration space imply the thermal behaviour of the propagator in these spacetimes. The propagator is calculated when end points are located in identical or distinct spacetime regions separated by one or several event-horizons. Quantum evolution through the event-horizons is shown to be unitary in the fifth variable.

  4. Pipe Insulation Economies 

    E-Print Network [OSTI]

    Schilling, R. E.

    1986-01-01

    ductivityll is used. This is modeled for average insulation temperature. Another variable which has caused problems in the past is the ambient air film coefficient, or surface resistance. This program dea 1s wi th th is coeffici ent by mak i ng an initial... for other machines. SAMPLE PROGRAM WHAT IS PIPE TEMP? 353 WHAT IS THE TEMPERATURE OF THE AMBIENT AIR? 80 WHAT IS THE OUTSIDE RADIUS OF THE PIPE? 2.37S SELECT THE TYPE OF INSULATION FROM THIS II!i: FIBERGLASS ENTER 1 CALCIUM SILICATE ENTER 2...

  5. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  6. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  7. Tips: Insulation | Department of Energy

    Office of Environmental Management (EM)

    for recommendations. Be careful how close you place insulation next to a recessed light fixture-unless it is insulation contact (IC) rated-to avoid a fire hazard. See the...

  8. Near-Thermal Radiation in Detectors, Mirrors and Black Holes: A Stochastic Approach

    E-Print Network [OSTI]

    Alpan Raval; B. L. Hu; Don Koks

    1996-06-27

    In analyzing the nature of thermal radiance experienced by an accelerated observer (Unruh effect), an eternal black hole (Hawking effect) and in certain types of cosmological expansion, one of us proposed a unifying viewpoint that these can be understood as arising from the vacuum fluctuations of the quantum field being subjected to an exponential scale transformation. This viewpoint, together with our recently developed stochastic theory of particle-field interaction understood as quantum open systems described by the influence functional formalism, can be used to address situations where the spacetime possesses an event horizon only asymptotically, or none at all. Examples studied here include detectors moving at uniform acceleration only asymptotically or for a finite time, a moving mirror, and a collapsing mass. We show that in such systems radiance indeed is observed, albeit not in a precise Planckian spectrum. The deviation therefrom is determined by a parameter which measures the departure from uniform acceleration or from exact exponential expansion. These results are expected to be useful for the investigation of non-equilibrium black hole thermodynamics and the linear response regime of backreaction problems in semiclassical gravity.

  9. A preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude in the north of Buenos Aires provence

    E-Print Network [OSTI]

    Cionco, R; Rodriguez, R

    2012-01-01

    Using irradiance and temperature measurements obtained at the Facultad Regional San Nicol\\'as of UTN, we performed a preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude. The results show a very satisfactory adjustment (R = 0.848, RMS = 0.066, RMS% = 9.690 %), even taking into account the limited number of months (36). Thus, we have a formula of predictive nature, capable of estimating mean monthly solar radiation for various applications. We expect to have new data sets to expand and improve the statistical significance of these results.

  10. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  11. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  12. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial OpportunitiesDepartmentInformationDepartment ofInsulation

  13. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  14. Irradiation of insulators for Workshop on Accelerator Magnet, Superconductor, Design and Optimization

    E-Print Network [OSTI]

    McDonald, Kirk

    Irradiation of insulators for EuCARD Workshop on Accelerator Magnet, Superconductor, Design #12;Outline WAMSDO ­ 14.11.2011 CERN · Motivation of launching EUCARD irradiation task · Irradiation methodology · Post irradiation tests ­ Electrical ­ Thermal ­ Mechanical · Irradiation cryostat · Conclusions

  15. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Minneapolis Residence

    SciTech Connect (OSTI)

    2013-10-01

    This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

  16. Automated Process for the Fabrication of Highly Customized Thermally...

    Energy Savers [EERE]

    of Highly Customized Thermally Insulated Cladding Systems Addthis 1 of 2 Resin casting prototype Image: Worcester Polytechnic Institute 2 of 2 A project member completes...

  17. Automated Process for the Fabrication of Highly Customized Thermally...

    Energy Savers [EERE]

    older buildings therefore consume significant amounts of energy for heating and cooling in the US. Adding thermal insulation to the external facades of a building is one...

  18. A Rapid Scanning Inspection Method for Insulated Ferromagnetic Tubing 

    E-Print Network [OSTI]

    Marsh, G. M.; Milewits, M.

    1984-01-01

    Until the present there has been no effective way to rapidly scan thermally insulated refinery or process piping for corrosion or thin wall. Such defects, if left unattended, can lead to wasteful losses of time, energy and money. To date the most...

  19. Heat insulating system for a fast reactor shield slab

    DOE Patents [OSTI]

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  20. Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence

    E-Print Network [OSTI]

    Steven A. Balbus; Christopher S. Reynolds

    2008-06-05

    The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population.

  1. Aerogel: a transparent insulator for solar applications

    SciTech Connect (OSTI)

    Hunt, A.J.; Russo, R.E.; Tewari, P.H.; Lofftus, K.D.

    1985-06-01

    Aerogel is a transparent, low density, insulating material suitable for a variety of solar applications. Significant energy savings can be realized by using aerogel for a window glazing material. Other possible applications include solar collector covers, transparent insulating jackets for direct gain passive solar devices, and situations that require both transparency and good insulation. Because silica aerogel has a low density (2 to 10% solid), it has a thermal conductivity as low as 0.014 W/m/sup 0/K without evacuation, and if evacuated, lower than 0.006 W/m/sup 0/K. It provides a clear view with only slight coloring due to its weak and nearly isotropic scattering of light. This paper describes significant progress made in the past year at our laboratory in the development of aerogel. We have improved the transparency, developed new preparation methods using less toxic materials, and initiated successful experiments in drying alcogels at near ambient temperature. Optical transmission, light scattering, and electron microscopy data show that CO/sub 2/ supercritical drying of alcogels produces aerogels similar in quality to those produced by high temperature supercritical drying. These advances make the commercial production of aerogel much more feasible.

  2. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation and Energy Efficiency Information: Home Energy: The Magazine of Residential Energy Conservation Addthis Related Articles In existing homes, cellulose (here) or other...

  3. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  4. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOE Patents [OSTI]

    Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  5. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  6. Insulation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of Energy FacilitiesCleantech UniversitySpray foam insulation fills the

  7. Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. For thick layers of exterior insulation (more than 1.5 in.), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. Although the approach has proven effective, there is significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly.

  8. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, T.F.

    1998-09-29

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  9. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  10. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, Thomas F. (Denver, CO)

    1998-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  11. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (14154 W. First Dr., Golden, CO 80401); Potter, Thomas F. (515 S. Magnolia La., Denver, CO 80224)

    1996-10-08

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  12. Advanced nanofabrication of thermal emission devices

    E-Print Network [OSTI]

    Hurley, Fergus (Fergus Gerard)

    2008-01-01

    Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

  13. Quantum chaos and thermalization in gapped systems

    SciTech Connect (OSTI)

    Rigol, Marcos [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Santos, Lea F. [Department of Physics, Yeshiva University, New York, New York 10016 (United States)

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  14. Anomalous energy transport across topological insulator superconductor...

    Office of Scientific and Technical Information (OSTI)

    Anomalous energy transport across topological insulator superconductor junctions Citation Details In-Document Search Title: Anomalous energy transport across topological insulator...

  15. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of...

  16. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science....

  17. Metallization of electronic insulators

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  18. Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

    SciTech Connect (OSTI)

    Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B.; Mock, R.C.

    1994-06-01

    The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

  19. Integrated solar thermal energy collector system

    SciTech Connect (OSTI)

    Garrison, J.D.

    1987-08-18

    A solar thermal collector system is described one of a class of devices which converts solar radiation into heat and transmits this heat to storage from whence it is utilized, comprising: an evacuated glass solar collector, the evacuated glass solar collector having a glass vacuum envelope, the upper portion of the glass vacuum envelope also serving as window to pass solar radiation, the evacuated glass solar collector having a multiplicity of substantially parallel linear adjacent concentrating troughs, each trough shaped and mirror surfaced so as concentrate solar radiation in the vacuum, the mirror surface inside the vacuum and the concentration approximately ideal, the multiplicity of substantially parallel linear adjacent troughs extending substantially over the entire length and width of the evacuated glass solar collector; a heat storage system, the heat storage system adjacent to the evacuated glass solar collector, the heat storage system having a heat storage tank which is thermally insulated, the heat storage tank containing a heat storage medium, and the heat storage system including means of removal of heat from the heat storage tank for utilization.

  20. Advanced insulations for refrigerator/freezers: The potential for new shell designs incorporating polymer barrier construction

    SciTech Connect (OSTI)

    Griffith, B.T.; Arasteh, D.

    1992-11-01

    The impending phase-out of chlorofluorocarbons (CFCs) used to expand foam insulation, combined with requirements for increased energy efficiency, make the use of non-CFC-based high performance insulation technologies increasingly attractive. The majority of current efforts are directed at using advanced insulations in the form of thin, flat low-conductivity gas-filled or evacuated orthogonal panels, which we refer to as Advanced Insulation Panels (AIPs). AIPs can be used in composite with blown polymer foams to improve insulation performance in refrigerator/freezers (R/Fs) of conventional design and manufacture. This AIP/foam composite approach is appealing because it appears to be a feasible, near-term method for incorporating advanced insulations into R/Fs without substantial redesign or retooling. However, the requirements for adequate flow of foam during the foam-in-place operation impose limitations on the allowable thickness and coverage area of AIPs. This report examines design alternatives which may offer a greater increase in overall thermal resistance than is possible with the use of AIP/foam composites in current R/F design. These design alternatives generally involve a basic redesign of the R/F taking into account the unique requirements of advanced insulations and the importance of minimizing thermal bridging with high thermal resistance insulations. The focus here is on R/F doors because they are relatively simple and independent R/F components and are therefore good candidates for development of alterative designs. R/F doors have significant thermal bridging problems due to the steel outer shell construction. A three dimensional finite difference computer modeling exercise of a R/F door geometry was used to compare the overall levels of thermal resistance (R-value) for various design configurations.

  1. Measure Guideline: Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  2. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  3. Prediction of the Thermal Annealing of Thick Oxide Metal-Oxide-Semiconductor Dosimeters Irradiated in a Harsh Radiation Environment

    E-Print Network [OSTI]

    Ravotti, F; Saigné, F; Dusseau, L; Sarrabayrouse, G

    2006-01-01

    Radiation-sensing MOSFET transistors produced by the laboratory LAAS-CNRS were exposed to a harsh hadron field that represents the real radiation environment expected at the CERN Large Hadron Collider Experiments. The long-term stability of the transistor's Ids-Vgs characteristic was investigated using the isochronal annealing technique. In this work, devices exposed to high intensity hadron levels show evidences of displacement damages in the Ids-Vgs annealing behavior. By comparing experimental and simulated results over fourteen months, the isochronal annealing method, originally devoted to oxide trapped charge, is shown to enable prediction of the recovery of silicon bulk defects.

  4. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    SciTech Connect (OSTI)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  5. Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses

    E-Print Network [OSTI]

    Wen, Sy-Bor; Mao, Xianglei; Grief, Ralph; Russo, Richard E.

    2006-01-01

    J. , Thermal radiation heat transfer, 4 th ed, (Taylor &in the calculation of the radiation heat transfer, only thelines, the thermal radiation heat transfer is given by [16

  6. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  7. The effect of variable thermal diffusivity on kinematic models of subduction

    E-Print Network [OSTI]

    Steinle-Neumann, Gerd

    at the surface and thermal insulating effects once subducted. Temperature differences between models based on the interpretation of seismic tomog- raphy suggest that subducting slabs penetrate the whole

  8. Savings Project: Insulate and Air Seal Floors Over Unconditioned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project: Insulate and Air Seal Floors Over Unconditioned Garages Tips: Passive Solar Heating and Cooling Where to insulate. Adding insulation in the areas shown here may be...

  9. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Articles Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSECIBACOS. Insulation Adding insulation in...

  10. Where to Insulate in a Home | Department of Energy

    Office of Environmental Management (EM)

    to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Tips: Insulation...

  11. Process for making ceramic insulation

    DOE Patents [OSTI]

    Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  12. Carpe Diem: Install Insulated Roman Shades

    Broader source: Energy.gov [DOE]

    As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows.

  13. Exterior Rigid Insulation Best Practices - Building America Top...

    Energy Savers [EERE]

    Exterior Rigid Insulation Best Practices More Documents & Publications Enclosures Standing Technical Committee Strategic Plan report Basement Insulation Systems - Building...

  14. How wood waters down wall insulation

    SciTech Connect (OSTI)

    Lunde, P.J.

    1984-02-01

    Wood framing in walls can lower the actual insulating values, since the R-value of wood is only one per inch of thickness. A chart is presented that shows how wood in the stud space reduces insulating values. Several wall systems and the nominal R-value of insulation for each is presented.

  15. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  16. Thermal benefits and cost effectiveness of earth berming

    SciTech Connect (OSTI)

    Speltz, J.; Haves, P.

    1980-01-01

    A number of advantages are claimed for earth sheltered buildings; the earth provides both insulation and thermal storage and also serves to reduce infiltration and noise. This paper seeks to quantify the thermal advantages of both earth sheltering and perimeter insulation by comparing the simulated thermal performance of an earth sheltered house, a house with perimeter insulation and a house with neither. The fuel savings are then compared to the estimated construction costs to determine cost-effectiveness. The major saving from an earth sheltered building is obtained in colder climates where the effective elevation of the frost line due to the earth berms considerably reduces the cost of the foundation.

  17. Moisture Durability with Vapor-Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    Lepage, R.; Lstiburek, J.

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  18. Improved DC Gun and Insulator Assembly

    SciTech Connect (OSTI)

    Neubauer, Michael; Johnson, Rolland P

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  19. Enhanced thermal and gas flow performance in a three-way catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Enhanced thermal and gas flow performance in a three-way...

  20. Impact of Columns and Beams on the Thermal Resistance of the Building Envelope 

    E-Print Network [OSTI]

    Omar, E.

    2002-01-01

    This paper addresses the effect of thermal bridging due to columns and beams on energy consumption and peak load requirements of typical private residential villas in Kuwait. Although it is common practice to apply thermal insulation to walls...

  1. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    and J.R. Howell, Thermal radiation heat transfer, Hemispheremade: 1. The heat, mass, and radiation transfer are treatedOne- dimensional heat, mass, and radiation transfers were

  2. Europium-doped Pyrochlores for Use as Thermographic Phosphors in Thermal Barrier Coatings

    E-Print Network [OSTI]

    Walker, D. Greg

    for thermal barrier coatings must be developed to provide insulation for gas turbines operating above 1200° C and effects of heat fatigue · Insulation for components in gas turbines allows for higher operating thermal barrier coating material · YSZ can not be used reliably for temperatures > 1200° C · New materials

  3. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  4. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  5. Insulation assembly for electric machine

    DOE Patents [OSTI]

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  6. Magnetic instability of Kondo insulators

    SciTech Connect (OSTI)

    Wang, Ziqiang [Los Alamos National Lab., NM (United States)]|[Boston Univ., MA (United States). Dept. of Physics; Li, Xiao-Ping [Rutgers--the State Univ., Piscataway, NJ (United States). Serin Physics Lab.; Lee, Dung-Hai [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center

    1993-09-01

    We review a number of experiments on isoelectronic, isostructural ternary compounds CeTSn (T=Ni,Pd,Sn) and alloys CeNi{sub 1-x}(Pd,Pt){sub x}Sn, and propose a finite temperature phase diagram describing the evolution of a Kondo insulator to an antiferromagnetic Kondo state with decreasing hybridization or Kondo coupling. We then provide microscopic justifications for the phase diagram by analyzing the magnetic properties of the symmetric Kondo lattice model in two dimensions.

  7. Tips: Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline of Events: 1938-1950Insulation Tips:

  8. Method for heat treating and sintering metal oxides with microwave radiation

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  9. A Comparative Heat Transfer Examination of Structural Insulated Panels (SIPs) With and Without Phase Change Materials (PCMs) Using a Dynamic Wall Simulator 

    E-Print Network [OSTI]

    Medina, M.; Zhu, D.

    2008-01-01

    The main focus of this paper was to present data to advance the design of a previously developed thermally-enhanced structural insulated panel (SIP) that had been outfitted with phase change materials (PCMs) (Medina et al., 2008). To advance...

  10. Development of low frequencies, insulating thick diaphragms for power MEMS applications

    E-Print Network [OSTI]

    Formosa, Fabien; Favrelière, Hugues; 10.1016/j.sna.2012.09.018

    2013-01-01

    Major challenges of micro thermal machines are the thermal insulation and mechanical tolerance in the case of sliding piston. Switching from piston to membrane in microengines can alleviate the latest and lead to planar architectures. However, the thermal isolation would call for very thick structures which are associated to too high resonant frequencies which are detrimental to the engine performances. A thermal and mechanical compromise is to be made. On the contrary, based on fluid structure interaction, using an incompressible fluid contained in a cavity sealed by deformable diaphragm it would be possible to design a thick, low frequency insulating diaphragm. The design involves a simple planar geometry that is easy to manufacture with standard microelectronics methods. An analytical fluid structure model is proposed and theoretically validated. Experimental structures are realized and tested. The model is in agreement with the experimental results. A dimensionless model is proposed to design hybrid fluid...

  11. Fibers and fabrics with insulating, water-proofing, and flame-resistant properties

    DOE Patents [OSTI]

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    2004-04-20

    Fibers, and fabrics produced from the fibers, are made water repellent, fire-retardant and/or thermally insulating by filling void spaces in the fibers and/or fabrics with a powdered material. When the powder is sufficiently finely divided, it clings tenaciously to the fabric's fibers and to itself, resisting the tendency to be removed from the fabric.

  12. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    SciTech Connect (OSTI)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  13. Microwave-induced spin currents in ferromagnetic-insulator|normal-metal bilayer system

    SciTech Connect (OSTI)

    Agrawal, Milan, E-mail: magrawal@physik.uni-kl.de [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern (Germany); Serga, Alexander A.; Lauer, Viktor; Papaioannou, Evangelos Th.; Hillebrands, Burkard; Vasyuchka, Vitaliy I. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2014-09-01

    A microwave technique is employed to simultaneously examine the spin pumping and the spin Seebeck effect processes in a YIG|Pt bilayer system. The experimental results show that for these two processes, the spin current flows in opposite directions. The temporal dynamics of the longitudinal spin Seebeck effect exhibits that the effect depends on the diffusion of bulk thermal-magnons in the thermal gradient in the ferromagnetic-insulator|normal-metal system.

  14. Thermal Analysis of Novel Underfill Materials with Optimum Processing Characteristics

    E-Print Network [OSTI]

    Harmon, Julie P.

    - date the morphology of these composites. © 2005 Wiley Peri- odicals, Inc. J Appl Polym Sci 98: 1300 chip. Polymers are thermally insulating mate- rials; the thermal conductivity of a typical polymer the compos- ite thermal conductivity up to 32.5 W/m K at the maximum filler loading of 78 vol %. Polymer

  15. Method for forming fibrous silicon carbide insulating material

    DOE Patents [OSTI]

    Wei, George C. (Oak Ridge, TN)

    1984-01-01

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  16. Proximity-Driven Enhanced Magnetic Order at Ferromagnetic-Insulator–Magnetic-Topological-Insulator Interface

    E-Print Network [OSTI]

    Li, Mingda

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. ...

  17. T-Duality of Topological Insulators

    E-Print Network [OSTI]

    Varghese Mathai; Guo Chuan Thiang

    2015-09-03

    Topological insulators and D-brane charges in string theory can both be classified by the same family of groups. In this paper, we extend this connection via a geometric transform, giving a novel duality of topological insulators which can be viewed as a condensed matter analog of T-duality in string theory. For 2D Chern insulators, this duality exchanges the rank and Chern number of the valence bands.

  18. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  19. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Broader source: Energy.gov (indexed) [DOE]

    spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated...

  20. Issue 5: Optimizing High Levels of Insulation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  1. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and photoelectron spin opens a wide range of possibilities for TIs. Strengthening Spintronics The ability to shine polarized light on a topological insulator (TI) and excite...

  2. Building America Expert Meeting: Interior Insulation Retrofit...

    Broader source: Energy.gov (indexed) [DOE]

    The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in...

  3. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  4. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, E.B.; Muller, A.C.

    1983-07-15

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  5. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Solar Thermal Energy 1.1.1. Physics of Solar Thermal Energy Blackbody Radiation3]. SunTherm Energy, Inc. Solar Thermal Market Research.

  6. Current sheath formation dynamics and structure for different insulator lengths of plasma focus device

    SciTech Connect (OSTI)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2014-11-15

    The breakdown phase of the UNU-ICTP plasma focus (PF) device was successfully simulated using the electromagnetic particle in cell method. A clear uplift of the current sheath (CS) layer was observed near the insulator surface, accompanied with an exponential increase in the plasma density. Both phenomena were found to coincide with the surge in the electric current, which is indicative of voltage breakdown. Simulations performed on the device with different insulator lengths showed an increase in the fast ionization wave velocity with length. The voltage breakdown time was found to scale linearly with the insulator length. Different spatial profiles of the CS electron density, and the associated degree of uniformity, were found to vary with different insulator lengths. The ordering, according to the degree of uniformity, among insulator lengths of 19, 22, and 26?mm agreed with that in terms of soft X-ray radiation yield observed from experiments. This suggests a direct correlation between CS density homogeneity near breakdown and the radiation yield performance. These studies were performed with a linearly increasing voltage time profile as input to the PF device.

  7. Insulating Structural Ceramics Program, Final Report

    SciTech Connect (OSTI)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael; ,

    2005-11-22

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.

  8. Corona processing of insulating oil

    SciTech Connect (OSTI)

    Rohwein, G.J.

    1996-07-01

    It is well known that sustained corona discharge in insulating oil lowers its dielectric strength and simultaneously reduces its corona resistance. Therefore, for operating stresses in the corona regime, activity typically increases with time and, if allowed to continue, eventually leads to breakdown of the oil and failure of the component or system. It is, therefore, common practice to periodically replace oil in devices such as large power transformers and switch gear before breakdown occurs. Sealed components such as capacitors are typically replaced. Recent experiments have demonstrated that the dielectric properties of corona weakened oil can not only be restored, but actually improved by a simple regeneration process. These experiments were carried out on high voltage pulse transformer windings which were operated at high rep rates until partial discharges formed. Reprocessing the oil after each operating cycle resulted in successively longer operational periods before partial discharges appeared. In a separate experiment, a process was developed to precondition transformer oil to raise its corona inception voltage before using it to insulate a high voltage component, thus giving it a longer initial service life for a given operating stress or permitting higher stress operation for limited operating times.

  9. Modeling ground thermal conditions and the limit of permafrost within the nearshore zone of the Mackenzie Delta, Canada

    E-Print Network [OSTI]

    Moorman, Brian

    the duration of time ice is bottomfast and the thermal insulation of the overlying snowpack [Stevens et al floating throughout the winter and the thermal con- dition of subsea permafrost is controlled by water

  10. DETERMINING THE OPTIMUM PLACEMENT OF A PHASE CHANGE MATERIALS (PCM) THERMAL SHIELD INSIDE FRAME WALLS USING A DYNAMIC WALL SIMULATOR

    E-Print Network [OSTI]

    Reshmeen, Silvia

    2009-12-23

    ABSTRACT This thesis presents the results of an experimental study to determine the optimum placement and the thermal performance of a Phase Change Materials (PCMs) thermal shield incorporated into frame wall insulation systems for the purpose...

  11. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    1999-01-01

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

  12. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, A.

    1999-03-02

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  13. DOE Issues Request for Information on Advanced Thermal Insulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication & Engagement » Tribal Programs » DOEHexafluorideAlamos

  14. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decays Citation DetailsSciTech ConnectPatent:

  15. Thermal shock resistance ceramic insulator (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decays Citation DetailsSciTech ConnectPatent:Patent:

  16. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-08-27

    Insulation board is described which is capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  17. Graphene physics and insulator-metal transition in compressed...

    Office of Scientific and Technical Information (OSTI)

    Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ;...

  18. Upgrade of the LHC magnet interconnections thermal shielding

    SciTech Connect (OSTI)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Micha? [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  19. Automatic insulation resistance testing apparatus

    DOE Patents [OSTI]

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  20. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  1. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  2. Slab edge insulating form system and methods

    DOE Patents [OSTI]

    Lee, Brain E. (Corral de Tierra, CA); Barsun, Stephan K. (Davis, CA); Bourne, Richard C. (Davis, CA); Hoeschele, Marc A. (Davis, CA); Springer, David A. (Winters, CA)

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  3. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  4. Measure Guideline: Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    K. Ueno and J. Lstiburek

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  5. Measure Guideline: Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  6. Metal-insulator transition in holography

    E-Print Network [OSTI]

    Aristomenis Donos; Sean A. Hartnoll

    2013-01-19

    We exhibit an interaction-driven metal-insulator quantum phase transition in a holographic model. Use of a helical lattice enables us to break translation invariance while preserving homogeneity. The metallic phase is characterized by a sharp Drude peak and a d.c. resistivity that increases with temperature. In the insulating phase the Drude spectral weight is transferred into a `mid-infrared' peak and to energy scales of order the chemical potential. The d.c. resistivity now decreases with temperature. In the metallic phase, operators breaking translation invariance are irrelevant at low energy scales. In the insulating phase, translation symmetry breaking effects are present at low energies. We find the near horizon extremal geometry that captures the insulating physics.

  7. KSI's Cross Insulated Core Transformer Technology

    SciTech Connect (OSTI)

    Uhmeyer, Uwe [Kaiser Systems, Inc, 126 Sohier Road, Beverly, MA 01915 (United States)

    2009-08-04

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  8. Saving Energy and Money with Aerogel Insulation

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in an innovative insulation material that saves energy and money for industrial facilities while also helping to support 50 full-time clean energy jobs for Americans.

  9. Air leakage of Insulated Concrete Form houses

    E-Print Network [OSTI]

    Durschlag, Hannah (Hanna Rebekah)

    2012-01-01

    Air leakage has been shown to increase building energy use due to additional heating and cooling loads. Although many construction types have been examined for leakage, an exploration of a large number of Insulated Concrete ...

  10. Magnetic Insulator Thin Films and Induced Magneto-Transport Effect at Normal Metal / Magnetic Insulator Interface

    E-Print Network [OSTI]

    Lin, Tao

    2013-01-01

    The discipline of spintronics with magnetic insulators (MI)a very important role in spintronics. On the other hand, aapplications in spintronics. Among many candidates (e.g.

  11. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  12. Thermal to Visible Face Recognition Jonghyun Choi

    E-Print Network [OSTI]

    Daume III, Hal

    Thermal to Visible Face Recognition Jonghyun Choi , Shuowen Hu , S. Susan Young and Larry S. Davis surveillance, thermal imaging is commonly used because of the intrinsic emissivity of thermal radiation from the human body. However, matching thermal images of faces acquired at nighttime to the predominantly visible

  13. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  14. An analysis of different insulation strategies for earth-sheltered buildings

    SciTech Connect (OSTI)

    Forowicz, T.Z. [Warsaw Univ. of Technology (Poland). Dept. of Architecture; [Polish Academy of Sciences, Warsaw (Poland). Inst. of Fundamental Technological Research; [Univ. of Colorado, Boulder, CO (United States). Joint Center for Energy Management

    1994-12-31

    This paper provides a comparative analysis of the energy performance of various insulation configurations for earth-sheltered buildings. It discusses the effectiveness of each insulation configuration in reducing the heating and cooling load. The long-term unsteady thermal processes between the building and the surrounding soil are considered. The mathematical model of the problem consists of a heat conduction equation with appropriate boundary and initial conditions. The variations in outside air temperature are driven by a harmonic function. The set of algebraic equations obtained by balancing the elementary heat flows into control elements is solved by an explicit scheme. The simulation program enables a two-dimensional thermal analysis in two cross sections for an underground building of any size situated at any depth. It predicts the heat flow between the building and the surrounding soil and through the ground`s surface. Internal building surface and soil temperatures are also calculated.

  15. Hot wire needle probe for thermal conductivity detection

    SciTech Connect (OSTI)

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  16. 22.51 Interaction of Radiation with Matter, Spring 2003

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    Basic principles of interaction of electromagnetic radiation, thermal neutrons, and charged particles with matter. Introduces classical electrodynamics, quantum theory of radiation, time-dependent perturbation theory, ...

  17. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

  18. An Insulating Glass Knowledge Base

    SciTech Connect (OSTI)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

  19. Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies

    SciTech Connect (OSTI)

    Walker, Daniel James [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL

    2011-01-01

    In order to meet the coming energy codes, multiple layers of various insulation types will be required. The demand for greater efficiency has pushed insulation levels beyond the cavity depth. These experiments show the potential for improving metal building roof thermal performance. Additional work is currently being done by several stakeholders, so the data is expanding. These experiments are for research and development purposes, and may not be viable for immediate use.

  20. Critical Heat Flux for Downward-Facing Boiling on a Coated Hemispherical Vessel Surrounded by an Insulation Structure

    SciTech Connect (OSTI)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-05-01

    An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This nonmonotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

  1. Demonstration of the Performance of Highly Insulating (R-5) Windows in a Matched Pair of Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.

    2013-12-05

    Improving the insulation and solar heat gain characteristics of a home’s windows has the potential to significantly improve the home’s overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high-quality installation will also minimize or reduce air leakage through the building envelope, decreasing infiltration and thus contributing to reduced heat transmission through building envelope. These improvements all contribute to decreasing overall annual home energy use. In addition to improvements in energy efficiency, highly insulating windows can have important impacts on occupant comfort by minimizing or eliminating the cold draft many homeowners experience at or near window surfaces that are at a noticeably cooler than the room air temperature. Energy efficiency measures, such as highly insulating windows, also have the potential to decrease peak energy use in a home, which can lead to measurable peak load decreases for a utility service territory if implemented on a large scale. High-performance windows now feature triple-pane glass, double low-e coatings, and vinyl insulated frames to achieve U-factors as low as 0.2 , as compared to double-pane clear glass windows with a U-factor of 0.67, which are common in existing homes across the United States. The highly insulating windows (as they will be referred to in this document) are now available from several manufacturers and show promise to yield considerable energy savings and thermal comfort improvements in homes.

  2. Radiation-hard electrical coil and method for its fabrication

    DOE Patents [OSTI]

    Grieggs, R.J.; Blake, R.D.; Gac, F.D.

    1982-06-29

    A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.

  3. Thermal Imaging in the Chemistry Laboratory Thermal imaging devices take advantage of the fact that all objects with a temperature above absolute

    E-Print Network [OSTI]

    Short, Daniel

    Thermal Imaging in the Chemistry Laboratory Thermal imaging devices take advantage of the fact that all objects with a temperature above absolute zero have thermal energy and will emit various wavelengths of thermal radiation (visible, infrared and ultra violet radiation). Thermal cameras convert

  4. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in dust cloud flames: Origins of dust explosion

    E-Print Network [OSTI]

    Ivanov, Michael A Liberman M F

    2015-01-01

    We examines regimes of the hydrogen flames propagation and ignition of mixtures heated by the radiation emitted from the flame. The gaseous phase is assumed to be transparent for radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. Depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the unreacted mixture can be either the increase of the flame velocity for uniformly dispersed particles or ignition deflagration or detonation ahead of the flame via the Zel'dovich gradient mechanism in the...

  5. Is graphene in vacuum an insulator?

    E-Print Network [OSTI]

    Joaquín E. Drut; Timo A. Lähde

    2009-01-15

    We present evidence, from Lattice Monte Carlo simulations of the phase diagram of graphene as a function of the Coulomb coupling between quasiparticles, that graphene in vacuum is likely to be an insulator. We find a semimetal-insulator transition at $\\alpha_g^\\text{crit} = 1.11 \\pm 0.06$, where $\\alpha_g^{} \\simeq 2.16$ in vacuum, and $\\alpha_g^{} \\simeq 0.79$ on a SiO$_2^{}$ substrate. Our analysis uses the logarithmic derivative of the order parameter, supplemented by an equation of state. The insulating phase disappears above a critical number of four-component fermion flavors $4 < N_f^{\\text{crit}} < 6$. Our data are consistent with a second-order transition.

  6. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    None

    2011-12-05

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  7. Design and calibration of a test facility for MLI thermal performance measurements below 80K

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  8. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOE Patents [OSTI]

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  9. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA); Orr, Richard (Pittsburgh, PA)

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  10. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    SciTech Connect (OSTI)

    Baker, P.

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  11. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    SciTech Connect (OSTI)

    Baker, Peter

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders will be required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. This research was an extension on previous research conducted by Building Science Corporation in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading, has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full year’s worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  12. Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet)

    SciTech Connect (OSTI)

    Metzger, C.; Lukachko, A.; Grin, A.; Bergey, D.

    2013-11-01

    Even builders who are relatively new to energy-efficient construction can consistently reach a target whole house airtightness of 1.5 air changes per hour at 50 Pascals (ACH50) with high R-value enclosures that use a hybrid insulation approach. The City of Wyandotte, Michigan, started a construction program in 2010 to build affordable, energy-efficient homes on lots in existing neighborhoods. A goal of the program was to engage local builders in energy-efficient construction and be able to deliver the new houses for less than $100/ft2. By the end of 2012, approximately 25 new houses were built by five local builders under this program. To help builders consistently achieve the airtightness target, a local architect worked with researchers from Building Science Corporation, a U.S. Department of Energy Building America team, to develop a technology specification with several key pieces. A high R-value wall and roof assembly made use of 2 ?6 advanced framing and a hybrid insulation approach that included insulating sheathing to control thermal bridging and closed cell spray polyurethane foam insulation (ccSPF) for its airtightness and vapor control benefits. This approach allows the air barrier to be completed and tested before any finishing work occurs, ensuring that problems are spotted and corrected early in the construction process.

  13. Prediction of flashover voltage of non-ceramic insulators under contaminated conditions

    E-Print Network [OSTI]

    Prediction of flashover voltage of non-ceramic insulators under contaminated conditions S Terms -- Polymeric insulators, ceramic insulators, surface resistance, arc constant, reignition constant ceramic insulators (porcelain and glass). There are various types of contaminants that settle

  14. Install Removable Insulation on Valves and Fittings, Energy Tips...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    needed. Insulating pads can also contain built-in acoustical barriers to help control noise. Energy Savings The table below summarizes energy savings due to the use of insulating...

  15. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  16. A Guide to Insulation Selection for Industrial Applications 

    E-Print Network [OSTI]

    Harrison, M. R.

    1979-01-01

    In the wake of rapidly rising energy costs, insulation systems are receiving much attention from design engineers and owners in the industrial market. This paper discusses the significant properties of the primary industrial insulations as well...

  17. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a...

  18. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  19. Insulated laser tube structure and method of making same

    DOE Patents [OSTI]

    Dittbenner, Gerald R. (4353 Findlay Way, Livermore, CA 94550)

    1999-01-01

    An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

  20. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. ); Silverstein, C.C. )

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  1. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  2. Method and apparatus for improving the insulating properties of closed cell foam

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Lanciani, Arlene J. (Sterling, MA)

    1991-04-23

    A filler of non-metallic, light transparent material is formed into particles or flakes and coated with opaque material and dispersed in closed cell foam to reduce overall thermal conductivity and, specifically, to reduce radiation heat transfer.

  3. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  4. Corrugated outer sheath gas-insulated transmission line

    DOE Patents [OSTI]

    Kemeny, George A. (Pittsburgh, PA); Cookson, Alan H. (Churchill Boro, PA)

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  5. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  6. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    Broader source: Energy.gov [DOE]

    New Efficient Insulation for Pipes Allows for the Use of Less Material with High-Temperature Durability

  7. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET; PERFORMANCE; POWER PLANTS; PROCESSING; SALES; SILICA; STEAM Insulation, energy savings, aerogel,...

  8. Evaluation of Station Post Porcelain Insulators with Room Temperature

    E-Print Network [OSTI]

    Evaluation of Station Post Porcelain Insulators with Room Temperature Vulcanized (RTV) Silicone to Engineer the Future Electric Energy System #12;Evaluation of Station Post Porcelain Insulators with Room and analysis of porcelain post insulators that were coated with a room temperature vulcanized (RTV) silicone

  9. Mechanical properties of insulators for Accelerator Magnets

    E-Print Network [OSTI]

    McDonald, Kirk

    Mechanical properties of insulators for Accelerator Magnets WAMSDO 14/11/2011 George Ellwood 1 #12 is critical to the composite's performance ·The mechanical performance is dependent on fibre orientation Effects in Resins · Changes in Mechanical properties ­ Particularly matrix dependent properties

  10. The Insulation Energy Appraisal Assessing the True Value of Insulated System 

    E-Print Network [OSTI]

    Schell, S.

    2002-01-01

    Insulation remains a seriously under-utilized technology in the manufacturing and industrial sectors of the economy even though its role in energy efficiency and environmental preservation is clear. The objective of the presentation is to educate...

  11. Magnetic Insulator Thin Films and Induced Magneto-Transport Effect at Normal Metal / Magnetic Insulator Interface

    E-Print Network [OSTI]

    Lin, Tao

    2013-01-01

    is of great interest, as spintronic devices reveal both heatThe discipline of spintronics with magnetic insulators (MI)a very important role in spintronics. On the other hand, a

  12. High thermal conductivity lossy dielectric using a multi layer configuration

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  13. Radiative conductivity in the Earth's lower mantle Alexander F. Goncharov1

    E-Print Network [OSTI]

    Jacobsen, Steven D.

    . The lower mantle extends from the 660-km seismic discontinuity to the core­mantle boundary at 2,900 km depth,10 . Thermal conductivity in metals is dominated by electron transport, whereas heat conduction in insulators

  14. Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities

    E-Print Network [OSTI]

    Petter Jelle, Bjorn

    2013-01-01

    for thermal insulation and daylighting”, Solar Energy, 79,the thermal performance of vacuum glazing”, Solar Energy,energy as possible both from solar radiation and ambient thermal (

  15. Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers

    SciTech Connect (OSTI)

    Kohler, Christian; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian

    2008-04-09

    Three layer insulating glass units with two low-e coatings and an effective gas fill are known to be highly insulating, with center-of-glass U-factors as low as 0.57 W/m{sup 2}-K (0.10 Btu/h-ft{sup 2}- F). Such units have historically been built with center layers of glass or plastic which extend all the way through the spacer system. This paper shows that triple glazing systems with non-structural center layers which do not create a hermetic seal at the edge have the potential to be as thermally efficient as standard designs, while potentially removing some of the production and product integration issues that have discouraged the use of triples.

  16. Hygric Redistribution in Insulated Assemblies: Retrofitting Residential Envelopes Without Creating Moisture Issues

    SciTech Connect (OSTI)

    Smegal, J.; Lstiburek, J.

    2013-01-01

    The Building America program has recognized that most of the current housing stock is in need of energy related retrofits. One of the best ways of reducing the space conditioning energy consumption is to improve the thermal performance of the enclosure by adding exterior board foam insulation. This report quantifies the amount of water that can become trapped in the drainage cavity of typical wall systems, and measures the effect of water trapped in the drainage cavity on the moisture content of the sheathing. This study also attempts to explain the discrepancy between hygrothermal simulations and field performance of low permeance, low R-value exterior insulation (e.g. 3/4-in. foil faced polyisocyanurate) in cold climates.

  17. Hygric Redistribution in Insulated Assemblies. Retrofitting Residential Envelopes Without Creating Moisture Issues

    SciTech Connect (OSTI)

    Smegal, J.; Lstiburek, J.

    2013-01-01

    The Building America program has recognized that most of the current housing stock is in need of energy related retrofits. One of the best ways of reducing the space conditioning energy consumption is to improve the thermal performance of the enclosure by adding exterior board foam insulation. This report quantifies the amount of water that can become trapped in the drainage cavity of typical wall systems, and measures the effect of water trapped in the drainage cavity on the moisture content of the sheathing. This study also attempts to explain the discrepancy between hygrothermal simulations and field performance of low permeance, low R-value exterior insulation (e.g. ¾-in. foil faced polyisocyanurate) in cold climates.

  18. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  19. LOW TEMPERATURE PHYSICS RADIATION EFFECTS ON

    E-Print Network [OSTI]

    McDonald, Kirk

    LOW TEMPERATURE PHYSICS RADIATION EFFECTS ON FUSION MAGNET COMPONENTS Harald W. Weber Vienna Stabilizer Insulation Conclusions ESS, 4th High Power Targetry Workshop, Malmö 5 May 2011 #12;LOW TEMPERATURE PHYSICS Overview: ITER 300-500 s INTRODUCTION #12;LOW TEMPERATURE PHYSICS ITER Magnet System (5 K / 6.5 K

  20. Four cavity efficiency enhanced magnetically insulated line oscillator

    DOE Patents [OSTI]

    Lemke, R.W.; Clark, M.C.; Calico, S.E.

    1998-04-21

    A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode is disclosed. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor. 34 figs.

  1. Four cavity efficiency enhanced magnetically insulated line oscillator

    DOE Patents [OSTI]

    Lemke, Raymond W. (Albuquerque, NM); Clark, Miles C. (Albuquerque, NM); Calico, Steve E. (Albuquerque, NM)

    1998-04-21

    A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity (C4) portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor.

  2. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly insulating windows have important impacts on peak load, occupant comfort, and condensation potential, which are not captured in the energy savings calculation. More consistent and uniform interior temperature distributions suggest that highly insulated windows, as part of a high performance building envelope, may enable more centralized duct design and downsized HVAC systems. Shorter, more centralized duct systems and smaller HVAC systems to yield additional cost savings, making highly insulating windows more cost effective as part of a package of new construction or retrofit measures which achieve significant reductions in home energy use.

  3. Evaluation of the Thermal Performance for a Wire Mesh/Hollow Glass Microsphere Composite Structure as a Conduction Barrier 

    E-Print Network [OSTI]

    Mckenna, Sean

    2010-01-15

    ]. For instance, application of microsphere insulated pressure vessels for hydrogen storage on vehicles showed good thermal performance [15]. In addition, Mueller [16] in examining cryogenic liquefaction and storage, considered critical in a potential human...

  4. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, James L. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  5. Optical Properties of Topological Insulator Bragg Gratings

    E-Print Network [OSTI]

    Crosse, J A

    2015-01-01

    Using the transfer matrix formalism, we study the transmission properties of a Bragg grating constructed from a layered axionic material. Such a material can be realized by a topological insulator subject to a time-symmetry breaking perturbation, such as an external magnetic field or surface magnetic impurities. Whilst the reflective properties of the structure are only negligibly changed by the presence of the axionic material, the grating induces Faraday and Kerr rotations in the transmitted and reflected light, respectively. These rotations are proportional to the number of layers and the strength of the time-symmetry breaking perturbation. In areas of low reflectivity the rotation angle of TE polarization decreases with increasing incidence angle while the TM polarization increases with increasing incidence angle with the converse occurring in areas of high reflectivity. The formalism and results will be useful in the development of optical and photonic devices based on topological insulators, devices whi...

  6. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  7. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  8. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  9. Excavationless Exterior Foundation Insulation Exploratory Study

    SciTech Connect (OSTI)

    Mosimann, Garrett; Wagner, Rachel; Schirber, Tom

    2013-02-01

    The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

  10. Humidity effects on wire insulation breakdown strength.

    SciTech Connect (OSTI)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  11. Modeling the role of microstructural parameters in radiative heat transfer through disordered fibrous media

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Modeling the role of microstructural parameters in radiative heat transfer through disordered high-tempera- tures. Traditional studies of radiative heat transfer in fibrous materials have been the performance of fibrous materials used as radiative heat transfer insulation media. Although effective

  12. Technology Solutions Case Study: Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    2013-11-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. Insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. Although the approach has proven effective, there is resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly. In this project, researchers from Building Science Corporation, a Building America team, investigated these issues to better understand the mechanics behind this method of cladding attachment

  13. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    SciTech Connect (OSTI)

    Alimardani, Nasir; Conley, John F.

    2014-08-25

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling, and operation is relatively insensitive to temperature.

  14. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  15. Thermal engine

    SciTech Connect (OSTI)

    Karnes, T.E.; Trupin, R.J.

    1984-01-03

    A thermal engine utilizing a strip of nitinol material or other thermally responsive shape memory effect material to drive a reciprocating output shaft, said strip of material forming a common wall between two different alternating temperature sources which thermally cycle the material.

  16. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  17. Thermal performance of an earth-sheltered passive solar residence

    SciTech Connect (OSTI)

    LaVigne, A.B. (Puget Sound Power and Light Co., Bellevue, WA); Schuldt, M.A.

    1981-01-01

    Results are presented of the measured thermal performance of a direct gain, passive solar residence in the Pacific Northwest. The east, west, and north exterior walls of the house are bermed to within 12 inches (30 cm) of the ceiling; sliding interior insulated panels cover the double glazed, south facing windows when appropriate. The cost of the house construction was kept modest.

  18. Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure

    E-Print Network [OSTI]

    Hutchinson, John W.

    Thermal barrier systems used in gas turbines utilize various ternary oxides as the outermost insulatingSimulation of the high temperature impression of thermal barrier coatings with columnar of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA c Materials

  19. Explosion resistant insulator and method of making same

    DOE Patents [OSTI]

    Meyer, Jeffry R. (Penn Hills, PA); Billings, Jr., John S. (Trafford, PA); Spindle, Harvey E. (Wilkins Township, Allegheny County, PA); Hofmann, Charles F. (Export, PA)

    1983-01-01

    An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.

  20. Efficiency Factors and Radiation Characteristics of Spherical Scatterers in Absorbing Media

    E-Print Network [OSTI]

    Yin, Juan; Pilon, Laurent

    2006-01-01

    Howell, Thermal radiation heat transfer - Third Edition,properties, and heat, mass, and radiation transfer”, Journalradiation characteristics of fused quartz containing bubbles”, Journal of Thermophysics and Heat Transfer, (

  1. Interlaboratory comparison of the horizontal pipe insulation test apparatus up to 350{degrees}C

    SciTech Connect (OSTI)

    Whitaker, T.E. [Pabco, Fruita, CO (United States); Graves, R.S. [Oak Ridge National Lab., TN (United States); McElroy, D.L. [McElroy (David L.), Knoxville, TN (United States); Smith, D.R. [National Institute of Standards and Technology, Boulder, CO (United States)

    1993-12-01

    The purpose of this interlaboratory comparison was to provide information for the precision and bias section in the ASTM Standard Test Method C 335, {open_quotes}Steady-State Heat Transfer Properties of Horizontal Pipe Insulation.{close_quotes} (The text describes the ASTM C 335 test method, the specimens tested and the test protocol). The apparent thermal conductivity of two rigid calcium silicate pipe insulation specimens was measured by eight laboratories. Each laboratory measured both specimens at four different temperatures. The test mean temperatures ranged from 35 to 390{degrees}C. The two standard deviation value for the data ranged from 4.5 to 7.7% and the average value was 6.3%. The statement recommended for the precision and bias statement for Section 13.1.4 of ASTM C 335 is: {open_quotes}Tests performed at seven different laboratories using guarded-end horizontal pipe test apparatus and at one laboratory using an unguarded cylindrical screen test apparatus on two specimens of calcium silicate insulation in the range of mean temperatures from 35 to 390{degree}C did not vary by more than 6.3% (two standard deviations) of the average.{close_quotes}

  2. Prescriptive method for insulating concrete forms in residential construction

    SciTech Connect (OSTI)

    Vrankar, A.; Elhajj, N.

    1998-05-01

    Characterized as strong, durable, and energy-efficient, a new wall system for housing called Insulating Concrete Forms (ICFs) is emerging as an alternative to lumber wall frames. Due to rising costs and varying quality of framing lumber, home builders are increasing their use of ICFs even though added engineering costs make ICF homes slightly more expensive than homes with wood framing. To improve the affordability and acceptance of ICF homes, this report sets guidelines on the design, construction and inspection of ICF wall systems in residential construction. Based on thorough testing and research, the Prescriptive Method section of the report outlines minimum requirements for ICF systems including wall thickness, termite protection, reinforcement, lintel span, and connection requirements. It highlights construction and thermal guidelines for ICFs and explains how to apply the prescriptive requirements to one- and two-family homes. The Commentary section provides supplemental information and the engineering assumptions and methods used for the prescriptive method. Appendices contain step-by-step examples on how to apply ICF requirements when designing a home. They also contain engineering technical substantiation and metric conversion factors.

  3. High-temperature zirconia insulation and method for making same

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.; Lewis, J. Jr.

    1988-05-10

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2,000 C are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600 C for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950 to 1,250 C to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1,800 to 2,000 C further improves structural rigidity.

  4. High-temperature zirconia insulation and method for making same

    DOE Patents [OSTI]

    Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Knoxville, TN); Lewis, Jr., John (Oak Ridge, TN)

    1988-01-01

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2000.degree. C. are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600.degree. C. for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950.degree. to 1,250.degree. C. to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800.degree. to 2000.degree. C. further improves structural rigidity.

  5. Radiation Modeling In Fluid Flow Iain D. Boyd

    E-Print Network [OSTI]

    Wang, Wei

    Collector #12;4 Fundamentals of Radiation (1) · All matter with non-zero temperature emits thermal radiation with energy flux given by the Stefan-Boltzmann Law: e.g., Sun: T=5800 K, total radiated power = 4 distribution (Planck spectrum) !q =T 4 W/m2 #12;5 Planck Radiation Spectrum #12;6 Solar Radiation Spectrum

  6. Heavy surface state in a possible topological Kondo insulator...

    Office of Scientific and Technical Information (OSTI)

    Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of SmB 6 This content will become publicly available on February...

  7. A New Generation of Building Insulation by Foaming Polymer Blend...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R-5inch insulation value at the commercial level due to cost-efficiency and innovation issues. The industry standard is extruded polystyrene (XPS), which is also produced...

  8. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  9. New classes of three-dimensional topological crystalline insulators...

    Office of Scientific and Technical Information (OSTI)

    New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic Citation Details In-Document Search This content will become publicly available on...

  10. Savings Project: Insulate and Air Seal Floors Over Unconditioned...

    Broader source: Energy.gov (indexed) [DOE]

    insulation Wire fasteners Tape measure Sharp utility knife Caulk and foam sealant Caulk gun Stepladder Straightedge Respirator or dust mask Eye protection Protective clothing,...

  11. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Dr. Owen Evans 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET;...

  12. Insulate Steam Distribution and Condensate Return Lines, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Insulate Steam Distribution and Condensate Return Lines Uninsulated steam distribution and condensate return lines are a constant source of wasted energy. The table shows typical...

  13. A New Generation of Building Insulation by Foaming Polymer Blend...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project are: Developing advanced material composites with pore morphology control and CO2 foaming to achieve R-6 per inch foam building insulation at competitive costs;...

  14. Insulation and Air Sealing Products and Services | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of a variety of insulation and construction products and services Heating, Ventilating, Air Conditioning, and Refrigerating Suppliers and Products Directory American Society of...

  15. Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the...

  16. Large kinetic asymmetry in the metal-insulator transition nucleated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects Citation Details In-Document Search Title: Large kinetic...

  17. Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor Photoelectrodes Enhanced by Inversion Channel Charge Collection and Hydrogen Spillover Citation Details In-Document...

  18. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to improve the high-temperature performance, durability, and life expectancy of aerogel insulation materials.

  19. Install Removable Insulation on Valves and Fittings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Insulate Steam Distribution and Condensate Return Lines Improving Steam System Performance: A Sourcebook for Industry, Second Edition Install an Automatic...

  20. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  1. Objectives of Work Packages WP1: Thermal convection

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    MAGMA Objectives of Work Packages WP1: Thermal convection Coordinator: O. Cadek · To enhance air-pollution assessment in the urban environment · To study the solar radiation impact

  2. Three-Dimensional Thermal Tomography Advances Cancer Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Thermal Tomography Advances Cancer Treatment Technology available for licensing: A 3D technique to detect early skin changes due to radiation treatment in breast...

  3. Three Dimensional Radiative Transfer

    E-Print Network [OSTI]

    Tom Abel

    2000-05-09

    Radiative Transfer (RT) effects play a crucial role in the thermal history of the intergalactic medium. Here I discuss recent advances in the development of numerical methods that introduce RT to cosmological hydrodynamics. These methods can also readily be applied to time dependent problems on interstellar and galactic scales.

  4. Local microwave background radiation

    E-Print Network [OSTI]

    Domingos Soares

    2014-11-13

    An inquiry on a possible local origin for the Microwave Background Radiation is made. Thermal MBR photons are contained in a system called {\\it magnetic bottle} which is due to Earth magnetic field and solar wind particles, mostly electrons. Observational tests are anticipated.

  5. Experience with 113 Retrofit Insulation Surveys 

    E-Print Network [OSTI]

    Webber, W. O.

    1985-01-01

    RETROFIT INSULATION SURVEYS W. O. Webber Energy Conservation Consultants Baytown, Texas ABSTRACT We have surveyed 113 plants for thirteen clie~ts. The results of 21 recent surveys, at today s avera&e fuel price, show an average project scope... generat10n of $151,000 while saving about 5MMBTU/hour with a 72% DCF rate of return. The ~ize of the retrofit project generated, or scope, ~s of course sensitive to the fuel price This is an important consideration because of th~ variability of fuel...

  6. Möbius Graphene Strip as Topological Insulator

    E-Print Network [OSTI]

    Z. L. Guo; Z. R. Gong; H. Dong; C. P. Sun

    2009-06-12

    We study the electronic properties of M\\"{o}bius graphene strip with a zigzag edge. We show that such graphene strip behaves as a topological insulator with a gapped bulk and a robust metallic surface, which enjoys some features due to its nontrivial topology of the spatial configuration, such as the existence of edge states and the non-Abelian induced gauge field. We predict that the topological properties of the M\\"{o}bius graphene strip can be experimentally displayed by the destructive interference in the transmission spectrum, and the robustness of edge states under certain perturbations.

  7. BOA: Pipe asbestos insulation removal robot system

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.; Schnorr, W. [and others

    1995-12-31

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  8. Process for forming transparent aerogel insulating arrays

    SciTech Connect (OSTI)

    Tewari, P.H.; Hunt, A.J.

    1986-09-09

    This patent describes a drying process for forming transparent aerogel insulating arrays of the type utilizing the steps of hydrolyzing and condensing alkoxides to form alcogels, and subsequently removing the alcohol therefrom to form aerogels, the improvement comprising the additional step, after alcogels are formed, of substituting a solvent having a critical temperature less than the critical temperature of the alcohol for the alcohol in the alcogels, and drying the resulting gels at a supercritical temperature for the solvent, to thereby provide a transparent aerogel array within a substantially reduced drying time period.

  9. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline ofTurkey Near-Zero ZoneInsulation » Types of

  10. Thermal-mechanical Properties of Epoxy-impregnated Bi-2212/Ag Composite

    SciTech Connect (OSTI)

    Li, Pei [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wang, Yang [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Godeke, Arno [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Ye, Liyang [North Carolina State Univ., Raleigh, NC (United States); Flanagan, Gene [Muons Inc., Batavia, IL (United States); Shen, Tengming [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-11-26

    Knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson’s ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramic sleeve.

  11. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  12. Assessing thermal comfort near glass facades with new tools

    E-Print Network [OSTI]

    Hoffmann, Sabine; Jedek, Christoph; Arens, Edward

    2012-01-01

    1972 „Thermal radiation heat transfer“ McGraw-Hill, Inc. ,heat transfer, long-wave radia- tion with the interior surroundings, and diffuse and direct solar radiation.radiation. In general, the use of viewfactors in the calculation of radiative heat transfer

  13. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  14. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  15. Building America Case Study: Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  16. Topological Field Theory of Time-Reversal Invariant Insulators

    SciTech Connect (OSTI)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  17. Irradiation test of electrical insulation materials performed at

    E-Print Network [OSTI]

    McDonald, Kirk

    Irradiation test of electrical insulation materials performed at NCBJ, Poland RESMM12- 10 #12;Outlet · EuCARD insulators certification irradiation requirements · Selection of the irradiation source for the sample irradiation purpose · Irradiation cryostat and set-up at NCBJ, Swierk, POLAND

  18. Technology Solutions Case Study: Stud Walls with Continuous Exterior Insulation for Factory Built Housing

    SciTech Connect (OSTI)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research — stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  19. Project Overcoat — An Exploration of Exterior Insulation Strategies for 1-½ Story Roof Applications in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, Cindy; Mosiman, Garrett; Huelman, Pat; Schirber, Tom; Yost, Peter; Murry, Tessa

    2013-04-01

    The development of an alternative method to interior-applied insulation strategies or exterior applied “band-aids” such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an “overcoat” of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bring existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.

  20. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  1. Gas insulated transmission line having low inductance intercalated sheath

    DOE Patents [OSTI]

    Cookson, Alan H. (Southboro, MA)

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  2. Design of Experiments Results for the Feedthru Insulator

    SciTech Connect (OSTI)

    BENAVIDES,GILBERT L.; VAN ORNUM,DAVID J.; BACA,MAUREEN R.; APPEL,PATRICIA E.

    1999-12-01

    A design of experiments (DoE) was performed at Ceramtec to improve the yield of a cermet part known as the feedthru insulator. The factors chosen to be varied in this DoE were syringe orifice size, fill condition, solvent, and surfactant. These factors were chosen because of their anticipated effect on the cermet slurry and its consequences to the feedthru insulator in succeeding fabrication operations. Response variables to the DoE were chosen to be indirect indicators of production yield for the feedthru insulator. The solvent amount used to mix the cermet slurry had the greatest overall effect on the response variables. Based upon this DoE, there is the potential to improve the yield not only for the feedthru insulator but for other cermet parts as well. This report thoroughly documents the DoE and contains additional information regarding the feedthru insulator.

  3. Cost-Optimized Attic Insulation Solution for Factory-Built Homes...

    Energy Savers [EERE]

    Attic Insulation Solution for Factory-Built Homes - Building America Top Innovation Cost-Optimized Attic Insulation Solution for Factory-Built Homes - Building America...

  4. Technology Solutions Case Study: Interior Foundation Insulation Upgrade-Madison Residence

    SciTech Connect (OSTI)

    2013-10-01

    This basement insulation project included a dimple mat conveying inbound moisture to a draintile, airtight spray polyurethane foam wall and floor insulation, and radiant floor heat installation

  5. Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacuum Insulating Glazings Low Cost Nanostructured Smart Window Coatings Image of vacuum capsules in water (4 mgml) used for dip coating. Vacuum Insulation for Windows...

  6. Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions

    E-Print Network [OSTI]

    Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions of Technology Cambridge, Massachusetts 02139 ABSTRACT Advanced CMOS substrates composed of ultra-thin strained-Cut), involves hydrogen implantation prior to wafer bonding, followed by annealing to cause delamination and

  7. Silicon-on-insulator field effect transistor with improved body ties for rad-hard applications

    DOE Patents [OSTI]

    Schwank, James R. (Albuquerque, NM); Shaneyfelt, Marty R. (Albuquerque, NM); Draper, Bruce L. (Albuquerque, NM); Dodd, Paul E. (Tijeras, NM)

    2001-01-01

    A silicon-on-insulator (SOI) field-effect transistor (FET) and a method for making the same are disclosed. The SOI FET is characterized by a source which extends only partially (e.g. about half-way) through the active layer wherein the transistor is formed. Additionally, a minimal-area body tie contact is provided with a short-circuit electrical connection to the source for reducing floating body effects. The body tie contact improves the electrical characteristics of the transistor and also provides an improved single-event-upset (SEU) radiation hardness of the device for terrestrial and space applications. The SOI FET also provides an improvement in total-dose radiation hardness as compared to conventional SOI transistors fabricated without a specially prepared hardened buried oxide layer. Complementary n-channel and p-channel SOI FETs can be fabricated according to the present invention to form integrated circuits (ICs) for commercial and military applications.

  8. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; et al

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  9. Cloud Formation and Acceleration in a Radiative Environment

    E-Print Network [OSTI]

    Proga, Daniel

    2015-01-01

    In a radiatively heated and cooled medium, the thermal instability is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field's theory to self-consistently account for a radiation force resulting from bound-free and bound-bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one and two-dimensional (1-D/2-D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1-D simulations demonstrate that the thermal instability can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to ...

  10. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  11. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  12. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  13. Thermal Protection with 5% Dextrose Solution Blanket During Radiofrequency Ablation

    SciTech Connect (OSTI)

    Chen, Enn Alexandria, E-mail: echen@cc.nih.gov; Neeman, Ziv; Lee, Fred T.; Kam, Anthony; Wood, Brad [National Institutes of Health, Radiology Department, Warren G. Magmison Clinical Center (United States)

    2006-12-15

    A serious complication for any thermal radiofrequency ablation is thermal injury to adjacent structures, particularly the bowel, which can result in additional major surgery or death. Several methods using air, gas, fluid, or thermometry to protect adjacent structures from thermal injury have been reported. In the cases presented in this report, 5% dextrose water (D5W) was instilled to prevent injury to the bowel and diaphragm during radiofrequency ablation. Creating an Insulating envelope or moving organs with D5W might reduce risk for complications such as bowel perforation.

  14. Thermal control system for SSF sensor/electronics

    SciTech Connect (OSTI)

    Akau, R.L.; Lee, D.E.

    1992-12-31

    As part of the Defense Meteorological Support Program (DMSP) with Martin Marieta Astro-Space Division, a thermal control system was designed for the SSF (Special Sensor F) sensor/electronics box (SSTACK) located on the precision mounting platform of the DMSP satellite. Multi-layer insulation and heaters are used to maintain the temperatures of the critical components within their operating and survival temperature limits. Detailed and simplified SSTACK thermal models were developed and temperatures were calculated for worst-case orbital conditions. A comparison between the two models showed very good agreement. Temperature predictions were also compared to measured temperatures from a thermal-vacuum test

  15. Thermality of the Hawking flux

    E-Print Network [OSTI]

    Visser, Matt

    2014-01-01

    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lum...

  16. A note on the thermodynamics of gravitational radiation

    E-Print Network [OSTI]

    T. Padmanabhan; T. P. Singh

    2003-08-18

    It is shown that linearized gravitational radiation confined in a cavity can achieve thermal equilibrium if the mean density of the radiation and the size of the cavity satisfy certain constraints.

  17. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01

    the structure and radiation heat transfer in a pure methanolHowell, Thermal Radiation Heat Transfer, McGraw-Hill Bookof in- creased radiation heat transfer from the flame zone

  18. Modeling the comfort effects of short-wave solar radiation indoors

    E-Print Network [OSTI]

    Arens, Edward; Hoyt, Tyler; Zhou, Xin; Huang, Li; Zhang, Hui; Schiavon, Stefano

    2015-01-01

    Parsons K. The effects of solar radiation and black body re-K. The effects of solar radiation on thermal comfort.exposed to the solar radiation - a generalised algorithm.

  19. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    None

    2013-04-01

    This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.

  20. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    and the Olsen cycle can reach the Carnot ef?ciency between aCarnot ef?ciency is the maximum thermodynamic ef?- ciency which can be theoretically achieved by a power cycle

  1. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    small convective heat transfer rate between the py-observed that the net heat transfer rate between the platesmagnitude of average heat transfer rate Q in is about 1 W/cm

  2. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    actuation of microelectromechanical systems by the Casimirin a model microelectromechanical system”. Journal of Mi-

  3. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    actuation of microelectromechanical systems by the Casimireffect in a model microelectromechanical system”. Journal of

  4. Tailoring photonic metamaterial resonances for thermal radiation

    E-Print Network [OSTI]

    Bermel, Peter A.

    Selective solar absorbers generally have limited effectiveness in unconcentrated sunlight, because of reradiation losses over a broad range of wavelengths and angles. However, metamaterials offer the potential to limit ...

  5. Thermophotovoltaics : shaping the flow of thermal radiation

    E-Print Network [OSTI]

    ?elanovi?, Ivan

    2006-01-01

    This thesis explores the modeling, design, and optimization of photonic crystals as spectral control components for high-performance thermophotovoltaic (TPV) power conversion. In particular, we focus on the use of ...

  6. ATHENA radiation model

    SciTech Connect (OSTI)

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs.

  7. Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Equivalent isotropic scattering formulation for transient short-pulse radiative transfer of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media applications to such systems as industrial furnaces, combustion cham- bers, fibrous and porous insulations

  8. Aging analyses of aircraft wire insulation

    SciTech Connect (OSTI)

    GILLEN,KENNETH T.; CLOUGH,ROGER LEE; CELINA,MATHIAS C.; AUBERT,JAMES H.; MALONE,G. MICHAEL

    2000-05-08

    Over the past two decades, Sandia has developed a variety of specialized analytical techniques for evaluating the long-term aging and stability of cable insulation and other related materials. These techniques have been applied to cable reliability studies involving numerous insulation types and environmental factors. This work has allowed the monitoring of the occurrence and progression of cable material deterioration in application environments, and has provided insights into material degradation mechanisms. It has also allowed development of more reliable lifetime prediction methodologies. As a part of the FAA program for intrusive inspection of aircraft wiring, they are beginning to apply a battery of techniques to assessing the condition of cable specimens removed from retired aircraft. It is anticipated that in a future part of this program, they may employ these techniques in conjunction with accelerated aging methodologies and models that the authros have developed and employed in the past to predict cable lifetimes. The types of materials to be assessed include 5 different wire types: polyimide, PVC/Glass/Nylon, extruded XL-polyalkene/PVDF, Poly-X, and XL-ETFE. This presentation provides a brief overview of the main techniques that will be employed in assessing the state of health of aircraft wire insulation. The discussion will be illustrated with data from their prior cable aging studies, highlighting the methods used and their important conclusions. A few of the techniques that they employ are widely used in aging studies on polymers, but others are unique to Sandia. All of their techniques are non-proprietary, and maybe of interest for use by others in terms of application to aircraft wiring analysis. At the end of this report is a list showing some leading references to papers that have been published in the open literature which provide more detailed information on the analytical techniques for elastomer aging studies. The first step in the investigation of aircraft wiring is to evaluate the applicability of their various techniques to aircraft cables, after which they expect to identify a limited subset of techniques which are appropriate for each of the major aircraft wiring types. The techniques of initial interest in the studies of aging aircraft wire are as follows: optical microscopy; mandrel bend test; tensile test/elongation at break; density measurements; modulus profiling/(spatially-resolved micro-hardness); oxygen induction time/oxygen induction temperature (by differential scanning calorimetry); solvent-swelling/gel fraction; infrared spectroscopy (with chemical derivatization as warranted); chemiluminescence; thermo-oxidative wear-out assessment; The first two techniques are the simplest and quickest to apply; those further down the list tend to be more information rich and in some cases more sensitive, but also generally more specialized and more time consuming to run. Accordingly, the procedure will be to apply the simplest tests for purposes of preliminary screening of large numbers of samples. For any given material type, it can be expected that only a limited number of the other techniques will prove to be useful, and therefore, the more specialized techniques will be used on a limited number of selected samples. Samples of aircraft wiring have begun to be released to the authors in late April; they include in this report some limited and preliminary data on these materials.

  9. Multilayer radiation shield

    DOE Patents [OSTI]

    Urbahn, John Arthur (Saratoga Springs, NY); Laskaris, Evangelos Trifon (Niskayuna, NY)

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  10. Homotopy Theory of Strong and Weak Topological Insulators

    E-Print Network [OSTI]

    Ricardo Kennedy; Charles Guggenheim

    2014-09-08

    We use homotopy theory to extend the notion of strong and weak topological insulators to the non-stable regime (low numbers of occupied/empty energy bands). We show that for strong topological insulators in d spatial dimensions to be "truly d-dimensional", i.e. not realizable by stacking lower-dimensional insulators, a more restrictive definition of "strong" is required. However, this does not exclude weak topological insulators from being "truly d-dimensional", which we demonstrate by an example. Additionally, we prove some useful technical results, including the homotopy theoretic derivation of the factorization of invariants over the torus into invariants over spheres in the stable regime, as well as the rigorous justification of replacing $T^d$ by $S^d$ and $T^{d_k}\\times S^{d_x}$ by $S^{d_k+d_x}$ as is common in the current literature.

  11. Static electric field in one-dimensional insulators without boundaries

    E-Print Network [OSTI]

    Chen, Kuang-Ting

    In this brief report, we show that in a one-dimensional insulating system with periodic boundary conditions, the coefficient of the ? term in the effective theory is not only determined by the topological index ?i?[superscript ...

  12. Topological Crystalline Insulators in the SnTe Material Class

    E-Print Network [OSTI]

    Hsieh, Timothy Hwa-wei

    Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline ...

  13. Akinc Working to Save Energy with Nanotechnology Insulation ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Akinc Working to Save Energy with Nanotechnology Insulation AMES, Iowa - Mufit Akinc, who has a series of patent plaques hanging high on his office wall, knows all about the...

  14. Manipulation of bacteria using three dimensional insulator based dielectrophoresis

    E-Print Network [OSTI]

    Braff, William Allan

    2011-01-01

    Insulator-based dielectrophoresis (iDEP) is a very promising technique for sorting microparticles based on their electrical properties. By using constrictions in a microchannel to generate large electric field gradients, ...

  15. Anomalous supercurrent from Majorana states in topological insulator Josephson junctions

    E-Print Network [OSTI]

    Potter, Andrew C.

    We propose a Josephson junction setup based on a topological insulator (TI) thin film to detect Majorana states that exploits the unique helical and extended nature of the TI surface state. When the magnetic flux through ...

  16. High constriction ratio continuous insulator based dielectrophoretic particle sorting

    E-Print Network [OSTI]

    Wang, Qianru, S.M. Massachusetts Institute of Technology

    2014-01-01

    Low frequency insulator based dielectrophoresis (iDEP) is a promising technique to study cell surface dielectric properties. To date, iDEP has been exploited to distinguish, characterize, and manipulate particles and ...

  17. Aerogel Insulation: The Materials Science of Empty Space

    Broader source: Energy.gov [DOE]

    Empty space can be good, like a blank canvas for an artist, or it can be bad, like an attic without insulation for a homeowner.  But when a technological breakthrough provides just the right amount...

  18. Expansion Joint Concepts for High Temperature Insulation Systems 

    E-Print Network [OSTI]

    Harrison, M. R.

    1980-01-01

    As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently...

  19. Temperature dependence of ambipolar diffusion in silicon-on-insulator

    E-Print Network [OSTI]

    Zhao, Hui

    2008-03-01

    Spatiotemporal dynamics of electron-hole pairs locally excited in a silicon-on-insulator structure by indirect interband absorption are studied by measuring differential transmission caused by free-carrier absorption of a probe pulse tuned below...

  20. Savings Project: Insulate Your Water Heater Tank | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    well. A ridged piece of insulation (or bottom board) will help prevent heat loss into the floor, and could save you another 4%-9% of water heating energy. It is best done when...

  1. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  2. Mapping the unconventional orbital texture in topological crystalline insulators

    E-Print Network [OSTI]

    Zeljkovic, Ilija

    The newly discovered topological crystalline insulators feature a complex band structure involving multiple Dirac cones [superscript 1, 2, 3, 4, 5, 6], and are potentially highly tunable by external electric field, temperature ...

  3. Inducing magnetism onto the surface of a topological crystalline insulator

    E-Print Network [OSTI]

    Assaf, Badih A.

    Inducing magnetism onto a topological crystalline insulator (TCI) has been predicted to result in several novel quantum electromagnetic effects. This is a consequence of the highly strain-sensitive band topology of such ...

  4. Energy and Emissions Savings through Insulation Upgrade Projects 

    E-Print Network [OSTI]

    Lettich, M.

    2008-01-01

    The presentation demonstrates the value of including insulation system assessment, repairs and upgrades on a facility's physical function and its importance in the overall energy and environmental management program. Financial and environmental...

  5. Electrochemical cell with powdered electrically insulative material as a separator

    DOE Patents [OSTI]

    Mathers, James P. (Downers Grove, IL); Olszanski, Theodore W. (Justice, IL); Boquist, Carl W. (Chicago, IL)

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  6. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    SciTech Connect (OSTI)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.

  7. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  8. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  9. Advanced insulated gate bipolar transistor gate drive

    DOE Patents [OSTI]

    Short, James Evans (Monongahela, PA); West, Shawn Michael (West Mifflin, PA); Fabean, Robert J. (Donora, PA)

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  10. Topology of crystalline insulators and superconductors

    E-Print Network [OSTI]

    Ken Shiozaki; Masatoshi Sato

    2014-10-14

    We complete a classification of topological phases and their topological defects in crystalline insulators and superconductors. We consider topological phases and defects described by non-interacting Bloch and Bogoliubov de Gennes Hamiltonians that support additional order-two spatial symmetry, besides any of ten classes of symmetries defined by time-reversal symmetry and particle-hole symmetry. The additional order-two spatial symmetry we consider is general and it includes $Z_2$ global symmetry, mirror reflection, two-fold rotation, inversion, and their magnetic point group symmetries. We find that the topological periodic table shows a novel periodicity in the number of flipped coordinates under the order-two spatial symmetry, in addition to the Bott-periodicity in the space dimensions. Various symmetry protected topological phases and gapless modes will be identified and discussed in a unified framework. We also present topological classification of symmetry protected Fermi points. The bulk classification and the surface Fermi point classification provide a novel realization of the bulk-boundary correspondence in terms of the K-theory.

  11. A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity

    SciTech Connect (OSTI)

    Shen, Jun, E-mail: jun.shen@nrc-cnrc.gc.ca; Zhou, Jianqin; Gu, Caikang [Energy, Mining and Environment Portfolio, National Research Council Canada, 4250 East Mall, Vancouver, British Columbia V6T 1W5 (Canada)] [Energy, Mining and Environment Portfolio, National Research Council Canada, 4250 East Mall, Vancouver, British Columbia V6T 1W5 (Canada); Neill, Stuart [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Building M-9, Ottawa, Ontario K1A 0R6 (Canada)] [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Building M-9, Ottawa, Ontario K1A 0R6 (Canada); Michaelian, Kirk H.; Fairbridge, Craig [CanmetENERGY, Natural Resources Canada, One Oil Drive Patch, Devon, Alberta T9G 1A8 (Canada)] [CanmetENERGY, Natural Resources Canada, One Oil Drive Patch, Devon, Alberta T9G 1A8 (Canada); Astrath, Nelson G. C.; Baesso, Mauro L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná 87020-900 (Brazil)] [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná 87020-900 (Brazil)

    2013-12-15

    A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10{sup ?5} and (1.427 ± 0.009) × 10{sup ?7} m{sup 2}?s{sup ?1}, respectively, in very good agreement with accepted literature values.

  12. The thermal performance of steel-framed walls

    SciTech Connect (OSTI)

    Barbour, C.E. [NAHB Research Center, Upper Marlboro, MD (United States). Building Systems Div.; Goodrow, J. [Holometrix, Bedford, MA (United States)

    1995-12-31

    Thermal bridges are areas in constructions that have highly conductive materials, allowing higher heat transfer through less conductive areas. In a wall, thermal bridges can increase heat loss, cause dust to accumulate on the studs (ghosting) due to temperature distribution, and cause condensation to form in and on the walls. The effects of thermal bridges are often misunderstood by engineers, buildings, and manufacturers of construction products. This study attempts to provide a better understanding of the effects of thermal bridges in steel-framed walls, as well as information leading to improved methods of predicting R-value of walls containing thermal bridges. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them the freedom to correctly choose the optimum choice for construction. In order to arrive at an improved method, experimental data on the heat transfer characteristics of steel-framed walls were collected. Twenty-three wall samples were tested in a calibrated hot box (ASTM C976) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing, and fiberglass batt insulations. Other studies of thermal bridging in steel-framed walls have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Also, detailed monitoring of temperature gradients in the test walls combined with numerical analysis provided new insights into heat transfer phenomena concerning thermal bridges.

  13. Topological insulators/superconductors: Potential future electronic materials

    SciTech Connect (OSTI)

    Hor, Y. S. [Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2014-03-05

    A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb{sub x}Bi{sub 2}Se{sub 3} is shown to be a superconductor with T{sub c} ? 3.2 K, which could be a potential candidate for a topological superconductor.

  14. The Study on Thermal Performance and Applicability of Energy-saving Wall Materials in Hot Summer and Cold Winter Zones 

    E-Print Network [OSTI]

    Ren, W.; Lan, M.; Hao, Y.

    2006-01-01

    . It is characteristic with exact geometrical dimension, nice shape, high strength and glazed surface. 2.3 Fly Ash Ceramsite Concrete Fly ash ceramsite is a kind of artificial lightweight aggregate with advantages of low density, high strength, sound insulation..., thermal insulation, and making construction deadweight down. Lightweight aggregate concrete made by fly ash ceramsite can lighten 25% of structure deadweight, save 5% of cement, have a good effect on energy efficiency and can be applied widely to all...

  15. The darkness of spin-0 dark radiation

    SciTech Connect (OSTI)

    Marsh, M.C. David

    2015-01-01

    We show that the scattering of a general spin-0 sector of dark radiation off the pre-recombination thermal plasma results in undetectably small spectral distortions of the Cosmic Microwave Background.

  16. Induced natural convection thermal cycling device

    DOE Patents [OSTI]

    Heung, Leung Kit (Aiken, SC)

    2002-08-13

    A device for separating gases, especially isotopes, by thermal cycling of a separation column using a pressure vessel mounted vertically and having baffled sources for cold and heat. Coils at the top are cooled with a fluid such as liquid nitrogen. Coils at the bottom are either electrical resistance coils or a tubular heat exchange. The sources are shrouded with an insulated "top hat" and simultaneously opened and closed at the outlets to cool or heat the separation column. Alternatively, the sources for cold and heat are mounted separately outside the vessel and an external loop is provided for each circuit.

  17. Can we detect "Unruh radiation" in the high intensity lasers?

    E-Print Network [OSTI]

    Satoshi Iso; Yasuhiro Yamamoto; Sen Zhang

    2011-02-23

    An accelerated particle sees the Minkowski vacuum as thermally excited, which is called the Unruh effect. Due to an interaction with the thermal bath, the particle moves stochastically like the Brownian motion in a heat bath. It has been discussed that the accelerated charged particle may emit extra radiation (the Unruh radiation) besides the Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. In this reports, we review our recent analysis on the issue of the Unruh radiation. In this report, we particularly consider the thermalization of an accelerated particle in the scalar QED, and derive the relaxation time of the thermalization.

  18. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  19. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    SciTech Connect (OSTI)

    Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.

    2014-08-04

    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61?K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.

  20. Strain controlled metal-insulator transition in epitaxial NdNiO{sub 3} thin films

    SciTech Connect (OSTI)

    Xiang, P.-H. Zhong, N.; Duan, C.-G.; Tang, X. D.; Hu, Z. G.; Yang, P. X.; Zhu, Z. Q.; Chu, J. H.

    2013-12-28

    We have fabricated epitaxial thin films of NdNiO{sub 3} (NNO) on various single crystal substrates. The transport properties of NNO films are very sensitive to substrate-controlled epitaxial strain. As the strain varies from tensile to compressive, the Mott metal-insulator transition of NNO films shifts to low temperatures. Under a larger compressive strain, the film on LaSrAlO{sub 4} substrate exhibits a practically metallic transport characteristic. We have found that the conductivities of NNO films at low temperatures follow Mott's variable range hopping mechanism rather than thermal activation model and the epitaxial strain has a strong effect on Mott's parameters of NNO films. These findings demonstrate that the electronic transport of NNO thin films can be tuned by the epitaxial strain for next-generation perovskite-based microelectronic devices.

  1. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    SciTech Connect (OSTI)

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  2. Field study on the thermal environment of passive cooling system in RC building

    SciTech Connect (OSTI)

    Zhou, Nan; Gao, Weijun; Nishida, Masaru; Kitayama, Hiroki; Ojima, Toshio

    2004-10-30

    In recent years, various passive methods have come to be adopted in architecture design. The rooftop lawn is seen to have merit in the reduction in the air conditioning load of the building, as well as contributing to the mitigation of the heat island phenomenon. The roofs praying system is seen to be an effective method for the roof of low heat insulation performance, and can greatly reduce the heat load in the summer season. However, at present most of the buildings with an RC construction have the insulating material in the roof for providing thermal insulation in the winter season. There has been a trend to adopt the roof spraying system actively in even such a general RC building, but it is not clear how much actual effect it has. In this study, the authors conducted a measurement in an RC building with a rooftop spraying system and roof lawn in order to clarify the effects and problems on the thermal environment.

  3. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  4. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  5. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  6. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    15] O. A. Hamed, "THERMAL PERFORMANCE OF MULTISTAGE FLASHdesa4.aspx. [18] Encon, "Thermal Evaporators," June 2013. [http://www.evaporator.com/thermal-evaporator. [19] Y. Tian

  7. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    This requires no thermal storage tanks, but can have athe need for large thermal storage equipment, the evaporatorinclude analysis of thermal storage. A way of keeping the

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  10. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect (OSTI)

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions. Algorithms were incorporated into LSP to handle secondary electron emission from dielectric materials to enable detailed simulations of flashover phenomenon. Theoretical studies were focused on explaining a possible mechanism for anode initiated surface flashover that involves an electron avalanche process starting near the anode, not a mechanism involving bulk dielectric breakdown. Experiments were performed in Engineering's Pulsed Power Lab using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  11. Simulation of Electric Field in Semi Insulating Au/CdTe/Au Detector under Flux

    SciTech Connect (OSTI)

    Franc, J.; James, R.; Grill, R.; Kubat, J.; Belas, E.; Hoschl, P.; Moravec, P.; Praus, P.

    2009-08-02

    We report our simulations on the profile of the electric field in semi insulating CdTe and CdZnTe with Au contacts under radiation flux. The type of the space charge and electric field distribution in the Au/CdTe/Au structure is at high fluxes result of a combined influence of charge formed due to band bending at the electrodes and from photo generated carriers, which are trapped at deep levels. Simultaneous solution of drift-diffusion and Poisson equations is used for the calculation. We show, that the space charge originating from trapped photo-carriers starts to dominate at fluxes 10{sup 15}-10{sup 16}cm{sup -2}s{sup -1}, when the influence of contacts starts to be negligible.

  12. Radiative Forcing EarthRadiative Forcing, Earth Temperature, and Climate

    E-Print Network [OSTI]

    Li, Zhanqing

    trapped by the additional absorption goes inot heating the surface. Some , for example goes as additional latent heat. · So one should view the inference of the equationSo one should view the inference transmission of the atmosphereWhere Teff is the effective transmission of the atmosphere to thermal radiation

  13. Analysis Code for High Gradient Dielectric Insulator Surface Breakdown

    SciTech Connect (OSTI)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc.; Verboncoeur, John [University of California - Berkeley; Aldan, Manuel [University of California, Berkeley

    2010-05-30

    High voltage (HV) insulators are critical components in high-energy, accelerator and pulsed power systems that drive diverse applications in the national security, nuclear weapons science, defense and industrial arenas. In these systems, the insulator may separate vacuum/non-vacuum regions or conductors with high electrical field gradients. These insulators will often fail at electric fields over an order of magnitude lower than their intrinsic dielectric strength due to flashover at the dielectric interface. Decades of studies have produced a wealth of information on fundamental processes and mechanisms important for flashover initiation, but only for relatively simple insulator configurations in controlled environments. Accelerator and pulsed power system designers are faced with applying the fundamental knowledge to complex, operational devices with escalating HV requirements. Designers are forced to rely on “best practices” and expensive prototype testing, providing boundaries for successful operation. However, the safety margin is difficult to estimate, and system design must be very conservative for situations where testing is not practicable, or replacement of failed parts is disruptive or expensive. The Phase I program demonstrated the feasibility of developing an advanced code for modeling insulator breakdown. Such a code would be of great interest for a number of applications, including high energy physics, microwave source development, fusion sciences, and other research and industrial applications using high voltage devices.

  14. Near-field thermal electromagnetic transport

    E-Print Network [OSTI]

    Edalatpour, Sheila

    2015-01-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added into Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres exchanging thermal radiation, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. The forma...

  15. A High-Order-Accurate GPU-Based Radiative Transfer Equation Solver for Combustion and Propulsion Applications

    E-Print Network [OSTI]

    He, Xing; Lee, Euntaek; Wilcox, Lucas; Munipalli, Ramakanth; Pilon, Laurent

    2013-01-01

    and M. P. Meng¨ u¸c, “Radiation heat transfer in combustionThermal radiation is a dominant mode of heat transfer inand radiation in the Atlas plume”, AIAA J. Thermophys. Heat Transfer,

  16. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  17. Media for control of thermal emission and methods of applications thereof

    DOE Patents [OSTI]

    Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2002-01-01

    A new class of media for control of emission of thermal radiation from an object or part thereof is disclosed. These materials can be used for a wide variety of thermal control applications.

  18. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 14, PAGES 2707-2710, JULY 15, 2001 Effects of continents on Earth cooling: thermal

    E-Print Network [OSTI]

    on Earth cooling: thermal blanketing and depletion in radioactive elements. C´ecile Grign´e and St is investigated with a simple approach: continents are introduced in an Earth cooling model as perfect thermal insulators. Conti- nental growth rate has then a strong influence on mantle cooling. Various continental

  19. The thermal conductivity of sediments as a function of porosity 

    E-Print Network [OSTI]

    Miller, James W

    1979-01-01

    as thermal barriers to heat and tend to insulate the surrounding material. Fig, 1 shows how the temperature gradient changes when a high pressured zone is encountered. Assuming the flow of heat through any zone obeys Fourier's law, the following equation... = thermal con- aT ductivity of the material, and z is the depth below the mudline. It can be seen from Equation 1 that if the heat flux, q, is constant and the temperature gradient, ~, is increased as is the case for a high z pressured zone...

  20. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  1. Development of a Thermal Oxidizer for Distributed Microturbine Based Generation

    SciTech Connect (OSTI)

    Tom Barton

    2009-03-01

    This project concerns the replacement of the catalytic bed in a microturbine with a thermal oxidizer. The advantage of a thermal oxidizer over a traditional combustion chamber is that the length and temperature of the device allows the volatile species to oxidize relatively slowly and without a flame front. With no flame, the temperature increase throughout the unit is spread over a much larger volume so there is no hot spot for thermal NO{sub x} formation, and the gas Btu level does not have to be above the ignition concentration. Project specific objectives included assessment of the materials and performance requirements of the thermal oxidizer, design the thermal oxidizer system, fabrication of the thermal oxidizer, testing of the oxidizer's performance in concert with the microturbine and comparison of the performance of the oxidizer with catalytic beds and traditional combustion chambers. The thermal oxidizer was designed and fabricated with the assistance of High Country Fabrication of Casper, Wyoming. The design consists of a long set of tubes surrounded by a packed bed of loose ceramic material. The outer vessel containing the tubes and packing is a 3-foot diameter steel shell with multiple layers of thermal insulation. After the metal components were fabricated, the vessel was shipped to Denver where the insulation was poured. The unit was shipped to the cosponsor site for integration with the 100 kW microturbine device. Connection of the thermal oxidizer to the Elliot microturbine turned out to be problematic. The high flow rate of gas tended to push the hot zone out of the oxidizer as assembled. The research team identified several approaches to improve the oxidizer performance including a longer gas path, increased residence time, higher surface area packing material and improved combustion catalysts. The cosponsor is working with an engineering form with oxidizer experience to reconfigure the hardware before moving to a field trial on landfill gas.

  2. Thermal performance of steel-framed walls. Final report

    SciTech Connect (OSTI)

    Barbour, E. [NAHB Research Center, Inc., Upper Marlboro, MD (United States); Goodrow, J. [Holometrix, Inc., Bedford, MA (United States); Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)

    1994-11-21

    In wall construction, highly conductive members spaced along the wall, which allow higher heat transfer than that through less conductive areas, are referred to as thermal bridges. Thermal bridges in walls tend to increase heat loss and, under certain adverse conditions, can cause dust streaking (``ghosting``) on interior walls over studs due to temperature differentials, as well as condensation in and on walls. Although such adverse conditions can be easily avoided by proper thermal design of wall systems, these effects have not been well understood and thermal data has been lacking. Therefore, the present study was initiated to provide (1) a better understanding of the thermal behavior of steel-framed walls, (2) a set of R-values for typical wall constructions, and (3) information that could be used to develop improved methods of predicting R-values. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them to choose the optimum choice for construction. Twenty-three wall samples were tested in a calibrated hot box (ASTM C9761) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing and fiberglass batt insulations. Other studies have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Test results were compared to R-value estimates using the parallel path method, the isothermal planes method and the ASHRAE Zone method. The comparison showed that the known procedures do not fully account for the three-dimensional effects created by steel framing in a wall.

  3. Development of a Diehard GEM using PTFE insulator substrate

    E-Print Network [OSTI]

    Wakabayashi, M; Tamagawa, T; Takeuchi, Y; Aoki, K; Taketani, A; Hamagaki, H

    2014-01-01

    We have developed the gas electron multiplier (GEM) using polytetrafluoroethylene (PTFE) insulator substrate (PTFE-GEM). Carbonization on insulator layer by discharges shorts the GEM electrodes, causing permanent breakdown. Since PTFE is hard to be carbonized against arc discharges, PTFE-GEM is expected to be robust against breakdown. Gains as high as 2.6x10^4 were achieved with PTFE-GEM (50 um thick) in Ar/CO2 = 70%/30% gas mixture at V_GEM = 730V. PTFE-GEM never showed a permanent breakdown even after suffering more than 40000 times discharges during the experiment. The result demonstrates that PTFE-GEM is really robust against discharges. We conclude that PTFE is an excellent insulator material for the GEM productions.

  4. The Electromagnetic Green's Function for Layered Topological Insulators

    E-Print Network [OSTI]

    Crosse, J A; Buhmann, Stefan Yoshi

    2015-01-01

    The dyadic Green's function of the inhomogeneous vector Helmholtz equation describes the field pattern of a single frequency point source. It appears in the mathematical description of many areas of electromagnetism and optics including both classical and quantum, linear and nonlinear optics, dispersion forces (such as the Casimir and Casimir-Polder forces) and in the dynamics of trapped atoms and molecules. Here, we compute the Green's function for a layered topological insulator. Via the magnetoelectric effect, topological insulators are able to mix the electric, E, and magnetic induction, B, fields and, hence, one finds that the TE and TM polarizations mix on reflection from/transmission through an interface. This leads to novel field patterns close to the surface of a topological insulator.

  5. Thermal Transport in Nanoporous Materials for Energy Applications

    E-Print Network [OSTI]

    Fang, Jin

    2012-01-01

    Thermal Conductivity Measurement . . . . . . . . . . . . .Thermal ConductivityThermal Conductivity . . . . . . . . . . . . . . . .Thermal

  6. Quantum Capillary Waves at the Superfluid--Mott Insulator Interface

    E-Print Network [OSTI]

    Steffen Patrick Rath; Boris Spivak; Wilhelm Zwerger

    2011-10-10

    We discuss quantum fluctuations of the interface between a superfluid and a Mott-insulating state of ultracold atoms in a trap. The fluctuations of the boundary are due to a new type of surface modes, whose spectrum is similar (but not identical) to classical capillary waves. The corresponding quantum capillary length sets the scale for the penetration of the superfluid into the Mott-insulating regime by the proximity effect and may be on the order of several lattice spacings. It determines the typical magnitude of the interface width due to quantum fluctuations, which may be inferred from single site imaging of ultracold atoms in an optical lattice.

  7. Fabrication of high gradient insulators by stack compression

    DOE Patents [OSTI]

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  8. Thermal stability of radiant black holes

    E-Print Network [OSTI]

    Parthasarathi Majumdar

    2006-04-06

    Beginning with a brief sketch of the derivation of Hawking's theorem of horizon area increase, based on the Raychaudhuri equation, we go on to discuss the issue as to whether generic black holes, undergoing Hawking radiation, can ever remain in stable thermal equilibrium with that radiation. We derive a universal criterion for such a stability, which relates the black hole mass and microcanonical entropy, both of which are well-defined within the context of the Isolated Horizon, and in principle calculable within Loop Quantum Gravity. The criterion is argued to hold even when thermal fluctuations of electric charge are considered, within a {\\it grand} canonical ensemble.

  9. Multi-channel polarized thermal emitter

    DOE Patents [OSTI]

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  10. Project Overcoat - An Exploration of Exterior Insulation Strategies for 1-1/2-Story Roof Applications in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, C.; Mosiman, G.; Huelman, P.; Schirber, T.; Yost, P.; Murry, T.

    2013-04-01

    The development of an alternative method to interior-applied insulation strategies or exterior applied 'band-aids' such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an 'overcoat' of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bring existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.

  11. Technology Solutions Case Study: Moisture Durability of Vapor Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  12. Development of a methodology to discriminate incipient insulator faults from distribution system load 

    E-Print Network [OSTI]

    Richards, Christopher Scott

    2000-01-01

    Insulator failure has long plagued transmission and distribution system power quality. The failure process begins when airborne contamination combines with moisture from atmospheric wetting to form a conductive pollution layer on the insulator...

  13. Industrial Insulation: An Energy Efficient Technology That Saves Money and Reduces 

    E-Print Network [OSTI]

    Brayman, B.

    1999-01-01

    -but no one knew exactly just how much. Everyone understands that insulation protects people from hot surfaces and that it prevents condensation. Until recently, however no one could quantify the emissions saved for the insulation investment incurred. In fact...

  14. Quantification of Corona Discharges on Nonceramic Insulators B. Pinnangudi, R. S. Gorur and A. J. Kroese *

    E-Print Network [OSTI]

    of time due to inadequate hardware design, damaged hardware, deficient interfaces due to improper design on the insulator. It is a significant drawback as discharges on insulator hardware cannot always be avoided and may

  15. Metal-insulator transition of the reduced surface of yttria-stabilized...

    Office of Scientific and Technical Information (OSTI)

    Metal-insulator transition of the reduced surface of yttria-stabilized zirconia near Pt electrodes. Citation Details In-Document Search Title: Metal-insulator transition of the...

  16. Graphene-on-Insulator Transistors Made Using C on Ni Chemical-Vapor Deposition

    E-Print Network [OSTI]

    Keast, Craig L.

    Graphene transistors are made by transferring a thin graphene film grown on Ni onto an insulating SiO[subscript 2] substrate. The properties and integration of these graphene-on-insulator transistors are presented and ...

  17. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, S.J.

    1982-06-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  18. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  19. Double helix boron-10 powder thermal neutron detector

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  20. RADIATION MONITORING

    E-Print Network [OSTI]

    Thomas, R.H.

    2010-01-01

    Radiation Exposure due to a Boiling Water Reactor Plume fromIN THE VICINITY OF A BOILING WATER REACTOR EXPOSURE RATE