Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal radiative properties of phenolic foam insulation  

Science Journals Connector (OSTI)

Thermal insulation has long been an important subject in engineering. Foam insulations have become the most widely used insulations due to their low cost and ease of procesing. In recent years, phenolic foams find increasing applications because of their fire retardation. This paper presents experimental results of thermal radiative properties of phenolic foams, with or without activated carbon. Transmittance spectra were first taken using FTIR for samples of various densities. Extinction coefficient spectra were then obtained by applying Beer's law. Finally, by using the diffusion approximation, the Rosseland mean extinction coefficients and radiative thermal conductivities were obtained for various temperatures. Results show that the extinction coefficient increases with sample density. The addition of activated carbon increases the extinction coefficient slightly.

Chung-jen Tseng; Kuang-te Kuo

2002-01-01T23:59:59.000Z

2

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

3

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

4

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

5

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

6

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

7

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

8

Thermal Insulation for Energy Conservation  

Science Journals Connector (OSTI)

The use of thermal insulations to reduce heat flow across the building ... decades. Materials available for use as building insulation include naturally occurring fibers and particles, man ... plastics, evacuated...

Dr. David W. Yarbrough Ph.D.; PE

2012-01-01T23:59:59.000Z

9

A Plastic for Thermal Insulation  

Science Journals Connector (OSTI)

... ft. per in. thickness per 1° F. difference of temperature, so that its insulation properties compare very favourably with slab-cork (0-25 B.TH.U.), glass ... tenth that of slab-cork. This makes it of considerable interest in connexion with thermal insulation during transport. Isoflex is non-porous and non-absorbent, with the result that its ...

1941-04-26T23:59:59.000Z

10

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

11

Insulation products promote thermal efficiency  

SciTech Connect

The judicious use of thermal insulation products in non-residential buildings can provide a number of advantages including increased energy efficiency, lower first costs (by avoiding overside HVAC systems), improved fire safety and better acoustics. Thermal insulation products are those products which retard the flow of heat energy. Materials include glass, plastics, and organic materials such as wood fibers, vermiculite and perlite. Forms range from the familiar batts and blankets of glass fibers to foamed plastic, rigid boards, losse fill and systems combining two or more products, such as polystyrene boards covered with insulating plaster. The R values of selected insulation materials with a cost/sq. ft. of each material at R 10 are given. Costs cover both the material and installation and may vary depending on local conditions.

Chalmers, R.

1985-04-01T23:59:59.000Z

12

Thermal Insulation at Very Low Temperatures  

Science Journals Connector (OSTI)

24 September 1942 research-article Thermal Insulation at Very Low Temperatures A. H. Cooke R. A. Hull Various methods of insulation have been investigated at temperatures between and 1 degrees K. A simple suspension of artificial silk fibre...

1942-01-01T23:59:59.000Z

13

Degradation of Structural Alloys Under Thermal Insulation  

E-Print Network (OSTI)

Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

McIntyre, D. R.

1984-01-01T23:59:59.000Z

14

Thermal Insulation of Clothing (Icl)  

Science Journals Connector (OSTI)

The intrinsic insulation of a clothing assembly. The effective insulation of clothing is (Icl + Ia)...2 · W?1] and sometimes in [clo].

2012-01-01T23:59:59.000Z

15

Chapter Three - Material Selection for Thermal Insulation  

Science Journals Connector (OSTI)

Abstract This chapter covers the minimum requirements and fundamental concepts relating to the composition, size, dimensions, physical properties, inspection, packaging, and marking of a wide range of thermal insulations for use on pipe and equipment surfaces such as mineral wool insulation, rigid and semi-rigid mineral fiber block and board thermal insulation, mineral blanket and blanket-type pipe insulation, calcium silicate preformed block and pipe section thermal insulation, cellular glass, baked cork, and rigid cellular polyurethane and polyisocyanurate and filler insulation. In addition, vapor barriers, joint sealants, adhesive materials, metallic jacketing, and accessory materials are reviewed. For satisfactory performance, properly installed protective vapor barriers have to be used in low-temperature applications to prevent movement of moisture through or around the insulation towards the colder surface.

Alireza Bahadori

2014-01-01T23:59:59.000Z

16

ENVIRONMENTALLY FRIENDLY PROCESSING OF POLYURETHANE FOAM FOR THERMAL INSULATION  

E-Print Network (OSTI)

ENVIRONMENTALLY FRIENDLY PROCESSING OF POLYURETHANE FOAM FOR THERMAL INSULATION CHANJOONG KIM was proposed and evaluated for the application of thermal insulation. For the production of polyurethane foam correspondence should be sent. #12;Key Words: Foam; Polyurethane; Thermal insulation; Nucleation; Growth

Kim, Chanjoong

17

Chapter One - Design and Application of Thermal Insulation  

Science Journals Connector (OSTI)

Abstract This chapter covers the minimum requirements for thermal insulation of pipework, vessels, tanks, and other equipment. It is aimed at thermal insulation usage in the oil, gas, petrochemical, and other similar industries mainly for refineries, chemical, petrochemical, and natural gas processing plants. The chapter explains the fundamental requirements for insulation systems, including insulation materials of sufficient quality and thicknesses, weatherproofing, and finishing. Also, there is discussion on the design issues related to thermal insulation, including selection of the thermal insulation system, corrosion under thermal insulation, and the general applications of insulation. In addition, the characteristics and selection of insulation and accessory materials are presented.

Alireza Bahadori

2014-01-01T23:59:59.000Z

18

Laser perforation of screen vacuum thermal insulation  

Science Journals Connector (OSTI)

This paper presents the results of the process of laser perforation of screen vacuum thermal insulation and shows that it has high efficiency. The use of various types of IR lasers...

Sysoev, V K; Vyatlev, P A; Zakharchenko, A V

2007-01-01T23:59:59.000Z

19

Environmental assessment of thermal insulation composite material  

Science Journals Connector (OSTI)

Of other thermal insulation materials, the foam glass has most similar mechanical properties (PE...2008) and use (structural details exposed to high compressive loads). Therefore, it is (to a certain extend) comp...

Karel Struhala; Zuzana Stránská; Jan P?n?ík…

2014-12-01T23:59:59.000Z

20

Reinforced Phenolic Foams for Thermal Insulation  

Science Journals Connector (OSTI)

The reported research is related to phenolic resins panels for thermal insulation. This research started from previous results on the fabrication of foams from powdered Novolaque phenolic resins without acid...

P. Dubois; C. Reinaudo; E. Morel; C. Chauvelier

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents (OSTI)

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

22

12 - Life cycle assessment (LCA) of building thermal insulation materials  

Science Journals Connector (OSTI)

Abstract: In this chapter thermal insulation materials and types of plaster and their properties are described. The impact of the selected thermal insulation materials and plaster on the environment is assessed using LCA analysis. A method of assessing the ecological and economic benefits resulting from thermal insulation of the external walls of buildings is proposed. On this basis, ecological and economic payback periods for thermal insulation are defined as well as the ecological efficiency of thermal insulation. The conducted analyses conclude that thermal insulation of the external walls of buildings is environmentally favourable.

R. Dylewski; J. Adamczyk

2014-01-01T23:59:59.000Z

23

Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications  

Science Journals Connector (OSTI)

...translucent thermal insulations for solar thermal applications Thomas Stegmaier...Denkendorf73770 Denkendorf, Germany Solar thermal collectors used at present consist...transparent thermal insulation|solar thermal collector| 1. Introduction...

2009-01-01T23:59:59.000Z

24

Vacuum Glazing; A Thermally Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

25

Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations  

Science Journals Connector (OSTI)

Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the... $$3\\omega $$ ...

L. Qiu; X. H. Zheng; J. Zhu; D. W. Tang…

2014-06-01T23:59:59.000Z

26

Thermal insulation with paper honeycombs with solar gain  

SciTech Connect

In this contribution the authors describe the concept and the model for the heat flux and the effective U-value of paper honeycombs (PHC) used as efficient and cheap transparent insulation material. With this thermal-insulation-material static U-values of U = 0.25 W/(m{sup 2}K) are obtained due to the very low thermal conduction value {lambda} = 0.04 W/(mK), which is comparable to thermal insulators as PU-foam or mineral wool. Contrary to conventional insulation materials PHC also gathers solar radiation due to its geometry, thereby providing heat flux into the interior of the building. Because the angle of incidence of the sun in wintertime is low, the direct solar radiation is absorbed approximately within the outermost 3 centimeters of the PHC. Even at ambient temperatures below 0 C, this region is warmed up to 60 C. By conduction the heat is brought to the brick wall underneath, which acts as reservoir and gets to temperatures between 15 and 30 C. Calculated across the full heating period, it is shown, that effective U values of 0.14 W/(m{sup 2}K) are reached by using PHC, reducing the brick wall U value by a factor of 3/4. Contrary to other transparent thermal insulation systems, e.g. developed by the Fraunhofer Institute for Solar Energy Systems, this system does not overheat during summertime, because the capillary structure is shielding the solar rays. A Windows based program solves the heat conduction equation with finite element methods.

Hingerl, K.; Baumgartner, G.; Aschauer, H.

1996-12-31T23:59:59.000Z

27

Thermal-performance study of liquid metal fast breeder reactor insulation  

SciTech Connect

Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

Shiu, Kelvin K.

1980-09-01T23:59:59.000Z

28

Smoldering combustion hazards of thermal insulation materials  

SciTech Connect

Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

Ohlemiller, T.J.; Rogers, F.E.

1980-07-01T23:59:59.000Z

29

Insulation Workers  

Science Journals Connector (OSTI)

Insulation workers apply insulation materials on objects and buildings for thermal insulation and/or waterproofing.

R. Riala

2012-01-01T23:59:59.000Z

30

Operating temperatures of recessed fluorescent fixtures with thermal insulation  

SciTech Connect

Tests were performed to determine steady state surface temperatures for recessed fluorescent fixtures operated with and without thermal insulation on the top side of the fixture and to identify potential problems associated with the installation of thermal insulation. In addition to measuring temperatures, means were sought by which the fixtures can be thermally insulated and operated without fire hazards or damage to the fixture. (MCW)

Yarbrough, D.W.; Toor, I.A.

1981-05-01T23:59:59.000Z

31

Glass fiber composition. [for use as thermal insulation  

DOE Patents (OSTI)

The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

Wolf, G.A.; Kupfer, M.J.

1980-12-19T23:59:59.000Z

32

THERMAL CONDUCTIVITY OF POWDER INSULATIONS FOR CRYOGENIC STORAGE  

E-Print Network (OSTI)

THERMAL CONDUCTIVITY OF POWDER INSULATIONS FOR CRYOGENIC STORAGE VESSELS Y. S. Choi1 '3 , M. N), powder insulation, and foam insulation, are used in the cryogenic storage vessels. Among CP823, Advances in Cjyogenie Engineering: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 51, edited by J. G

Chang, Ho-Myung

33

CFC alternatives for thermal insulation foams  

Science Journals Connector (OSTI)

Low density polymeric foam material expanded with chlorofluorocarbon (CFC) blowing agents have found widespread use as highly efficient thermal insulation materials in the construction, refrigeration appliance and transportation industries. The advent of regulations which are reducing the production and consumption of the fully halogenated \\{CFCs\\} for environmental reasons has prompted the development of environmentally acceptable substitutes for the CFC blowing agents. This paper summarizes the physical properties and performance of the leading alternatives for CFC-11, which is used to expand rigid polyurethane and polyisocyanurate foams, and the leading alternatives for CFC-12 which is used to expand extruded polystyrene board foam. Although the alternatives, HCFC-123 and HCFC-141b for CFC-11 and HCFC-142b and HCFC-124 for CFC-12, are not perfect matches from the performance viewpoint, they represent the optimum choice given the constraints on environmental acceptability, toxicity, flammability and performance.

Ian R Shankland

1990-01-01T23:59:59.000Z

34

Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications  

Science Journals Connector (OSTI)

...simultaneously high thermal insulation characteristics. The principle...Development of a translucent thermal insulation (a) Polar bear and its fur...show a hollow structure with foam in the core (figure 2...at the same time an ideal insulation material. In combination...

2009-01-01T23:59:59.000Z

35

Radiation-controlled dynamic vacuum insulation  

DOE Patents (OSTI)

A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

Benson, D.K.; Potter, T.F.

1995-07-18T23:59:59.000Z

36

Radiation-controlled dynamic vacuum insulation  

DOE Patents (OSTI)

A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1995-01-01T23:59:59.000Z

37

Thermal insulation by heat resistant polymers.  

E-Print Network (OSTI)

??Internal insulation in a solid rocket motor is a layer of heat-barrier material placed between the internal surface of the case and the propellant. The… (more)

Ahmed, Ashraf Fathy

2009-01-01T23:59:59.000Z

38

A Structural Plastic Foam Thermal Insulation for Cryogenic Service  

Science Journals Connector (OSTI)

Today, with the impending energy crisis and the rush to construct LNG facilities as one method to alleviate the energy shortage, it is not surprising that we find plastic foams and other thermal insulating materi...

R. B. Bennett

1995-01-01T23:59:59.000Z

39

The thermal insulation difference of clothing ensembles on the dry and perspiration manikins  

Science Journals Connector (OSTI)

There are about a hundred manikin users around the world. Some of them use the manikin such as 'Walter' and 'Tore' to evaluate the comfort of clothing ensembles according to their thermal insulation and moisture resistance. A 'Walter' manikin is made of water and waterproof breathable fabric 'skin', which simulates the characteristics of human perspiration. So evaporation, condensation or sorption and desorption are always accompanied by heat transfer. A 'Tore' manikin only has dry heat exchange by conduction, radiation and convection from the manikin through clothing ensembles to environments. It is an ideal apparatus to measure the thermal insulation of the clothing ensemble and allows evaluation of thermal comfort. This paper compares thermal insulation measured with dry 'Tore' and sweating 'Walter' manikins. Clothing ensembles consisted of permeable and impermeable clothes. The results showed that the clothes covering the 'Walter' manikin absorbed the moisture evaporated from the manikin. When the moisture transferred through the permeable clothing ensembles, heat of condensation could be neglected. But it was observed that heavy condensation occurred if impermeable clothes were tested on the 'Walter' manikin. This resulted in a thermal insulation difference of clothing ensembles on the dry and perspiration manikins. The thermal insulation obtained from the 'Walter' manikin has to be modified when heavy condensation occurs. The modified equation is obtained in this study.

Zhou Xiaohong; Zheng Chunqin; Qiang Yingming; Ingvar Holmér; Chuansi Gao; Kalev Kuklane

2010-01-01T23:59:59.000Z

40

The Thermal Insulation Properties for Wall Material with Various Water Contents  

Science Journals Connector (OSTI)

The thermal conductivities of wall material were measured under various water contents to investigate the effect of water content on the thermal insulation properties. The results show that water contents have adverse impact to heat insulation of wall ... Keywords: the thermal conductivity, water contents, the thermal insulation properties

Zhang Chuancheng; Lu Haijun

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The use of coated micropowders to reduce radiation heat transfer in foam insulation  

E-Print Network (OSTI)

Polyurethane foam is the most effective insulation currently available for buildings. Chlorofluorocarbon (CFC) blowing agents, which have low thermal conductivities, contribute highly to the effectiveness of this insulation. ...

Marge, Arlene Lanciani

1991-01-01T23:59:59.000Z

42

Rigid foam polyurethane (PU) derived from castor oil (Ricinus communis) for thermal insulation in roof systems  

Science Journals Connector (OSTI)

This paper discusses the response of the thermal insulation lining of rigid foam polyurethane (PU) derived from castor oil (Ricinus communis) in heat conditions, based on dynamic climate approach. Liners have been widely used, because the coverage of buildings is responsible for the greatest absorption of heat by radiation, but the use of PU foam derived from this vegetal oil is unprecedented and has the advantage of being biodegradable and renewable. The hot wire parallel method provided the thermal conductivity value of the foam. The thermogravimetric analysis enabled the study of the foam decomposition and its lifetime by kinetic evaluation that involves the decomposition process. The PU foam thermal behavior analysis was performed by collecting experimental data of internal surface temperature measured by thermocouples and assessed by representative episode of the climatic fact. The results lead to the conclusion that the PU foam derived from castor oil can be applied to thermal insulation of roof systems and is an environmentally friendly material.

Grace Tibério Cardoso; Salvador Claro Neto; Francisco Vecchia

2012-01-01T23:59:59.000Z

43

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01T23:59:59.000Z

44

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

45

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

46

Thermal insulation constructal optimization for steel rolling reheating furnace wall based on entransy dissipation extremum principle  

Science Journals Connector (OSTI)

Analogizing with the heat conduction process, the entransy dissipation extremum principle for thermal insulation process can be described as: for a ... heat loss) with certain constraints, the thermal insulation ...

HuiJun Feng; LinGen Chen; ZhiHui Xie; FengRui Sun

2012-12-01T23:59:59.000Z

47

INFLUENCE OF ANISOTROPIC THERMAL CONDUCTIVITY IN THE APPARATUS INSULATION FOR SUBLIMATION GROWTH OF SIC  

E-Print Network (OSTI)

INFLUENCE OF ANISOTROPIC THERMAL CONDUCTIVITY IN THE APPARATUS INSULATION FOR SUBLIMATION GROWTH insulation for sublimation growth of SiC: Numerical investigation of heat transfer J¨urgen Geiser, Olaf Klein). As it is not unusual for the thermal insulation of PVT growth apparatus to possess an anisotropic thermal conductivity

48

Thermal conductivity of rigid foam insulations for aerospace vehicles  

Science Journals Connector (OSTI)

The present work describes measurements of the effective thermal conductivity of NCFI 24-124 foam, a spray-on foam insulation used formerly on the Space Shuttle external fuel tank. A novel apparatus to measure the effective thermal conductivity of rigid foam at temperatures ranging from 20 K to 300 K was developed and used to study three samples of NCFI 24-124 foam insulation. In preparation for measurement, the foam samples were either treated with a uniquely designed moisture absorption apparatus or different residual gases to study their impact on the effective thermal conductivity of the foam. The resulting data are compared to other measurements and mathematical models reported in the literature.

M. Barrios; S.W. Van Sciver

2013-01-01T23:59:59.000Z

49

Performance of Thermal Insulation Containing Microencapsulated Phase Change Material  

SciTech Connect

The objective of this study is dynamic thermal performance microencapsulated phase change material (PCM) blended with loose-fill cellulose insulation. Dynamic hot-box testing and heat-flux measurements have been made for loose-fill cellulose insulation with and without uniformly distributed microencapsulated PCM. The heat flux measurements were made with a heat-flow-meter (HFM) apparatus built in accordance with ASTM C 518. Data were obtained for 1.6 lb{sub m}/ft{sup 3} cellulose insulation containing 0 to 40 wt% PCM. Heat-flux data resulting from a rapid increase in the temperature on one side of a test specimen initially at uniform temperature were analyzed to access the effect of PCM on total heat flow. The heat flux was affected by the PCM for about 100 minutes after the temperature increase. The total heat flow during this initial period decreased linearly with PCM content from 6.5 Btu/ft{sup 2} at 0% PCM to 0.89 Btu/ft{sup 2} for 40 wt% PCM. The cellulose insulation with PCM discharged heat faster than the untreated cellulose when the hot-side temperature of the test specimen was reduced. In addition, hot-box apparatus built in accordance with ASTM C 1363 was utilized for dynamic hot-box testing of a wood stud wall assembly containing PCM-enhanced cellulose insulation. Experimental data obtained for wood-frame wall cavities containing cellulose insulation with PCM was compared with results obtained from cavities containing only cellulose insulation.

Kosny, Jan [ORNL] [ORNL; Yarbrough, David [R & D Services] [R & D Services; Syed, Azam M [ORNL] [ORNL

2007-01-01T23:59:59.000Z

50

Actively driven thermal radiation shield  

DOE Patents (OSTI)

A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

2002-01-01T23:59:59.000Z

51

Silica powders for powder evacuated thermal insulating panel and method  

DOE Patents (OSTI)

A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

52

Silica powders for powder evacuated thermal insulating panel and method  

DOE Patents (OSTI)

A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

1996-01-02T23:59:59.000Z

53

Silica powders for powder evacuated thermal insulating panel and method  

DOE Patents (OSTI)

A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

1995-01-01T23:59:59.000Z

54

Silica powders for powder evacuated thermal insulating panel and method  

DOE Patents (OSTI)

A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

1994-01-01T23:59:59.000Z

55

Insulation Workers  

Science Journals Connector (OSTI)

Insulation workers install or spray insulation on pipes, boilers, walls, roofs, floors, etc. to improve thermal insulation or waterproofing. Most thermal insulation is now composed of man-made mineral ... rock wo...

R. Riala

2000-01-01T23:59:59.000Z

56

Thermal management of batteries using a Variable-Conductance Insulation (VCI) enclosure  

SciTech Connect

Proper thermal management is important for optimum performance and durability of most electric-vehicle batteries. For high-temperature cells such as sodium/sulphur, a very efficient and responsive thermal control system is essential. Heat must be removed during exothermic periods and retained when the batteries are not in use. Current thermal management approaches rely on passive insulation enclosures with active cooling loops that penetrate the enclosure. This paper presents the design, analysis, and testing of an enclosure with variable conductance insulation (VCI). VCI uses a hydride with an integral electric resistance heater to expel and retrieve a small amount of hydrogen gas into a vacuum space. By controlling the amount of hydrogen gas, the thermal conductance can be varied by more than 100:1, enabling the cooling loop (cold plate) to be mounted on the enclosure exterior. By not penetrating the battery enclosure, the cooling system is simpler and more reliable. Also, heat can be retained more effectively when desired. For high temperatures, radiation shields within the vacuum space are required. Ceramic spacers are used to maintain separation of the steel enclosure materials against atmospheric loading. Ceramic-to-ceramic thermal contact resistance within the spacer assembly minimizes thermal conductance. Two full-scale (0.8-m {times} 0.9-m {times} 0.3-m) prototypes were designed, built, and tested under high-temperature 200{degrees}-350{degrees}C battery conditions. With an internal temperature of 330{degrees}C (and 20{degrees}C ambient), the measured total-enclosure minimum heat loss was 80 watts (excluding wire pass-through losses). The maximum heat rejection was 4100 watts. The insulation can be switched from minimum to maximum conductance (hydrogen pressure from 2.0 {times} 10{sup -3} to 8 torr) in 3 minutes. Switching from maximum to minimum conductance was longer (16 minutes), but still satisfactory because of the large thermal mass of the battery.

Burch, S.D.; Parish, R.C.; Keyser, M.A.

1995-05-01T23:59:59.000Z

57

Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels  

SciTech Connect

A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Carbary, Lawrence D [Dow Corning Corporation, Midland, MI

2013-01-01T23:59:59.000Z

58

Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the ZonalGEF Method  

E-Print Network (OSTI)

Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal­GEF Method Walter to analyze radiative heat transfer in high porosity insulation materials which have a large scattering for LI900, a material used in the insulation tile for the space shuttle. Comparisons are presented

Yuen, Walter W.

59

insulation  

Science Journals Connector (OSTI)

The material used to insulate an electrical conductor, i.e., to enable a point to maintain an insulated state. Note: Insulations consist of dielectric materials. Airspace may serve...See also ...

2001-01-01T23:59:59.000Z

60

Thermal balance of a wall with PCM-enhanced thermal insulation  

SciTech Connect

ABSTRACT: PCM insulation mixtures function as lightweight thermal mass components. It is expected that these types of dynamic insulation systems will contribute to the objective of reducing energy use in buildings. In this paper, dynamic thermal properties of a material in which phase hange occurs are analyzed, using the temperature-dependent specific heat model. Integral formula for the total heat flow in finite time interval, across the surface of a slab of the phase change material, was derived. Simulations have been performed to analyze heat transfer through a light-weight wall assembly with PCM-enhanced insulation, in different external climate thermal conditions. Results of simulations indicate that for cyclic processes, the effect of PCM in an insulation layer results rather in time shifting of the heat flux extreme values than in reduction of the total heat flow. The heat gains maxima, resulting in high cooling loads, are shifted in time by about two hours and reduced about 15% to 30% for not very high external sol-air temperatures.

Kosny, Jan [ORNL] [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences] [Institute of Fundamental Technological Research, Polish Academy of Sciences; Williams, Teresa [ORNL] [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Pipeline system insulation: thermal insulation and corrosion prevention. December 1985-February 1988 (citations from the rubber and plastics research association data base). Report for December 1985-February 1988  

SciTech Connect

This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems used to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline-insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester insulated-pipeline systems are among the topics discussed. Applications in solar-heating systems, underground water, oil, and gas, interior hot water and cold water lines under seawater, and chemical-plant pipeline-system insulation are included. (This updated bibliography contains 139 citations, all of which are new entries to the previous edition.)

Not Available

1988-03-01T23:59:59.000Z

62

Measurements of thermal properties of insulation materials by using transient plane source technique  

Science Journals Connector (OSTI)

The paper reports on the measuring technique and values of the measured thermal properties of some commonly used insulation materials produced by local manufacturers in Saudi Arabia. Among the thermal properties of insulation materials, the thermal conductivity (k) is regarded to be the most important since it affects directly the resistance to transmission of heat (R-value) that the insulation material must offer. Other thermal properties, like the specific heat capacity (c) and density (?), are also important only under transient conditions. A well-suited and accurate method for measuring the thermal conductivity and diffusivity of materials is the transient plane source (TPS) technique, which is also called the hot disk (HD). This new technique is used in the present study to measure the thermal conductivity of some insulation materials at room temperature as well as at different elevated temperature levels expected to be reached in practice when these insulations are used in air-conditioned buildings in hot climates. Besides, thermal conductivity values of the same type of insulation material are measured for samples with different densities; generally, higher density insulations are used in building roofs than in walls. The results show that the thermal conductivity increases with increasing temperature and decreases with increasing density over the temperature and density ranges considered in the present investigation.

Saleh A. Al-Ajlan

2006-01-01T23:59:59.000Z

63

Method and apparatus for filling thermal insulating systems  

DOE Patents (OSTI)

A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

Arasteh, D.K.

1992-01-14T23:59:59.000Z

64

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, B.L.

1985-03-29T23:59:59.000Z

65

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network (OSTI)

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied… (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

66

Compression of felt?type thermal insulation layer for underfloor heating system and floor impact sound  

Science Journals Connector (OSTI)

In Korea almost every house uses underfloor heating which has advantages of thermal comfort and energy efficiency. However when it is constructed for high?rise apartment houses it yields a problem in floor impact sound insulation. It accounts for the fact that a foam?type thermal insulator sandwiched between structural slab and heating floor functions as a spring and easily transmits impacts on the floor to the slab. In that case the system's transmissibility is determined by dynamic stiffness of the thermal insulation layer and the lower the dynamic stiffness is the more the floor impact is isolated. For that reason apartments construction companies are attempting to lower the dynamic stiffness of the thermal insulation layer for impact sound reduction. As part of the attempt felt?type materials with relatively low dynamic stiffness such as glass wool or polyester felt are considered as a substitution for the foam?type thermal insulator. However there is a possibility that compression of the felt?type materials would increase the dynamic stiffness and the impact sound insulation effect at early stage might be weakened in the long term. This paper investigates the correlation between gradual compression of the felt?type thermal insulation layer and the impact sound variation.

Tongjun Cho; Hyun?Min Kim

2008-01-01T23:59:59.000Z

67

A new approach to low-conductivity, environmentally acceptable thermal insulation. Final report  

SciTech Connect

The object of this work was to develop a low-conductivity, economical, environmentally benign insulation. Specific objectives were to develop the following: (1) a very low conductivity use as ``super insulation`` in refrigerators, and (2) a general-purpose insulation for buildings and other applications. The technical goals of this work were to minimize gas phase, solid phase, and radiative conductivity. The novel approach pursued to achieve low gas phase conductivity was to blow foam with a removable gas or vapor, encapsulate the foam panel in a pouch made with a barrier film, and introduce a very low conductivity gas as the insulating gas phase. For super insulation and general-purpose insulation, the gases of choice were xenon and krypton, respectively. To control cost, the gases were present at low pressure, and the insulating panel was encapsulated with an impermeable polymeric film. Solid-phase conductivity was minimized by using low-density, open-cell, polyurethane foam. For super insulation, radiative heat transfer was impeded by placing aluminized Mylar films between relatively transparent 70-mil foam slabs. For general-purpose insulation, it was projected to impede radiative heat transfer by achieving the same very small cell size with open-cell CO{sub 2}-blown foam as is now achieved with closed-cell CO{sub 2}-blown foam.

Buckley, B.; Day, J.; Ferrero-Heredia, M.; Shanklin, E.; Varadarajan, G.; Woodruff, L.

1996-02-01T23:59:59.000Z

68

Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock  

E-Print Network (OSTI)

1 Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock-0210 Phone: (937) 229-2852 Fax: (937) 229-4766 Email: Kelly.Kissock@notes.udayton.edu ABSTRACT Open tanks

Kissock, Kelly

69

Recycling Polyurethane Foam and its Use as Filler in Renovation Mortar with Thermal Insulating Effect  

Science Journals Connector (OSTI)

Once the building have dried, it is necessary to assess the state of the renovation mortar with thermal insulating effect as well as the backing wall. If the building is not affected by the degrading effects, it ...

V. Václavík; T. Dvorský; V. Dirner…

2013-01-01T23:59:59.000Z

70

Thermal Performance Characteristics of a Combined External Insulation System under Simulated Space Vehicle Operating Conditions  

Science Journals Connector (OSTI)

The main purpose of this investigation was to determine the long-term thermal performance characteristics, with liquid hydrogen, of an externally applied combined foam/multilayer insulation system under simulated...

F. J. Muller; P. L. Klevatt

1995-01-01T23:59:59.000Z

71

An Analytical Model for Determining the Thermal Conductivity of Closed-Cell Foam Insulation  

Science Journals Connector (OSTI)

The purpose of this paper is to present analytical methods and some preliminary test results for determining the thermal conductivity and net heat flow in closed-cell foam materials used as cryogenic insulation. ...

M. B. Hammond Jr.

1995-01-01T23:59:59.000Z

72

Development of a simplified thermal analysis procedure for insulating glass units  

E-Print Network (OSTI)

A percentage of insulating glass (IG) units break each year due to thermally induced perimeter stresses. The glass industry has known about this problem for many years and an ASTM standard has recently been developed for the design of monolithic...

Klam, Jeremy Wayne

2009-06-02T23:59:59.000Z

73

Development of New Generation of Thermally-Enhanced Fiber Glass Insulation  

SciTech Connect

This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Miller, William A [ORNL; Atchley, Jerald Allen [ORNL; Shrestha, Som S [ORNL

2010-03-01T23:59:59.000Z

74

Use of coconut fiber as a low-cost thermal insulator  

SciTech Connect

Cost is one of the major factors to be considered when choosing a thermal insulator. Design engineers continuously strive to provide the best at the lowest possible cost. In the tropics climate conditions are essentially hot and humid and a cause for daily discomfort. To some extent, air-conditioning of buildings has solved this problem. The major deterrent to air-conditioning is the exorbitant cost of imported thermal insulation materials. This has prompted a search for local, low-cost but effective thermal insulation for buildings. Coconut fiber is available at minimal cost from the copra industry in Trinidad, as it is a waste product from the coconut. The viability of using coconut fiber as building thermal insulation was explored by conducting thermal conductivity tests on 200 mm X 400 mm X 60 mm thick slab-like specimens. The test equipment used was a locally designed constant temperature hot box apparatus. This apparatus was designed to test slab-like specimens under steady-state conditions. The reliability if this experimental set up was checked using Gypsum Plaster. The thermal conductivity test results for coconut fiber over the density range 30 kg/m{sup 3} to 115 kg/m{sup 3} showed the characteristic hooked shape graph for fibrous material. For the 60 mm thick specimens at a mean temperature of 39 C, a minimum thermal conductivity of 0.058 W/mK occurred at an optimum density of 85 kg/m{sup 3}. The thermal conductivity of commonly used industrial insulators, namely loose-fill expanded vermiculite, cellular glass and blanket fiber glass, at a mean temperature of 38 C are 0.066 W/mK, 0.061 W/mK and 0.052 W/mK respectively. When compared, these results show that air dried coconut fiber has far reaching potential for use as an effective building thermal insulation.

Kochhar, G.S.; Manohar, K. [Univ. of the West Indies, St. Augustine (Trinidad and Tobago)

1997-11-01T23:59:59.000Z

75

Thermal self-oscillations in radiative heat exchange  

E-Print Network (OSTI)

We report the effect of relaxation-type self-induced temperature oscillations in the system of two parallel plates of SiO$_2$ and VO$_2$ which exchange heat by thermal radiation in vacuum. The nonlinear feedback in the self-oscillating system is provided by metal-insulator transition in VO$_2$. Using the method of fluctuational electrodynamics we show that under the action of external laser of a constant power, the temperature of VO$_2$ plate oscillates around its phase transition value.

Dyakov, Sergey; Yan, Min; Qiu, Min

2014-01-01T23:59:59.000Z

76

Thermally insulated pipelines successfully move high-wax-content crude offshore Gabon  

SciTech Connect

Three thermally insulated pipelines have been installed at a water depth of 35 m (115 ft) in Shell Gabon's Lucina Marine field. The three lines consist of two 2-km (1.24-mile) long flowlines connecting drilling and production platforms and a 3.2 km (2 mile) long loading line connecting a production platform to a storage tanker permanently moored in the field. All three pipelines are of 10.75-in. OD with rigid polyurethane-foam insulation contained in a high-density polyethylene sleeve. The pipelines have been designed with an operating temperature of 90/degree/C. (194/degree/F.). Thermal insulation was chosen because of the Lucina crude's high wax cloud point of 55/degree/C. (131/degree/F.). Without insulation, cooling of the crude in subsea pipelines would have lead to rapid wax deposition. Details of the coating and insulation of the line and riser pipe are given. For the line pipe, a thermal-insulation system consisting of polyurethane foam (PUF) within a polyethylene (PE) sleeve pipe was chosen.

Hales, M.

1982-01-25T23:59:59.000Z

77

Phase-change radiative thermal diode  

SciTech Connect

A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important applications in the development of future contactless thermal circuits or in the conception of radiative coatings for thermal management.

Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)] [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Biehs, Svend-Age, E-mail: s.age.biehs@uni-oldenburg.de [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany)] [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany)

2013-11-04T23:59:59.000Z

78

A thermal distribution function for relativistic magnetically insulated electron flows  

SciTech Connect

A distribution function is presented that may be used to study the effects of finite temperature on the equilibrium and stability properties of magnetically insulated electron flows. This distribution function has the useful property that it generates the thoroughly studied class of constant Q = ..omega../sup 2//sub p//..cap omega../sup 2/ equilibria in its zero-temperature limit. Analytic solutions are given for the general, constant Q, zero-temperature equilibria.

Desjarlais, M.P.; Sudan, R.N.

1986-05-01T23:59:59.000Z

79

A thermal distribution function for relativistic magnetically insulated electron flows  

Science Journals Connector (OSTI)

A distribution function is presented that may be used to study the effects of finite temperature on the equilibrium and stability properties of magnetically insulated electron flows. This distribution function has the useful property that it generates the thoroughly studied class of constant Q=?2 p /?2 equilibria in its zero?temperature limit. Analytic solutions are given for the general constant Q zero?temperature equilibria.

M. P. Desjarlais; R. N. Sudan

1986-01-01T23:59:59.000Z

80

Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities  

Science Journals Connector (OSTI)

The advantages and disadvantages of the thermal building insulation materials and solutions have been treated. Both traditional, state-of-the-art and possible materials and solutions beyond these have been investigated. Examples of these may be mineral wool, expanded polystyrene, extruded polystyrene, polyurethane, vacuum insulation panels, gas insulation panels, aerogels, and future possibilities like vacuum insulation materials, nano insulation materials and dynamic insulation materials. Various properties, requirements and possibilities have been compared and studied. Among these are thermal conductivity, perforation vulnerability, building site adaptability and cuttability, mechanical strength, fire protection, fume emission during fire, robustness, climate ageing durability, resistance towards freezing/thawing cycles, water resistance, costs and environmental impact. Currently, there exist no single insulation material or solution capable of fulfilling all the requirements with respect to the most crucial properties. That is, for the buildings of today and the near future, several insulation materials and solutions are used and will have to be used depending on the exact circumstances and specifications. As of today, new materials and solutions like e.g. vacuum insulation panels are emerging, but only slowly introduced in the building sector partly due to their short track record. Therefore it will be of major importance to know the limitations and possibilities of all the insulation materials and solutions, i.e. their advantages and disadvantages. In this respect new conceptual thermal building insulation materials are also discussed.

Bjørn Petter Jelle

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal characterisation of a lightweight mortar containing expanded perlite for underground insulation  

Science Journals Connector (OSTI)

This paper aims to investigate the use of expanded perlite in mortar, for further application of shotcrete to thermal insulation of underground mines. Mixes were designed according to the typical proportions of underground shotcrete, with the sand volumetrically substituted by expanded perlite. Tests of samples were conducted at four ages. Transient plane source technique was utilised to measure the thermal properties. The results showed reduced weight, decreased thermal conductivity, deteriorated thermal diffusivity, and sacrificed mechanical strength with perlite addition. Experimental data analysis and explanation in this paper would establish useful fundamentals for further application of expanded perlite to underground shotcrete.

W.V. Liu; D.B. Apel; V. Bindiganavile

2011-01-01T23:59:59.000Z

82

11 - Stresses due to Change of Air Temperature and Superficial Thermal Insulation  

Science Journals Connector (OSTI)

Experience shows that most cracks in mass concrete structures are originally superficial cracks, but some of them may become larger and deeper cracks later on which will reduce the safety and durability of the structure. Thermal insulation is the most efficient measure for preventing superficial cracks of mass concrete structures.

Zhu Bofang

2014-01-01T23:59:59.000Z

83

Recent Experiences with Corrosion Beneath Thermal Insulation in a Chemical Plant  

E-Print Network (OSTI)

Corrosion of carbon and stainless steels under wet thermal insulation can be a serious problem and can be especially prevalent in the humid Gulf Coast area. This paper discusses an inspection program that has been in progress since late 1982 at a 10...

Long, V. C.; Crawley, P. G.

1984-01-01T23:59:59.000Z

84

Steady-State Thermal Performance Evaluation of Steel-Framed Wall Assembly with Local Foam Insulation  

SciTech Connect

During January and May, 2009, two configurations of steel-framed walls constructed with conventional 2 4 steel studs insulated with R-19 ~14cm. (5.5-in. thick) and R-13 ~9cm. (3.5-in. thick) fiberglass insulation batts were tested in the Oak Ridge National Laboratory (ORNL) guarded hot-box using ASTM C1363 test procedure. The first test wall used conventional 2 4 steel studs insulated with 2.5-cm. (1-in.) thick foam profiles, called stud snugglers. These stud snugglers converted the 2 4 wall assembly into a 2 6 assembly allowing application of R-19 fiberglass insulation. The second wall tested for comparison was a conventional 2 4 steel stud wall using R-13 insulation batts. Further, numerical simulations were performed in order to evaluate the steady-state thermal performance of various wood- and steel-framed wall assemblies. The effects of adding the stud-snugglers to the wood and steel studs were also investigated numerically. Different combinations of insulation and framing factor were used in the simulations.

Kosny, Jan [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL

2010-01-01T23:59:59.000Z

85

Pipeline-system insulation: Thermal insulation and corrosion prevention. December 1985-September 1989 (Citations from the Rubber and Plastics Research Association data base). Report for December 1985-September 1989  

SciTech Connect

This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems utilized to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester-insulated pipeline systems are among the topics discussed. Applications in solar heating systems, underground water, oil, and gas, interior hot water and cold water lines under seawater, and chemical plant pipeline system insulation are included. (This updated bibliography contains 231 citations, 92 of which are new entries to the previous edition.)

Not Available

1989-10-01T23:59:59.000Z

86

Pipeline-system insulation: thermal insulation and corrosion prevention. January 1976-November 1985 (Citations from the Rubber and Plastics Research Association data base). Report for January 1976-November 1985  

SciTech Connect

This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems used to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline-insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester insulated-pipeline systems are among the topics discussed. Applications in solar-heating systems, underground water, oil, and gas, interior hot-water and cold-water lines under seawater, and chemical-plant pipeline-system insulation are included. (This updated bibliography contains 266 citations, none of which are new entries to the previous edition.)

Not Available

1988-03-01T23:59:59.000Z

87

Polyurethane/polyisocyanurate foam thermal insulation. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of polyisocyanurate/polyurethane foam for thermal insulation building materials. The topics discussed include flammability and smoke generation characteristics, building frame sheathing materials, fiber reinforcement, laminated insulation foam boards, substitution for controversial formaldehyde foams and aging characteristics. Performance evaluations of existing buildings with installed foam insulation are included. (Contains a minimum of 187 citations and includes a subject term index and title list.)

Not Available

1994-06-01T23:59:59.000Z

88

Detailed thermal performance data on conventional and highly insulating window systems  

SciTech Connect

Data on window heat-transfer properties (U-value and shading coefficient (SC)) are usually presented only for a few window designs at specific environmental conditions. With the introduction of many new window glazing configurations (using low-emissivity coatings and gas fills) and the interest in their annual energy performance, it is important to understand the effects of window design parameters and environmental conditions on U and SC. This paper discusses the effects of outdoor temperature, wind speed, insolation, surface emittance, and gap width on the thermal performance of both conventional and highly insulating windows. Some of these data have been incorporated into the fenestration chapter of the ''ASHRAE Handbook - 1985 Fundamentals.'' The heat-transfer properties of multiglazed insulating window designs are also presented. These window systems include those having (1) one or more low-emittance coatings; (2) low-conductivity gas-fill or evacuated cavities; (3) a layer of transparent silica aerogel, a highly insulating microporous material; or (4) combinations of the above. Using the detailed building energy analysis program, DOE 2.1B, we show that these systems, which all maintain high solar transmittance, can add more useful thermal energy to a space than they lose, even in a northern climate. Thus, in terms of seasonal energy flows, these fenestration systems out-perform insulated walls or roofs.

Arasteh, D.; Selkowitz, S.; Hartmann, J.

1986-01-01T23:59:59.000Z

89

Thermal Effects of Moisture in Rigid Insulation Board  

E-Print Network (OSTI)

.... ~ .-------. PHOENIX ~ .---. 27 26 26 ~.............. ---=: ~ 2. ~ -------..; ~ 2 ----. 22 0.4 0.6 0.6 0,7 0.8 THERMAL RESISTANCE RATIO FIGURE 10: PEAK AUGUST COOLING LOADS 0.8 ~ ~ 7 .- E-::::::. r--::::: 3 -I---- ~MITHI AUSTIN ~ENIX ~ 0...th Conference on Roofing Technology. National Roofing Contr

Crow, G. W.

90

APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR GENERAL PURPOSE RADIOACTIVE MATERIALS PACKAGINGS  

SciTech Connect

Polyurethane foam has been employed in impact limiters for large radioactive materials packagings since the early 1980's. Its consistent crush response, controllable structural properties and excellent thermal insulating characteristics have made it attractive as replacement for the widely used cane fiberboard for smaller, drum size packagings. Accordingly, polyurethane foam was chosen for the overpack material for the 9977 and 9978 packagings. The study reported here was undertaken to provide data to support the analyses performed as part of the development of the 9977 and 9978, and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

2009-02-18T23:59:59.000Z

91

Thermal conductivity of the insulation system of the stator winding of a high-power turbogenerator with air cooling  

Science Journals Connector (OSTI)

Values of the thermal-conductivity coefficient of specimens of the frame insulation manufactured from pre- and unimpregnated, mica-containing tapes are determined. It is established that the tape structure, te...

A. Sh. Azizov; A. M. Andreev; A. M. Kostel’ov…

2009-03-01T23:59:59.000Z

92

Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties  

Science Journals Connector (OSTI)

Abstract Polylactide (PLA) and PLA composites with void fractions as high as 65% were fabricated using low-pressure foam injection molding (FIM) and high-pressure FIM (HPFIM) equipped with mold opening and gas counter pressure. The cellular morphology and crystallinity were characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The mechanical (flexural and impact resistance) and thermal insulation properties were also measured. Unlike, talc, the addition of nanoclay markedly enhanced the ductility of solid PLA samples as well as significantly improved the cell morphology of foamed samples, which resulted in the increased specific modulus, strength and impact resistance. In all the PLA samples made using HPFIM, with an increased void fraction up to 55%, the flexural rigidity increased up to four times, the specific impact resistance increased up to 15%, and the thermal insulation increased up to three times. The results of this investigation revealed that low-density PLA composite foams with improved rigidity, impact strength, and thermal insulation can be developed using HPFIM for various applications such as transportation and construction industries.

A. Ameli; D. Jahani; M. Nofar; P.U. Jung; C.B. Park

2014-01-01T23:59:59.000Z

93

EVALUATION OF THERMAL CONDUCTIVITY OF INSTALLED-IN-PLACE POLYURETHANE FOAM INSULATION BY EXPERIMENT AND ANALYSIS  

SciTech Connect

In the thermal analysis of the 9977 package, it was found that calculated temperatures, determined using a typical thermal analysis code, did not match those measured in the experimental apparatus. The analysis indicated that the thermal resistance of the overpack in the experimental apparatus was less than that expected, based on manufacturer's reported value of thermal conductivity. To resolve this question, the thermal conductivity of the installed foam was evaluated from the experimental results, using a simplified analysis. This study confirmed that the thermal resistance of the experimental apparatus was lower than that which would result from the manufacturer's published values for thermal conductivity of the foam insulation. The test package was sectioned to obtain samples for measurement of material properties. In the course of the destructive examination a large uninsulated region was found at the bottom of the package, which accounted for the anomalous results. Subsequent measurement of thermal conductivity confirmed the manufacturer's published values. The study provides useful insight into the use of simplified, scoping calculations for evaluation of thermal performance of packages.

Smith, A; Bruce Hardy, B; Kurt Eberl, K; Nick Gupta, N

2007-12-05T23:59:59.000Z

94

Proceedings of the ninth IEA workshop on radiation effects in ceramic insulators  

SciTech Connect

Several IEA workshops have been held over the past few years to discuss the growing number of experimental studies on the intriguing phenomenon of radiation induced electrical degradation (RIED). In the past year, several new RIED irradiation experiments have been performed which have a significant impact on the understanding of the RIED phenomenon. These experiments include a HFIR neutron irradiation experiment on 12 different grades of single- and poly-crystal alumina (450 C, {approximately}3 dpa, 200 V/mm) and several additional neutron, electron and light ion irradiation experiments. The primary objective of the IEA workshop was to review the available RIED studies on ceramic insulators. Some discussion of recent work in other areas such as loss tangent measurements, mechanical strength, etc. occurred on the final afternoon of the workshop. The IEA workshop was held in conjunction with a US-Japan JUPITER program experimenter`s workshop on dynamic radiation effects in ceramic insulators.

Zinkle, S.J.; Burn, G.L. [comps.; Hodgson, E.R.; Shikama, T.

1997-12-31T23:59:59.000Z

95

Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC  

SciTech Connect

The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

Albert F. Zeller

2012-12-28T23:59:59.000Z

96

Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation  

Science Journals Connector (OSTI)

Abstract A novel core material for vacuum thermal insulation, the melamine–formaldehyde (MF) rigid foam was processed from an emulsion of the melamine–formaldehyde resin at temperatures between 130 °C and 150 °C, using pentane as the blowing agent. The achieved porosity was between 92% and 98%. Open pore structure with desired mechanical properties was achieved by variations of the initial chemical composition of liquid reactants and controlled foaming and hardening, employing classical heating. The average pore size was determined directly by SEM and indirectly by measuring the thermal conductivity in a wide pressure range from 10?3 mbar to the atmosphere. Optimization of the synthesis resulted in the base thermal conductivity equal to only 0.006 W m?1 K?1 and an extremely low outgassing rate. The long-term pressure-rise measurements indicate that these MF rigid foams could be the first organic candidates applied as the core material in Vacuum Insulating Panels (VIPs) whose performance may be comparable to selected inorganic core materials. Their further advantages compared to conventional organic foams are their stability, as they can withstand a temperature in excess of 200 °C, and good fire resistance.

V. Nemani?; B. Zajec; M. Žumer; N. Figar; M. Kavšek; I. Miheli?

2014-01-01T23:59:59.000Z

97

Noncontact deep level photo-thermal spectroscopy: Technique and application to semi-insulating GaAs Wafers  

E-Print Network (OSTI)

to high resistivity materials, since the Debye-Huckel length is too large several milli- meters for semi materials. In DLPTS, the thermal recovery of carriers after excita- tion is monitored by a subNoncontact deep level photo-thermal spectroscopy: Technique and application to semi-insulating Ga

Mandelis, Andreas

98

Corrosiveness of wet residential building thermal insulation---Mechanisms and evaluation of electrochemical methods for assessing corrosion behavior  

SciTech Connect

An evaluation has been made of the corrosiveness of selected wet residential building thermal insulation materials in contact with low carbon steel. Investigations were conducted both in wet insulations and in filtered leachates from insulations derived from thirteen cellulosic, three mineral fiber and four foam products. Potentiodynamic polarization measurements are reported from which the overall corrosion response was assessed and then the techniques of Tafel and polarization resistance analysis applied to estimate corrosion rates. Corrosion rates were also estimated electrochemically using a direct reading instrument which performs the rate calculation based on the polarization resistance principle. Direct determinations of corrosion rate were based on weight loss measurements.

Stansbury, E.E. [Stansbury (E.E.), Knoxville, TN (United States)

1991-10-01T23:59:59.000Z

99

Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties  

Science Journals Connector (OSTI)

Abstract Aerogel monoliths were prepared using combinations of cellulose microfibers, cellulose nanofibers and nanozeolites. It was shown that these hybrid materials have tunable thermal conductivity and mechanical properties. Thermal conductivity value as low as 18 mW m?1 K?1 was obtained that confirms the super-insulation ability of these new fibrous aerogels. Synergism on the thermal conductivity properties was shown by adjunction of nanozeolites to cellulose microfibrils by reaching pore size lower than 100 nm that significantly reduces the thermal conductivity of the hybrid aerogels as predicted by Knudsen et al. In one hand, these properties seem to depend strongly on the interactions between the component and their relative fractions. On the other hand, the addition of nanofibrils to micrometric fibers based aerogel yields a significant increase of its stiffness. The higher improvement of the stiffness was obtained when nanofibrils with high surface charge are added. This study certainly opens a new investigation field to optimize the thermal conductivity properties of hybrid nanocellulose based aerogels.

Dounia Bendahou; Abdelkader Bendahou; Bastien Seantier; Yves Grohens; Hamid Kaddami

2014-01-01T23:59:59.000Z

100

Characterization of corrosive agents in polyurethane foams for thermal insulation of pipelines  

Science Journals Connector (OSTI)

Thermal insulated pipelines consists of a pipe, an optional anticorrosive coating, covered by rigid polyurethane (PU) foam and an outer casing made of high-density polyethylene (HDPE). In this paper, a methodology to investigate corrosion under thermal insulation and the compatibility between the polyurethane foams and anticorrosive coatings was developed. It consists of chemical, electrochemical and mass loss tests in aqueous extracts of the foams. The aqueous extracts were prepared according to an adaptation of ASTM C871 standard, taking into account the temperature range commonly employed in pipes operations of heavy petroleum derivatives. The chemical analysis of the extracts included pH, conductivity, phosphate, chloride and fluoride contents. Mass loss, electrochemical impedance and linear polarization were accomplished in autoclave. The influence of temperature, flame retardant and blowing agent was considered on the generation of corrosive agents. It was verified that the content of chloride in the foams is a very important parameter that must be controlled. Still in this paper, the compatibility of polyurethane foams with anticorrosive coatings is preliminary evaluated. The results show that investments on a proper coating selection are essential to guarantee good performance.

F.V.V. de Sousa; R.O. da Mota; J.P. Quintela; M.M. Vieira; I.C.P. Margarit; O.R. Mattos

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR RADIOACTIVE MATERIALS PACKAGINGS.  

SciTech Connect

Polyurethane foam has been widely used as an impact absorbing and thermal insulating material for large radioactive materials packages, since the 1980's. With the adoption of the regulatory crush test requirement, for smaller packages, polyurethane foam has been adopted as a replacement for cane fiberboard, because of its ability to withstand the crush test. Polyurethane foam is an engineered material whose composition is much more closely controlled than that of cane fiberboard. In addition, the properties of the foam can be controlled by controlling the density of the foam. The conditions under which the foam is formed, whether confined or unconfined have an affect on foam properties. The study reported here reviewed the application of polyurethane foam in RAM packagings and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

2007-05-15T23:59:59.000Z

102

Thermal Decomposition of Radiation-Damaged Polystyrene  

SciTech Connect

The radiation-damaged polystyrene material (''polycube'') used in this study was synthesized by mixing a high-density polystyrene (''Dylene Fines No. 100'') with plutonium and uranium oxides. The polycubes were used on the Hanford Site in the 1960s for criticality studies to determine the hydrogen-to-fissile atom ratios for neutron moderation during processing of spent nuclear fuel. Upon completion of the studies, two methods were developed to reclaim the transuranic (TRU) oxides from the polymer matrix: (1) burning the polycubes in air at 873 K; and (2) heating the polycubes in the absence of oxygen and scrubbing the released monomer and other volatile organics using carbon tetrachloride. Neither of these methods was satisfactory in separating the TRU oxides from the polystyrene. Consequently, the remaining polycubes were sent to the Hanford Plutonium Finishing Plant (PFP) for storage. Over time, the high dose of alpha and gamma radiation has resulted in a polystyrene matrix that is highly cross-linked and hydrogen deficient and a stabilization process is being developed in support of Defense Nuclear Facility Safety Board Recommendation 94-1. Baseline processes involve thermal treatment to pyrolyze the polycubes in a furnace to decompose the polystyrene and separate out the TRU oxides. Thermal decomposition products from this degraded polystyrene matrix were characterized by Pacific Northwest National Laboratory to provide information for determining the environmental impact of the process and for optimizing the process parameters. A gas chromatography/mass spectrometry (GC/MS) system coupled to a horizontal tube furnace was used for the characterization studies. The decomposition studies were performed both in air and helium atmospheres at 773 K, the planned processing temperature. The volatile and semi-volatile organic products identified for the radiation-damaged polystyrene were different from those observed for virgin polystyrene. The differences were in the n umber of organic species generated and their concentrations.

J Abrefah GS Klinger

2000-09-26T23:59:59.000Z

103

LBNL-5800E Thermal Performance Impacts of Center-of- Glass Deflections in Installed Insulating  

NLE Websites -- All DOE Office Websites (Extended Search)

00E 00E Thermal Performance Impacts of Center-of- Glass Deflections in Installed Insulating Glazing Units R.G. Hart Lawrence Berkeley National Laboratory C.W. Goudey Lawrence Berkeley National Laboratory D.K. Arasteh Lawrence Berkeley National Laboratory D.C. Curcija Lawrence Berkeley National Laboratory Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division June 2012 To be published in Energy and Buildings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of

104

Thermal Decomposition of Radiation-Damaged Polystyrene  

SciTech Connect

The radiation-damaged polystyrene (given the identification name of 'polycube') was fabricated by mixing high-density polystyrene material ("Dylene Fines # 100") with plutonium and uranium oxides. The polycubes were used in the 1960s for criticality studies during processing of spent nuclear fuel. The polycubes have since been stored for almost 40 years at the Hanford Plutonium Finishing Plant (PFP) after failure of two processes to reclaim the plutonium and uranium oxides from the polystyrene matrix. Thermal decomposition products from this highly cross-linked polystyrene matrix were characterized using Gas Chromatograph/Mass Spectroscopy (GC/MS) system coupled to a horizontal furnace. The decomposition studies were performed in air and helium atmospheres at about 773 K. The volatile and semi-volatile organic products for the radiation-damaged polystyrene were different compared to virgin polystyrene. The differences were in the number of organic species generated and their concentrations. In the inert (i.e., helium) atmosphere, the major volatile organic products identified (in order of decreasing concentrations) were styrene, benzene, toluene, ethylbenzene, xylene, nathphalene, propane, .alpha.-methylbenzene, indene and 1,2,3-trimethylbenzene. But in air, the major volatile organic species identified changed slightly. Concentrations of the organic species in the inert atmosphere were significantly higher than those for the air atmosphere processing. Overall, 38 volatile organic species were identified in the inert atmosphere compared to 49 species in air. Twenty of the 38 species in the inert conditions were also products in the air atmosphere. Twenty-two oxidized organic products were identified during thermal processing in air.

Abrefah, John; Klinger, George S.

2000-09-26T23:59:59.000Z

105

Strongly Enhanced Thermal Transport in a Lightly Doped Mott Insulator at Low Temperature V. Zlatic1,2  

E-Print Network (OSTI)

for various power generation or refrigeration applications which involve so-called green technologies for the charge and thermal transport in a slightly doped Mott insulator that is described by the Falicov, since the magnetic order rarely has a large effect on charge and heat transport in strongly correlated

Freericks, Jim

106

Physics of neutron star surface layers and their thermal radiation  

E-Print Network (OSTI)

Physics of neutron star surface layers and their thermal radiation Alexander Y. Potekhin Ioffe review the physical properties of neutron star surface layers, important for the stellar thermal radiation, taking into consideration the effects of strong magnetic fields. Keywords: Neutron stars

107

A COMPARISON OF TWO THERMAL INSULATION AND STRUCTURAL MATERIALS FOR USE IN TYPE B PACKAGINGS  

SciTech Connect

This paper presents the summary of design features and test results of two Type B Shipping Package prototype configurations comprising different insulating materials developed by the Savannah River National Laboratory (SRNL) for the Department of Energy. The materials evaluated, a closed-cell polyurethane foam and a vacuformed ceramic fiber material, were selected to provide adequate structural protection to the package containment vessel during Normal Conditions of Transport (NCT) and Hypothetical Accident Condition (HAC) events and to provide thermal protection during the HAC fire. Polyurethane foam has been used in shipping package designs for many years because of the stiffness it provides to the structure and because of the thermal protection it provides during fire scenarios. This comparison describes how ceramic fiber material offers an alternative to the polyurethane foam in a specific overpack design. Because of the high operating temperature ({approx}2,300 F) of the ceramic material, it allows for contents with higher heat loads to be shipped than is possible with polyurethane foam. Methods of manufacturing and design considerations using the two materials will be addressed.

Blanton, P.; Eberl, K.

2010-07-16T23:59:59.000Z

108

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

SciTech Connect

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

109

Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems  

SciTech Connect

This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

Not Available

1980-03-01T23:59:59.000Z

110

Effect of gaps on the performance of the vertically installed wet thermal insulator  

SciTech Connect

In SMART, the main flow path of the reactor coolant and the pressurizer partially share common walls in the reactor coolant system. To reduce this heat transfer, the wet thermal insulator (WTI) is installed on the inner wall of the pressurizer. The WTI is constituted of stacked thin stainless steel plates. The water layer width between the plates is chosen to suppress natural convection in each layer. The plates of the WTI require clearance for thermal expansion. When the WTI is installed on a vertical wall, this clearance might cause gaps at the top and bottom at the operating condition. In this study, we focused on the effect of gaps at the both ends on the WTI performance. A numerical simulation was conducted for an 8-layer WTI with gaps at the both ends. To compare with this, a simulation of a WTI without a gap, which is an ideal case, was also conducted. The simulation was conducted in a 2-dimensional manner by a commercial computational fluid dynamics code, FLUENT. The simulations showed that the WTI thermal performance was substantially decreased by a flow that circulated through the top and bottom gaps and water layers at the sides of the WTI. This circulation caused a high temperature difference between the wall and the circulating flow. To find a way to prevent this performance deterioration of the WTI we simulated several cases with the smaller gap heights. However, the flow circulation and the higher heat transfer rate were still observed even at a case with the smallest gap, which seems to be hardly achievable in a real installation. Another way of reducing the flow circulation was suggested and also simulated in this study. (authors)

Kim, S. H.; Kim, Y. I.; Park, C. T.; Choi, S.; Yoon, J. [Korea Atomic Energy Research Inst., Daeduk-daero 989-111, Yuseong-Gu, Daejeon, 305-353 (Korea, Republic of)

2012-07-01T23:59:59.000Z

111

Calcium silicate insulation structure  

DOE Patents (OSTI)

An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

112

Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same  

DOE Patents (OSTI)

A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

1988-01-01T23:59:59.000Z

113

Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques  

SciTech Connect

The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

2014-02-18T23:59:59.000Z

114

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network (OSTI)

Predictive Clothing Insulation Models based on Outdoor AirPREDICTIVE CLOTHING INSULATION MODELS ON BUILDING ENERGYthat the clothing insulation is equal to a constant value of

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

115

Heat transfer in microsphere insulation  

Science Journals Connector (OSTI)

The results of an investigation of heat transfer in a new type of insulation (microsphere insulation) are presented. The effects of the ... gas pressure on the thermal conductivity of the insulation were investig...

R. Wawryk; J. Rafa?owicz

116

Geometric Doppler Effect: Spin-Split Dispersion of Thermal Radiation  

Science Journals Connector (OSTI)

A geometric Doppler effect manifested by a spin-split dispersion relation of thermal radiation is observed. A spin-dependent dispersion splitting was obtained in a structure consisting of a coupled thermal antenna array. The effect is due to a spin-orbit interaction resulting from the dynamics of the surface waves propagating along the structure whose local anisotropy axis is rotated in space. The observation of the spin-symmetry breaking in thermal radiation may be utilized for manipulation of spontaneous or stimulated emission.

Nir Dahan; Yuri Gorodetski; Kobi Frischwasser; Vladimir Kleiner; Erez Hasman

2010-09-21T23:59:59.000Z

117

Temperature measurements using multicolor pyrometry in thermal radiation heating environments  

SciTech Connect

Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China) [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)] [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

2014-04-15T23:59:59.000Z

118

Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units  

E-Print Network (OSTI)

6] M. Bernier, Effects of Glass Plate Curvature on the U-Selkowitz, Research Needs: Glass Solar Reflectance and VinylAnalysis of Insulating Glass Units, Journal of Structural

Hart, Robert

2014-01-01T23:59:59.000Z

119

Modeling without categorical variables : a mixed-integer nonlinear program for the optimization of thermal insulation systems.  

SciTech Connect

Optimal design applications are often modeled by using categorical variables to express discrete design decisions, such as material types. A disadvantage of using categorical variables is the lack of continuous relaxations, which precludes the use of modern integer programming techniques. We show how to express categorical variables with standard integer modeling techniques, and we illustrate this approach on a load-bearing thermal insulation system. The system consists of a number of insulators of different materials and intercepts that minimize the heat flow from a hot surface to a cold surface. Our new model allows us to employ black-box modeling languages and solvers and illustrates the interplay between integer and nonlinear modeling techniques. We present numerical experience that illustrates the advantage of the standard integer model.

Abhishek, K.; Leyffer, S.; Linderoth, J. T.; Mathematics and Computer Science; Lehigh Univ.

2010-06-01T23:59:59.000Z

120

Thermal radiation from magnetic neutron star surfaces  

E-Print Network (OSTI)

We investigate the thermal emission from magnetic neutron star surfaces in which the cohesive effects of the magnetic field have produced the condensation of the atmosphere and the external layers. This may happen for sufficiently cool atmospheres with moderately intense magnetic fields. The thermal emission from an isothermal bare surface of a neutron star shows no remarkable spectral features, but it is significantly depressed at energies below some threshold energy. However, since the thermal conductivity is very different in the normal and parallel directions to the magnetic field lines, the presence of the magnetic field is expected to produce a highly anisotropic temperature distribution, depending on the magnetic field geometry. In this case, the observed flux of such an object looks very similar to a BB spectrum, but depressed in a nearly constant factor at all energies. This results in a systematic underestimation of the area of the emitter (and therefore its size) by a factor 5-10 (2-3).

J. F. Perez--Azorin; J. A. Miralles; J. A. Pons

2004-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radiation of a neutral polarizable particle moving uniformly through a thermal radiation field  

E-Print Network (OSTI)

We discuss the properties of thermal electromagnetic radiation produced by a neutral polarizable nanoparticle moving with an arbitrary relativistic velocity in a heated vacuum background with a fixed temperature. We show that the particle in its own rest frame acquires the radiation temperature of vacuum, multiplied by a velocity-dependent factor, and then emits thermal photons predominantly in the forward direction. The intensity of radiation proves to be much higher than for the particle at rest. For metal particles with high energy, the ratio of emitted and absorbed radiation power is proportional to the Lorentz-factor squared.

G. V. Dedkov; A. A. Kyasov

2014-06-25T23:59:59.000Z

122

Typical Clothing Ensemble Insulation Levels for Sixteen Body Parts  

E-Print Network (OSTI)

Thermal Comfort.1994 CLO Insulation Levels For Sixteen Bodya mesh arm chair whose insulation level was measured. FigureExperimental Conditions. CLO Insulation Levels For Sixteen

Lee, Juyoun; Zhang, Hui; Arens, Edward

2013-01-01T23:59:59.000Z

123

Mode-selective thermal radiation from a microparticle  

SciTech Connect

We experimentally demonstrate that thermal radiation from a micron-sized dielectric particle depends sensitively on its size and shape through the cavity quantum-electrodynamic effect. Our laser trapping technique levitated a high-temperature microsphere of Al{sub 2}O{sub 3} and enabled emission spectroscopy of the single particle. As the particle becomes smaller, a blackbodylike spectrum turns into a spectrum dominated by multiple peaks resonant with whispering gallery modes of the spherical resonator. The observed sharp frequency selectivity is applicable to spectral control of thermal radiation.

Odashima, Hitoshi; Tachikawa, Maki; Takehiro, Kei [Department of Physics, Meiji University, Kawasaki 214-8571 (Japan)

2009-10-15T23:59:59.000Z

124

Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation  

E-Print Network (OSTI)

. Vacuum insulation panel [J]. Vacuum. v46,1995: 839?842 [4] R. E. COLLINS, T. M. SIMKO. Current status of the science and technology of vacuum glazing [J]. Solar Energy. V62, 1998(3):189?213 [5] Douglas M. Smith, Alok Maskar, Ulrich Boes. Aerogel...

Na, W.; Zou, P.

2006-01-01T23:59:59.000Z

125

Thermographic analysis of polyurethane foams integrated with phase change materials designed for dynamic thermal insulation in refrigerated transport  

Science Journals Connector (OSTI)

Abstract The dispersion process of a micro-encapsulated phase change material (n-tetradecane) into a polyurethane foam was studied in order to develop a micro-composite insulating material with both low thermal conductivity and latent heat storage properties. The maximum weight content of micro-capsules added to the cellular matrix was 13.5%. Dynamic thermal properties of hybrid foams were investigated by means of a thermographic analysis. This was found to be a very effective diagnostic technique in detecting the change in heat transfer rate across the micro-composite foam in an indirect way, i.e. by measuring how the surface temperature changes over time under heat irradiation. Such a material would be of interest in the field of transport of perishable goods, particularly those requiring a controlled regime of carriage/storage temperatures.

Andrea Tinti; Antonella Tarzia; Alessandra Passaro; Riccardo Angiuli

2014-01-01T23:59:59.000Z

126

Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere  

E-Print Network (OSTI)

dioxide Water vapor #12;Atmospheric composition (parts per million by volume) · Nitrogen (N2) 780Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere Bill Satzer 3M Company #12;Outline,840 · Oxygen (O2) 209,460 · Argon (Ar) 9340 · Carbon dioxide (CO2) 394 · Methane (CH4) 1.79 · Ozone (O3) 0

Olver, Peter

127

Thermal and non-thermal radiation of rotating polarizable particle moving in an equilibrium background of electromagnetic radiation  

E-Print Network (OSTI)

A theory of thermal and nonthermal radiation in a vacuum background of arbitrary temperature generated by relativistic polarizable particle with spin is proposed. When the particle rotates, radiation is produced by vacuum fluctuations even in the case of zero temperature of the system. In the ultrarelativistic case, the spectral-angular intensity of radiation is concentrated along the velocity of the particle. At finite temperatures of particle and vacuum, the particle temperature (in its rest frame) rather quickly acquires an equilibrium magnitude depending on the velocities of rotation and uniform motion and the background temperature. This equilibrium temperature determines the intensity of radiation. The dynamical slowing down takes a very long time until the kinetic energy of uniform motion and rotation is converted into radiation.

A. A. Kyasov; G. V Dedkov

2014-09-17T23:59:59.000Z

128

Types of Insulation | Department of Energy  

Energy Savers (EERE)

-- into insulation systems that can include a variety of backings, such as kraft paper, plastic film, polyethylene bubbles, or cardboard, as well as thermal insulation materials....

129

The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation.  

E-Print Network (OSTI)

??Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation… (more)

Suardin, Jaffee Arizon

2009-01-01T23:59:59.000Z

130

Theoretical and Experimental Thermal Performance Analysis of Building Shell Components Containing Blown Fiber Glass Insulation Enhanced with Phase Change Material (PCM)  

SciTech Connect

Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central US climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed paper presents experimental and numerical results from thermal performance studies. These studies focus on blown fiber glass insulation modified with a novel spray-applied microencapsulated PCM. Experimental results are reported for both laboratory-scale and full-size building elements tested in the field. In order to confirm theoretical predictions, PCM enhanced fiber glass insulation was evaluated in a guarded hot box facility to demonstrate heat flow reductions when one side of a test wall is subjected to a temperature increase. The laboratory work showed reductions in heat flow of 30% due to the presence of approximately 20 wt % PCM in the insulation. Field testing of residential attics insulated with blown fiber glass and PCM was completed in Oak Ridge, Tennessee. Experimental work was followed by detailed whole building EnergyPlus simulations in order to generate energy performance data for different US climates. In addition, a series of numerical simulations and field experiments demonstrated a potential for application of a novel PCM fiber glass insulation as enabling technology to be utilized during the attic thermal renovations.

Miller, William A [ORNL] [ORNL; Kosny, Jan [ORNL] [ORNL; Yarbrough, David W [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL; Atchley, Jerald Allen [ORNL] [ORNL; Bianchi, Marcus V [ORNL] [ORNL; Smith, John B [ORNL] [ORNL; Fellinger, Thomas [ORNL] [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences] [Institute of Fundamental Technological Research, Polish Academy of Sciences; Lee, Edwin S [ORNL] [ORNL

2010-01-01T23:59:59.000Z

131

INSULATION OF HEATING SYSTEMS  

Science Journals Connector (OSTI)

... C. PALLOT gave a Cantor Lecture to the Royal Society of Arts on “Thermal Insulation at Medium Temperature” on November 23 ; the lecture, which included many topics of ... many topics of current interest, has now been published1. In a bulletin on heat insulation issued by the Ministry of Fuel and Power, it was pointed out that "In ...

1943-05-22T23:59:59.000Z

132

Vacuum insulation properties of phenolic foam  

Science Journals Connector (OSTI)

Characteristic properties of phenolic foam as the interstitial material of a vacuum insulation panel are investigated experimentally. For the measurement of effective thermal conductivity, a vacuum guarded hot plate (VGHP) apparatus is used and the conductivity is measured at various vacuum levels. Radiative properties are found using a Fourier transform infrared spectroscopy (FT-IR) device. Solid conductivity is estimated using the porosity of the foam. Effective thermal conductivity at high level of vacuum is measured to be 5 mW/m K which is sum of solid conductivity (2.56 mW/m K) and radiative conductivity (2.44 mW/m K) with 5% of measurement uncertainty. The pore size of the foam is estimated to be 260 ?m using rarefied gas conduction theory. This ensures insulation performance of phenolic foam up to about 10?3 atm. Other practical characteristics of phenolic foam as the VIP core material are also discussed.

Jongmin Kim; Jae-Hyug Lee; Tae-Ho Song

2012-01-01T23:59:59.000Z

133

Versatile Indian sari: Clothing insulation with different drapes of typical sari ensembles  

E-Print Network (OSTI)

Extension of the Clothing Insulation Database for Standardand air movement on that insulation. , s.l. : s.n. Havenith,Estimation of the thermal insulation and evaporative

Indraganti, Madhavi; Lee, Juyoun; Zhang, Hui; Arens, Edward

2014-01-01T23:59:59.000Z

134

Laboratory test results on the thermal resistance of polyisocyanurate foamboard insulation blown with CFC-11 substitutes: A cooperative industry/government project  

SciTech Connect

The fully halogenated chlorofluorocarbon gases (CFC-11 and CFC-12) are used as blowing agents for foam insulations for building and appliance applications. The thermal resistance per unit thickness of these insulations is greater than that of other commercially available insulations. Mandated reductions in the production of these chemicals may lead to less efficient substitutes and increase US energy consumption by one quad or more. This report describes laboratory thermal and aging tests on a set of industry-produced, experimental polyisocyanurate (PIR) laminate boardstock to evaluate the viability of hydrochlorofluorocarbons (HCFSs) as alternative blowing agents to chlorofluorcarbon-11 (CFC-11). The PIR boards were blown with five gases: CFC-11, HCFC- 123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b. These HCFC gases have a lower ozone depletion potential than CFC-11 or CFC-12. Apparent thermal conductivity (k) was determined from 0 to 50{degrees}C. Results on the laminate boards provide an independent laboratory check on the increase in k observed for field exposure in the Roof Thermal Research Apparatus (RTRA). The measured laboratory increase in k was between 8 and 11% after a 240-d field exposure in the RTRA. Results are reported on a thin-specimen, aging procedure to establish the long-term thermal resistance of gas-filled foams. These thin specimens were planed from the industry-produced boardstock foams and aged at 75 and 150{degrees}F for up to 300 d. The resulting k-values were correlated with an exponential dependency on (diffusion coefficient {times} time){sup {1/2}}/thickness and provided diffusion coefficients for air components into, and blowing agent out of, the foam. This aging procedure was used to predict the five-year thermal resistivity of the foams. The thin-specimen aging procedure is supported with calculations by a computer model for aging of foams. 43 refs., 33 figs., 25 tabs.

McElroy, D.L.; Graves, R.S.; Yarbrough, D.W.; Weaver, F.J.

1991-09-01T23:59:59.000Z

135

Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling  

SciTech Connect

The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.

Pannala, S.; D'Azevedo, E.; Zacharia, T.

2002-02-26T23:59:59.000Z

136

Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments  

E-Print Network (OSTI)

Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments-non-premixed, flame-spread Submitted to Twenty-Ninth International Symposium on Combustion, Sapporo, Japan, July 21 ­ July 26, 2002. #12;Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity

137

Fibrous heat-insulation materials use of the hot wire method to determine thermal conductivity of fibrous heat-insulation materials  

Science Journals Connector (OSTI)

It is desirable to determine the thermal conductivity of materials in the form of plates 30–40 mm thick or of a layer of wool of the same thickness by the hot wire method throughout their service temperature r...

Ya. A. Landa; E. Ya. Litovskii; B. S. Glazachev

138

STATE OF CALIFORNIA INSULATION STAGE CHECKLIST  

E-Print Network (OSTI)

STATE OF CALIFORNIA INSULATION STAGE CHECKLIST CEC-CF-6R-ENV-22 (Revised 05/12) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage be insulated in a manner that resists thermal bridging of the assembly separating conditioned from

139

Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators Ca2Ru1?xMxO4 (M = Mn and Fe)  

Science Journals Connector (OSTI)

Ca2RuO4 is a structurally driven Mott insulator with a metal-insulator transition at TMI = 357K, followed by a well-separated antiferromagnetic order at TN = 110 K. Slightly substituting Ru with a 3d transition metal ion M effectively shifts TMI by weakening the orthorhombic distortion and induces either metamagnetism or magnetization reversal below TN. Moreover, M doping for Ru produces negative thermal expansion in Ca2Ru1?xMxO4 (M = Cr, Mn, Fe, or Cu); the lattice volume expands on cooling with a total volume expansion ratio, ?V/V, reaching as high as 1%. The onset of the negative thermal expansion closely tracks TMI and TN, sharply contrasting classic negative thermal expansion that shows no relevance to electronic properties. In addition, the observed negative thermal expansion occurs near room temperature and extends over a wide temperature interval up to 300 K. These findings underscore new physics driven by a complex interplay between orbital, spin, and lattice degrees of freedom.

T. F. Qi, O. B. Korneta, S. Parkin, Jiangping Hu, and G. Cao

2012-04-26T23:59:59.000Z

140

Measuring the Impact of Experimental Parameters upon the Estimated Thermal Conductivity of Closed-Cell Foam Insulation Subjected to an Accelerated Aging Protocol ? Two Year Results  

SciTech Connect

The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C 1303 standard test method have led to a broad ruggedness test. This test includes the aging of full size insulation specimens for time periods up to five years for later comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. This paper will compare the results after two years of full-thickness aging.

Stovall, Therese K [ORNL] [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Measuring the Impact of Experimental Parameters upon the Estimated Thermal Conductivity of Closed-Cell Foam Insulation Subjected to an Accelerated Aging Protocol  

SciTech Connect

The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Recent efforts to produce a more prescriptive version of the ASTM standard test method have led to the initiation of a broad ruggedness test. This test includes the aging of full size insulation specimens for time periods up to five years for later comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. This paper will cover the structure of the ruggedness test and provide a glimpse of some early trends

Stovall, Therese K [ORNL] [ORNL; Bogdan, mary [Honeywell, Inc.] [Honeywell, Inc.

2008-01-01T23:59:59.000Z

142

INTERFACES AND BOUNDARIES THE SOLID-SOLID INTERFACE IN THERMAL PHONON RADIATION  

E-Print Network (OSTI)

materials as it happens if a metal film deposited on a dielectric crystal is heated and emits thermal pho the thermal boundary resistance predicted by this (>.But no convicting resultsINTERFACES AND BOUNDARIES THE SOLID-SOLID INTERFACE IN THERMAL PHONON RADIATION Institute fiir

Paris-Sud XI, Université de

143

Texture and porosity effects on the thermal radiative behavior of alumina ceramics.  

E-Print Network (OSTI)

1 Texture and porosity effects on the thermal radiative behavior of alumina ceramics. O. Rozenbaum1 for the comprehension of the ceramics thermal properties. Keywords: ceramics, texture, emissivity spectra, infrared (2009) 580-590" DOI : 10.1007/s10765-008-0510-1 #12;2 Abstract Thermal and optical properties

Paris-Sud XI, Université de

144

The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation  

E-Print Network (OSTI)

Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One...

Suardin, Jaffee Arizon

2009-05-15T23:59:59.000Z

145

New and Underutilized Technology: Aerogel Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aerogel Insulation Aerogel Insulation New and Underutilized Technology: Aerogel Insulation October 8, 2013 - 2:54pm Addthis The following information outlines key deployment considerations for aerogel insulation within the Federal sector. Benefits Aerogel insulation products displace current insulation materials. The thermal conductivity of aerogel is very low, allowing it to retain insulation properties at a much thinner thickness. Application Aerogel insulation is appropriate for deployment across piping, ducts, and within most building categories. It should be considered in building design, construction, or major renovation. Key Factors for Deployment Aerogel insulations are more expensive than typical insulations. However, they are ideal for special applications, such as translucent wall panels.

146

Near-field thermal radiation transfer controlled by plasmons in graphene  

E-Print Network (OSTI)

It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange ...

Ilic, Ognjen

147

Flashlamp radiation recycling for enhanced pumping efficiency and reduced thermal load  

DOE Patents (OSTI)

A method for recycling laser flashlamp radiation in selected wavelength ranges to decrease thermal loading of the solid state laser matrix while substantially maintaining the pumping efficiency of the flashlamp.

Jancaitis, Kenneth S. (Pleasant Hill, CA); Powell, Howard T. (Livermore, CA)

1989-01-01T23:59:59.000Z

148

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

149

Insulation Resistance  

Science Journals Connector (OSTI)

n...(1) The electrical resistance between two conductors or systems of conductors separated only by an insulating material. The resistance of a particular insulation may be measured by dividing the v...

Jan W. Gooch

2011-01-01T23:59:59.000Z

150

Insulation resistance  

Science Journals Connector (OSTI)

n....(1) The electrical resistance between two conductors or systems of conductors separated only by an insulating material. The resistance of a particular insulation may be measured by dividing the ...

2007-01-01T23:59:59.000Z

151

Thermoregulated enclosure for controlling thermal drift in a radiation calorimeter  

SciTech Connect

The ability to control thermal drifts is essential in operating a calorimeter. We investigated a thermal enclosure, which envelops the calorimeter with temperature-regulated air, thus thermally isolating the calorimeter from the room. The desired temperature in the enclosure is controlled by a control circuit and a thermoelectric device, which works as a Peltier effect heat pump. In this report, the details of the enclosure design and construction are presented with actual performance evaluations.

Kubo, H.; Brown, D.E.; Russell, M.D.

1985-05-01T23:59:59.000Z

152

Heat and Mass Transfer in a Wetted Thermal Insulation of hot Water Pipes Operating Under Flooding Conditions  

Science Journals Connector (OSTI)

We present the results of numerical simulation of the thermal regimes of hot water pipes under flooding conditions with account for evaporation and diffusion ... modeling thermal regimes of hot water pipes under

V. Yu. Polovnikov; E. V. Gubina

2014-09-01T23:59:59.000Z

153

Radio-transparent multi-layer insulation for radiowave receivers  

SciTech Connect

In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is particularly suitable for large-aperture systems. This technology is expected to be applicable to various fields, including radio astronomy, geo-environmental assessment, and radar systems.

Choi, J. [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of)] [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Ishitsuka, H. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan)] [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Mima, S. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oguri, S., E-mail: shugo@post.kek.jp [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, K. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan) [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Tajima, O. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan) [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2013-11-15T23:59:59.000Z

154

Invention disclosure: modular passive solar walls with swivel types of insulation systems  

SciTech Connect

The invention comprises means of controlling the insulation and radiation of passive solar thermal storage columns for heating and cooling of homes and other structures. In one embodiment rotatable insulating panels control the exposure of round thermal storage columns to daytime sunlight and the nighttime sky. In a second embodiment the rotatable insulating panels are positioned in concave depressions formed in vertical thermal storage columns. These columns include individual thermal convection means formed therein and are particularly suited to precast concrete or masonry construction. The initial experimental test results of the first embodiment of the invention have been included in this report, and this invention has been studied as a possible application for the City of Ann Arbor retrofit housing project. The preliminary test results of the prototype have been achieved and reported.

Lee, K.S.

1982-01-01T23:59:59.000Z

155

Thermal characteristics of tubular receivers of solar radiation line concentrators  

Science Journals Connector (OSTI)

A stationary thermal model of an LCS-HR system is considered, taking into account the basic parameters of the problem: availability of a transparent screen, selectivity of the receiver, characteristics of the ...

Sh. I. Klychev; R. A. Zakhidov; R. Khuzhanov; Z. Sh. Klychev…

2013-10-01T23:59:59.000Z

156

2658 heat insulation [n] (1)  

Science Journals Connector (OSTI)

constr. (1. Protection against cold provided by cold-shielding materials in outer walls of a building to conserve heat and save energy. 2. In English, the generic term thermal insulation is used for ...

2010-01-01T23:59:59.000Z

157

Fireball during combustion of hydrocarbon fueld releases II. Thermal radiation  

Science Journals Connector (OSTI)

The processes of radiative heat transfer in a fireball which develops upon ignition of a cloud of hydrocarbon fuel near the Earth’s surface are simulated numerically. The emissive characteristics of combustion pr...

G. M. Makhviladze; J. P. Roberts; S. E. Yakush

158

Thermal and mechanical properties of polyurethane foams and a survey of insulating concretes at cryogenic temperatures. Final report, January 1979-February 1984  

SciTech Connect

Thermal and mechanical properties of expanded plastics, foams, are reported. The system studied was rigid, closed cell, CCl/sub 3/F blown, polyether based polyurethane. The primary temperature range of study was 100 to 300 K; however, several properties were determined to 4 K. The nominal densities of the foams tested were 32, 64, and 96 kg/cu m. Properties reported are thermal conductivity, thermal expansion, strength and moduli in tension and in compression, proportional limit, yield strength, ultimate strength, and shear strength. Physical properties were determined both parallel and perpendicular to the orthogonal axes of the bulk supplies. The gas content of the specimens was determined using a gas chromatograph-mass spectrometer and with a gas displacement pycnometer. Empirical procedures for estimating the temperature dependent thermophysical properties were developed. These procedures are based on the experimental data and utilize the characterization parameters for molar gas concentration, gas pressure, and cell morphology. Regulations affecting vapor dispersion in the area around liquefied natural gas facilities make it attractive to construct dikes and impounding areas out of materials having low thermal conductivities. Several insulating concretes have the general properties required for such applications. Screening tests were done to determine the thermal conductivity, modulus of rupture, and the compressive strength of several polyester based materials with glass bead or perlite aggregate and of portland cement based materials with vermiculite or polystyrene aggregate. A bibliography resulting from an extensive literature survey of lightweight concretes is presented. Seven of the references which were particularly applicable are presented in annotated form.

Sparks, L.L.; Arvidson, J.M.

1984-04-01T23:59:59.000Z

159

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network (OSTI)

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Milorad Boji?; Dragan Cvetkovi?; Marko Mileti?; Jovan Maleševi?; Harry Boyer

2012-12-18T23:59:59.000Z

160

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network (OSTI)

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Boji?, Milorad; Mileti?, Marko; Maleševi?, Jovan; Boyer, Harry

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

162

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

163

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

164

The effect of write current on thermal flying height control sliders with dual heater/insulator elements  

Science Journals Connector (OSTI)

The effect of write induced pole tip protrusion on the magnetic spacing of the head/disk interface has to be taken into consideration as flying heights approach the spacing regime of a few nano-meters. Thermal flying

Hao Zheng; Hui Li; Kensuke Amemiya; Frank E. Talke

2011-06-01T23:59:59.000Z

165

Magnetic insulation  

Science Journals Connector (OSTI)

... by Winterberg1, led me to look into the background of the idea of 'magnetic insulation'. The purpose of this letter is to point out that the scheme described in ... were presented earlier in a longer article2. In that article he suggested that 'magnetic insulation' might make possible a transformer for 109 V. A year later the same objections ...

JOHN P. BLEWETT

1974-06-28T23:59:59.000Z

166

Aging Characteristics of Polyurethane Foam Insulation  

Science Journals Connector (OSTI)

Closed-cell polyurethane foam insulation displays a time-dependent thermal conductivity characteristic commonly known as aging. Freshly made foam has a relatively low thermal conductivity, which ... in order to e...

J. Navickas; R. A. Madsen

1977-01-01T23:59:59.000Z

167

The effect of write current on thermal flying height control sliders with dual heater/insulator elements  

Science Journals Connector (OSTI)

The effect of write induced pole tip protrusion on the magnetic spacing of the head/disk interface has to be taken into consideration as flying heights approach the spacing regime of a few nano-meters. Thermal flying height control (TFC) sliders are ...

Hao Zheng; Hui Li; Kensuke Amemiya; Frank E. Talke

2011-06-01T23:59:59.000Z

168

Measure of Diffusion Model Error for Thermal Radiation Transport  

E-Print Network (OSTI)

cm2 sh keV c Speed of light 2:99 102 cmsh D Di usion coe cient ( 13 t ) cm F Radiation ux jkcm2 sh k Time iteration t Di erence between consecutive time steps shakes(sh) hi Size of spatial cell, i cm ! Direction of photon propagation ster... backward Euler implicit di erencing in time and lumped LD in space to (5.5), we get 1 c t (k+ 12) i;L (k 12) i;L hi 2 + F (k+ 12) i F (k+ 12) i 12 + hi 2 a (k+ 12) i;L = QL hi 2 ; (8.2a) 1 c t (k+ 12) i;R (k...

Kumar, Akansha

2013-04-19T23:59:59.000Z

169

Crustation insulation  

Science Journals Connector (OSTI)

... nervous systems by wrapping it in multilayered sheaths of a fatty material called myelin. This insulation allows electrical nerve impulses to be conveyed over long distances much more rapidly. Considering ...

Eleanor Lawrence

1999-04-15T23:59:59.000Z

170

insulation blocking  

Science Journals Connector (OSTI)

In a cable, such as a coaxial cable, a paired cable, a twisted pair, or a fiber optic cable, the ability of the outer covering, such as a jacket, sheath, or insulation, to withstand elevated temperatures without ...

2001-01-01T23:59:59.000Z

171

Characterization of New Glass Coated Foam Glass Insulating Tiles by Standard Tests  

Science Journals Connector (OSTI)

A good thermal insulation of buildings is today more and more...1). Among insulating materials, foam glasses are increasing their importance because of...2). Foam glasses are fiber-free inorganic insulation mater...

Andrea Ventrella; Federico Smeacetto…

2012-11-01T23:59:59.000Z

172

Enhanced thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith  

Energy.gov (U.S. Department of Energy (DOE))

Emissions performance comparison of conventional catalytic converter with multi-channel catalytic converter (ceramic fiber insulation layers introduced into ceramic monolith of three-way catalytic converter)

173

Heat transport by residual gases in multilayer vacuum insulation  

Science Journals Connector (OSTI)

The results of an experimental investigation of residual gas heat-transfer in multilayer vacuum insulation are reported. The “thermal paradox” observed ... variation of the residual gas pressure in the insulation

R. S. Mikhal'chenko; A. G. Gerzhin; V. T. Arkhipov…

1968-01-01T23:59:59.000Z

174

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

1993-01-01T23:59:59.000Z

175

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

1993-12-14T23:59:59.000Z

176

Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions  

SciTech Connect

Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

Vora, Heli; Nielsen, Bent; Du, Xu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York (United States)

2014-02-21T23:59:59.000Z

177

Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Insulation Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Get the facts about how insulation works. Read more Estimate the Payback Period for Insulation Adding insulation to your home will likely have an attractive payback. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques will also make your home more comfortable. Any air sealing efforts will complement your insulation efforts, and vice versa. Proper moisture control and ventilation strategies will improve the effectiveness of air sealing and insulation, and vice versa. Featured Insulation for New Home Construction Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL.

178

Clothing Insulation and Accidental Hypothermia in Youth  

Science Journals Connector (OSTI)

... and climbers in Britain. The effects of exercise, wind and wetting on the thermal insulation of a typical clothing assembly were observed. The clothing examined had been worn by ... ) 0-13 1-00 (b) AN ABBREVIATED TABLE or STANDARD VALUES OF AIR INSULATION (IA)4

L. G. C. PUGH

1966-03-26T23:59:59.000Z

179

The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces  

SciTech Connect

Radiator surfaces on high temperature space power systems such as the SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. one of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low Earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon; so that at altitudes less than {approximately}600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture.

Rutledge, S.K. [Lewis Research Center, Cleveland, OH (United States); Hotes, D.L.; Paulsen, P.E. [Cleveland State Univ., OH (United States)

1994-09-01T23:59:59.000Z

180

Effect of sun radiation on the thermal behavior of distribution transformer  

Science Journals Connector (OSTI)

Performance and life of oil-immersed distribution transformers are strongly dependent on the oil temperature. Transformers, working in regions with high temperature and high solar radiation, usually suffer from excessive heat in summers which results in their early failures. In this paper, the effect of sun radiation on the transformer was investigated by using experimental and analytical methods. Transformer oil temperature was measured in two different modes, with and without sun shield. Effects of different parameters such as direct and indirect solar radiation on the thermal behavior of the transformer were mathematically modeled and the results were compared with experimental findings. Agreements between the experimental and numerical results show that the model can reasonably predict thermal behavior of the transformer. It was found that a sun shield has an important effect on the oil temperature reduction in summer which could be as high as 7 °C depending on the load ratio. The amount of temperature reduction by sun shield reduces as the load ratio of transformer increases. By installing a sun shield and reducing oil temperature, transformer life could be increased up to 24% in average.

Ebrahim Hajidavalloo; Mohamad Mohamadianfard

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fire Behaviour of Rigid Foam Insulation Boards  

Science Journals Connector (OSTI)

Low density cellular polymers have established a significant share of the market for insulating materials in the building industry due to their unique combination of low density and low thermal conductivity. Manu...

P. J. Briggs

1986-01-01T23:59:59.000Z

182

Development of microwave foaming method for phenolic insulation foams  

Science Journals Connector (OSTI)

Many types of foams are used for thermal insulation in building, frozen food industries and LNG containment systems. Low thermal conductivity, low density and low flammability are required for thermal insulation. Among many foams, phenolic foams are preferred for thermal insulation due to its lower flammability and lower gas generation than any other polymer insulation foams. However, it takes long time to manufacture large size phenolic foams and the environmental regulation limits the use of blowing agents. Urethane foams and polystyrene foams are widely used in spite of their high flammability and toxic gas generation because conventional phenolic foams usually have higher thermal conductivity than expected. In this work, a foaming method for the resole-type phenolic foams was developed using microwave and air instead of blowing agents, and its thermal and mechanical properties were measured. From the measured results, it was found that the phenolic foams developed had low thermal conductivity and low density suitable for insulation foams.

Bu Gi Kim; Dai Gil Lee

2008-01-01T23:59:59.000Z

183

Compact vacuum insulation  

DOE Patents (OSTI)

Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

Benson, D.K.; Potter, T.F.

1992-10-27T23:59:59.000Z

184

Compact vacuum insulation  

DOE Patents (OSTI)

Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1992-01-01T23:59:59.000Z

185

Millimeter radiation from a 3D model of the solar atmosphere I. Diagnosing chromospheric thermal structure  

E-Print Network (OSTI)

Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the thermal structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearin...

Loukitcheva, Maria; Carlsson, Mats; White, Stephen

2015-01-01T23:59:59.000Z

186

A Monte Carlo synthetic-acceleration method for solving the thermal radiation diffusion equation  

SciTech Connect

We present a novel synthetic-acceleration-based Monte Carlo method for solving the equilibrium thermal radiation diffusion equation in three spatial dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that our Monte Carlo method is an effective solver for sparse matrix systems. For solutions converged to the same tolerance, it performs competitively with deterministic methods including preconditioned conjugate gradient and GMRES. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

Evans, Thomas M., E-mail: evanstm@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Mosher, Scott W., E-mail: moshersw@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Slattery, Stuart R., E-mail: sslattery@wisc.edu [University of Wisconsin–Madison, 1500 Engineering Dr., Madison, WI 53716 (United States); Hamilton, Steven P., E-mail: hamiltonsp@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

2014-02-01T23:59:59.000Z

187

Improving the Performance of Heat Insulation Polyurethane Foams by Silica Nanoparticles  

Science Journals Connector (OSTI)

Heat insulation polyurethane foam materials were doped by silica nano particles, ... , thermal and mechanical properties of polyurethane rigid foam were investigated. Thermal and mechanical properties were...

M. M. Alavi Nikje; A. Bagheri Garmarudi; M. Haghshenas…

2009-01-01T23:59:59.000Z

188

Highly Insulating Windows - Fram  

NLE Websites -- All DOE Office Websites (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

189

Method and apparatus for thermal management of vehicle exhaust systems  

DOE Patents (OSTI)

A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1995-01-01T23:59:59.000Z

190

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

191

Estimates of Radiation Dose from Strontium-90 Due to Fallout  

Science Journals Connector (OSTI)

...2412"` d., 74" h. 2" fiberglas insulation. 1 50() watts, 11 5, 208, or 230...gratings, electro-luminescence, thermal radiation backgrounds, infrared polarizers...chart. Write for complete data and specifications. SMALL ANIMAL BALANCE Model 4203B-TC-SA...

MERRIL EISENBUD

1959-09-18T23:59:59.000Z

192

Insulation Monitors Settings Selection  

Science Journals Connector (OSTI)

In the chapter general requirements set to insulation monitors selection in AC and DC networks ... given. Examples of regulations requirements for circuits insulation equivalent resistance are presented. Traditio...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

193

Insulation Resistance Measurement Methods  

Science Journals Connector (OSTI)

A traditional method of insulation resistance measurement in live DC networks is ... of an ammeter is described. Formulas for insulation equivalent resistance calculation are derived with help...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

194

Insulation Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/CE-0180 DOE/CE-0180 2008 Department of Energy Assistant Secretary Energy Efficiency and Renewable Energy Contents: Introduction Why Insulate Your House? How Insulation Works Which Kind of Insulation is Best? What Is an R-Value? Reading the Label Insulation Product Types Insulating a New House Where and How Much Air Sealing Moisture Control and Ventilation Installation Issues Precautions Attics Walls Design Options Crawlspaces and Slabs Advanced Wall Framing Metal Framing Insulating Concrete Forms Massive Walls Structural Insulated Panels External Insulation Finish System Attic Ventilation or a Cathedralized Attic Adding Insulation to an Existing House Where and How Much How Much Insulation Do I Already Have? Air Sealing Moisture Control and Ventilation Insulation Installation, the Retrofit Challenge

195

Thermal reactions of disilane on Si(100) studied by synchrotron-radiation photoemission  

Science Journals Connector (OSTI)

H-terminated Si(100) surfaces were formed by saturation exposure of Si(100) to disilane at room temperature. Annealing these surfaces to progressively higher temperatures resulted in hydrogen desorption. This process, of basic importance to the growth of Si by atomic layer epitaxy using disilane, was studied by synchrotron-radiation photoemission. The Si 2p core-level line shape, the position of the Fermi level within the band gap, the work function, and the ionization potential were measured as a function of annealing temperature. These results revealed two steps in the thermal reaction preceding the recovery of the clean surface. The dihydride radicals on the surface are converted to monohydride radicals at 500–610 K, and the monohydride radicals decompose at 700–800 K.

D.-S. Lin; T. Miller; T.-C. Chiang; R. Tsu; J. E. Greene

1993-10-15T23:59:59.000Z

196

Thermal reactions of disilane on Si(100) studied by synchrotron-radiation photoemission  

SciTech Connect

H-terminated Si(100) surfaces were formed by saturation exposure of Si(100) to disilane at room temperature. Annealing these surfaces to progressively higher temperatures resulted in hydrogen desorption. This process, of basic importance to the growth of Si by atomic layer epitaxy using disilane, was studied by synchrotron-radiation photoemission. The Si 2[ital p] core-level line shape, the position of the Fermi level within the band gap, the work function, and the ionization potential were measured as a function of annealing temperature. These results revealed two steps in the thermal reaction preceding the recovery of the clean surface. The dihydride radicals on the surface are converted to monohydride radicals at 500--610 K, and the monohydride radicals decompose at 700--800 K.

Lin, D.; Miller, T.; Chiang, T. (Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States)); Tsu, R.; Greene, J.E. (Department of Materials Science and Engineering, Coordinated Science Laboratory, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801-3080 (United States))

1993-10-15T23:59:59.000Z

197

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

198

Development of lifetime test procedure for powder evacuated panel insulation. CRADA final report  

SciTech Connect

This CRADA is between Appliance Research Consortium (ARC) of the Association of Home Appliance Manufacturers (AHAM) and the Lockheed Martin Energy Research Corp. A Powder Evacuated Panel (PEP) is a "super" thermal insulation, having a thermal resistivity (R) substantially above that of existing insulation without the environmental problems of some insulations such as Chlorofluorocarbon (CFC) blown foam.

Wilkes, K E; Graves, R S; Childs, K W

1996-03-01T23:59:59.000Z

199

Expert Meeting Report: Cladding Attachment Over Exterior Insulation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cladding Attachment Over Exterior Insulation Cladding Attachment Over Exterior Insulation Expert Meeting Report: Cladding Attachment Over Exterior Insulation The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1.

200

Fire tests on defective tank-car thermal protection systems  

Science Journals Connector (OSTI)

Many railway tank-cars carrying hazardous materials are thermally protected from fire impingement by thermal insulation and a steel jacket applied to the outside of the tank-car shell. Over time, it is possible that the thermal insulation will sag, rip, degrade, or be crushed under the steel jacket. A thermographic technique to determine whether or not a tank has insulation deficiencies has been developed, but it is necessary to determine which thermal deficiencies do not affect a tank’s survivability in a fire and which thermal deficiencies must be repaired. In order to develop a guideline in assessing thermal defects, a thermal model and experimental data would be beneficial. A series of fire tests were performed on a quarter-section tank-car mock-up to assist in developing a guideline and to provide validation data for a thermal model. Twelve fire tests, with constant, credible, simulated pool fire conditions, were performed on the tank-car mock-up with various insulation deficiencies. An infrared thermal imaging camera was used to measure the tank wall temperature. The thermal images were useful in determining the temperature profiles across the defects at different times and the transient temperature behaviour at different locations. It was seen that the properly installed thermal protection system significantly reduced the heat transfer from the fire to the tank wall. It was also seen that the steel jacket alone (i.e. 100% defect) acted as a radiation shield and provided a significant level of protection. With small defects, it was observed that the surrounding protected material provided a cooling effect by thermal conduction. A square defect greater than about 40 cm on each side should be considered significant, because unlike smaller defects, there is little benefit from the surrounding material as far as the peak defect temperature is concerned.

J.D.J VanderSteen; A.M Birk

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs  

SciTech Connect

Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake. 35 references.

Sinton, W.M.; Kaminski, C.

1988-08-01T23:59:59.000Z

202

Strength Specifications and Methods of Test for Structural Grades of Cryogenic Balsa Wood Insulation  

Science Journals Connector (OSTI)

Balsa wood is a useful material for cryogenic applications owing to its relatively high structural strength and good thermal insulating properties that increase with decreasing temperatures. Balsa wood insulation

G. E. Padawer

1979-01-01T23:59:59.000Z

203

Energy partition and conversion of solar and thermal radiation into sensible and latent heat in a greenhouse under arid conditions  

Science Journals Connector (OSTI)

For a greenhouse thermal analysis, it is essential to know the energy partition and the amount of solar and thermal radiation converted into sensible and latent heat in the greenhouse. Factors that are frequently needed are: efficiency of utilization of incident solar radiation (?), and sensible and latent heat factors (? and ?). Previous studies considered these factors as constant parameters. However, they depend on the environmental conditions inside and outside the greenhouse, plants and soil characteristics, and structure, orientation and location of the greenhouse. Moreover, these factors have not yet been evaluated under the arid climatic conditions of the Arabian Peninsula. In this study, simple energy balance equations were applied to investigate ?, ? and ?; energy partitioning among the greenhouse components; and conversion of solar and thermal radiation into sensible and latent heat. For this study, we used an evaporatively cooled, planted greenhouse with a floor area of 48 m2. The parameters required for the analysis were measured on a sunny, hot summer day. The results showed that value of ? was almost constant (?0.75); whereas the values of ? and ? strongly depended on the net radiation over the canopy (Rna); and could be represented by exponential decay functions of Rna. At a plant density corresponding to a leaf area index (LAI) of 3 and an integrated incident solar energy of 27.7 MJ m?2 d?1, the solar and thermal radiation utilized by the greenhouse components were 20.7 MJ m?2 d?1 and 3.74 MJ m?2 d?1, respectively. About 71% of the utilized radiation was converted to sensible heat and 29% was converted to latent heat absorbed by the inside air. Contributions of the floor, cover and plant surfaces on the sensible heat of the inside air were 38.6%, 48.2% and 13.2%, respectively.

I.M. Al-Helal; A.M. Abdel-Ghany

2011-01-01T23:59:59.000Z

204

Chapter Four - Cryogenic Insulation Systems for LNG Industries  

Science Journals Connector (OSTI)

Abstract The market for liquefied natural gas (LNG) is growing faster than any other market for energy resources. Since LNG is normally carried by ship at -163°C, the functional requirements of a ship carrying LNG include cryogenic reliability due to thermal cyclic stresses and high thermal insulation performance for safe and efficient transportation of LNG. In order to guarantee the LNG cold temperature around -160°C, high-quality insulation installation in accordance with strict specifications is essential. Cryogenic insulation restricts the inflow of atmospheric heat into the pipe or process equipment, keeping the liquid cold and allowing it to retain its form. This chapter covers fundamentals for thermal insulation for various thermal insulation materials in LNG industries.

Alireza Bahadori

2014-01-01T23:59:59.000Z

205

Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Insulation May 30, 2012 - 9:14am Addthis Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler.

206

Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies  

E-Print Network (OSTI)

We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e. for any set of temperatures, dielectric and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the non-additivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

Riccardo Messina; Mauro Antezza

2014-02-11T23:59:59.000Z

207

Insulation Monitoring Systems  

Science Journals Connector (OSTI)

In this chapter there is presented general information on insulation deterioration signalization systems for AC IT networks. Few systems of continuous insulation supervision are described. The old concepts includ...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

208

Vacuum-insulated catalytic converter  

DOE Patents (OSTI)

A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

Benson, David K. (Golden, CO)

2001-01-01T23:59:59.000Z

209

Method of fabricating a multilayer insulation blanket  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

1993-01-01T23:59:59.000Z

210

Multilayer insulation blanket, fabricating apparatus and method  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

1992-01-01T23:59:59.000Z

211

Exterior Rigid Insulation Best Practices- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Field and lab studies by Building America teams BSC, PHI, and Northern STAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

212

Continental insulation, mantle cooling, and the surface area of oceans and continents  

E-Print Network (OSTI)

Continental insulation, mantle cooling, and the surface area of oceans and continents A. Lenardica May 2005 Abstract It is generally assumed that continents, acting as thermal insulation above. The theory predicts that parameter regimes exist for which increased continental insulation has no effect

Manga, Michael

213

Laminated insulators having heat dissipation means  

DOE Patents (OSTI)

A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

1980-04-24T23:59:59.000Z

214

Topological insulators/Isolants topologiques An introduction to topological insulators  

E-Print Network (OSTI)

Topological insulators/Isolants topologiques An introduction to topological insulators Introduction in the first Brillouin Zone, and their associated energies. In an insulator, an energy gap around the chemical topology, the insulator is called a topological insulator. We introduce this notion of topological order

Paris-Sud XI, Université de

215

Research on Buildings General Quality of Insulation, Especially with Respect to Developing and Improving Methods of Post Insulation  

Science Journals Connector (OSTI)

Urea formaldehyde foam for cavity walls insulation has been investigated due to thermal conductivity...3.... There is doubt about the number of companies and of products in Denmark, that are able to observe this ...

N. H. Bertelsen; G. C. Larsen; T. Nielsen; A. D. Olsen

1984-01-01T23:59:59.000Z

216

A Simple Holographic Insulator  

E-Print Network (OSTI)

We present a simple holographic model of an insulator. Unlike most previous holographic insulators, the zero temperature infrared geometry is completely nonsingular. Both the low temperature DC conductivity and the optical conductivity at zero temperature satisfy power laws with the same exponent, given by the scaling dimension of an operator in the IR. Changing a parameter in the model converts it from an insulator to a conductor with a standard Drude peak.

Mefford, Eric

2014-01-01T23:59:59.000Z

217

A Simple Holographic Insulator  

E-Print Network (OSTI)

We present a simple holographic model of an insulator. Unlike most previous holographic insulators, the zero temperature infrared geometry is completely nonsingular. Both the low temperature DC conductivity and the optical conductivity at zero temperature satisfy power laws with the same exponent, given by the scaling dimension of an operator in the IR. Changing a parameter in the model converts it from an insulator to a conductor with a standard Drude peak.

Eric Mefford; Gary T. Horowitz

2014-06-16T23:59:59.000Z

218

Plastics and Insulation  

Science Journals Connector (OSTI)

... the Institution of Electrical Engineers on March 24 to discuss a paper on “Plastics and Insulation” by L. Hartshorn, N. J. L. Megson and E. Rushton. It ...

1938-04-02T23:59:59.000Z

219

Gas insulated transmission line with insulators having field controlling recesses  

DOE Patents (OSTI)

A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

1984-01-01T23:59:59.000Z

220

Tips: Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Tips: Insulation May 2, 2012 - 6:03pm Addthis Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Insulation is made from a variety of materials, and it usually comes in four types: rolls and batts, loose-fill, rigid foam, and foam-in-place. Rolls and Batts Rolls and batts -- or blankets -- are flexible products made from mineral

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Carpe Diem: Install Insulated Roman Shades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades March 16, 2010 - 11:44am Addthis John Lippert As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows. I should have bought window quilts for all of our windows, but I refrained from doing so on two downstairs windows to save money (which, in the long run, I didn't). There were window shades already there; they didn't do much from a thermal perspective, but they did provide privacy and room darkening. Well, they need to be replaced now, and I'm looking again at high efficiency thermal window shades. This time I'm considering thermal Roman shades. About a dozen years ago my wife and I went on the Tour of Solar Homes, the local component of the annual National Solar Tour sponsored by the American

222

Apparatus for insulating windows and the like  

DOE Patents (OSTI)

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

Mitchell, R.A.

1984-06-19T23:59:59.000Z

223

Apparatus for insulating windows and the like  

DOE Patents (OSTI)

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

1984-01-01T23:59:59.000Z

224

Behaviour of Insulation  

Science Journals Connector (OSTI)

... to say in effect, even if I do inadvertently misquote. "The trouble with our insulation is that it is too thick". The lessons at any rate are clear: ... The book Dielectric Relaxation has certainly contributed greatly to our understanding of the behaviour of insulation for a specialist few.

COLIN ADAMSON

1968-12-07T23:59:59.000Z

225

Magnetic insulation (reply)  

Science Journals Connector (OSTI)

... DR WINTERBERG REPLIES: Contrary to Blewett's belief, magnetic insulation has not only been experimentally confirmed2 since I proposed it several years ago1, but ... generators (for example, the MJ Aurora machine). The magnetic field needed for the insulation effect in this case is generated by the strong azimuthal self-induced field of the ...

F. WINTERBERG

1974-06-28T23:59:59.000Z

226

Insulation of Electrical Equipment  

Science Journals Connector (OSTI)

... A VACATION 'school' on the insulation of electrical equipment was held in the Electrical Engineering Department of the Imperial College of ... the universities. The purpose of the course was to consider the factors which are limiting insulation design in the main classes of electrical equipment, and the general principles which should ...

1952-12-13T23:59:59.000Z

227

Topological insulators and superconductors  

Science Journals Connector (OSTI)

Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

Xiao-Liang Qi and Shou-Cheng Zhang

2011-10-14T23:59:59.000Z

228

Chapter 9 - Pipeline Insulation  

Science Journals Connector (OSTI)

Oilfield pipelines are insulated mainly to conserve heat. The need to keep the product in the pipeline at a temperature higher than the ambient could exist for the following reasons: preventing the formation of gas hydrates, preventing the formation of wax or asphaltenes, enhancing the product flow properties, increasing the cooldown time after shutting down, and meeting other operational/process equipment requirements. On the other hand, in liquefied gas pipelines, such as LNG, insulation is required to maintain the cold temperature of the gas to keep it in a liquid state. This chapter describes the commonly used insulation materials, insulation finish on pipes, and general requirements for insulation of offshore and deepwater pipelines.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

229

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

List of Equipment Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleEquipmentInsulation&oldid267163" Category: Articles with outstanding TODO tasks...

230

Experimental methodology for non-thermal effects of electromagnetic radiation on biologics  

E-Print Network (OSTI)

Appropriate equipment is needed for research on the effects of radio-frequency radiation from radio-frequency identification (RF-ID) systems on biological materials. In the present study, a complete test system comprising ...

Cox, Felicia C. A. I

2006-01-01T23:59:59.000Z

231

An Insulating Breakthrough | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights Archives: 2013 | 2012 | 2011 | 2010 Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed An Insulating Breakthrough JANUARY 8, 2007 Bookmark and Share Tungsten Diselenide A new insulating material with the lowest thermal conductivity ever measured for a fully dense solid has been created at the University of Oregon (UO) and tested at the XOR/UNI 33-BM beamline at the U.S. Department of Energy's Advanced Photon Source (APS) at Argonne. The research was carried out by collaborators from the UO, the University of Illinois at Urbana-Champaign, the Rensselaer Polytechnic Institute, and Argonne. While far from having immediate application, the principles involved, once understood, could lead to improved insulation for a wide variety of uses,

232

Analysis and testing of multilayer and aerogel insulation configurations  

SciTech Connect

Multilayer insulation systems that have robust operational characteristics have long been a goal of many research projects. Such thermal insulation systems may need to offer some degree of structural support and/or mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel-based composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MLI) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel blanket and multilayer insulation materials have been tested at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MLI and aerogel blankets. Apparent thermal conductivity testing under cryogenicvacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

Johnson, W L [NASA Kennedy Space Center, Kennedy Space Center, Florida; Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida

2010-01-01T23:59:59.000Z

233

Insulation fact sheet  

SciTech Connect

Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

NONE

1997-08-01T23:59:59.000Z

234

Plasma Magnetic Insulation  

Science Journals Connector (OSTI)

29 June 1987 research-article Plasma Magnetic Insulation B. B. Kadomtsev Theoretically the strong magnetic field of a tokamak should confine electrons and ions in a high-temperature...

1987-01-01T23:59:59.000Z

235

Cooper Pairs in Insulators?!  

ScienceCinema (OSTI)

Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

James Valles

2010-01-08T23:59:59.000Z

236

Insulator for laser housing  

DOE Patents (OSTI)

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

Duncan, David B. (Auburn, CA)

1992-01-01T23:59:59.000Z

237

Insulator for laser housing  

DOE Patents (OSTI)

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

Duncan, D.B.

1992-12-29T23:59:59.000Z

238

Probing the thermal character of analogue Hawking radiation for shallow water waves?  

E-Print Network (OSTI)

We study and numerically compute the scattering coefficients of shallow water waves blocked by a stationary counterflow. When the flow is transcritical, the coefficients closely follow Hawking's prediction according to which black holes should emit a thermal spectrum. We study how the spectrum deviates from thermality when reducing the maximal flow velocity, with a particular attention to subcritical flows since these have been recently used to test Hawking's prediction. For such flows, we show that the emission spectrum is strongly suppressed, and that its Planckian character is completely lost. For low frequencies, we also show that the scattering coefficients are dominated by elastic hydrodynamical channels. Our numerical results reproduce rather well the observations made by S. Weinfurtner {\\it et al.} in the Vancouver experiment. Nevertheless, we propose a new interpretation of what has been observed, as well as new experimental tests.

Florent Michel; Renaud Parentani

2014-09-15T23:59:59.000Z

239

9 - Thermoset insulation materials in appliances, buildings and other applications  

Science Journals Connector (OSTI)

Abstract: Thermoset foam products are widely used for many technical insulation applications. They offer superior thermal insulation, a very favorable strength-to-weight ratio, and durability in a broad range of service conditions. Furthermore, fabrication technology is eased by the processing of a liquid reaction mixture and the auto-adhesive bond of reacting foam to most common substrates and facings materials. Polyurethane rigid foam is the material of choice for the whole cold-chain insulation industry, from food-processing, storage and transportation, to retailers and fridges at home. Polyurethane products are also largely used for the thermal insulations of buildings and for heat-management in pipelines and hot-water tanks. Phenolic foams find applications in some specific segments, thanks to their excellent fire and smoke behavior characteristics.

A. Fangareggi; L. Bertucelli

2012-01-01T23:59:59.000Z

240

Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO2  

Science Journals Connector (OSTI)

We directly measure the photoinduced insulator-to-metal transition in VO2 using time-resolved near-edge x-ray absorption. Picosecond pulses of synchrotron radiation are used to detect the redshift in the vanadium L3 edge at 516 eV, which is associated with the transient collapse of the low-temperature band gap. We identify a two-component temporal response, corresponding to an ultrafast transformation over a 50 nm surface layer, followed by 40 m/s thermal growth of the metallic phase into the bulk.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein

2004-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry to engineer durable, moisture-tolerant  

E-Print Network (OSTI)

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry the insulating value of walls and the energy efficiency of buildings. The EIFS concept came to America from in both moisture control and insulating value. EIFS's are inherently superior on thermal performance

Oak Ridge National Laboratory

242

Radiative neutron capture on 9be, 14c, 14n, 15n and 16o at thermal and astrophysical energies  

E-Print Network (OSTI)

The total cross sections of the radiative neutron capture processes on 9Be, 14C, 14N, 15N, and 16O are described in the framework of the modified potential cluster model with the classification of orbital states according to Young tableaux. The continued interest in the study of these reactions is due, on the one hand, to the important role played by this process in the analysis of many fundamental properties of nuclei and nuclear reactions, and, on the other hand, to the wide use of the capture cross section data in the various applications of nuclear physics and nuclear astrophysics, and, also, to the importance of the analysis of primordial nucleosynthesis in the Universe. This article is devoted to the description of results for the processes of the radiative neutron capture on certain light atomic nuclei at thermal and astrophysical energies. The considered capture reactions are not part of stellar thermonuclear cycles, but involve in the reaction chains of inhomogeneous Big Bang models.

Sergey Dubovichenko; Albert Dzhazairov-Kakhramanov; Nadezhda Afanasyeva

2014-01-28T23:59:59.000Z

243

G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass  

SciTech Connect

Fiberglass made by Owens Corning is being used in noise reduction of automobile exhaust system. Specifically, the glass fibers are packed inside the muffler to achieve the desired acoustic effect. A secondary benefit of the fibers is to serve as a thermal insulation. Because of this insulating property, the glass fibers can serve to reduce the temperature of the muffler shell. This in turn reduces the need for heat shields around mufflers and reduces the amount of exterior temperature accelerated corrosion of the muffler shell, especially in the winter ''salt belts'' where large amounts of salt are placed on highways to minimize the safety impact of snow and ice. In addition, for some applications the use of the fiberglass could allow the use of lighter weight carbon based polymer composite materials in place of steel for muffler shells. However, in order to properly design exhaust systems without heat shields or to take advantage of new materials, the thermal conductivity of the fiberglass material at operating temperatures (for some applications above 750 C) must be known. We selected two types of Owens Corning glass fibers, 17 {micro}m and 24 {micro}m in diameter, for this study. There are some room temperature thermal conductivity data for the fiberglass, but high temperature data are not available. Based on the thermal radiation model, thermal conductivity should increase rapidly at high temperature, providing less thermal insulation. In addition, thermal conductivity depends on packing density of the glass fibers. We will study the effect of packing density on thermal conductivity. Another issue is that the glass fiber conducts heat better along the fiber, while the conduction across the fibers is poor, because thermal conduction from one fiber to another has to go through an interface with thermal resistance. In fiberglass, most fibers are not in good contact with the surrounding fibers, thus, most heat transfer is dependent on the thermal radiation effect. Among the many methods of measuring thermal conductivity, only a few can be used for glass fibers. The traditional heat flow meter is used in testing thermal insulations near room temperature. At higher temperatures this method cannot be used due to material and instrument limitations. Our plan is to use a transient plane source (TPS) method to measure thermal conductivity directly. The advantage of the TPS method is that measurements can be taken at over 700 C, and covers the temperature of the automobile exhausts. The following is a report for the G-Plus project conducted at ORNL to apply the TPS method to characterizing the thermal conductivity of two types of fiberglass and also the effect of packing density.

Wang, H

2003-04-15T23:59:59.000Z

244

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

245

Milagro Version 2 An Implicit Monte Carlo Code for Thermal Radiative Transfer: Capabilities, Development, and Usage  

SciTech Connect

We have released Version 2 of Milagro, an object-oriented, C++ code that performs radiative transfer using Fleck and Cummings' Implicit Monte Carlo method. Milagro, a part of the Jayenne program, is a stand-alone driver code used as a methods research vehicle and to verify its underlying classes. These underlying classes are used to construct Implicit Monte Carlo packages for external customers. Milagro-2 represents a design overhaul that allows better parallelism and extensibility. New features in Milagro-2 include verified momentum deposition, restart capability, graphics capability, exact energy conservation, and improved load balancing and parallel efficiency. A users' guide also describes how to configure, make, and run Milagro2.

T.J. Urbatsch; T.M. Evans

2006-02-15T23:59:59.000Z

246

Effect of gas radiation and property variation on the performance of thermal regenerators  

E-Print Network (OSTI)

with experiments by Larkin et al [18]. The interaction of conduction, convection 12 and radiation in a fully developed laminar flow was investi- gated by Viskanta [19] by solving a non linear integro- differential energy equation. In order to simplify...: Where (3 2) ae = &eA ( I &e I ) +~ Fe' 0 j 18 an = Dn+( I+nl) +I Fn' Oj p 4x4y 4t Here T' refers to the known value of temperature at a time t, while all other values are at unknown values at time t+4t. The mass flow rates F? F, F? and F...

Gadiraju, Srinivasa Varma

2012-06-07T23:59:59.000Z

247

Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes  

SciTech Connect

The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10?nm gap.

Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2013-11-18T23:59:59.000Z

248

Electoral Competition, Political Uncertainty and Policy Insulation  

E-Print Network (OSTI)

Uncertainty and Policy Insulation Horn, Murray. 1995. TheUncertainty and Policy Insulation United States Congress.UNCERTAINTY AND POLICY INSULATION Rui J. P. de Figueiredo,

de Figueiredo, Rui J. P. Jr.

2001-01-01T23:59:59.000Z

249

Training: Mechanical Insulation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conjunction with the National Insulation Association and the International Association of Heat and Frost Insulators and Allied Workers. Mechanical insulation can play a significant...

250

Energy efficiency improvements for refrigerator/freezers using prototype doors containing gas-filled panel insulating systems  

SciTech Connect

Energy efficiency improvements in domestic refrigerator/freezers, are directly influenced by the overall thermal performance of the cabinet and doors. An advanced system for reducing heat gain is Gas-Filled Panel thermal insulation technology. Gas-Filled Panels contain a low-conductivity, inert gas at atmospheric pressure and employ a reflective baffle to suppress radiation and convection within the gas. This paper presents energy use test results for a 1993 model 500 liter top mount refrigerator/freezer operated with its original doors and with a series of alternative prototype doors. Gas-Filled Panel technology was used in two types of prototype refrigerator/freezer doors. In one design, panels were used in composite with foam in standard metal door pans; this design yielded no measurable energy savings. In the other design, special polymer door pans were fitted with panels that fill nearly all of the available insulation volume; this design yielded a 6.5% increase in energy efficiency for the entire refrigerator/freezer. The EPA Refrigerator Analysis computer program has been used to predict the change in daily energy consumption with the alternative doors. The computer model also projects a 25% energy efficiency improvement for a refrigerator/freezer that would use Gas-Filled Panel insulation throughout the cabinet as well as the doors.

Griffith, B.; Arasteh, D.; Tuerler, D.

1995-01-01T23:59:59.000Z

251

Test Report: Cost Effective Foundation Insulation  

SciTech Connect

A field experiment was conducted to demonstrate and quantify the thermal effectiveness of rigid insulation board when installed on the exterior of a buried concrete foundation wall. A heated, insulated box was constructed along one wall of an existing, unheated building to simulate the living space of a home. The crawl space beneath the living space was divided into two sections. One featured external foundation insulation, while the other side had none. 36 temperature and heat flux sensors were installed at predetermined locations to measure the temperature profile and heat flow out of the living space. The temperature profile through the foundation was then used to calculate the total heat flow out of the foundation for both cases. This experiment showed that a significant energy savings is available with exterior foundation insulation. Over the course of 3 months, the heat-loss differential between the insulated and non-insulated foundations was 4.95 kilowatt-hours per lineal foot of foundation wall, for a ratio of 3:1. For a 2200 sq. ft home with a foundation perimeter 200 ft. long, this would amount to a savings of 990 kW-hrs in just 3 months, or 330 kW-hrs per month. Extrapolating to an 8-month heating year, we would expect to save over 2640 kW-hrs per year for such a home. The savings for a basement foundation, rather than a crawlspace, would be approach twice that amount, nearing 5280 kW-hr per year. Because these data were not collected during the coldest months of the year, they are conservative, and greater savings may be expected during colder periods.

Jeffrey M. Lacy; T. E. Rahl; G. A. Twitchell; R. G. Kobbe

2003-06-01T23:59:59.000Z

252

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

these windows incorporating hear mirror films are staticS. , "Thin Film Coatings for Energy Efficient Windows", LBLglazed windows with single and double plastic film inserts

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

253

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

254

Thermal properties of advanced aerogel insulation .  

E-Print Network (OSTI)

??Buildings consume too much energy. For example, 16.6% of all the energy used in the United States goes towards just the heating and cooling of… (more)

Cohen, Ellann

2011-01-01T23:59:59.000Z

255

Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation  

SciTech Connect

We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

2014-06-23T23:59:59.000Z

256

Highly Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

257

Contaminant trap for gas-insulated apparatus  

DOE Patents (OSTI)

A resinous body is placed in gas-insulated electrical apparatus to remove particulate material from the insulating gas.

Adcock, J.L.; Pace, M.O.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

258

Switching Surges and Air Insulation  

Science Journals Connector (OSTI)

...research-article Switching Surges and Air Insulation B. Jones Some thirteen years ago...reduction was noticed in the strength of air insulation when subjected to slowly rising positive...collected in high voltage laboratories. Insulation against switching surges is now seen...

1973-01-01T23:59:59.000Z

259

Identification of building applications for a variable-conductance insulation  

SciTech Connect

Recent experiments have confirmed the feasibility of controllable, reversible disabling of a vacuum insulation panel, which may result in the development of energy-efficient building envelope components. These components could extend the managed energy exchange through the building envelope from about 30% (typical with fenestration systems in commercial buildings), to as much as 90% of the gross wall and roof areas. Further investigation will be required to optimized the thermal response and the magnitude of the R-value swing (from a difference between insulating and conducting insulating values of 4 to as high as a factor of 100). The potential for energy reduction by using the variable-conductance insulation in the building envelope is discussed, and other potential building applications are mentioned.

Potter, T.F. [National Renewable Energy Lab., Golden, CO (United States); Tuluca, A. [Winter (Steven) Associates, Inc., New York, NY (United States)

1992-07-01T23:59:59.000Z

260

Linear particle accelerator with seal structure between electrodes and insulators  

DOE Patents (OSTI)

An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

Broadhurst, John H. (Golden Valley, MN)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermal and radiative AGN feedback : weak impact on star formation in high-redshift disk galaxy simulations  

E-Print Network (OSTI)

Active Galactic Nuclei (AGNs) release huge amounts of energy in their host galaxies, which, if the coupling is sufficient, can affect the interstellar medium (ISM). We use a high-resolution simulation ($\\sim6$ pc) of a z $\\sim2$ star-forming galaxy hosting an AGN, to study this not yet well-understood coupling. In addition to the often considered small-scale thermal energy deposition by the AGN, which is implemented in the simulation, we model long-range photo-ionizing AGN radiation in post-processing, and quantify the impact of AGN feedback on the ability of the gas to form stars. Surprisingly, even though the AGN generates powerful outflows, the impact of AGN heating and photo-ionization on instantaneous star formation is weak: the star formation rate decreases by a few percent at most, even in a quasar regime ($L_{bol}=10^{46.5}$ erg s$^{-1}$). Furthermore, the reservoirs of atomic gas that are expected to form stars on a 100 - 200 Myrs time scale are also marginally affected. Therefore, while the AGN-driv...

Roos, Orianne; Bournaud, Frédéric; Gabor, Jared

2014-01-01T23:59:59.000Z

262

Studies on electrical cable insulation for nuclear applications  

SciTech Connect

Two new polyethylene cable insulations have been formulated for nuclear applications, and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb{sub 2}O{sub 3} as additives. The test results show that the concept of using inorganic anti-oxidants to retard radiation initiated oxidation is viable, and PbO is more effective than Sb{sub 2}O{sub 3} in slowing down radiation initiated oxidation (RIO). Also, radiation degradation data for polyethylene and polyvinyl chloride at 60{degrees}C have been generated, which will be used to understand radiation initiated oxidation process on these materials combined with the 25{degrees}C data that will be generated in the future. 14 refs., 41 figs., 3 tabs.

Lee, B.S.; Soo, P.; MacKenzie, D.R. [Brookhaven National Lab., Upton, NY (USA); Blackburn, P. [Beloit Junior-Senior High School, KS (USA)

1989-12-01T23:59:59.000Z

263

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

264

Home insulation may increase radiation hazard  

Science Journals Connector (OSTI)

... pose a potential health hazard, by increasing exposure to low levels of the radioactive gas radon. ... .Radon-222 is produced as part of the decay chain of uranium-238. Both the ...

David Dickson

1978-11-30T23:59:59.000Z

265

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

266

Compact vacuum insulation  

DOE Patents (OSTI)

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1993-01-01T23:59:59.000Z

267

Compact vacuum insulation embodiments  

DOE Patents (OSTI)

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1992-01-01T23:59:59.000Z

268

Compact vacuum insulation  

DOE Patents (OSTI)

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, D.K.; Potter, T.F.

1993-01-05T23:59:59.000Z

269

Measurements and modeling of moisture diffusion processes in transformer insulation using interdigital dielectrometry sensors  

E-Print Network (OSTI)

The presence of moisture in a transformer deteriorates the transformer insulation by decreasing its electrical, mechanical, and thermal strength. Therefore, it is important to monitor the moisture condition in both liquid ...

Du, Yanqing, 1971-

1999-01-01T23:59:59.000Z

270

Steady-State Heat Transfer in He II through Porous Superconducting Cable Insulation  

Science Journals Connector (OSTI)

The LHC program includes the study of thermal behavior of the superconducting cables wound in the dipole magnet cooled by superfluid helium (He II). Insulation of these superconducting cables forms the major ... ...

B. J. P. Baudouy; F.-P. Juster; C. Meuris…

1996-01-01T23:59:59.000Z

271

Preparation and performance of inorganic heat insulation panel based on sepiolite nanofibers  

Science Journals Connector (OSTI)

High efficiency and low cost thermal insulation energy saving panel materials containing sepiolite nanofibers were developed by means of the synergistic action of inorganic adhesive, curing agent, and hydrogen peroxide. The water soluble sodium silicate ...

Fei Wang, Jinsheng Liang, Haifeng Liu, Xinhui Duan, Qingguo Tang, Huimin Liu

2014-01-01T23:59:59.000Z

272

Evaluation of kinetic parameters appropriate for modeling urethane foam insulation performance  

Science Journals Connector (OSTI)

Computer codes which model the pyrolysis of thermal insulators for in-depth temperature response are particularly sensitive to the kinetic parameters used in the code. The parameter values, which are evaluated...

I. Auerbach

273

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

274

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

275

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

276

Partial insulation of GdBCO single pancake coils for protection-free HTS power  

Science Journals Connector (OSTI)

The partial insulation winding was examined to ameliorate the slow charge–discharge shown by coils wound without insulation. Single pancake coils of GdBCO coated conductor were wound without insulation, with kapton tape every five turns, and with the full use of kapton tape. They were characterized by charge–discharge, sudden discharge, and over-current testing. The improved charging and discharging and high thermal and electrical stabilities of the partially insulated coil demonstrate its potential for use in HTS power applications.

Y H Choi; S Hahn; J B Song; D G Yang; H G Lee

2011-01-01T23:59:59.000Z

277

Key Elements of and Materials Performance Targets for Highly Insulating  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Elements of and Materials Performance Targets for Highly Insulating Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Title Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Publication Type Journal Article LBNL Report Number LBNL-5099E Year of Publication 2011 Authors Gustavsen, Arlid, Steinar Grynning, Dariush K. Arasteh, Bjørn Petter Jelle, and Howdy Goudey Journal Energy and Buildings Volume 43 Issue 10 Pagination 2583-2594 Date Published 10/2011 Keywords Fenestration, heat transfer modeling, thermal performance, thermal transmittance, u-factor, window frames Abstract The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.

278

Heat insulating system for a fast reactor shield slab  

DOE Patents (OSTI)

Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

Kotora, Jr., James (LaGrange Park, IL); Groh, Edward F. (Naperville, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

279

Heat insulating system for a fast reactor shield slab  

DOE Patents (OSTI)

Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

1984-04-10T23:59:59.000Z

280

A Rapid Scanning Inspection Method for Insulated Ferromagnetic Tubing  

E-Print Network (OSTI)

Until the present there has been no effective way to rapidly scan thermally insulated refinery or process piping for corrosion or thin wall. Such defects, if left unattended, can lead to wasteful losses of time, energy and money. To date the most...

Marsh, G. M.; Milewits, M.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence  

E-Print Network (OSTI)

The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population.

Steven A. Balbus; Christopher S. Reynolds

2008-06-05T23:59:59.000Z

282

Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence  

E-Print Network (OSTI)

The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar populat...

Balbus, Steven A

2008-01-01T23:59:59.000Z

283

Net climatic impact of solid foam insulation produced with halocarbon and non-halocarbon blowing agents  

Science Journals Connector (OSTI)

The net climatic effect of increasing the amount of insulation in buildings through the use of halocarbon-blown foam insulation involves three factors: the greenhouse gas emissions associated with the energy used to make the insulation; the climatic impact of leakage of the halocarbon blowing agent from the insulation during its manufacture, use, and at the time of disposal; and the reduction in heating and/or cooling energy use and associated greenhouse gas emissions. Recent studies and assessments leave the impression that the use of halocarbon-blown foam insulation has a strong net positive impact on climate, with the reduction in heating-related emissions being 20–100 times greater than the CO2-equivalent halocarbon emissions. This result applies only to the overall impact of rather modest levels of insulation applied to a pre-existing roof or wall with negligible thermal resistance. It is appropriate to consider the time required for heating-related emission savings to offset halocarbon and manufacturing emissions for the addition of successive increments of insulation—the marginal payback time. For typical blowing agent leakage rates and for insulation levels found in high-performance houses, marginal payback times can be in excess of 100 years using halocarbon blowing agents, but are only 10–50 years using non-halocarbon blowing agents. With a fixed thickness of insulation, the difference in heating energy savings using insulation with different blowing agents is generally only a few per cent, in spite of differences in thermal conductivity of up to 66%. The net savings in CO2-equivalent emissions is larger using non-halocarbon blowing agents, with the relative benefit of using non-halocarbon blowing agents greater the greater the thermal resistance of the envelope element prior to adding foam insulation.

L.D. Danny Harvey

2007-01-01T23:59:59.000Z

284

Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector October 19, 2011 - 1:10pm Addthis An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. | Photo courtesy of FiFoil, Inc. An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence

285

Viscoelastic and thermal properties of full and partially cured DGEBA epoxy resin composites modified with montmorillonite nanoclay exposed to UV radiation  

Science Journals Connector (OSTI)

Abstract Effects of UV radiation and associated elevated temperature on properties of polymeric composites have been well documented, limiting the scope of their usage in outdoor applications. In order to improve on this limitation, current study focused on incorporating nanoparticles into epoxy polymer composites and delay onset of deleterious effects of UV radiation by partially curing these samples. Samples were fabricated and cured to 80% conversion (partially cured) based on isothermal cure kinetic studies. Influence of 1, 2 and 3 wt. % loading of montmorillonite nanoclay on the cure behavior and development of physical properties of these composites were evaluated. Results of the study revealed that for optimization of modified epoxy composite properties a different curing cycle was necessary due to interaction of different amounts of nanoclay and epoxy molecules. Fabricated samples infused with 1, 2 and 3 wt. % montmorillonite nanoclay were exposed to 2500 h of continuous UV radiation, where effects of UV radiation on viscoelastic and thermal properties were evaluated and compared with identical set of fabricated samples using manufacturers' recommended cycle (fully cured). Addition of nanoclay increased the viscoelastic properties, and at the end of the study, storage modulus and activation energy of decomposition of partially cured samples evolved over exposure time, while fully cured samples degraded over the same period. Samples cured to 80% showed delayed UV radiation degradation effects.

Alfred Tcherbi-Narteh; Mahesh Hosur; Eldon Triggs; Peter Owuor; Shaik Jelaani

2014-01-01T23:59:59.000Z

286

The Microbiological Deterioration of Rubber Insulation  

Science Journals Connector (OSTI)

...Microbiological Deterioration of Rubber Insulation John T. Blake Donald W. Kitchin Orison...Microbiological Deterioration of Rubber Insulation JOHN T. BLAKE, DONALD W. KITCHIN...By burying wire samples with thin insulation in active soil, the rate of failure...

John T. Blake; Donald W. Kitchin; Orison S. Pratt

1955-01-01T23:59:59.000Z

287

Ground Insulation Measurement in AC IT Systems  

Science Journals Connector (OSTI)

In the chapter there is presented general information on physical nature of network-to-ground insulation. Sense of “insulation equivalent resistance” parameter is explained. A method of insulation resistances-to-...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

288

13 - Aerogel materials for insulation in buildings  

Science Journals Connector (OSTI)

Abstract: Aerogel materials have recently received much attention since they give many exciting applications in a wide range of areas. This chapter highlights the processing of these materials, the resulting physicochemical properties and their applications. Thus, fundamental understandings in the techniques for processing of aerogel materials including conventional drying, supercritical drying, freeze-drying, ambient-pressure drying with regards to material density and void size distribution, thermal conductivity, optical and acoustic properties are provided. In addition, a number of chemical post-treatments for surface engineering of aerogel materials are included. Finally, potentially new applications of using these materials as thermal insulation for building, optical sensor, space dust collector and catalysis are discussed.

C.-H. Yu; Q.J. Fu; S.C.E. Tsang

2010-01-01T23:59:59.000Z

289

Advanced nanofabrication of thermal emission devices  

E-Print Network (OSTI)

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

290

New Technique in Insulation Testing  

Science Journals Connector (OSTI)

... THE new 'Megger' insulation tester, series 3, mark 3, manufactured by Evershed and Vignoles, Ltd., incorporates ... torque to the generator and provides remarkably smooth and consistent operation. In addition to the insulation testing range, the instrument operates over a continuity range 0-100 ohms with a ...

1960-10-22T23:59:59.000Z

291

The Insulation of Electric Machines  

Science Journals Connector (OSTI)

... the necessity of high potential differences have within recent years quite altered our ideas about insulation. Electrical engineers have come to view the subject from a different standpoint on account ... exceeding, their working limits of temperature, and the futility of baking to obtain temporary insulation unless moisture be permanently excluded. When dealing with the influence of brush discharge mention ...

ERNEST WILSON

1905-06-15T23:59:59.000Z

292

Variably insulating portable heater/cooler  

DOE Patents (OSTI)

A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

Potter, Thomas F. (Denver, CO)

1998-01-01T23:59:59.000Z

293

Variably insulating portable heater/cooler  

DOE Patents (OSTI)

A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

Potter, T.F.

1998-09-29T23:59:59.000Z

294

Material-controlled dynamic vacuum insulation  

DOE Patents (OSTI)

A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

Benson, D.K.; Potter, T.F.

1996-10-08T23:59:59.000Z

295

Material-controlled dynamic vacuum insulation  

DOE Patents (OSTI)

A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

Benson, David K. (14154 W. First Dr., Golden, CO 80401); Potter, Thomas F. (515 S. Magnolia La., Denver, CO 80224)

1996-10-08T23:59:59.000Z

296

Excavationless Exterior Foundation Insulation Exploratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Excavationless Exterior Foundation Excavationless Exterior Foundation Insulation Exploratory Study NorthernSTAR Building America Team Garrett Mosiman Technical Approach The project begins with the concept of an "excavationless" exterior foundation insulation upgrade that is cost-competitive with current methods, and involves little impact to existing landscape and site features. Process: 1. Literature review to establish the building science case for the advantages of exterior foundation insulation vs. interior insulation 2. Presentation and analysis of two exterior, full-excavation exterior insulation upgrades to establish a base case for costs 3. Survey of five typical twin-cities neighborhoods to categorize and quantify typical obstructions 4. Web-based search to identify available materials and technologies that have

297

Solar Decathlon Technology Spotlight: Structural Insulated Panels |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon Technology Spotlight: Structural Insulated Panels Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) Alexis Powers EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on September 19, 2011. Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements

298

Solar Decathlon Technology Spotlight: Structural Insulated Panels...  

Energy Savers (EERE)

Solar Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These...

299

Effect of neutral collision and radiative heat-loss function on self-gravitational instability of viscous thermally conducting partially-ionized plasma  

SciTech Connect

The problem of thermal instability and gravitational instability is investigated for a partially ionized self-gravitating plasma which has connection in astrophysical condensations. We use normal mode analysis method in this problem. The general dispersion relation is derived using linearized perturbation equations of the problem. Effects of collisions with neutrals, radiative heat-loss function, viscosity, thermal conductivity and magnetic field strength, on the instability of the system are discussed. The conditions of instability are derived for a temperature-dependent and density-dependent heat-loss function with thermal conductivity. Numerical calculations have been performed to discuss the effect of various physical parameters on the growth rate of the gravitational instability. The temperature-dependent heat-loss function, thermal conductivity, viscosity, magnetic field and neutral collision have stabilizing effect, while density-dependent heat-loss function has a destabilizing effect on the growth rate of the gravitational instability. With the help of Routh-Hurwitz's criterion, the stability of the system is discussed.

Kaothekar, Sachin [School of Studies in Physics, Vikram University, Ujjain-456010, Madhya Pradesh (India); Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India); Soni, Ghanshyam D. [Government Girls Degree College, Dewas, Madhya Pradesh (India); Chhajlani, Rajendra K. [School of Studies in Physics, Vikram University, Ujjain-456010, Madhya Pradesh (India)

2012-12-15T23:59:59.000Z

300

Highly Insulating Windows - Publ  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Multiple layer insulation cover  

DOE Patents (OSTI)

A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

Farrell, James J. (Livingston Manor, NY); Donohoe, Anthony J. (Ovid, NY)

1981-11-03T23:59:59.000Z

302

Monte Carlo solution methods in a moment-based scale-bridging algorithm for thermal radiative transfer problems: Comparison with Fleck and Cummings  

SciTech Connect

We have developed a moment-based scale-bridging algorithm for thermal radiative transfer problems. The algorithm takes the form of well-known nonlinear-diffusion acceleration which utilizes a low-order (LO) continuum problem to accelerate the solution of a high-order (HO) kinetic problem. The coupled nonlinear equations that form the LO problem are efficiently solved using a preconditioned Jacobian-free Newton-Krylov method. This work demonstrates the applicability of the scale-bridging algorithm with a Monte Carlo HO solver and reports the computational efficiency of the algorithm in comparison to the well-known Fleck-Cummings algorithm. (authors)

Park, H. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Densmore, J. D. [Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); Wollaber, A. B.; Knoll, D. A.; Rauenzahn, R. M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2013-07-01T23:59:59.000Z

303

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

304

A Mars hopping vehicle propelled by a radioisotope thermal rocket: thermofluid design and materials selection  

Science Journals Connector (OSTI)

...in disadvantages in thermal insulation design and practicality...selection for the stored thermal rocket motor propelling...conservative baseline vehicle specification with a target hopping...hopper and a stored thermal rocket motor. An ideal...

2011-01-01T23:59:59.000Z

305

Cost model for optimum thicknesses of insulated walls considering indirect impacts and uncertainties  

Science Journals Connector (OSTI)

Abstract Nowadays, insulation is increasingly used for houses and buildings for its economic and environmental advantages. The performance of an insulated construction depends mainly on the thickness and the properties of the used insulation material. However, this performance is subjected to various uncertainties related for instance to the manufacturing process of the material and to the different workmanship errors that affect the thermal resistance of the insulated construction. In practice, these uncertainties are still rarely considered in energy analysis. Nevertheless, beyond a given level of uncertainties, the insulation system does not perform as expected which induces additional unexpected costs related to energy and pollution. This work aims first, at showing the impact of these uncertainties on the reliability of the insulated construction and second, at developing a new formulation of the global cost for the design of insulation system considering additional costs related to user and environment. The proposed cost formulation allows us to provide a better estimation of the payback period. Three configurations are considered with different insulation schemes in order to show the impact of uncertainties and indirect costs on the insulation performance.

A. Aïssani; A. Chateauneuf; J.-P. Fontaine; Ph. Audebert

2014-01-01T23:59:59.000Z

306

Cryogenic sandwich-type insulation board composed of E-glass/epoxy composite and polymeric foams  

Science Journals Connector (OSTI)

Liquefied natural gas (LNG) is a clean energy source whose consumption has recently increased greatly due to the failure of a nuclear power plant. LNG is transported with LNG carriers that store LNG at the cryogenic temperature of ?163 °C. Because the cargo containment system (CCS) of LNG carriers should be operated for more than 40 years at the cryogenic temperature, its reliability against thermal and mechanical loads should be guaranteed without compromising its thermal insulation performance. For reasons of both mechanical and thermal performance, the faces and cores of conventional insulation boards are made of plywood and high-density (110 kg/m3) polymeric. In this study, an advanced sandwich-type insulation board composed of E-glass/epoxy composite faces and a low-density polymeric foam core with a composite box configuration was developed to seal a foam blowing gas of low thermal conductivity. The mechanical performance of the advanced sandwich-type insulation board was simulated using the finite element analysis (FEA) software ABAQUS (SIMULIA, USA). The sealing performance of the composite box was also investigated experimentally. Finally, the thermal performance of the advanced sandwich-type insulation board was numerically investigated using thermal conductivity equations.

Ilbeom Choi; Young Ho Yu; Dai Gil Lee

2013-01-01T23:59:59.000Z

307

Exterior Insulation and Overclad Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior Insulation & Overclad Exterior Insulation & Overclad Retrofits Residential Energy Efficiency Stakeholder Meeting March 2, 2012 - Austin, TX Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 2  Incredible practical experience:  New construction - nearly a century  Retrofit applications - many decades Exterior Insulation Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 3 1980s ON - a "weird" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 4 1990s ON - a "good" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 5 2000s ON - a "typical" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 6

308

The influence of different electricity-to-emissions conversion factors on the choice of insulation materials  

Science Journals Connector (OSTI)

Abstract The current practice of building energy upgrade typically uses thick layers of insulation in order to comply with the energy codes. Similarly, the Norwegian national energy codes for residential buildings are moving towards very low U-values for the building envelope. New and more advanced materials, such as vacuum insulation panels (VIPs) and aerogel, have been presented as alternative solutions to commonly used insulation materials. Both aerogel and \\{VIPs\\} offer very high thermal resistance, which is a favourable characteristic in energy upgrading as the same insulation level can be achieved with thinner insulation layers. This paper presents the results of energy use and lifecycle emissions calculations for three different insulation materials (mineral wool, aerogel, and vacuum insulation panels) used to achieve three different insulation levels (0.18 W/m2 K, 0.15 W/m2 K, and 0.10 W/m2 K) in the energy retrofitting of an apartment building with heat pump in Oslo, Norway. As advanced insulation materials (such as VIP and aerogel) have reported higher embodied emissions per unit of mass than those of mineral wool, a comparison of performances had to be based on equivalent wall U-values rather than same insulation thicknesses. Three different electricity-to-emissions conversion factors (European average value, a model developed at the Research Centre on Zero Emission Buildings – ZEB, and the Norwegian inland production of electricity) are used to evaluate the influence of the lifecycle embodied emissions of each insulation alternative. If the goal is greenhouse gas abatement, the appraisal of buildings based solely on their energy use does not provide a comprehensive picture of the performance of different retrofitting solutions. Results show that the use of the conversion factor for Norwegian inland production of electricity has a strong influence on the choice of which of the three insulation alternatives gives the lowest lifecycle emissions.

Nicola Lolli; Anne Grete Hestnes

2014-01-01T23:59:59.000Z

309

Inscription of Thermally Durable Type IIA Gratings in B/Ge-codoped Optical Fibres Using 248nm, 500fs Radiation  

Science Journals Connector (OSTI)

Results on the inscription of Type IIA Bragg gratings in B-germanosilicate fibres using 248nm, 500fs laser radiation are presented. The gratings recorded exhibit index changes ?n?10-3,...

Violakis, George; Konstantaki, Maria; Pissadakis, Stavros

310

Chromatin insulators: lessons from the fly  

E-Print Network (OSTI)

Chromatin insulators: lessons from the fly B.V.Gurudatta and Victor G.Corces Abstract Chromatin insulators are DNA^protein complexes with broad functions in nuclear biology. Drosophila has at least five different types of insulators; recent results suggest that these different insulators share some components

Corces, Victor G.

311

Insulator/Chern-insulator transition in the Haldane model T. Thonhauser and David Vanderbilt  

E-Print Network (OSTI)

Insulator/Chern-insulator transition in the Haldane model T. Thonhauser and David Vanderbilt properties of the Haldane model as the system undergoes its transition from the normal-insulator to the Chern-insulator phase. We find that the density matrix has expo- nential decay in both insulating phases, while having

Vanderbilt, David

312

Insulators for Switchgear and Busbars  

Science Journals Connector (OSTI)

... export them abroad. They now supply 132 kv. cylindrical type switchgear insulators for the substations of the latest section of the British grid. The disadvantage of the wide base ...

1932-04-23T23:59:59.000Z

313

Insulation For Earth And Space  

Science Journals Connector (OSTI)

According to National Aeronautics & Space Administration scientist Mary Ann B. Meador, before sending people or larger vehicles to Mars, scientists must develop insulating materials to counter the planet’s exotic environment. ...

LAUREN WOLF

2012-09-16T23:59:59.000Z

314

Fully synthetic taped insulation cables  

DOE Patents (OSTI)

A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

1984-01-01T23:59:59.000Z

315

Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade- Minneapolis Residence (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

316

Evaluation of the Thermal Performance for a Wire Mesh/Hollow Glass Microsphere Composite Structure as a Conduction Barrier  

E-Print Network (OSTI)

An experimental investigation exploring the use of wire mesh/hollow glass microsphere combination for use as thermal insulation was conducted with the aim to conclude whether or not it represents a superior insulation technology to those...

Mckenna, Sean

2010-01-15T23:59:59.000Z

317

The Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative Feedbacks and Convective Parameterization  

E-Print Network (OSTI)

) atmospheric energy transport per unit mass transport] of the model tropics converts the energy flux change 25% between the imposed oceanic flux and the resulting response in the atmospheric energy transportThe Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance

Miami, University of

318

Engineering Aspects of Heat Transfer in Multilayer Reflective Insulation and Performance of NRC Insulation  

Science Journals Connector (OSTI)

All types of high-performance insulation, often referred to as “superinsulation,” ... Carbide Corporation in October, 1958, or the insulation proposed and tested in 1951 by P. ... D. Little, Inc., or the NRC insulation

M. P. Hnilicka

1960-01-01T23:59:59.000Z

319

Buildings Energy Data Book: 5.1 Building Materials/Insulation  

Buildings Energy Data Book (EERE)

3 3 Thermal Performance of Insulation Fiberglass (2) Perlite/Vermiculite Batts (3) Loose-Fill 2.1 - 3.7 Loose-Fill Foam Boards Spray-Applied Expanded Polystyrene 3.9 - 4.4 Rock Wool (2) Polyisocyanurate/Polyurethane 5.6 - 7.0 Loose-Fill Phenolic 4.4 - 8.2 Cellulose Reflective Insulation 2 - 17 Loose-Fill Vacuum Powder Insulation 25 - 30 Spray-Applied Vacuum Insulation Panel 20 - 100 Note(s): Source(s): 3.1 - 3.7 2.9 - 3.5 1) Hr-SF-F/Btu-in. Does not include the effects of aging and settling. 2) Mineral fiber. 3) System R-Value depends on heat-flow direction and number of air spaces. ASHRAE, 1997 ASHRAE Handbook: Fundamentals, p. 24-4, 22-5; DOE, Insulation Fact Sheet, Jan. 1988, p. 6; Journal of Thermal Insulation, 1987, p. 81-95; ORNL, ORNL/SUB/88-SA835/1, 1990; ORNL, Science and Technology for a Sustainable Energy Future, Mar. 1995, p. 17; and ORNL for vacuum insulation

320

Proceedings of Eurotherm78 Computational Thermal Radiation in Participating Media II 5-7 April 2006, Poitiers, France  

E-Print Network (OSTI)

advantages over the combustion- based technology. Energy is efficiently transferred via direct irradiation production or upgrade, the final product contains chemically stored solar energy. Example applications 2006, Poitiers, France A diffusion-based approximate model for radiation heat transfer in a solar

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons in graphene  

E-Print Network (OSTI)

in graphene Ognjen Ilic,1,* Marinko Jablan,2 John D. Joannopoulos,1 Ivan Celanovic,3 Hrvoje Buljan,2 and Marin-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene

Soljaèiæ, Marin

322

Mechanical and thermal properties of benzoxazine nanocomposites containing multiwalled carbon nanotubes.  

E-Print Network (OSTI)

??Due to the need for thermally resistant materials in microelectronic insulators, high-speed aircraft structures, and structural components of space vehicles require high temperature polymer composites.… (more)

Kaleemullah, Muhammad

2011-01-01T23:59:59.000Z

323

E-Print Network 3.0 - acceptable thermal conditions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Practice for Conditioning of Thermal Insulating Materials 01V24 ASTM C1488 Standard... : ... Source: National Institute of Standards and Technology...

324

Spray-on foam insulations for launch vehicle cryogenic tanks  

Science Journals Connector (OSTI)

Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200–260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different methods is provided. Recent advancements and applications of SOFI systems on future launch vehicles and spacecraft are also addressed.

J.E. Fesmire; B.E. Coffman; B.J. Meneghelli; K.W. Heckle

2012-01-01T23:59:59.000Z

325

GROUND PLANE INSULATION FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL  

E-Print Network (OSTI)

is WIUUTEO GROUND PLANE INSULATION FAILURE IN THE FIRST TPCOn August 27, 1980, an insulation failure occurred dt-ringby a failure uf ground plane insulation. ACKNOWLEDGMENTS The

Green, M.A.

2010-01-01T23:59:59.000Z

326

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network (OSTI)

automotive industry optics biomedical technology environmental technology Plasma Technology Quote from: Pla-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer

Greifswald, Ernst-Moritz-Arndt-Universität

327

24-26 September 2008, Rome, Italy Thermal Design of  

E-Print Network (OSTI)

conductivity of most materials used to electrically insulate the devices enhances the thermal issues that could to estimate the overall thermal resistance by considering a combination of individual thermal resistances of layout parameters upon the thermal resistance of such devices. This contribution is aimed at supplying

Technische Universiteit Delft

328

Radiation hardness of cerium-doped gadolinium silicate Gd2SiO5:Ce against high energy protons, fast and thermal neutrons  

Science Journals Connector (OSTI)

Degradation of Gd2SiO5:Ce in optical transmittance due to proton irradiation was negligibly small below 106 rad, smaller than 2%/cm at 107 rad and large at 108 rad. The radiation hardness of 107 rad against protons is by two orders of magnitude smaller than against low energy ?-rays. Long term spontaneous recovery of the proton-induced damage is not large (10–20% of the initial degradation in 84 days). Recovery upon exposure to UV light occurs to some extent. Degradation due to thermal neutrons was negligibly small for a fluence of 1014 n/cm2. No degradation was observed for exposure to fast neutrons of about 1013 n/cm2 during one year in the extracted beam tunnel of proton synchrotron.

Masaaki Kobayashi; Masaharu Ieiri; Kenjiro Kondo; Taichi Miura; Hiroyuki Noumi; Masaharu Numajiri; Yuichi Oki; Takenori Suzuki; Minoru Takasaki; Kazuhiro Tanaka; Yutaka Yamanoi; Mitsuru Ishii

1993-01-01T23:59:59.000Z

329

Process for making ceramic insulation  

DOE Patents (OSTI)

A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

2009-12-08T23:59:59.000Z

330

Foundation Insulation for Existing Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do We Retrofit Tough Buildings? Foundation Insulation for Existing Homes Building America Technical Update April 29 & 30, 2013 Patrick H. Huelman Cold Climate Housing Coordinator University of Minnesota Extension Foundation Insulation for Existing Homes * Context - Focused on basements and crawlspaces. - Aimed at cold climates (Climate Zones 6 & 7). - Generally aimed at liquid active walls. * Approach - Managing risks - Current solutions & best practices - Evaluating new approaches * Primary focus is to reduce energy use by 30 to 50% with emphasis on existing homes. * Promote building science solutions using a systems engineering and integrated design approach. * "Do no harm" => must ensure that safety, health, and durability are maintained or improved.

331

Approximating Metal-Insulator Transitions  

E-Print Network (OSTI)

We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase similar to the divergence of the localization length in the insulating phase.

C. Danieli; K. Rayanov; B. Pavlov; G. Martin; S. Flach

2014-05-06T23:59:59.000Z

332

British Standard Specification for Cable Insulation  

Science Journals Connector (OSTI)

... different types of cables and cords ; and the third, with tests for thickness of insulation and sheath, voltage, ... and sheath, voltage, insulation resistance, spark testing, tinning and armouring. The numerous tables with which the specification ...

1947-02-22T23:59:59.000Z

333

Insulation board and process of making  

DOE Patents (OSTI)

Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

334

Systems of Insulation Resistance Continuous Measurement  

Science Journals Connector (OSTI)

In this chapter several methods of continuous measurement of insulation resistance in AC IT systems are described. ... source is explained. Another method of continuous insulation resistance measurement is imposi...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

335

Systems of Insulation Resistance Continuous Measurement  

Science Journals Connector (OSTI)

In this chapter several methods of continuous measurement of insulation resistance in AC IT systems are described. ... source is explained. Another method of continuous insulation resistance measurement is imposi...

Piotr Olszowiec

2014-01-01T23:59:59.000Z

336

Vacuum Insulation for Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

evacuated materials-so small that they are invisible-integrated with low-e-coated plastic films. The materials will have better insulation values than vacuum-insulated glass...

337

Basement Insulation Systems- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

338

Modeling and simulation of power cable insulation  

Science Journals Connector (OSTI)

The use of power cables for transmission and distribution of electrical power have increased since the advent of suitable, reliable and economical polymeric insulating material; such as cross-linked polyethylene (XLPE). Power cables plays crucial role ... Keywords: cross-linked polyethylene (XLPE), imperfect insulation, local defects, lossy insulation, partial discharge (PD)

K. D. Patil; A. A. Bhole; W. Z. Gandhare

2010-02-01T23:59:59.000Z

339

OPTIMAL INSULATION DISTRIBUTION OVER A CONDUCTING BODY  

Science Journals Connector (OSTI)

......research-article Articles OPTIMAL INSULATION DISTRIBUTION OVER A CONDUCTING BODY...conducted. Over the rest a given amount of insulation is assumed to be spread. Its pointwise...surroundings. Observe that thickening of the insulation at one point involves thinning elsewhere......

MICHAEL BETWICH

1983-02-01T23:59:59.000Z

340

STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION  

E-Print Network (OSTI)

STATE OF CALIFORNIA ENVELOPE ­ INSULATION; ROOFING; FENESTRATION CEC-CF-6R-ENV-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope ­ Insulation; Roofing to be checked to ensure the mandatory measures have been met. Description of Insulation 1. RAISED FLOOR Material

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory  

SciTech Connect

This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

1991-09-01T23:59:59.000Z

342

High Reliability R-10 Windows Using Vacuum Insulating Glass Units  

SciTech Connect

The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ? 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where the unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.

Stark, David

2012-08-16T23:59:59.000Z

343

Electrical properties of MOS radiation dosimeters G. Sarrabayrouse, A. Bellaouar and P. Rossel  

E-Print Network (OSTI)

. Abstract. 2014 MOS transistors are used for radiation dosimetry. The sensitivity obtained is ranging. IntroductiorL The use of MOS transistors for the detection and dosimetry of ionizing radiation has been in the insulating layer of a MOS transistor and at the insulator semiconductor interface. For a given radiation dose

Paris-Sud XI, Université de

344

Overview of Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Nanofluids for Thermal Conditions Underhood Heat Transfer Nanofluid Development for Engine Cooling Systems Erosion of Radiator...

345

Behavior of the thermopower in amorphous materials at the metal-insulator transition C. Villagonzalo , R. A. Romer, and M. Schreiber  

E-Print Network (OSTI)

is the metal-insulator transition (MIT). This quantum phase transition from a good conducting material values or vice versa at low temperature T . This corresponds to a change of thermal conductors fromBehavior of the thermopower in amorphous materials at the metal-insulator transition C

Chemnitz, Technische Universität

346

Prospects of the treatment of acoustical insulation in building codes of México.  

Science Journals Connector (OSTI)

The acoustical insulation of dwellings in order to protect them from environmental noise is an issue not yet addressed in building regulations in Mexico but the Federal Government through the National Housing Commission (CONAVI) has promoted the development of a Building Code for Dwellings which in the future could include provisions about this subject. So far authorities have focused their attention on the problems of energy efficiency and thermal insulation of public buildings. On the subject of housing they have proposed levels of thermal insulation that could be adopted as standards and have also promoted the study of constructive solutions appropriate to those standards. The levels of acoustical and thermal insulation that are produced by various constructive solutions used by housing developers in the metropolitan area of the city of Puebla Mexico are analyzed in this work in order to compare their performance with international standards. A more comprehensive regulatory framework is needed in Mexico and the results of this research will produce recommendations on acoustical insulation capacities that the National Housing Commission could include in its code. [Project supported by funds from CONACYT and CONAVI.

Mario E. Vergara

2010-01-01T23:59:59.000Z

347

Prospects of the treatment of acoustical insulation in building codes of Mexico  

Science Journals Connector (OSTI)

The acoustical insulation of dwellings in order to protect them from environmental noise is an issue not yet addressed in building regulations in Mexico but the Federal Government through the National Housing Commission (CONAVI) has promoted the development of a Building Code for Dwellings which in the future could include provisions about this subject. So far authorities have focused their attention on the problems of energy efficiency and thermal insulation of public buildings. On the subject of housing they have proposed levels of thermal insulation that could be adopted as standards and have also promoted the study of constructive solutions appropriate to those standards. The levels of acoustical and thermal insulation that are produced by various constructive solutions used by housing developers in the metropolitan area of the city of Puebla Mexico are analyzed in this work in order to compare their performance with international standards. A more comprehensive regulatory framework is needed in Mexico and the results of this research will produce recommendations on acoustical insulation capacities that the National Housing Commission could include in its code. [Project supported by funds from CONACYT and CONAVI.

Mario E. Vergara Balderas

2012-01-01T23:59:59.000Z

348

Unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation in normal and supercritical helium conditions  

SciTech Connect

To investigate the unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation, two experimental mock-ups reproducing the thermal and the mechanical conditions of a superconducting coils were produced. The mock-ups with compressive load of 10 MPa and 20 MPa were tested at normal (T = 4.23 K and p = 1 bar) and supercritical helium conditions (T = 4.23 K and p = 2.0 to 3.75 bar) during unsteady heat dissipation. The paper presents the experimental results of temperature rise in both superconducting coils as a function of time for a wide range of a localized heat load varying from 0.1 kJ/m{sup 3} up to 12.8 MJ m{sup ?3} per pulse. A numerical model of the transient process in these coils has been developed and the computations are compared with the experimental results.

Pietrowicz, S. [Department of Thermodynamics, Institute of Power Engineering and Fluid Mechanics, Wroc?aw University of Technology, Wybrze?e Wyspia?skiego 27, 50 - 370 Wroc?aw (Poland); Four, A.; Baudouy, B. [CEA Saclay, Irfu/ SACM, 91191 Gif-sur-Yvette (France); Kimura, N.; Yamamoto, A. [High Energy Accelerator Research Organization, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

2014-01-29T23:59:59.000Z

349

Removable fibrous glass insulation fitted to complex equipment shapes results in $178,000/yr savings  

SciTech Connect

In early 1980, PPG Industries embarked on a general plant energy conservation effort at its Lake Charles, LA plant where chlor-alkalis, various chlorinated hydrocarbons, and vinyl chloride monomer are manufactured. Company engineers sought a means of insulating process steam components that, because of their complex shapes, were not (and normally are not) insulated. These components included flanges on heat exchanger heads and reboilers, steam valves in process areas, manways and other equipment. PPG plant engineers specified removable, reusable blanket insulation. The blankets are constructed of a fibrous glass mat form insulation encased in a silicone-impregnated glass cloth or similar weather barrier. Each insulation blanket was custom-made for its particular equipment shape and service application to ensure a close fit and optimal energy efficiency. Insulation thickness, type of weather barrier, and mesh were specified according to intended use. For protection from abrasion or puncture, some of the blankets also were covered with stainless steel, Monel, or Inconel wire mesh. Overall, the blankets provide high strength, durability, low thermal conductivity ratings, and an operating range of up to 1200/sup 0/F. Reduced maintenance costs and improved worker productivity have been evidenced since installing the blanket insulation. Further, PPG has increased energy efficiency. Project savings were tracked for 30 months (insulation and installation costs vs. fuel and maintenance savings) and revealed annual plant savings of $178,000-$130,000 in energy savings and $48,000 in maintenance savings. With the cost of the insulation blankets being about $125,000, PPG recovered its investment in under a year.

Not Available

1985-08-01T23:59:59.000Z

350

Magnetically insulated transmission line oscillator  

DOE Patents (OSTI)

A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

351

A two-temperature model of radiation damage in {alpha}-quartz  

SciTech Connect

Two-temperature models are used to represent the physics of the interaction between atoms and electrons during thermal transients such as radiation damage, laser heating, and cascade simulations. We introduce a two-temperature model applied to an insulator, {alpha}-quartz, to model heat deposition in a SiO{sub 2} lattice. Our model of the SiO{sub 2} electronic subsystem is based on quantum simulations of the electronic response in a SiO{sub 2} repeat cell. We observe how the parametrization of the electronic subsystem impacts the degree of permanent amorphization of the lattice, especially compared to a metallic electronic subsystem. The parametrization of the insulator electronic subsystem has a significant effect on the amount of residual defects in the crystal after 10 ps. While recognizing that more development in the application of two-temperature models to insulators is needed, we argue that the inclusion of a simple electronic subsystem substantially improves the realism of such radiation damage simulations.

Phillips, Carolyn L. [Applied Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Magyar, Rudolph J.; Crozier, Paul S. [Department of Multiscale Dynamic Materials Modeling, Sandia National Laboratories, P.O. Box 5800, MS 1322, Albuquerque, New Mexico 87185-1322 (United States)

2010-10-14T23:59:59.000Z

352

In situ performance evaluation of spray polyurethane foam in the exterior insulation basement system (EIBS)  

Science Journals Connector (OSTI)

In 1995, a joint research project11The consortium included Canadian Plastics Industry Association, Expanded Polystyrene Association of Canada, Canadian Urethane Foam Contractors Association, Owens Corning Inc. and Roxul Inc. with the Institute for Research in Construction was initiated to assess the in situ thermal performance of a number of insulation products used as exterior basement insulation in contact with the ground. Sixteen insulation specimens measuring 610 mm and 1220 mm wide were installed on the exterior basement walls of an experimental building, test hut no. 1, located on NRC campus in Ottawa. These specimens were instrumented prior to backfilling and their thermal performance was monitored over two full years. Soil temperatures and moisture content were monitored concurrently. Weather events were recorded daily. This paper focuses on the performance of the two spray polyurethane foam (SPF) specimens assessed in this experiment. Through analysis of the surface temperatures of the specimens, water movement was detected at the insulation/soil interface through various periods of heavy rain and major thaws throughout the two-year period. Over the same period, the surface of the concrete on the inside of the insulation showed no evidence of water penetration through the SPF layer. The insulation specimens were retrieved after 31 months of exposure in the soil. Good and continuous surface adhesion was also noted on removal. Samples were taken from these exposed specimens. When tested in the lab, after recovery and drying of the specimens, the compressive strengths of the SPF samples were slightly higher than those tested at the beginning of the experiment. For the conditions recorded over two years of monitoring, the thermal performance of each insulation specimen was found to be stable through the heating season. The thermal performance appeared not to be significantly affected by water movement at the exterior face of the insulation. One SPF specimen showed steady thermal performance through two heating seasons while the other actually improved in the second year. It was concluded that the key performance factors of the 76 mm thick SPF specimens sprayed on the exterior surfaces of the concrete basement wall all remained at a very good level, i.e., the in situ thermal resistance, the compressive strength, and the moisture contents of the specimens.

M.C. Swinton; W. Maref; M.T. Bomberg; M.K. Kumaran; N. Normandin

2006-01-01T23:59:59.000Z

353

A Comparative Heat Transfer Examination of Structural Insulated Panels (SIPs) With and Without Phase Change Materials (PCMs) Using a Dynamic Wall Simulator  

E-Print Network (OSTI)

The main focus of this paper was to present data to advance the design of a previously developed thermally-enhanced structural insulated panel (SIP) that had been outfitted with phase change materials (PCMs) (Medina et al., 2008). To advance...

Medina, M.; Zhu, D.

354

Study of combustion processes in firing of a heat-insulator produced from technogenic raw materials from nonferrous metallurgy and power industry  

Science Journals Connector (OSTI)

Combustion of heat-insulators produced from technogenic raw materials without use of conventional natural materials were studied. It is shown that most part of volatiles are removed in thermal treatment of hea...

E. S. Abdrakhimova; V. Z. Abdrakhimov

2012-08-01T23:59:59.000Z

355

Making Steel Framing as Thermally Efficient as Wood  

E-Print Network (OSTI)

the steel web with a less conductive material, and 4) placing foam insulation in locations where the thermal shorts are most critical. Researchers at Oak Ridge National Laboratory (ORNL) have utilized both hot box testing and computer simulations in aim...

Kosny, J.; Childs, P.

2002-01-01T23:59:59.000Z

356

Morphology and thermal conductivity of yttria-stabilized zirconia coatings  

E-Print Network (OSTI)

yttria-stabilized zir- conia (YSZ) is then applied to provide thermal insulation [1]. This ceramic layer]. The thermal conductivity of the ceramic layer has been found to depend on the pore morphology within a coatingMorphology and thermal conductivity of yttria-stabilized zirconia coatings Hengbei Zhao a

Wadley, Haydn

357

Method for forming fibrous silicon carbide insulating material  

DOE Patents (OSTI)

A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

Wei, George C. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

358

Method for forming fibrous silicon carbide insulating material  

DOE Patents (OSTI)

A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

Wei, G.C.

1983-10-12T23:59:59.000Z

359

Vacuum Thermal Switch Made of Phase Transition Materials Considering Thin Film and Substrate Effects  

E-Print Network (OSTI)

In the present study, we demonstrate a vacuum thermal switch based on near-field thermal radiation between phase transition materials, i.e., vanadium dioxide (VO2), whose phase changes from insulator to metal at 341 K. Similar modulation effect has already been demonstrated and it will be extended to thin-film structure with substrate in this paper. Strong coupling of surface phonon polaritons between two insulating VO2 plates significantly enhances the near-field heat flux, which on the other hand is greatly reduced when the VO2 emitter becomes metallic, resulting strong thermal switching effect. Fluctuational electrodynamics predicts more than 80% heat transfer reduction at sub-30-nm vacuum gaps and 50% at vacuum gap of 1 micron. By replacing the bulk VO2 receiver with a thin film of several tens of nanometers, the switching effect can be further improved over a broad range of vacuum gaps from 10 nm to 1 um. In addition, for the purpose of more practical setup in experiments and applications, the SiO2 subst...

Yang, Yue; Wang, Liping

2014-01-01T23:59:59.000Z

360

Thermal barrier coatings application in diesel engines  

SciTech Connect

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

Fairbanks, J.W.

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Types of Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Types of Insulation Types of Insulation Types of Insulation May 30, 2012 - 11:43am Addthis In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. Icynene plastic insulation blown into the walls of a home near Denver. Icynene fills cracks and crevices and adheres to the framing. | Photo courtesy of Paul Norton, NREL.

362

Critical insulation thickness for maximum entropy generation  

Science Journals Connector (OSTI)

Critical insulation thickness is known to refer to the insulation thickness that maximises the rate of heat transfer in cylindrical and spherical systems. The same analogy is extended to the rate of entropy generation in the present study. The possible critical insulation thickness that yields a maximum rate of entropy generation is investigated. Entropy generation is related to heat transfer through and temperature distribution within the insulation material. It is found that there exists a critical insulation thickness for maximising the rate of entropy generation that is a function of the Bi number and the surface to ambient temperature ratio. The solution of such critical thickness is formulated analytically for both cylindrical and spherical geometries. It is also found that the critical insulation thickness for the rate of entropy generation does not coincide with that for the rate of heat transfer.

Ahmet Z. Sahin

2012-01-01T23:59:59.000Z

363

Insulation and Air Sealing Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services May 30, 2012 - 9:52am Addthis Insulation and Air Sealing Products and Services Use the following links to get product information and locate professional services for insulation and air sealing. Product Information Cellulose Facts Cellulose Insulation Manufacturers Association Information on cellulose insulation, including technical bulletins, special reports, and video Concrete Masonry Units Concrete Homes-Portland Cement Association Describes construction methods that use concrete block systems Cotton Insulation (PDF) Build it Green Information on cotton insulation and a comparison to conventional insulation Expanded Polystyrene Molders Association

364

Impact of the insulation materials’ features on the determination of optimum insulation thickness  

Science Journals Connector (OSTI)

The optimum thickness of the building envelope insulation materials depends on a large number of ... used in the building, and specifically the insulation ones, are included in the process to calculate the optimu...

Jérôme Barrau; Manel Ibanez; Ferran Badia

2014-07-01T23:59:59.000Z

365

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aerogel Impregnated Polyurethane Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures.

366

Floating insulated conductors for heating subsurface formations  

DOE Patents (OSTI)

A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

Burns, David; Goodwin, Charles R.

2014-07-29T23:59:59.000Z

367

Effects of airflow infiltration on the thermal performance of internally  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of airflow infiltration on the thermal performance of internally Effects of airflow infiltration on the thermal performance of internally insulated ducts Title Effects of airflow infiltration on the thermal performance of internally insulated ducts Publication Type Journal Article Year of Publication 2000 Authors Levinson, Ronnen M., William W. Delp, Darryl J. Dickerhoff, and Mark P. Modera Journal Energy and Buildings Volume 32 Pagination 345-354 Keywords building design, Heat Island Abstract Air flowing through a supply duct infiltrates perviously faced, porous, internal duct insulation, degrading its thermal performance. Encapsulating the insulation's air-facing surface with an impervious barrier prevents infiltration, increasing the capacity of the conditioned supply air to heat or cool the space to which it is delivered. This study determined the air-speed dependence of the thermal conductivity of fiberglass insulation by measuring the inlet-to-outlet temperature drop of heated air flowing through a long, insulated flexible duct. The conductivity of a flexible duct's low-density, internal, fiberglass-blanket insulation increased with the square of the duct air speed, rising by 140% as the duct air speed increased from 0 to 15 m s-1. At air speeds recommended for branch ducts, the conductivity of such insulation would increase by 6% above its still-air value in a residential system and by 16% in a commercial system. Results partially agreed with those reported by an earlier study. Simulations indicate that encapsulating the air-stream surface of internal fiberglass duct insulation with an impervious barrier increases the effectiveness with which a duct delivers the thermal capacity of supply air by 0.15%-0.9% in typical duct systems.

368

Install Removable Insulation on Valves and Fittings  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

369

Conductivity measurement on thick insulating plaque samples.  

E-Print Network (OSTI)

?? The conductivity is one of the main properties of HVDC cable insulation materials and needs to be evaluated carefully. Since measurement on cables is… (more)

Huldén, Pierre

2014-01-01T23:59:59.000Z

370

Heat insulation layer of polymer composite material  

Science Journals Connector (OSTI)

A new heat insulation layer polymer composite material is developed, within whose composition there is foam polyurethane and basaltoplastic. Results are provided for...

G. P. Ponomareva; A. A. Artemenko; O. M. Sladkov…

2010-05-01T23:59:59.000Z

371

Topological Insulators in Three Dimensions  

Science Journals Connector (OSTI)

We study three-dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where a single Z2 topological invariant governs the effect, in three dimensions there are 4 invariants distinguishing 16 phases with two general classes: weak (WTI) and strong (STI) topological insulators. The WTI are like layered 2D QSH states, but are destroyed by disorder. The STI are robust and lead to novel “topological metal” surface states. We introduce a tight binding model which realizes the WTI and STI phases, and we discuss its relevance to real materials, including bismuth.

Liang Fu; C. L. Kane; E. J. Mele

2007-03-07T23:59:59.000Z

372

Fully synthetic taped insulation cables  

DOE Patents (OSTI)

The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

Forsyth, E.B.; Muller, A.C.

1983-07-15T23:59:59.000Z

373

Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers  

SciTech Connect

Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126?nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24?W?m{sup ?1}?K{sup ?1} near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350?K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion.

Bi, Kedong, E-mail: lishi@mail.utexas.edu, E-mail: kedongbi@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Weathers, Annie; Pettes, Michael T.; Shi, Li, E-mail: lishi@mail.utexas.edu, E-mail: kedongbi@seu.edu.cn [Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Matsushita, Satoshi; Akagi, Kazuo [Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510 (Japan); Goh, Munju [Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510 (Japan); Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Eunha-ri san 101, Bondong-eup, Wanju-gun, Jeolabuk-do 565-905 (Korea, Republic of)

2013-11-21T23:59:59.000Z

374

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

1999-01-01T23:59:59.000Z

375

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

Vohra, A.

1999-03-02T23:59:59.000Z

376

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,  

E-Print Network (OSTI)

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

Sontag, Eduardo

377

APPLIED PHYSICS REVIEWS Semi-insulating semiconductor heterostructures: Optoelectronic  

E-Print Network (OSTI)

APPLIED PHYSICS REVIEWS Semi-insulating semiconductor heterostructures: Optoelectronic properties of optoelectronic properties of and uses for semi-insulating semiconductor heterostructures and thin films. The principal optical and optoelectronic properties of semi-insulating epilayers and heterostructures

Nolte, David D.

378

Thermal Insulation Performance in the Process Industries: Facts and Fallacies  

E-Print Network (OSTI)

toget~er with those of the pure zirconia and alumina fiJ)er pro ducts having intermediate densities. Itl can be seen that the performance of these new fine fiber blanket materials is equal to or better than that of the pure refractory oxide fiber...uminosilicate % Difference ?c 63* 136 70 142 67 141 67 140 200 0.055t 0.051 0.052 0.048 0.068 0.060 27.1 21.2 400 0.087 0.072 0.078 0.068 0.122 0.096 47.9 37.1 600 0.130 0.100 0.120 0.096 0.198 0.148 58.4 51.0 800 0.195 0.140 0.175 0.132 0.290 0.23 56...

Tye, R. P.

379

Limitations of High-Voltage Insulation  

Science Journals Connector (OSTI)

... materials such as impregnated paper. The important electrical properties of the materials used for the insulation of high-voltage circuits are conductivity and electric strength. The conductivity measures the ability ... a million times between themselves, but they are all classified as available for high-voltage insulation.

1938-01-08T23:59:59.000Z

380

Heat Insulation in Electric Power Stations  

Science Journals Connector (OSTI)

... HEAT insulation of pipes, boilers and generating sets, which used to be indicated by the general ... in steam generating plants, it is common experience to find that cracks develop in the insulation on water-cooled furnace walls as the result of: (a) expansion and contraction ...

1940-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

382

Kingspan Insulated Panels: Order (2013-CE-5353)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

383

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

biological thermal energy, geothermal energy, wasted heatpower plants, solar thermal energy, geothermal energy, oceansolar radiation, and the geothermal energy. [16] Fig. 1.1.

Lim, Hyuck

2011-01-01T23:59:59.000Z

384

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

solar radiation, and the geothermal energy. [16] Fig. 1.1.thermal energy, geothermal energy, wasted heat from athermal energy, geothermal energy, ocean thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

385

Lifetime Assessment for Thermal Barrier Coatings: Tests for Measuring Mixed Mode Delamination Toughness  

E-Print Network (OSTI)

the thermally grown oxide (TGO), and a porous ceramic topcoat which serves as the thermal insulation. DetailsLifetime Assessment for Thermal Barrier Coatings: Tests for Measuring Mixed Mode Delamination Mechanisms leading to degradation of the adherence of thermal barrier coatings (TBC) used in aircraft

Hutchinson, John W.

386

ITER Central Solenoid Coil Insulation Qualification  

SciTech Connect

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, Nicolai N [ORNL] [ORNL; Mann Jr, Thomas Latta [ORNL] [ORNL; Miller, John L [ORNL] [ORNL; Freudenberg, Kevin D [ORNL] [ORNL; Reed, Richard P [Cryogenic Materials, Inc.] [Cryogenic Materials, Inc.; Walsh, Robert P [Florida State University] [Florida State University; McColskey, J D [National Institute of Standards and Technology (NIST), Boulder] [National Institute of Standards and Technology (NIST), Boulder; Evans, D [Advanced Cryogenic Materials] [Advanced Cryogenic Materials

2010-01-01T23:59:59.000Z

387

ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION  

SciTech Connect

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

2009-06-11T23:59:59.000Z

388

Building Technologies Office: Vacuum Insulation Panels Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Insulation Vacuum Insulation Panels Research Project to someone by E-mail Share Building Technologies Office: Vacuum Insulation Panels Research Project on Facebook Tweet about Building Technologies Office: Vacuum Insulation Panels Research Project on Twitter Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Google Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Delicious Rank Building Technologies Office: Vacuum Insulation Panels Research Project on Digg Find More places to share Building Technologies Office: Vacuum Insulation Panels Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research

389

Building America Expert Meeting Report: Interior Insulation Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interior Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce...

390

Foundation Insulation for Existing Homes | Department of Energy  

Energy Savers (EERE)

Foundation Insulation for Existing Homes Foundation Insulation for Existing Homes This presentation was delivered at the U.S. Department of Energy Building America Technical Update...

391

Journal Article: Graphene physics and insulator-metal transition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphene physics and insulator-metal transition in compressed hydrogen Citation Details Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors:...

392

Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation  

E-Print Network (OSTI)

Location, Air Leakage and Insulation Iain S. Walker Energy4 Duct Insulation, Location and Leakageinsulation

Walker, Iain

2001-01-01T23:59:59.000Z

393

Thermal cameras and applications: a survey  

Science Journals Connector (OSTI)

Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently ... Keywords: Computer vision, Infrared radiation, Thermal camera, Thermal imaging

Rikke Gade; Thomas B. Moeslund

2014-01-01T23:59:59.000Z

394

NREL Evaluates the Thermal Performance of Uninsulated Walls to Improve the Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop models of uninsulated wall assemblies that help to improve the accuracy of building energy simulation tools when modeling potential energy savings in older homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed models for evaluating the thermal performance of walls in existing homes that will improve the accuracy of building energy simulation tools when predicting potential energy savings of existing homes. Uninsulated walls are typical in older homes where the wall cavities were not insulated during construction or where the insulating material has settled. Accurate calculation of heat transfer through building enclosures will help determine the benefit of energy efficiency upgrades in order to reduce energy consumption in older American homes. NREL performed detailed computational fluid dynamics (CFD) analysis to quantify the energy loss/gain through the walls and to visualize different airflow regimes within the uninsulated cavities. The effects of ambient outdoor temperature, radiative properties of building materials, and insulation level were investigated. The study showed that multi-dimensional airflows occur in walls with uninsulated cavities and that the thermal resistance is a function of the outdoor temperature - an effect not accounted for in existing building energy simulation tools. The study quantified the difference between CFD prediction and the approach currently used in building energy simulation tools over a wide range of conditions. For example, researchers found that CFD predicted lower heating loads and slightly higher cooling loads. Implementation of CFD results into building energy simulation tools such as DOE2 and EnergyPlus will likely reduce the predicted heating load of homes. Researchers also determined that a small air gap in a partially insulated cavity can lead to a significant reduction in thermal resistance. For instance, a 4-in. tall air gap (Figure 1a) led to a 15% reduction in resistance. Similarly, a 2-ft tall air gap (Figure 1c) led to 54% reduction in thermal resistance. NREL researchers plan to extend this study to include additional wall configurations, and also to evaluate the performance of attic spaces with different insulation levels. NREL's objective is to address each potential issue that leads to inaccuracies in building energy simulation tools to improve the predictions.

Not Available

2012-01-01T23:59:59.000Z

395

Thermally switchable dielectrics  

DOE Patents (OSTI)

Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

Dirk, Shawn M.; Johnson, Ross S.

2013-04-30T23:59:59.000Z

396

Structures of resonators in a cavity for improving a sound insulation of a thin double-leaf panel  

Science Journals Connector (OSTI)

The specific acoustic problem of a double-leaf panel is a less sound insulation caused by a mass-air-mass resonance. For improving the sound insulation many studies have suggested Helmholtz resonators in the cavity which are tuned at the resonant frequency. They have measured and analyzed this problem of double-walls spaced with 100 mm thickness of air gap. They have suggested that the resonators improve the sound insulation to the resonant transmission and discussed its optimization for a gain by the resonators and structures set in the cavity. But it is unclear that those results can apply to sound insulation by a double grassing with 5 mm thickness of air gap which is often seen even as a thermal insulated window and whose air gap is quite thinner than that of the walls. Then this study measured effects of various resonators in the cavity for improving the sound insulation of thin double-leaf panels and discusses effects of structures and perforation ratio to the sound insulation.

2013-01-01T23:59:59.000Z

397

Structures of resonators in a cavity for improving a sound insulation of a thin double-leaf panel  

Science Journals Connector (OSTI)

The specific acoustic problem of a double-leaf panel is a less sound insulation caused by a mass-air-mass resonance. For improving the sound insulation many studies have suggested Helmholtz resonators in the cavity which are tuned at the resonant frequency. They have measured and analyzed this problem of double-walls spaced with 100 mm thickness of air gap. They have suggested that the resonators improve the sound insulation to the resonant transmission and discussed its optimization for a gain by the resonators and structures set in the cavity. But it is unclear that those results can apply to sound insulation by a double grassing with 5 mm thickness of air gap which is often seen even as a thermal insulated window and whose air gap is quite thinner than that of the walls. Then this study measured effects of various resonators in the cavity for improving the sound insulation of thin double-leaf panels and discusses effects of structures and perforation ratio to the sound insulation. Moreover for analyzing the effects of resonators this study discusses measured results with theoretical studies of sound absorption models for resonators.

2013-01-01T23:59:59.000Z

398

Smart Thermal Skins for Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Smart Thermal Skins for Vehicles With a modest effort, many of the energy-efficient technologies developed for buildings can be transferred to the transportation sector. The goal of vehicle thermal management research at LBL is to save the energy equivalent of one to two billion gallons of gasoline per year, and improve the marketability of next-generation vehicles using advanced solar control glazings and insulating shell components to reduce accessory loads. Spectrally selective and electrochromic window glass and lightweight insulating materials improve the fuel efficiency of conventional and hybrid vehicles and extend the range of electric vehicles by reducing the need for air conditioning and heating, and by allowing the downsizing of equipment.

399

Excavationless Exterior Foundation Insulation Field Study  

SciTech Connect

Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

Schirber, T.; Mosiman, G.; Ojczyk, C.

2014-10-01T23:59:59.000Z

400

Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine  

SciTech Connect

The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electrical protection along with testing data and material characteristics will be presented. 7 figs.

Reass, W.A.; Ballard, E.O.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Insulation failure assessment under random energization overvoltages  

SciTech Connect

This paper offers a new simple approach to the evaluation of the risk of failure of external insulation in view of their known probabilistic nature. This is applied to EHV transmission systems subjected to energization overvoltages. The randomness, both in the applied stresses and insulation`s withstand characteristics are numerically simulated and then integrated to assess the risk of failure. Overvoltage control methods are accounted for, such as the use of pre-insertion breaker resistors, series capacitive compensation, and the installation of shunt reactors.

Mahdy, A.M.; Anis, H.I. [Cairo Univ. (Egypt)] [Cairo Univ. (Egypt); El-Morshedy, A. [Faculty of Science for Girls, Dammam (Saudi Arabia)] [Faculty of Science for Girls, Dammam (Saudi Arabia)

1996-03-01T23:59:59.000Z

402

Electrical Strength of Multilayer Vacuum Insulators  

SciTech Connect

The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available.

Harris, J R; Kendig, M; Poole, B; Sanders, D M; Caporaso, G J

2008-07-01T23:59:59.000Z

403

Is Graphene in Vacuum an Insulator?  

Science Journals Connector (OSTI)

We present evidence, from lattice Monte Carlo simulations of the phase diagram of graphene as a function of the Coulomb coupling between quasiparticles, that graphene in vacuum is likely to be an insulator. We find a semimetal-insulator transition at ?gcrit=1.11±0.06, where ?g?2.16 in vacuum, and ?g?0.79 on a SiO2 substrate. Our analysis uses the logarithmic derivative of the order parameter, supplemented by an equation of state. The insulating phase disappears above a critical number of four-component fermion flavors 4

Joaquín E. Drut and Timo A. Lähde

2009-01-13T23:59:59.000Z

404

Measure Guideline: Hybrid Foundation Insulation Retrofits  

SciTech Connect

This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

Ueno, K.; Lstiburek, J.

2012-05-01T23:59:59.000Z

405

State-of-the-Art Highly Insulating Window Frames - Research and Market  

NLE Websites -- All DOE Office Websites (Extended Search)

State-of-the-Art Highly Insulating Window Frames - Research and Market State-of-the-Art Highly Insulating Window Frames - Research and Market Review Title State-of-the-Art Highly Insulating Window Frames - Research and Market Review Publication Type Report LBNL Report Number LBNL-1133E Year of Publication 2007 Authors Gustavsen, Arlid, Bjørn Petter Jelle, Dariush K. Arasteh, and Christian Kohler Call Number LBNL-1133E Abstract This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

406

6 - Industrial Applications of Ionizing Radiation  

Science Journals Connector (OSTI)

The chapter summarizes the industrial applications of ionizing radiation. Ionizing radiation finds use in a variety of industrial applications such as wire and cable insulation, tire manufacturing, production of polymeric foams, heat-shrinkable films and tubings, curing of coatings, adhesives and composites, printing, and other technological development. It provides extensive information on EB process in wire and cable and tire technology. The chapter also provides discussion on EB process in the manufacture of polyolefin foams and heat-shrinkable materials. Detailed discussion on cross-linked PE pipes (PEX) including methods for production, irradiation, and its advantages, is presented. Other applications for ionizing radiation include sterilization of medical devices, hydrogels, radiation curing of polymeric composites, production of fluoroadditives, radiation-cured flexography, coatings, adhesives, paints, and printing inks. Keywords Ionizing radiation; tire manufacturing; wire and cable insulations; printing inks; polyolefin foams; heat-shrinkable materials; cross-linked PE pipes (PEX); hydrogels; flexography

Jiri George Drobny

2013-01-01T23:59:59.000Z

407

Issue 5: Optimizing High Levels of Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issue 5: Optimizing High Levels of Insulation NREL, Ren Anderson Building America Technical Update Meeting July 25 th , 2012 Issue 5 - How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? Key Factors to Consider: -Cost of savings vs. cost of grid-supplied energy -Cost of efficiency savings vs. cost of savings from renewable generation. -Savings from envelope improvements vs. other efficiency options Context * It is widely believed that code-specified insulation levels also represent cost-effective limits. * However, the cost-effective insulation levels exceed IECC values in many climates. * The homeowner-driven value of modest increases in enclosure performance can create economies of scale that will reduce

408

Next Generation Insulation Materials: Challenges and Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Insulation Materials: Challenges and Opportunities Nov 14 2014 03:00 PM - 04:00 PM Kaushik Biswas, Building Technologies Research and Integration Center, Oak Ridge...

409

Nonlinear boundary value problem of magnetic insulation  

E-Print Network (OSTI)

On the basis of generalization of upper and lower solution method to the singular two point boundary value problems, the existence theorem of solutions for the system, which models a process of magnetic insulation in plasma is proved.

A. V. Sinitsyn

2000-09-09T23:59:59.000Z

410

On Electrical Insulation in High Vacua  

Science Journals Connector (OSTI)

1 January 1878 research-article On Electrical Insulation in High Vacua William Crookes The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1878-01-01T23:59:59.000Z

411

Phosphorylation based insulation devices design and implementation  

E-Print Network (OSTI)

This thesis presents the analysis of a phosphorylation based insulation device implemented in Saccharomyces cerevisae and the minimization of the retroactivity to the input and retroactivity to the output of a single cycle ...

Rivera Ortiz, Phillip M. (Phillip Michael)

2013-01-01T23:59:59.000Z

412

Noise Absorbing High-Temperature Insulation  

Science Journals Connector (OSTI)

Until recently simple heat shields on the engine, in the engine space or on the subframe of a vehicle had given protection against radiant heat from hot components. Today, complex high-temperature insulation syst...

Peter Cappellucci

2013-07-01T23:59:59.000Z

413

Insulate Steam Distribution and Condensate Return Lines  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

414

Insulate Steam Distribution and Condensate Return Lines  

SciTech Connect

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

415

Insulation for New Home Construction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation for New Home Construction Insulation for New Home Construction Insulation for New Home Construction June 20, 2012 - 7:59pm Addthis Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. What does this mean for me? Adding extra insulation in a new home is more cost-effective than retrofitting insulation after the home is completed. Insulation is a key component of the systems that work together to create a comfortable, energy-efficient home that is affordable to heat and

416

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

417

Panelized wall system with foam core insulation  

DOE Patents (OSTI)

A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

2009-10-20T23:59:59.000Z

418

Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions  

E-Print Network (OSTI)

Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions-Si and SiGe-on-insulator were fabricated, combining both the benefits of high-mobility strained-Si and SOI) to oxidized handle wafers. Layer transfer onto insulating handle wafers can be accomplished using grind

419

Development of insulating coatings for liquid metal blankets  

SciTech Connect

It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

1994-07-01T23:59:59.000Z

420

Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cladding Attachment Over Thick Cladding Attachment Over Thick Exterior Insulating Sheathing Project InformatIon: Project name: Cladding Attachment Over Thick Exterior Insulating Sheathing Partners: Building Science Corporation www.buildingscience.com The Dow Chemical Company www.dow.com James Hardie Building Products www.jameshardie.com Building component: Building envelope component application: New and/or retrofit; Single and/or multifamily Year research conducted: 2011 through 2012 applicable climate Zone(s): All The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nano Insulation Materials: Synthesis and Life Cycle Assessment  

Science Journals Connector (OSTI)

Abstract The application of manufactured nanomaterials provides not only advantages resulting from their unique properties, but also disadvantages derived from the possible high energy use and CO2 burden related to their manufacture, operation, and disposal. It is therefore important to evaluate the trade-offs of process economics with the associated environmental impacts in order to strengthen the existing advantages while counteracting disadvantages of nanomaterials. This is of particular importance at the early stage of the development, where different synthetic approaches with different energy and environmental impacts may be employed. We discuss here the importance of life cycle assessment (LCA) on the synthesis of nano insulation materials (NIMs) consisting of hollow silica nanospheres (HSNSs). The results indicate that the use of recyclable and environmentally friendly raw materials can improve greatly the process environmental footprints. New synthetic procedures are developed accordingly for HSNS \\{NIMs\\} with improved environmental features as well as thermal insulation performance. © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of the International Scientific Committee of the 21st CIRP Conference on Life Cycle Engineering in the person of the Conference Chair Prof. Terje K. Lien.

Tao Gao; Linn Ingunn C. Sandberg; Bjørn Petter Jelle

2014-01-01T23:59:59.000Z

422

OPTIMIZATION OF LAYER DENSITIES FOR MULTILAYERED INSULATION SYSTEMS  

SciTech Connect

Numerous tests of various multilayer insulation systems have indicated that there are optimal densities for these systems. However, the only method of calculating this optimal density was by a complex physics based algorithm developed by McIntosh. In the 1970's much data were collected on the performance of these insulation systems with many different variables analyzed. All formulas generated included number of layers and layer density as geometric variables in solving for the heat flux, none of them was in a differentiable form for a single geometric variable. It was recently discovered that by converting the equations from heat flux to thermal conductivity using Fourier's Law, the equations became functions of layer density, temperatures, and material properties only. The thickness and number of layers of the blanket were merged into a layer density. These equations were then differentiated with respect to layer density. By setting the first derivative equal to zero, and solving for the layer density, the critical layer density was determined. This method was checked and validated using test data from the Multipurpose Hydrogen Testbed which was designed using Mcintosh's algorithm.

Johnson, W. L. [NASA Kennedy Space Center, KT-E Kennedy Space Center, FL 32899 (United States)

2010-04-09T23:59:59.000Z

423

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network (OSTI)

Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

424

Use of PCM-Enhanced Insulations in the Building Envelope  

SciTech Connect

A phase change material (PCM) alters the heat flow across the building envelope by absorbing and releasing heat in response to cycling ambient temperatures. The benefit of a PCM is reduction in heating and cooling loads and in many cases a shift in peak-load demands and the time of day of the peak load. Ambient or interior temperature cycling past the phase change temperature range is necessary for the PCM to function. The design of a PCM application requires selection of material, identification of PCM location and bounding thermal resistances, and specification of the amount of PCM to be used. PCM can be distributed in an insulation or building material or packaged for localized application. This paper describes small-scale laboratory testing, large- scale laboratory testing, and field studies undertaken to evaluate the energy savings potential for PCM in the building envelope.

Kosny, Jan [ORNL; Yarbrough, David W [ORNL

2008-01-01T23:59:59.000Z

425

Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies  

SciTech Connect

In order to meet the coming energy codes, multiple layers of various insulation types will be required. The demand for greater efficiency has pushed insulation levels beyond the cavity depth. These experiments show the potential for improving metal building roof thermal performance. Additional work is currently being done by several stakeholders, so the data is expanding. These experiments are for research and development purposes, and may not be viable for immediate use.

Walker, Daniel James [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL

2011-01-01T23:59:59.000Z

426

Adding Insulation to an Existing Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adding Insulation to an Existing Home Adding Insulation to an Existing Home Adding Insulation to an Existing Home May 23, 2013 - 1:44pm Addthis Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. What does this mean for me? Adding insulation to your home saves money and improves comfort. Adding insulation to your home is a sound investment that is likely pay for itself quickly in reduced utility bills. Insulation inhibits heat flow through the building envelope of your home, saving money and improving comfort. Unless your home was specially constructed for energy efficiency, you can probably reduce your energy bills by adding more insulation. Many older

427

Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

predictive clothing insulation models based on outdoor airrange of the clothing insulation calculated for eachbuilding). Figure 8 Clothing insulation versus dress code [

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

428

Predictive clothing insulation model based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

2012) Predictive clothing insulation model based on outdoorPredictive clothing insulation model based on outdoor airpredictive models of clothing insulation have been developed

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

429

Method for minimizing contaminant particle effects in gas-insulated electrical apparatus  

DOE Patents (OSTI)

Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

430

Performance of Titanium-Oxide/Polymer Insulation in Bi-2212/Ag-alloy Round Wire Wound Superconducting Coils  

E-Print Network (OSTI)

Conductor insulation is one of the key components needed to make Ag-alloy clad Bi2Sr2CaCu2O8+x (Bi-2212/Ag) superconducting round wire (RW) successful for high field magnet applications as dielectric standoff and high winding current densities (Jw) directly depend on it. In this study, a TiO2/polymer insulation coating developed by nGimat LLC was applied to test samples and a high field test coil. The insulation was investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric properties measurement, and transport critical current (Ic) properties measurement. About 29% of the insulation by weight is polymer. When the Bi-2212/Ag wire is full heat treated, this decomposes with slow heating to 400{\\deg}C in pure O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of >100 V, which allowed the test coil to survive quenching in 31.2 T background field, while providing a 2.6 T field increment. For Bi-2212/Ag RW with a typical diameter of 1.0-1.5 mm, this ~15 um thick insulation allows a very high coil packing factor of ~0.74, whereas earlier alumino-silicate braid insulation only allows packing factors of 0.38-0.48.

Peng Chen; Ulf P Trociewitz; Matthieu Dalban-Canassy; Jianyi Jiang; Eric E Hellstrom; David C Larbalestier

2013-03-20T23:59:59.000Z

431

Non-CFC vacuum alternatives for the energy-efficient insulation of household refrigerators: Design and use  

SciTech Connect

Energy efficiency, environmental issues, and market incentives all encourage government and industry to continue work on thin-profile vacuum insulations for domestic refrigerators and freezers (R/Fs). Vacuum insulations promise significant improvement in thermal savings over current insulations; the technical objective of one design is an R-value of better than 10 (hr-ft{sup 2}-F/Btu) in 0.1 in. thickness. If performance is improved by a factor of 10 over that of CFC-blown insulating foams, the new insulations (made without CFCs or other potentially troublesome fill gases) will change the design and improve the efficiency of refrigerators. Such changes will meet the conservation, regulatory, and market drivers now strong in developed countries and likely to increase in developing countries. Prototypes of various designs have been tested in the laboratory and in factories, and results to date confirm the good thermal performance of these thin-profile alternatives. The next step is to resolve issues of reliability and cost effectiveness. 34 refs., 4 figs.

Potter, T.F.; Benson, D.K.

1991-01-01T23:59:59.000Z

432

Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material  

Science Journals Connector (OSTI)

We demonstrate that the resonances of infrared plasmonic antennas can be tuned or switched on/off by taking advantage of the thermally driven insulator-to-metal phase transition in...

Kats, Mikhail A; Blanchard, Romain; Genevet, Patrice; Yang, Zheng; Qazilbash, M Mumtaz; Basov, D N; Ramanathan, Shriram; Capasso, Federico

2013-01-01T23:59:59.000Z

433

Enhanced thermal and gas flow performance in a three-way catalytic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Enhanced thermal and gas flow performance in a three-way catalytic...

434

Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices  

E-Print Network (OSTI)

Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices Carl Keywords: carbon nanotube, thermal boundary resistance, molecular dynamics 1 #12;I. INTRODUCTION the thermal conductivity of insulating materials15,16 . The mechanical strength and light weight of polymers

Maruyama, Shigeo

435

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

436

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

437

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

438

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

439

Foam insulation for a liquid oxygen densifier  

Science Journals Connector (OSTI)

Analyses indicated that it would not be cost effective to vacuum insulate a 7 foot diameter by 30 foot long liquid nitrogen vessel for a launch facility liquid oxygen densifier. Foam insulation appeared to be the logical choice for this infrequently used ground support equipment but the history of foam problems due to cracking, adhesive failure and internal shearing weighed against the use of commercial spray-on material. These problems were solved with a system consisting of alternate sealing and flexible foam layers: (1) an inner membrane sealed to itself but not attached to the cold shell or pipe; (2) a flexible foam insulation layer; (3) a vapor-tight sealing membrane; (4) a second flexible foam insulation layer and (5) an outer aluminized sealing membrane. The second and subsequent layers are sealed to each underlying layer by flexible foam contact adhesive. The inner sealing membrane is particularly vital in that it allows the first foam layer to expand and contract as the tank temperature changes and it also protects the tank from chloride corrosion from the foam. This paper describes preliminary testing to prove out the system and the steps taken to install flexible foam insulation on the oxygen densifier vessel.

G.E. McIntosh; R. Stuckenschmidt

2012-01-01T23:59:59.000Z

440

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

SciTech Connect

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

442

Studies Bolster Promise of Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Bolster Promise of Studies Bolster Promise of Topological Insulators Studies Bolster Promise of Topological Insulators Print Tuesday, 27 November 2012 00:00 A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they provide a fascinating medium for possibly observing still-theoretical particles that could play a major role in quantum computing. Two angle-resolved photoemission spectroscopy (ARPES) studies recently performed at ALS Beamline 12.0.1 improve the prospects for the practical application of TIs in advanced devices.

443

Studies Bolster Promise of Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Bolster Promise of Topological Insulators Print Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they provide a fascinating medium for possibly observing still-theoretical particles that could play a major role in quantum computing. Two angle-resolved photoemission spectroscopy (ARPES) studies recently performed at ALS Beamline 12.0.1 improve the prospects for the practical application of TIs in advanced devices.

444

Studies Bolster Promise of Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Bolster Promise of Topological Insulators Print Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they provide a fascinating medium for possibly observing still-theoretical particles that could play a major role in quantum computing. Two angle-resolved photoemission spectroscopy (ARPES) studies recently performed at ALS Beamline 12.0.1 improve the prospects for the practical application of TIs in advanced devices.

445

Frostbite Theater - Liquid Nitrogen Experiments - Insulators!  

NLE Websites -- All DOE Office Websites (Extended Search)

Popping Film Canisters! Popping Film Canisters! Previous Video (Popping Film Canisters!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Show!) Liquid Nitrogen Show! Insulators! Cups full of water are placed into bowls of liquid nitrogen! Which cup will insulate the best? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are two plastic cups! Joanna: Let's see which cup is the better insulator! Steve: Okay! So, um, how do we do that? Joanna: Well, we'll pour water into each of the cups and then we'll pour the liquid nitrogen into each of the bowls. If we then place the cup in the bowl, the heat from the water will try to pass through the cup into the

446

Studies Bolster Promise of Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Bolster Promise of Topological Insulators Print Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they provide a fascinating medium for possibly observing still-theoretical particles that could play a major role in quantum computing. Two angle-resolved photoemission spectroscopy (ARPES) studies recently performed at ALS Beamline 12.0.1 improve the prospects for the practical application of TIs in advanced devices.

447

Constraints on topological order in Mott Insulators  

E-Print Network (OSTI)

We point out certain symmetry induced constraints on topological order in Mott Insulators (quantum magnets with an odd number of spin $\\tfrac{1}{2}$ per unit cell). We show, for example, that the double semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent on which topological order is permitted. An application of our result is the Kagome lattice quantum antiferromagnet where recent numerical calculations of entanglement entropy indicate a ground state compatible with either toric code or double semion topological order. Our result rules out the latter possibility.

Michael P. Zaletel; Ashvin Vishwanath

2014-10-10T23:59:59.000Z

448

Is graphene in vacuum an insulator?  

E-Print Network (OSTI)

We present evidence, from Lattice Monte Carlo simulations of the phase diagram of graphene as a function of the Coulomb coupling between quasiparticles, that graphene in vacuum is likely to be an insulator. We find a semimetal-insulator transition at $\\alpha_g^\\text{crit} = 1.11 \\pm 0.06$, where $\\alpha_g^{} \\simeq 2.16$ in vacuum, and $\\alpha_g^{} \\simeq 0.79$ on a SiO$_2^{}$ substrate. Our analysis uses the logarithmic derivative of the order parameter, supplemented by an equation of state. The insulating phase disappears above a critical number of four-component fermion flavors $4 < N_f^{\\text{crit}} < 6$. Our data are consistent with a second-order transition.

Joaquín E. Drut; Timo A. Lähde

2008-07-05T23:59:59.000Z

449

Massive Dirac surface states in topological insulator/magnetic insulator heterostructures  

Science Journals Connector (OSTI)

Topological insulators are new states of matter with a bulk gap and robust gapless surface states protected by time-reversal symmetry. When time-reversal symmetry is broken, the surface states are gapped, which induces a topological response of the system to electromagnetic field—the topological magnetoelectric effect. In this paper we study the behavior of topological surface states in heterostructures formed by a topological insulator and a magnetic insulator. Several magnetic insulators with compatible magnetic structure and relatively good lattice matching with topological insulators Bi2Se3, Bi2Te3, Sb2Te3 are identified, and the best candidate material is found to be MnSe, an antiferromagnetic insulator. We perform first-principles calculations in Bi2Se3/MnSe superlattices and obtain the surface state band structure. The magnetic exchange coupling with MnSe induces a gap of ?54 meV at the surface states. In addition we tune the distance between Mn ions and the topological insulator surface to study the distance dependence of the exchange coupling.

Weidong Luo and Xiao-Liang Qi

2013-02-19T23:59:59.000Z

450

Accumulated CFC-11 in polyurethane foam insulation: an estimate of the total amount in district heating installations in Sweden  

Science Journals Connector (OSTI)

In rigid polyurethane foam used for thermal insulation, CFC-11 has been the main blowing agent for many years, but is now subject to phase-out regulations. During ageing of this foam, air diffuses into it and blowing agents leak into the atmosphere, resulting in a decreased insulating capacity. Determinations of the cell gas composition and the total content of CFC-11 in foam from district heating installations of different ages are reported in this paper. The total amount of CFC-11 in old district heating schemes in Sweden is estimated at 2000 tonnes. The amount in refrigeration equipment in Sweden is about twice as large.

M. Svanstrom

1996-01-01T23:59:59.000Z

451

Development and Testing of Insulated Drill Pipe  

SciTech Connect

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

452

Nuclear reactor having a polyhedral primary shield and removable vessel insulation  

DOE Patents (OSTI)

A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

Ekeroth, D.E.; Orr, R.

1993-12-07T23:59:59.000Z

453

Nuclear reactor having a polyhedral primary shield and removable vessel insulation  

DOE Patents (OSTI)

A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

Ekeroth, Douglas E. (Delmont, PA); Orr, Richard (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

454

Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD  

SciTech Connect

In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulating films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.

Park, J.H.

1998-04-01T23:59:59.000Z

455

Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation  

SciTech Connect

Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

Baker, P.

2014-09-01T23:59:59.000Z

456

Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys  

DOE Patents (OSTI)

A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

Park, J.H.

1998-06-23T23:59:59.000Z

457

Some Remarks on Lattice Thermal Conductivity  

Science Journals Connector (OSTI)

The problem of lattice thermal conductivity (in an insulator) has been outstanding for many years. Debye and Peierls made fundamental contributions in relating finite thermal conductivity to anharmonic interactions between the normal modes of lattice vibration; detailed analysis and calculation however remains today a difficult problem. This paper presents a rather crude and elementary discussion of the problem for “classical” temperatures (T??) which yields a semiquantitative result in agreement with other workers. We are also able to make a rather direct estimate of the probable magnitude of the contribution to the thermal resistivity which arises from the quartic term in the lattice potential.

D. K. C. MacDonald

1960-01-01T23:59:59.000Z

458

Estimating the Payback Period of Additional Insulation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Payback Period of Additional Insulation the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation June 24, 2012 - 1:17pm Addthis Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. What does this mean for me? Even if you hire a contractor to do the work, adding insulation to your home will likely have an attractive payback. If you can gather the information and plug it into an equation, you can determine the payback of adding insulation to your home. Use the equation below to estimate the cost effectiveness of adding insulation in terms of the "years to payback" for savings in heating costs.

459

Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch  

NLE Websites -- All DOE Office Websites (Extended Search)

EI2 Insulation EI2 Insulation Helps Anxious Pooch Find Calm in the Storm to someone by E-mail Share Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Facebook Tweet about Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Twitter Bookmark Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Google Bookmark Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Delicious Rank Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Digg Find More places to share Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on AddThis.com...

460

Classification and characterization of topological insulators and superconductors  

E-Print Network (OSTI)

Weak topological insulators (WTI) . . . . . 1.4 Topologicalweak topological insulators (WTI). The surfaces of STIs haveSTI STM TI TRIM/TRIMs TRS TKNN VPT WTI one-dimension, two-

Mong, Roger

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effects of foamed plastic insulation on severity of room fires  

Science Journals Connector (OSTI)

The results of a series of full scale room burn experiments with foamed plastic insulation in two walls indicate that the severity ... appear to be increased by the addition of foamed plastic insulation.

K. K. Choi

1986-02-01T23:59:59.000Z

462

Polyurethane and Polyisocyanurate Foams in External Tank Cryogenic Insulation  

Science Journals Connector (OSTI)

External tanks of the spacecrafts need not only efficient, but also safe cryogenic insulation materials and the issues of their development ... , polyurethane (PUR) or polyisocyanurate (PIR) foams’ cryogenic insulation

U. Stirna; I. Beverte; V. Yakushin; U. Cabulis

2013-01-01T23:59:59.000Z

463

Bubbles in Insulating Liquids: Stability in an Electric Field  

Science Journals Connector (OSTI)

...July 1964 research-article Bubbles in Insulating Liquids: Stability in an Electric Field C. G...Krasucki It is shown that a bubble of gas or liquid, immersed...of incompressible (liquid) bubbles immersed in an insulating liquid...

1964-01-01T23:59:59.000Z

464

Estimating the Payback Period of Additional Insulation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation June 24, 2012 - 1:17pm Addthis Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. What does this mean for me? Even if you hire a contractor to do the work, adding insulation to your home will likely have an attractive payback. If you can gather the information and plug it into an equation, you can determine the payback of adding insulation to your home. Use the equation below to estimate the cost effectiveness of adding insulation in terms of the "years to payback" for savings in heating costs.

465

Transport properties in the vicinity of Mott insulators  

E-Print Network (OSTI)

Understanding the states in the vicinity of the Mott insulator is crucial to understanding both the physics of the transition between a Mott insulating phase and a metallic phase and the physics of the cuprate high-temperature ...

Nave, Cody Patrick, 1980-

2007-01-01T23:59:59.000Z

466

Corrugated outer sheath gas-insulated transmission line  

DOE Patents (OSTI)

A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

Kemeny, George A. (Pittsburgh, PA); Cookson, Alan H. (Churchill Boro, PA)

1981-01-01T23:59:59.000Z

467

Gas insulated transmission line having tapered particle trapping ring  

DOE Patents (OSTI)

A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

468

A Review of Vacuum Degradation Research and the Experimental Outgassing Research of the Core Material- Pu foam on Vacuum Insulation Panels  

Science Journals Connector (OSTI)

Vacuum Insulation Panels(VIPs) have been regarded as a super thermal insulation material with a thermal resistance of about 5-8 times higher than that of equally thick conventional polyurethane boards. In this paper, the researches on factors influencing interior pressure in VIPs, including gas and water vapor permeation through the barrier and outgassing of the core materials, were reviewed respectively. Following this, aiming at the outgassing from open cell PU foam, the specific outgassing rate of the core material is tested not only at room temperature but also at low and high temperatures by an orifice known-conductance method.

C.G. Yang; Y.J. Li; X. Gao; L. Xu

2012-01-01T23:59:59.000Z

469

Radiation effects on humans  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation effects on humans Radiation effects on humans Name: Joe Kemna Location: N/A Country: N/A Date: N/A Question: I am trying to find information on radiation. I need the effects on humans, the damage it causes to the environment, and any extra information you might have on the subject. Thank you for your time. Replies: Your library should be a good place to start, but first you need to narrow your question a bit. "Radiation" means radio waves, heat, light (including the ultraviolet light that causes suntan and sunburn), and what's called "ionizing radiation." By far the major source of the first three is the Sun, while the last I believe comes principally from cosmic rays and various naturally radioactive elements like uranium and radon. The most significant manmade sources of exposure would --- I think --- be household wiring and appliances (radio), engines and heating devices (heat), lamps (light), and X-ray machines, flying at high altitude in airplanes, and living in well-insulated homes built over radon sources (ionizing radiation). Heat, light and ionizing radiation play vital roles in the ecology of the Earth. Radio, light (in particular "tanning" ultraviolet), and ionizing radiation have all been widely assumed at different times to be particularly good or particularly bad for human health. Some recent issues of public concern have been the effect of radio waves from electric transmission lines, the effect on skin cancer incidence from tanning and sunburns, the depletion of the ultraviolet-light-produced ozone in the upper atmosphere by chlorofluorocarbons (CFCs), "global warming" from the increased absorption of heat radiation from the surface by atmospheric carbon dioxide and methane, and the effect of a long exposure to low levels of ionizing radiation as for example the people of Eastern Europe are experiencing from the Chernobyl nuclear power plant accident.

470

Molecular Cell Mode of Regulation and the Insulation  

E-Print Network (OSTI)

Molecular Cell Article Mode of Regulation and the Insulation of Bacterial Gene Expression Vered.molcel.2012.04.032 SUMMARY A gene can be said to be insulated from environ- mental variations if its the insulation of the lac promoter of E. coli and of synthetic constructs in which the transcription factor CRP

471

MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY  

E-Print Network (OSTI)

COURSE 7 MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY MATTHEW P.A. FISHER insulators and quantum magnetism 583 3.1 Spin models and quantum magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 #12;MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY Matthew P.A. Fisher

472

Insulation of the ?F Regulatory System in Bacillus subtilis  

Science Journals Connector (OSTI)

...for Microbiology NOTE GENE REGULATION Insulation of the sF Regulatory System in Bacillus...kinases and phosphatases. We report that insulation of the sF pathway from the sB pathway...the sB pathway. We propose that this insulation is achieved both by the action of the...

Karen Carniol; Tae-Jong Kim; Chester W. Price; Richard Losick

2004-07-01T23:59:59.000Z

473

Topological insulators and superconductors Xiao-Liang Qi  

E-Print Network (OSTI)

Topological insulators and superconductors Xiao-Liang Qi Microsoft Research, Station Q, Elings Hall, California 94305, USA (Received 2 August 2010; published 14 October 2011) Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators

Wu, Zhigang

474

Effect of relative humidity on fungal colonization of fiberglass insulation.  

Science Journals Connector (OSTI)

...on fungal colonization of fiberglass insulation. I M Ezeonu J A Noble R B Simmons D...on fungal colonization of fiberglass insulation. | Fiberglass duct liners and fiberglass...on Fungal Colonization of Fiberglass Insulation I. M. EZEONU,1 J. A. NOBLE...

I M Ezeonu; J A Noble; R B Simmons; D L Price; S A Crow; D G Ahearn

1994-06-01T23:59:59.000Z

475

Vacuum insulation tandem accelerator for B. Bayanov1  

E-Print Network (OSTI)

273 Vacuum insulation tandem accelerator for NCT B. Bayanov1 , Yu. Belchenko1 , V. Belov1 , G. Fig. 1 shows the construction of vacuum insulation tandem accelerator developed at BINP, as a base accelerator with vacuum insulation. After charge- exchange of negative hydrogen ion in proton inside charge

Taskaev, Sergey Yur'evich

476

Study on the heat transfer of complex-vacuum-multilayer-insulation tank after sudden loss of insulation vacuum  

Science Journals Connector (OSTI)

This paper experimentally and theoretically investigated heat transfer process of complex-vacuum-multilayer-insulation cryogenic tank after a sudden loss of insulation vacuum (SLIV). The experiments were conducte...

M. Zhu; R. S. Wang

2012-11-01T23:59:59.000Z

477

TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS  

E-Print Network (OSTI)

predominantly non-trivalent ions favor the metallicstate. I. Introduction. -Transition metal oxides form a class that such a transition would be dis- continuous as a function of volume [8], and he later proposed a phase diagramTRANSITION DE MOTT METAL-INSULATOR TRANSITIONS IN TRANSITION METAL OXIDES by D. B. McWHAN, A. MENTH

Paris-Sud XI, Université de

478

Insulated dipole antennas for heating oil shale  

Science Journals Connector (OSTI)

Insulated dipole antennas in the HF band are potentially useful in heating shale i n s i t u to extract oil. To help evaluate the efficiency of such antennas the spatial distribution of the power absorbed per unit volume in the shale is computed.

John P. Casey; Rajeev Bansal

1987-01-01T23:59:59.000Z

479

Finite element analysis of substation composite insulators  

Science Journals Connector (OSTI)

Composite insulators are rapidly replacing their porcelain counterparts in electrical substation applications. These insulators consist of a glass-reinforced polymer (GRP) rod, with two metal end fittings radially crimped onto the ends of the rod during assembly. In this paper, axisymmetric finite element models are developed to evaluate the mechanical performance of composite insulators under externally applied axial compression. The analyses are performed by assuming both a perfectly bonded interface between the composite rod and the end fittings, and an imperfect interface which permits large relative sliding with Coulomb friction. Results indicate that the perfect interface model is unrealistic since it predicts singular stresses at the interface comer and an overall linear structural response. On the other hand, the imperfect interface model is found to simulate accurately the structural non-linearity caused by relative sliding of the GRP rod within the end fittings. The imperfect interface model has therefore been used to evaluate the effects of interface friction, and the extent of crimping, on the maximum load-bearing capacity of substation composite insulators.

A. Bansal; A. Schubert; M.V. Balakrishnan; M. Kumosa

1995-01-01T23:59:59.000Z

480

ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM  

SciTech Connect

This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

Unknown

2000-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "thermal insulation radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Noise and the Sound Insulation of Buildings  

Science Journals Connector (OSTI)

...Noise and the Sound Insulation of Buildings F. Ingerslev It is claimed that noise...well-being. An outstanding task for the building industry in the 1980s is to ensure a proper noise climate in new buildings. The target must be to obtain a noise...

1972-01-01T23:59:59.000Z

482

Experimental study on cryogenic moisture uptake in polyurethane foam insulation material  

Science Journals Connector (OSTI)

Rigid foam is widely used to insulate cryogenic tanks, in particular for space launch vehicles due to its lightweight, mechanical strength and thermal-insulating performance. Up to now, little information is available on the intrusion of moisture into the material under cryogenic conditions, which will bring substantial additional weight for the space vehicles at lift-off. A cryogenic moisture uptake apparatus has been designed and fabricated to measure the amount of water uptake into the polyurethane foam. One side of the specimen is exposed to an environment with high humidity and ambient temperature, while the other with cryogenic temperature at approximately 78 K. A total of 16 specimens were tested for up to 24 h to explore the effects of the surface thermal protection layer, the foam thickness, exposed time, the butt joints, and the material density on water uptake of the foam. The results are constructive for the applications of the foam to the cryogenic insulation system in space launch vehicles.

X.B. Zhang; L. Yao; L.M. Qiu; Z.H. Gan; R.P. Yang; X.J. Ma; Z.H. Liu

2012-01-01T23:59:59.000Z

483

Steady-state and transient results on insulation materials  

SciTech Connect

The Unguarded Thin-Heater Apparatus (UTHA, ASTM C 1114) was used to determine the thermal conductivity (k), specific heat (C), and thermal diffusivity ({alpha}) of selected building materials from 24 to 50{degree}C. Steady-state and transient measurements yielded data on four types of material: gypsum wall board containing 0, 15, and 30 wt % wax; calcium silicate insulations with densities ({rho}) of 307, 444, and 605 kg/m{sup 3}; three wood products: southern yellow pine flooring (575 kg/m{sup 3}), Douglas fir plywood (501 kg/m{sup 3}), and white spruce flooring (452 kg/m{sup 3}); and two cellular plastic foams: extruded polystyrene (30 kg/m{sup 3}) blown with HCFC-142b and polyisocyanurate rigid board (30.2 kg/m{sup 3}) blown with CFC-11. The extruded polystyrene was measured several times after production (25 days, 45 days, 74 days, 131 days, and 227 days). The UTHA is an absolute technique that yields k with an uncertainty of less than {plus minus}2% as determined by modeling, by determinate error analyses, and by use of Standard Reference Materials SRM-1450b and SRM-1451. 37 refs., 5 figs., 10 tabs.

Graves, R.S.; Yarbrough, D.W.; McElroy, D.L.; Fine, H.A.

1991-01-01T23:59:59.000Z

484

RADIATION TOLERANT FIBER OPTIC HUMIDITY SENSORS FOR HIGH ENERGY PHYSICS APPLICATIONS  

E-Print Network (OSTI)

condensation of water and the growth of ice, which can inflict major damage at such low temperature, the whole of dry gas to force out the water vapor. In addition, the thermal insulation of the nearby coolant pipes

Paris-Sud XI, Université de

485

Neutron stars - thermal emitters  

E-Print Network (OSTI)

Confronting theoretical models with observations of thermal radiation emitted by neutron stars is one of the most important ways to understand the properties of both, superdense matter in the interiors of the neutron stars and dense magnetized plasmas in their outer layers. Here we review the theory of thermal emission from the surface layers of strongly magnetized neutron stars, and the main properties of the observational data. In particular, we focus on the nearby sources for which a clear thermal component has been detected, without being contaminated by other emission processes (magnetosphere, accretion, nebulae). We also discuss the applications of the modern theoretical models of the formation of spectra of strongly magnetized neutron stars to the observed thermally emitting objects.

Potekhin, A Y; Pons, J A

2014-01-01T23:59:59.000Z

486

Modeling PCM-Enhanced Insulation System and Benchmarking EnergyPlus against Controlled Field Data  

SciTech Connect

Phase-change materials (PCM) used in building envelopes appear to be a promising technology to reduce energy consumption and reduce/shift peak load. However, due to complexity in modeling the dynamic behavior of PCMs, current modeling tools either lack an accurate way of predicting the performance and impact of PCMs in buildings or validation of predicted or measured performance is not available. This paper presents a model of a PCM-enhanced dynamic-insulation system in EnergyPlus (E+) and compares the simulation results against field-measured data. Laboratory tests to evaluate thermal properties and to characterize the PCM and PCM-enhanced cellulose insulation system are also presented in this paper. Results indicate that the predicted daily average heat flux through walls from the E+ simulation was within 9% of field measured data. Future analysis will allow us to predict annual energy savings from the use of PCM in buildings.

Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Stovall, Therese K [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Childs, Kenneth W [ORNL] [ORNL; Porter, Wallace D [ORNL] [ORNL; Bhandari, Mahabir S [ORNL] [ORNL; Coley, Steven J [ORNL] [ORNL

2011-01-01T23:59:59.000Z

487

BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995  

SciTech Connect

This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

Schempf, H.; Bares, J.E.

1995-06-01T23:59:59.000Z

488

List of Equipment Insulation Incentives | Open Energy Information  

Open Energy Info (EERE)

Insulation Incentives Insulation Incentives Jump to: navigation, search The following contains the list of 242 Equipment Insulation Incentives. CSV (rows 1 - 242) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Central Air conditioners Chillers Custom/Others pending approval Energy Mgmt. Systems/Building Controls Equipment Insulation Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Programmable Thermostats Refrigerators Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

489

Four cavity efficiency enhanced magnetically insulated line oscillator  

DOE Patents (OSTI)

A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode is disclosed. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor. 34 figs.

Lemke, R.W.; Clark, M.C.; Calico, S.E.

1998-04-21T23:59:59.000Z

490

Four cavity efficiency enhanced magnetically insulated line oscillator  

DOE Patents (OSTI)

A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity (C4) portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor.

Lemke, Raymond W. (Albuquerque, NM); Clark, Miles C. (Albuquerque, NM); Calico, Steve E. (Albuquerque, NM)

1998-04-21T23:59:59.000Z

491

Where to Insulate in a Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where to Insulate in a Home Where to Insulate in a Home Where to Insulate in a Home November 26, 2013 - 1:34pm Addthis Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs and rafters of exterior walls and roof, (2C) and ceilings with cold spaces above. (2D) Extend insulation into joist space to reduce air flows. 3. All exterior walls, including (3A) walls between living spaces and unheated garages, shed roofs, or storage areas; (3B) foundation walls above ground level; (3C) foundation walls in heated basements, full wall either interior or exterior.

492

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

493

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High