Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Photogrammetric Image Registration (PIR) of MTI Imagery P. Pope and J. Theiler*  

E-Print Network [OSTI]

Photogrammetric Image Registration (PIR) of MTI Imagery P. Pope and J. Theiler* Space and Remote Imager (MTI) satellite. The photogrammetric image registration (PIR) method consists of two main parts. The PIR method uses mathematical models of the sensor, its trajectory, timing, and the terrain to mimic

Theiler, James

2

ARM - Evaluation Product - Multispectral Thermal Imager (MTI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/InfraredProductsMicroPulse LIDAR Cloud Optical Depth

3

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

4

I MTI 79TR68 FINAL REPORT  

E-Print Network [OSTI]

#12;I MTI 79TR68 FINAL REPORT A HIGH SEASONAL PERFORMANCE FACTOR GAS HEAT PUMP FOR THE NORTH Demonstration of a High SPF Gas Heat Pump for the North Central United States Table of Contents Appendix Volume evaluation of the market potential for the non- residential heating and cooling market was conducted

Oak Ridge National Laboratory

5

Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project  

Broader source: Energy.gov [DOE]

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

6

LandUse/Land Cover Map of the CF of ARM in the SGP Site Using DOE's Multispectral Thermal Imager (MTI) Satellite Images  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory IPortal 2105ethanol

7

Optical assembly of a visible through thermal infrared multispectral imaging system  

SciTech Connect (OSTI)

The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

Henson, T. [Sandia National Labs., Albuquerque, NM (United States); Bender, S.; Byrd, D. [Los Alamos National Labs., NM (United States). NIS Div.; Rappoport, W.; Shen, G.Y. [Raytheon Optical Systems, Inc., Danbury, CT (United States)

1998-06-01T23:59:59.000Z

8

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode...  

Broader source: Energy.gov (indexed) [DOE]

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy...

9

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

10

Advanced thermal imaging of composites  

SciTech Connect (OSTI)

Composite materials were studied by Scanning Thermal Conductivity Microscope (STCM) and high speed thermography. The STCM is a qualitative technique which is used to study thermal conductivity variations on a sub-micrometer scale. High speed thermography is a quantitative technique for measuring thermal diffusivity with a variable spatial resolution from centimeters down to less than 25 gm. A relative thermal conductivity contrast map was obtained from a SiC/Si3N4 continuous fiber ceramic composite using the STCM. Temperature changes of a carbon/carbon composite after a heat pulse were captured by an IR camera to generate a thermal diffusivity map of the specimen. Line profiles of the temperature distribution showed significant variations as a result of fiber orientation.

Wang, H.; Dinwiddie, R.B.

1996-06-01T23:59:59.000Z

11

Thermo Tracer Infrared Thermal Imager  

E-Print Network [OSTI]

such as production lines, electric power facilities, petrochemical plants and public institutions, etc. by thermal in electric power, petrochemical plant facilities G Intruder monitoring Important facilities (nuclear power, harbor, airport, dam, river, water purification plant, etc.) G Fire monitoring Important facilities, wide

Walker, D. Greg

12

MTI MicroFuel Cells Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill <MN OfficeMSE PowerMTI

13

MIT Lincoln LaboratoryHTS: MTI-UAV Cueing Experiment LAB/RAK 1/24/2006  

E-Print Network [OSTI]

MIT Lincoln LaboratoryHTS: MTI-UAV Cueing Experiment LAB/RAK 1/24/2006 Lawrence Bush 2006 January 24 Semi-Automated Cueing of Predator UAV Operators from RADAR Moving Target (MTI) Data MIT Lincoln and are not necessarily endorsed by the United States Government. #12;MIT Lincoln LaboratoryHTS: MTI-UAV Cueing Experiment

Cummings, Mary "Missy"

14

IMPROVEMENTS IN CODED APERTURE THERMAL NEUTRON IMAGING.  

SciTech Connect (OSTI)

A new thermal neutron imaging system has been constructed, based on a 20-cm x 17-cm He-3 position-sensitive detector with spatial resolution better than 1 mm. New compact custom-designed position-decoding electronics are employed, as well as high-precision cadmium masks with Modified Uniformly Redundant Array patterns. Fast Fourier Transform algorithms are incorporated into the deconvolution software to provide rapid conversion of shadowgrams into real images. The system demonstrates the principles for locating sources of thermal neutrons by a stand-off technique, as well as visualizing the shapes of nearby sources. The data acquisition time could potentially be reduced two orders of magnitude by building larger detectors.

VANIER,P.E.

2003-08-03T23:59:59.000Z

15

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles  

E-Print Network [OSTI]

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles Angela M. Monateri at the infrared image from an automobile. ·The camera was set up with a FEAT 3000 unit to compare emissions vs

Denver, University of

16

Recent applications of thermal imagers for security assessment  

SciTech Connect (OSTI)

This paper discusses recent applications by Sandia National Laboratories of cooled and uncooled thermal infrared imagers to wide-area security assessment systems. Thermal imagers can solve many security assessment problems associated with the protection of high-value assets at military bases, secure installations, and commercial facilities. Thermal imagers can provide surveillance video from security areas or perimeters both day and night without expensive security lighting. Until fairly recently, thermal imagers required open-loop cryogenic cooling to operate. The high cost of these systems and associated maintenance requirements restricted their widespread use. However, recent developments in reliable, closed-loop, linear drive cryogenic coolers and uncooled infrared imagers have dramatically reduced maintenance requirements, extended MTBF, and are leading to reduced system cost. These technology developments are resulting in greater availability and practicality for military as well as civilian security applications.

Bisbee, T.L.

1997-06-01T23:59:59.000Z

17

Thermal imaging measurement of lateral thermal diffusivity in continuous fiber ceramic composites  

SciTech Connect (OSTI)

Infrared thermal imaging has become a common technique for nondestructive evaluation and measurement of thermal properties in ceramic specimens. Flash thermal imaging can be used to determine two-dimensional through-thickness thermal diffusivity in a planar specimen. In this study, the authors extended the method to determine lateral, or transverse, thermal diffusivity in the specimen. During the flash thermal imaging test, pulsed heat energy is applied to a specimen's back surface, which is partially shielded, and the change of temperature distribution on the front surface is monitored by an infrared thermal imaging system. The temperature distribution represents the effect of both the normal heat transfer through the specimen's thickness and the lateral heat transfer through the interface between the shielded and unshielded back-surface regions. Those temperature distributions are then fitted with a theoretical solution of the heat transfer process to determine the lateral thermal diffusivity at the interface. This technique has been applied to measure lateral thermal diffusivity in a steel plate and a continuous fiber ceramic composite specimen.

Sun, J. G.; Deemer, C.; Ellingson, W. A.

2000-02-18T23:59:59.000Z

18

Automated rapid thermal imaging systems technology  

E-Print Network [OSTI]

A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy ...

Phan, Long N., 1976-

2012-01-01T23:59:59.000Z

19

Experimental and image-inversion optimization aspects of thermal-wave diffraction tomographic  

E-Print Network [OSTI]

. Karpen, "Thermal Wave Imaging with Phase Sensitive Modulated Thermography," J. Appl. Phys. 71, 3962 (1992

Mandelis, Andreas

20

Method for measuring thermal properties using a long-wavelength infrared thermal image  

DOE Patents [OSTI]

A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

Walker, Charles L. (Albuquerque, NM); Costin, Laurence S. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM); Moya, Mary M. (Albuquerque, NM); Mercier, Jeffrey A. (Albuquerque, NM)

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION  

SciTech Connect (OSTI)

An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

2012-01-01T23:59:59.000Z

22

MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII  

SciTech Connect (OSTI)

Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation site for cross-comparison of thermal infrared sensors and temperature/emissivity extraction algorithms.

L. BALICK; A. GILLESPIE; ET AL

2001-03-01T23:59:59.000Z

23

Chemical vapor detection with a multispectral thermal imager  

E-Print Network [OSTI]

Chemical vapor detection with a multispectral thermal imager Mark 1. G. Aithouse, MEMBER SPIE U.S. Army Chemical Research Development and Engineering Center SMCCR-DDT Aberdeen Proving Ground, Maryland algorithm 7. Conclusions 8. Acknowledgments 9. References 1. INTRODUCTION Detection of chemical vapor clouds

Chang, Chein-I

24

Thermal neutron imaging in an active interrogation environment  

SciTech Connect (OSTI)

We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

Vanier,P.E.; Forman, L., and Norman, D.R.

2009-03-10T23:59:59.000Z

25

Thermal Neutron Imaging in an Active Interrogation Environment  

SciTech Connect (OSTI)

We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutron-emitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

Vanier, Peter E. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Forman, Leon [Ion Focus Technology, Inc., Miller Place, NY 11764 (United States); Norman, Daren R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

2009-03-10T23:59:59.000Z

26

A thermal neutron source imager using coded apertures  

SciTech Connect (OSTI)

To facilitate the process of re-entry vehicle on-site inspections, it would be useful to have an imaging technique which would allow the counting of deployed multiple nuclear warheads without significant disassembly of a missile`s structure. Since neutrons cannot easily be shielded without massive amounts of materials, they offer a means of imaging the separate sources inside a sealed vehicle. Thermal neutrons carry no detailed spectral information, so their detection should not be as intrusive as gamma ray imaging. A prototype device for imaging at close range with thermal neutrons has been constructed using an array of {sup 3}He position-sensitive gas proportional counters combined with a uniformly redundant coded aperture array. A sealed {sup 252}Cf source surrounded by a polyethylene moderator is used as a test source. By means of slit and pinhole experiments, count rates of image-forming neutrons (those which cast a shadow of a Cd aperture on the detector) are compared with the count rates for background neutrons. The resulting ratio, which limits the available image contrast, is measured as a function of distance from the source. The envelope of performance of the instrument is defined by the contrast ratio, the angular resolution, and the total count rate as a function of distance from the source. These factors will determine whether such an instrument could be practical as a tool for treaty verification.

Vanier, P.E.; Forman, L.; Selcow, E.C.

1995-08-01T23:59:59.000Z

27

Evaluation of Gender Classification Methods on Thermal and Near-infrared Face Images  

E-Print Network [OSTI]

Evaluation of Gender Classification Methods on Thermal and Near-infrared Face Images Cunjian Chen, the possibility of deducing gender from face images obtained in the near-infrared (NIR) and thermal (THM) spectra technologies, thermal and near-infrared images are beginning to be used in face- related applications

Ross, Arun Abraham

28

Thermal imaging measurement and correlation of thermal diffusivity in continuous fiber ceramic composites  

SciTech Connect (OSTI)

Continuous fiber ceramic matrix composites (CFCCs) are currently being developed for a variety of high-temperature applications, including use in advanced heat engines. For such composites, knowledge of porosity distribution and presence of defects is important for optimizing mechanical and thermal behavior of the components. The assessment of porosity and its distribution is also necessary during composite processing to ensure component uniformity. To determine the thermal properties of CFCC materials, and particularly for detecting defects and nonuniformities, the authors have developed an infrared thermal imaging method to provide a single-shot full-field measurement of thermal diffusivity distributions in large components. This method requires that the back surface of a specimen receives a thermal pulse of short duration and that the temperature of the front surface is monitored as a function of time. The system has been used to measure thermal diffusivities of several CFCC materials with known porosity or density values, including SYLRAMIC{trademark} SiC/SiNC composite samples from Dow Corning and SiC/SiC and enhanced SiC/SiC samples from DuPont Lanxide Composites, to determine the relationship of thermal diffusivity to component porosity or density.

Sun, J.G.; Deemer, C.; Ellingson, W.A. [Argonne National Lab., IL (United States). Energy Technology Div.; Easler, T.E.; Szweda, A. [Dow Corning Corp., Midland, MI (United States); Craig, P.A. [DuPont Lanxide Composites Inc., Newark, DE (United States)

1997-09-01T23:59:59.000Z

29

Millimeter-wave imaging of thermal and chemical signatures.  

SciTech Connect (OSTI)

Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer.

Gopalsami, N.

1999-03-30T23:59:59.000Z

30

Thermal Imaging of Canals for Remote Detection of Leaks: Evaluation in the United Irrigation District  

E-Print Network [OSTI]

This report summarizes our initial analysis of the potential of thermal imaging for detecting leaking canals and pipelines. Thermal imagery (video format) was obtained during a fly over of a portion of the main canal of United Irrigation District...

Huang, Yanbo; Fipps, Guy

31

Status of thermal imaging technology as applied to conservation-update 1  

SciTech Connect (OSTI)

This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

Snow, F.J.; Wood, J.T.; Barthle, R.C.

1980-07-01T23:59:59.000Z

32

DETERMINATION OF THE UAV POSITION BY AUTOMATIC PROCESSING OF THERMAL IMAGES  

E-Print Network [OSTI]

DETERMINATION OF THE UAV POSITION BY AUTOMATIC PROCESSING OF THERMAL IMAGES Wilfried Hartmann.hartmann, sebastian.tilch, henri.eisenbeiss, konrad.schindler)@geod.baug.ethz.ch KEY WORDS: Thermal, UAV, Camera, Calibration, Bundle, Photogrammetry, GPS/INS ABSTRACT: If images acquired from Unmanned Aerial Vehicles (UAVs

Schindler, Konrad

33

Thermal neutron imaging support with other laboratories BL06-IM-TNI  

SciTech Connect (OSTI)

The goals of this project are: (1) detect and locate a source of thermal neutrons; (2) distinguish a localized source from uniform background; (3) show shape and size of thermalizing material; (4) test thermal neutron imager in active interrogation environment; and (5) distinguish delayed neutrons from prompt neutrons.

Vanier,P.E.

2008-06-17T23:59:59.000Z

34

MTI Ground Truth Collection Ivanpah Dry Lake Bed, California, May, July, and August 2002  

SciTech Connect (OSTI)

A multi-agency collaboration successfully completed a series of ground truth measurements at the Ivanpah Dry Lake bed during FY 2002. Four collection attempts were made: two in May, one in July, and one in August. The objective was to collect ground-based measurements and airborne data during Multispectral Thermal Imager satellite overpasses. The measurements were to aid in the calibration of the satellite data and in algorithm validation. The Remote Sensing Laboratory, Las Vegas, Nevada; the National Aeronautics and Space Administration; Los Alamos National Laboratory; and the University of Arizona participated in the effort. Field instrumentation included a sun photometer on loan from the University of Arizona and the Remote Sensing Laboratory's radiosonde weather balloon, weather station, thermal infrared radiometers, and spectral radiometer. In addition, three reflectance panels were deployed; certain tests used water baths set at two different temperatures. Local weather data as well as sky photography were collected. May presented several excellent days; however, it was later learned that tasking for the satellite was not available. A combination of cloud cover, wind, and dusty conditions limited useful data collections to two days, August 28 and 29. Despite less-than- ideal weather conditions, the data for the Multispectral Thermal Imager calibration were obtained. A unique set of circumstances also allowed data collection during overpasses of the LANDSAT7 and ASTER satellites.

David L. Hawley

2002-10-01T23:59:59.000Z

35

Factors affecting thermal infrared images at selected field sites  

SciTech Connect (OSTI)

A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL.

Sisson, J.B.; Ferguson, J.S.

1993-07-01T23:59:59.000Z

36

Front-flash thermal imaging characterization of continuous fiber ceramic composites.  

SciTech Connect (OSTI)

Infrared thermal imaging has become increasingly popular as a nondestructive evaluation method for characterizing materials and detecting defects. One technique, which was utilized in this study, is front-flash thermal imaging. We have developed a thermal imaging system that uses this technique to characterize advanced material systems, including continuous fiber ceramic composite (CFCC) components. In a front-flash test, pulsed heat energy is applied to the surface of a sample, and decay of the surface temperature is then measured by the thermal imaging system. CFCC samples with drilled flat-bottom holes at the back surface (to serve as ''flaws'') were examined. The surface-temperature/time relationship was analyzed to determine the depths of the flaws from the front surface of the CFCC material. Experimental results on carbon/carbon and CFCC samples are presented and discussed.

Deemer, C.

1999-04-23T23:59:59.000Z

37

Demonstration of dual-band infrared thermal imaging for bridge inspection. Phase II, final report  

SciTech Connect (OSTI)

Developing and implementing methods of effective bridge rehabilitation is a major issue for the Federal Highway Administration (FHWA). The nation spends $5 billion annually to replace, rehabilitate or construct new bridges. According to the National Bridge Inventory, over 100,000 U.S. bridges are structurally deficient. About 40,000 of these bridges have advanced deck deterioration. The most common causes of serious deck deterioration is delamination. Delaminations result when steel reinforcements within the bridge deck corrode, creating gaps that separate the concrete into layers. A reliable inspection technology, capable of identifying delaminations, would represent a power new tool in bridge maintenance. To date, most bridge inspections rely on human interpretation of surface visual features of chain dragging. These methods are slow, disruptive, unreliable and raise serious safety concerns. Infrared thermal imaging detects subsurface delaminations and surface clutter, which is introduced by foreign material on the roadway. Typically, foreign material which is not always evident on a video tape image, produces a unique IR reflectance background unlike the thermal response of a subsurface delamination. Lawrence Livermore National Laboratory (LLNL) uses dual-band infrared (DBIR) thermal imaging to identify and remove nonthermal IR reflectance backgrounds from foreign material on the roadway. DBIR methods improve the performance of IR thermal imaging by a factor of ten, compared to single-band infrared (SBIR) methods. DBIR thermal imaging allows precise temperature measurement to reliably locate bridge deck delaminations and remove wavelength-dependent emissivity variations due to foreign material on the roadway.

Durbin, P.F.; Del Grande, N.K.; Schaich, P.C.

1996-03-01T23:59:59.000Z

38

One-sided infrared thermal imaging for flaw characterization of ceramic matrix composites  

SciTech Connect (OSTI)

One-sided infrared thermal imaging is being used to characterize voids and delamination in SiC/SiC composites. Flaw depth is estimated by examining the decay of surface temperature after application of a thermal pulse. Digital analysis of the surface temperature/time relationship allows characterization of the sizes and positions of defects. Results show that defects of various sizes and depths can be characterized in SiC/SiC composites with the technique.

Deemer, C.; Sun, J. G.; Ellingson, W. A.

2000-05-16T23:59:59.000Z

39

Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 1–5 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber.

Robert M. Malone; John R. Celesteb; Peter M. Celliers; Brent C. Froggeta; Robert L. Guyton; Morris I. Kaufman; Tony L. Lee; Brian J. MacGowan; Edmund W. Ng; Imants P. Reinbachs; Ronald B. Robinson; Lynn G. Seppala; Tom W. Tunnell; Phillip W. Watts

2005-01-01T23:59:59.000Z

40

Eye localization from thermal infrared images Shangfei Wang a,n  

E-Print Network [OSTI]

February 2013 Accepted 4 March 2013 Available online 21 March 2013 Keywords: Eye localization Eyeglass thermal images both with eyeglasses and without eyeglasses. First, with the help of support vector machine classifier, three gray-projection features are defined to determine whether a subject is with eyeglasses

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

SciTech Connect (OSTI)

The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.

Freifeld, B.; Finsterle, S.

2010-12-10T23:59:59.000Z

42

Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques  

SciTech Connect (OSTI)

The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

1998-04-01T23:59:59.000Z

43

Thermal imaging and air-coupled ultrasound characterization of a continuous-fiber ceramic composite panels.  

SciTech Connect (OSTI)

SYLRAMIC{trademark} continuous fiber ceramic-matrix composites (Nicalon{trademark} fiber/SiNC matrix) were fabricated by Dow Corning Corporation with the polymer-impregnation and pyrolysis (PIP) process. The composite microstructure and its uniformity, and the completeness of infiltration during processing were studied as a function of number of PIP cycles. Two nondestructive evaluation (NDE) methods, i.e., infrared thermal imaging and air-coupled ultrasound (UT), were used to investigate flat composite panels of two thicknesses and various sizes. The thermal imaging method provided two-dimensional (2D) images of through-thickness thermal diffusivity distributions, and the air-coupled UT method provided 2D images of through-thickness ultrasonic transmission of the panel components. Results from both types of NDEs were compared at various PIP cycles during fabrication of the composites. A delaminated region was clearly detected and its progressive repair was monitored during processing. The NDE data were also correlated to results obtained from destructive characterization.

Sun, J. G.; Easler, T. E.; Szweda, A.; Pillai, T. A. K.; Deemer, C.; Ellingson, W. A.

1998-04-01T23:59:59.000Z

44

Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation  

SciTech Connect (OSTI)

We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

2014-06-23T23:59:59.000Z

45

Thermal diffusivity imaging of continuous fiber ceramic composite materials and components  

SciTech Connect (OSTI)

Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced turbine engines. In such composites, the condition of the interfaces between the fibers and matrix or between laminae in a two-dimensional weave lay-up are critical to the mechanical and thermal behavior of the component. A nondestructive evaluation method that could be used to assess the interface condition and/or detect other `defects` has been developed at Argonne National Laboratory (ANL) and uses infrared thermal imaging to provide `single-shot` full- field quantitative measurement of the distribution of thermal diffusivity in large components. By applying digital filtering, interpolation, and least-squares-estimation techniques for noise reduction, shorter acquisition and analysis times have been achieved with submillimeter spatial resolution for materials with a wide range of `thermal thicknesses`. The system at ANL has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in fiber coating in a full array of test specimens. In addition, actual subscale CFCC components of nonplanar geometries have been inspected for manufacturing-induced variations in thermal properties.

Ahuja, S.; Ellingson, W.A. [Argonne National Lab., IL (United States); Steckenrider, J.S. [Northwestern Univ., Evanston, IL (United States); King, S. [Argonne National Lab., IL (United States)

1995-12-31T23:59:59.000Z

46

Video imaging system and thermal mapping of the molten hearth in an electron beam melting furnace  

SciTech Connect (OSTI)

This project was initiated to develop an enhanced video imaging system for the Liquid Metal Processing Laboratory Electron Beam Melting (EB) Furnace at Sandia and to use color video images to map the temperature distribution of the surface of the molten hearth. In a series of test melts, the color output of the video image was calibrated against temperatures measured by an optical pyrometer and CCD camera viewing port above the molten pool. To prevent potential metal vapor deposition onto line-of-sight optical surfaces above the pool, argon backfill was used along with a pinhole aperture to obtain the vide image. The geometry of the optical port to the hearth set the limits for the focus lens and CCD camera`s field of view. Initial melts were completed with the pyrometer and pinhole aperture port in a fixed position. Using commercially available vacuum components, a second flange assembly was constructed to provide flexibility in choosing pyrometer target sights on the hearth and to adjust the field of view for the focus lens/CCD combination. RGB video images processed from the melts verified that red wavelength light captured with the video camera could be calibrated with the optical pyrometer target temperatures and used to generate temperature maps of the hearth surface. Two color ratio thermal mapping using red and green video images, which has theoretical advantages, was less successful due to probable camera non-linearities in the red and green image intensities.

Miszkiel, M.E.; Davis, R.A.; Van Den Avyle, J.A. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

1995-12-31T23:59:59.000Z

47

Thermal imaging of plasma with a phased array antenna in QUEST  

SciTech Connect (OSTI)

A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversion region and its position is successfully reconstructed using phase array technique which is done in post processing.

Mishra, Kishore, E-mail: mishra@triam.kyushu-u.ac.jp; Nagata, K.; Akimoto, R.; Banerjee, S. [IGSES, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Idei, H.; Zushi, H.; Hanada, K.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Onchi, T.; Kuzmin, A. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, M. K. [Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011 (Japan)

2014-11-15T23:59:59.000Z

48

Video and thermal imaging system for monitoring interiors of high temperature reaction vessels  

DOE Patents [OSTI]

A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

Saveliev, Alexei V. (Chicago, IL); Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL)

2012-01-10T23:59:59.000Z

49

Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging.  

SciTech Connect (OSTI)

Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber-reinforced-silicon-carbide (SiC{sub (f)}/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC{sub (f)}/Si{sub 3}N{sub 4}), aluminum-oxide-reinforced-alumina (Al{sub 2}O{sub 3(f)}/Al{sub 2}O{sub 3}), etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly effect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for fill-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full array of test specimens.

Ahuja, S.; Ellingson, W. A.; Koehl, E. R.; Stuckey, J.

1997-12-05T23:59:59.000Z

50

Today`s thermal imaging systems: Background and applications for civilian law enforcement and military force protection  

SciTech Connect (OSTI)

Thermal (infrared) imagers can solve many security assessment problems associated with the protection of high-value assets at military bases, secure installations, or commercial facilities. Thermal imagers can provide surveillance video from security areas or perimeters both day and night without expensive security lighting. In the past, thermal imagers required cryogenic cooling to operate. The high cost and maintenance requirements restricted their use. However, recent developments in reliable, linear drive cryogenic coolers and uncooled infrared imagers have dramatically reduced system cost. These technology developments are resulting in greater accessibility and practicality for military as well as civilian security and force protection applications. This paper discusses recent advances in thermal imaging technology including uncooled and cryo-cooled. Applications of Forward Looking InfraRed (FLIR) systems are also discussed, including integration with a high-speed pan/tilt mount and remote control, video frame storage and recall, low-cost vehicle-mounted systems, and hand-held devices. Other facility installation topics will be discussed, such as site layout, assessment ranges, imager positioning, fields-of-view, sensor and alarm reporting systems, and communications links.

Bisbee, T.L.; Pritchard, D.A.

1997-10-01T23:59:59.000Z

51

Microstructural Characterization Using Orientational Imaging Microscopy of SOFC Cathodes Subjected to Thermal and Electrochemical Loads  

SciTech Connect (OSTI)

Cathodes in SOFCs consist of interconnecting and contacting two-phase interfaces and three-phase lines in a complex three-phase microstructure. Furthermore, the interfacial crystallography is dynamic and changes in response to thermal loads and to interfacial electrochemical polarizations. Owing to this inherent complexity, a complete and fundamental understanding of both the basic mechanisms of cathodic processes and their performance degradation has not been achieved. We have carried out quantitative orientational imaging microscopy (OIM) on button-cell geometry SOFCs containing porous cathodes of yttria-stabilized zirconia and lanthanum strontium manganese oxide. A series of cathodes, taken from cells subjected to both open-circuit and current-loaded fuel-cell conditions, were characterized with OIM to determine their microstructural and crystallographic properties as a function of thermal and electrochemical history. In this presentation we will discuss the results of these studies, focusing on the crystallographic nature of the statistically important two-phase interfaces and three-phase lines.

Cao, Y. (Carnegie Mellon University); Miller, H.M. (Carnegie Mellon University); Johnson, C.; Wilson, L.C.; Rohrer, G. (Carnegie Mellon University); Salvador, P. (Carnegie Mellon University)

2006-10-01T23:59:59.000Z

52

Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report  

SciTech Connect (OSTI)

Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objects recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.

Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.; Virden, Daniel J.; Myers, Joshua R.; Maxwell, Adam R.

2012-09-01T23:59:59.000Z

53

ARM - Instrument - mti  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS)govInstrumentsgrams Documentation ARMgovInstrumentsmetgovInstrumentsmpl

54

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

E-Print Network [OSTI]

Imaging Fluid Flow in Geothermal Wells Using Distributed16 Imaging Fluid Flow in Geothermal Wells Using Distributedflow processes near a geothermal well under heating and

Freifeld, B.

2011-01-01T23:59:59.000Z

55

Scou%ng Hazardous Environments With Thermal Imaging Ryan Stevenson, Josh Kay, Azim Muqtadir  

E-Print Network [OSTI]

of 12 FLIR Lepton Cameras, an accelerometer, a RN-XV WiFly Module, a Tiva C-Ion BaXery RN-XV WiFi I2C UART Hardware FLIR Lepton Thermal Camera and thermal cameras in the device and then use FLIRs MSX blending algorithm to give

Liebling, Michael

56

Thermal imaging investigation of modified fused silica at surface damage sites for understanding the underlying mechanisms of damage growth  

SciTech Connect (OSTI)

We use an infrared thermal imaging system in combination with a fluorescence microscope to map the dynamics of the local surface temperature and fluorescence intensity under cw, UV excitation of laser-modified fused silica within a damage site. Based on a thermal diffusion model, we estimate the energy deposited via linear absorption mechanisms and derive the linear absorption coefficient of the modified material. The results indicate that the damage growth mechanism is not entirely based on linear absorption. Specifically, the absorption cross-section derived above would prove insufficient to cause a significant increase in the temperature of the modified material under nanosecond, pulsed excitation (via linear absorption at ICF laser fluences). In addition, irreversible changes in the absorption cross-section following extended cw, UV laser exposure were observed.

Negres, R A; Burke, M W; DeMange, P; Sutton, S B; Feit, M D; Demos, S G

2006-11-01T23:59:59.000Z

57

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

Broader source: Energy.gov [DOE]

Project objective: A New Geothermal Well Imaging Tool. 1.To develop a robust and easily deployable DTPS for monitoring in geothermal wells; and 2. Develop the associated analysis methodology for flow imaging; and?when possible by wellbore conditions?to determine in situthermal conductivity and basal heat flux.

58

Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection  

DOE Patents [OSTI]

A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

Sun, Jiangang (Westmont, IL); Deemer, Chris (Downers Grove, IL)

2003-01-01T23:59:59.000Z

59

Simultaneous Thermal Imaging of Peltier and Joule Effects B. Vermeersch and A. Shakouri  

E-Print Network [OSTI]

harmonic component. A phase-locked CCD oversamples the signal times (instead of ) per period. Appropriate is that a bipolar excitation is used. Namely, we supply a slow sine wave with zero offset to the DUT. This causes image processing yields magnitude and phase distributions for both harmonics, as well as the DC

60

A new class of materials with promising thermoelectric properties: MNiSn (M=Ti, Zr, Hf)  

SciTech Connect (OSTI)

TiNiSn, ZrNiSn and HfNiSn are members of a large group of intermetallic compounds which crystallize in the cubic MgAgAs-type structure. Polycrystalline samples of these compounds have been prepared and investigated for their thermoelectric properties. With thermopowers of about {minus}200 {micro}V/K and resistivities of a few m{Omega}cm, power factors S{sup 2}/{rho} as high as 38 {micro}W/K{sup 2}cm were obtained at 700 K. These remarkably high power factors are, however, accompanied by a thermal conductivity, solid solutions Zr{sub 1{minus}x}Hf{sub x}NiSn, Zr{sub 1{minus}x}Ti{sub x}NiSn, and Hf{prime}{sub 1{minus}x}Ti{sub x}NiSn were formed. The figure of merit of Zr{sub 0.5}Hf{sub 0.5}NiSn at 700 K (ZT = 0.41) exceeds the end members ZrNiSn (ZT = 0.26) and HfNiSn (ZT = 0.22).

Hohl, H.; Ramirez, A.P.; Kaefer, W.; Fess, K.; Thurner, Ch.; Kloc, Ch.; Bucher, E.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach  

E-Print Network [OSTI]

. Wu, and X. H. Chen, Opt. Lett. 30, 2354 #1;2005#2;. #3;12#4; D. Z. Cao, J. Xiong, and K. Wang, Phys. Rev. A 71, 013801 #1;2005#2;; M. D?Angelo, A. Valencia, M. H. Rubin and Y. Shih, ibid. 72, 013810 #1;2005#2;; K. Wang and D. Z. Cao, ibid. 70... direction #1;one dimension#2;. This however does not affect the physics. For the thermal light at the source, the first-order correla- tion can be written as a series of the form #3;15,16#4;, #5;Es+#1;x1#2;Es#1;x2#2;#6; #6; 1 ? #7;#1;x1 ? x2#2;2 + #8...

Wang, Li-Gang; Qamar, Sajid; Zhu, Shi-Yao; Zubairy, M. Suhail

2009-01-01T23:59:59.000Z

62

M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications  

SciTech Connect (OSTI)

Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti{sub 5}Si{sub 3}-based alloys was investigated. Oxidation behavior of Ti{sub 5}Si{sub 3}-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti{sub 5}Si{sub 3} by nucleation and growth of nitride subscale. Ti{sub 5}Si{sub 3.2} and Ti{sub 5}Si{sub 3}C{sub 0.5} alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi{sub 2} coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo{sub 3}Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo{sub 3}Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nb{sub ss} (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} Nb{sub SS} + NbB was determined to occur at 2104 {+-} 5 C by DTA.

Zhihong Tang

2007-12-01T23:59:59.000Z

63

Non-contact, Wavelet-based Measurement of Vital Signs using Thermal Imaging S. Yu. Chekmenev, H. Rara, and Aly A. Farag  

E-Print Network [OSTI]

be measured and used to assess the person's level of physical functioning. Normal ranges of vital signs vary with ECG data as the baseline measurement. Geisheimer [6] developed a Radar Vital Signs Monitor (RVSMNon-contact, Wavelet-based Measurement of Vital Signs using Thermal Imaging S. Yu. Chekmenev, H

Farag, Aly A.

64

New field programmable gate array-based image-oriented acquisition and real-time processing applied to plasma facing component thermal monitoring  

SciTech Connect (OSTI)

During operation of present fusion devices, the plasma facing components (PFCs) are exposed to high heat fluxes. Understanding and preventing overheating of these components during long pulse discharges is a crucial safety issue for future devices like ITER. Infrared digital cameras interfaced with complex optical systems have become a routine diagnostic to measure surface temperatures in many magnetic fusion devices. Due to the complexity of the observed scenes and the large amount of data produced, the use of high computational performance hardware for real-time image processing is then mandatory to avoid PFC damages. At Tore Supra, we have recently made a major upgrade of our real-time infrared image acquisition and processing board by the use of a new field programmable gate array (FPGA) optimized for image processing. This paper describes the new possibilities offered by this board in terms of image calibration and image interpretation (abnormal thermal events detection) compared to the previous system.

Martin, V. [Pulsar Team-Project, INRIA Sophia Antipolis, Sophia Antipolis F-06902 (France); Dunand, G.; Moncada, V. [Sophia Conseil Company, Sophia Antipolis F-06560 (France); Jouve, M.; Travere, J.-M. [CEA, IRFM, Saint-Paul-Lez-Durance F-13108 (France)

2010-10-15T23:59:59.000Z

65

Sources of difference frequency sound in a dual-frequency imaging system with implications for monitoring thermal surgery  

E-Print Network [OSTI]

(cont.) parametric effect, which can be considered an imaging artifact. Additionally, it may be possible to use the nonlinear interaction of scattered waves to form images that rely on the presence of small scatterers; a ...

Thierman, Jonathan S. (Jonathan Sidney), 1976-

2004-01-01T23:59:59.000Z

66

Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry  

SciTech Connect (OSTI)

Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

Ovchinnikova, Olga S [ORNL; Nikiforov, Maxim [ORNL; Bradshaw, James A [ORNL; Jesse, Stephen [ORNL; Van Berkel, Gary J [ORNL

2011-01-01T23:59:59.000Z

67

Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In About |Imaging Imaging Print

68

Synthesis and characterization of alkali-metal titanium alkoxide compounds MTi(O-i-Pr) sub 5 (M = Li, Na, K): Single-crystal x-ray diffraction structure of (LiTi(O-i-Pr) sub 5 ) sub 2  

SciTech Connect (OSTI)

The series (MTi(O-iPr){sub 5}), M = Li, Na, or K, has been prepared by the reaction of MO-i-Pr with Ti(O-i-Pr){sub 4}. A single-crystal x-ray diffraction study revealed that (LiTi(O-i-Pr){sub 5}) crystallizes from toluene at {minus}30{degree}C in the monoclinic space group P2{sub 1}/n, with unit cell dimensions a = 11.440 (8) {angstrom}, b = 16.396 (13) {angstrom}, c = 11.838 (8) {angstrom}, {beta} = 92.59 (5){degree}, and Z = 4, as a dimer containing two approximately trigonal-bipyramidal titanium centers linked by lithium bridges. In benzene solution, all three compounds are dimeric, as revealed by cryoscopic molecular weight determination, and all three undergo an alkoxide ligand exchange process that is rapid on the {sup 1}H NMR time scale at room temperature. The positions of {nu}(M-O) are assigned based on the low-energy shifts observed upon deuteriation of the isopropoxide ligands. 23 refs., 3 figs., 3 tabs.

Hampden-Smith, M.J.; Williams, D.S. (Univ. of New Mexico, Albuquerque (USA)); Rheingold, A.L. (Univ. of Delaware, Newark (USA))

1990-10-03T23:59:59.000Z

69

Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIanIgorIlyaBuildingImaging Print

70

Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIanIgorIlyaBuildingImaging

71

Thermal front tracking with cross borehole electromagnetic imaging: Task 32 of Annex 4 of the implementing agreement  

SciTech Connect (OSTI)

Field experiments at the Texaco Kern River Field were conducted to identify optimum transmission frequencies and assess the electromagnetic interference problems present in the system. We concluded that the transmitter must be operated below 3 MHz for attenuation measurements to be in the conduction regime. Operation in the conduction regime is necessary if we are to correlate images to independent measurements such as the dual induction logs. We also concluded that electromagnetic interference problems become more severe as the frequency is lowered. We are currently designing a downhole active transmitter that will operate at 2 MHz. This frequency is low enough to be in the conduction regime and to increase our transmission distance capability, but high enough so that we can still drive a 1 or 2 meter antenna. By driving the antenna with a downhole oscillator we dramatically reduce the chance of electromagnetic interference pathways. Future plans are to test the transmitter at the Texaco field site and demonstrate correlation to induction logs. This will be followed by a brine tracing experiment at the same site. We will then move our equipment to a new pilot test site for a substantial series of cooperative experiments with Texaco. 5 refs., 11 figs.

Harben, P.E.; Pihlman, M.

1988-04-01T23:59:59.000Z

72

On Thermal-Pulse-Driven Plasma Flows in Coronal Funnels as Observed by Hinode/EUV Imaging Spectrometer (EIS)  

E-Print Network [OSTI]

Using one-arcsecond-slit scan observations from the Hinode/EUV Imaging Spectrometer (EIS) on 05 February 2007, we find the plasma outflows in the open and expanding coronal funnels at the eastern boundary of AR 10940. The Doppler velocity map of Fe XII 195.120 A shows that the diffuse close-loop system to be mostly red-shifted. The open arches (funnels) at the eastern boundary of AR exhibit blue-shifts with a maximum speed of about 10-15 km/s. This implies outflowing plasma through these magnetic structures. In support of these observations, we perform a 2D numerical simulation of the expanding coronal funnels by solving the set of ideal MHD equations in appropriate VAL-III C initial temperature conditions using the FLASH code. We implement a rarefied and hotter region at the footpoint of the model funnel, which results in the evolution of slow plasma perturbations propagating outward in the form of plasma flows. We conclude that the heating, which may result from magnetic reconnection, can trigger the observ...

Srivastava, A K; Murawski, K; Dwivedi, B N; Mohan, A

2014-01-01T23:59:59.000Z

73

Thermal Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

74

MULTI-STRANDED AND MULTI-THERMAL SOLAR CORONAL LOOPS: EVIDENCE FROM HINODE X-RAY TELESCOPE AND EUV IMAGING SPECTROMETER DATA  

SciTech Connect (OSTI)

Data from the X-Ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS) on the Japanese/USA/UK Hinode spacecraft were used to investigate the spatial and thermal properties of an isolated quiescent coronal loop. We constructed differential emission measure (DEM) curves using Monte Carlo based, iterative forward fitting algorithms. We studied the loop as a whole, in segments, in transverse cuts, and point-by-point, always with some form of background subtraction, and find that the loop DEM is neither isothermal nor extremely broad, with approximately 96% of the EM between 6.2 {<=}log T{<=} 6.7, and an EM-weighted temperature of log T = 6.48 {+-} 0.16. We find evidence for a gradual change in temperature along the loop, with log T increasing only by {approx}0.1 from the footpoints to the peak. The combine XRT-EIS data set does a good job of constraining the temperature distribution for coronal loop plasma. Our studies show that the strong constraints at high and low temperatures provided by the combined data set are crucial for obtaining reasonable solutions. These results confirm that the observations of at least some loops are not consistent with isothermal plasma, and therefore cannot be modeled with a single flux tube and must be multi-stranded.

Schmelz, J. T.; Nasraoui, K. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Saar, S. H.; Kashyap, V. L.; Weber, M. A.; DeLuca, E. E.; Golub, L., E-mail: jschmelz@memphis.ed [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

2010-11-10T23:59:59.000Z

75

A THERMAL INFRARED IMAGING STUDY OF VERY LOW MASS, WIDE-SEPARATION BROWN DWARF COMPANIONS TO UPPER SCORPIUS STARS: CONSTRAINING CIRCUMSTELLAR ENVIRONMENTS  

SciTech Connect (OSTI)

We present a 3-5 {mu}m LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low masses/mass ratios (M{sub BD} <25 M{sub Jup}; M{sub BD}/M{sub *} Almost-Equal-To 1%-2%) and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4 {mu}m and 24 {mu}m photometry to constrain the properties of the BDs and identify evidence for circumprimary/circumsecondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing that this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24 {mu}m excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4 {mu}m excess, nor does its primary; however, the system as a whole has a modest 24 {mu}m excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4 {mu}m colors of HIP 78530B match a spectral type of M3 {+-} 2, inconsistent with the M8 spectral type assigned based on its near-IR spectrum, indicating that it may be a low-mass star rather than a BD. We present new upper limits on additional low-mass companions in the system (<5 M{sub Jup} beyond 175 AU). Finally, we examine the utility of circumsecondary disks as probes of the formation histories of wide BD companions, finding that the presence of a disk may disfavor BD formation near the primary with subsequent outward scattering.

Bailey, Vanessa; Hinz, Philip M.; Su, Kate Y. L.; Hoffmann, William F.; Rieke, George; Rodigas, Timothy; Skemer, Andrew; Vaitheeswaran, Vidhya [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)] [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)] [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Esposito, Simone; Pinna, Enrico; Puglisi, Alfio [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)] [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)] [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Jones, Terry [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States)] [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Kim, Jihun [College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721 (United States)] [College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721 (United States); Leisenring, Jarron; Meyer, Michael [Institut fuer Angewandte Physik, Eidgenoessische Technische Hochschule-Zuerich, CH-8093 (Switzerland)] [Institut fuer Angewandte Physik, Eidgenoessische Technische Hochschule-Zuerich, CH-8093 (Switzerland); Murray-Clay, Ruth; Skrutskie, Michael F. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States); Nelson, Matthew J., E-mail: vbailey@as.arizona.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); and others

2013-04-10T23:59:59.000Z

76

Feature Extraction from Multiple Data Sources Using Genetic Programming  

E-Print Network [OSTI]

from the US Department of Energy/National Nuclear Security Administration's Multispectral Thermal National Laboratory Mail Stop D436, Los Alamos, NM 87545 ABSTRACT Feature extraction from imagery Imager (MTI) satellite1,2,3 combined with USGS 1:24k digital elevation model (DEM) data.4 The Los Alamos

Theiler, James

77

Multispectral rock-type separation and classification Biliana Paskaleva  

E-Print Network [OSTI]

Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security, Albuquerque, NM87131-0001 Sandia National Laboratories, Albuquerque, NM 87185 1 Abstract This paper explores and temporal parameters. The Multi-spectral Thermal Imager (MTI) was designed to be a satellite based system

Hayat, Majeed M.

78

Mechanical Technologies Inc MTI | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland is a cityMcleodMechanical

79

Thermal wake/vessel detection technique  

DOE Patents [OSTI]

A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

Roskovensky, John K. (Albuquerque, NM); Nandy, Prabal (Albuquerque, NM); Post, Brian N (Albuquerque, NM)

2012-01-10T23:59:59.000Z

80

Microsoft Word - NETL-TRS-6-2014_Imaging Techniques Applied to...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solid (low thermal maturity), pendular (intermediate thermal maturity), or spongy (high thermal maturity). Examples of these pore types are shown in Figure 12. Imaging Techniques...

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stratus cloud structure from MM-radar transects and satellite images: scaling properties and artifact detection with semi-discrete wavelet analysis  

SciTech Connect (OSTI)

Spatial and/or temporal variabilities of clouds is of paramount importance for at least two in tensely researched sub-problems in global and regional climate modeling: (1) cloud-radiation interaction where correlations can trigger 3D radiative transfer effects; and (2) dynamical cloud modeling where the goal is to realistically reproduce the said correlations. We propose wavelets as a simple yet powerful way of quantifying cloud variability. More precisely, we use 'semi-discrete' wavelet transforms which, at least in the present statistical applications, have advantages over both its continuous and discrete counterparts found in the bulk of the wavelet literature. With the particular choice of normalization we adopt, the scale-dependence of the variance of the wavelet coefficients (i.e,, the wavelet energy spectrum) is always a better discriminator of transition from 'stationary' to 'nonstationary' behavior than conventional methods based on auto-correlation analysis, second-order structure function (a.k.a. the semi-variogram), or Fourier analysis. Indeed, the classic statistics go at best from monotonically scale- or wavenumber-dependent to flat at such a transition; by contrast, the wavelet spectrum changes the sign of its derivative with respect to scale. We apply 1D and 2D semi-discrete wavelet transforms to remote sensing data on cloud structure from two sources: (1) an upward-looking milli-meter cloud radar (MMCR) at DOE's climate observation site in Oklahoma deployed as part of the Atmospheric Radiation Measurement (ARM) Progrm; and (2) DOE's Multispectral Thermal Imager (MTI), a high-resolution space-borne instrument in sunsynchronous orbit that is described in sufficient detail for our present purposes by Weber et al. (1999). For each type of data, we have at least one theoretical prediction - with empirical validation already in existence - for a power-law relation for wavelet statistics with respect to scale. This is what is expected in physical (i.e., finite scaling range) fractal phenomena. In particular, we find long-range correlations in cloud structure coming from the important nonstationary regime. More surprisingly, we also uncover artifacts the data that are traceable either to instrumental noise (in the satellite data) or to smoothing assumptions (in the MMCR data processing). Finally, we discuss the potentially damaging ramifications the smoothing artifact can have on both cloud-radiation and cloud-modeling studies using MMCR data.

Davis, A. B. (Anthony B.); Petrov, N. P. (Nikola P.); Clothiaux, E. E. (Eugene E.); Marshak, A. (Alexander)

2002-01-01T23:59:59.000Z

82

Photothermal imaging scanning microscopy  

DOE Patents [OSTI]

Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

2006-07-11T23:59:59.000Z

83

E-Print Network 3.0 - argonne thermal source reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Imaging HardwareARGONNE 12;DETECTION... OF POROSITY BY NDE METHODS:: Thermal imaging, water and air-coupled ultrasonics ARGONNE 12;Correlation of NDE... Turbines Argonne...

84

Fusion of Visual and Thermal Face Recognition Techniques  

E-Print Network [OSTI]

of individuals wearing eyeglasses may result in poor performance since eyeglasses block the infrared emissions ............................................................. 27 3.3 Eyeglass Detection and Removal from Thermal Images................................. 31 4

Abidi, Mongi A.

85

Fourier Analysis of Ghost Imaging  

E-Print Network [OSTI]

Fourier analysis of ghost imaging (FAGI) is proposed in this paper to analyze the properties of ghost imaging with thermal light sources. This new theory is compatible with the general correlation theory of intensity fluctuation and could explain some amazed phenomena. Furthermore we design a series of experiments to verify the new theory and investigate the inherent properties of ghost imaging.

Honglin Liu; Jing Cheng; Yanfeng Bai; Shensheng Han

2006-09-28T23:59:59.000Z

86

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

87

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

88

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

89

Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data  

SciTech Connect (OSTI)

To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.

D. Yuan; E. Doak; P. Guss; A. Will

2002-01-01T23:59:59.000Z

90

Quantitative luminescence imaging system  

DOE Patents [OSTI]

The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

Erwin, David N. (San Antonio, TX); Kiel, Johnathan L. (San Antonio, TX); Batishko, Charles R. (West Richland, WA); Stahl, Kurt A. (Richland, WA)

1990-01-01T23:59:59.000Z

91

Quantitative luminescence imaging system  

DOE Patents [OSTI]

The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

1990-08-14T23:59:59.000Z

92

High Resolution Backside Imaging and Thermography using a Numerical Aperture Increasing Lens  

E-Print Network [OSTI]

High Resolution Backside Imaging and Thermography using a Numerical Aperture Increasing Lens M. S, representing the highest resolution subsurface thermography to date. Keywords: thermal imaging, high

93

Thermal Imaging Technologies | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNew

94

Radiography used to image thermal explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115,PerformanceUsing RadioactiveOctober »

95

Thermal conductivity of thermal-battery insulations  

SciTech Connect (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

96

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

97

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

98

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network [OSTI]

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

99

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

100

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Speckle-free laser imaging  

E-Print Network [OSTI]

Many imaging applications require increasingly bright illumination sources, motivating the replacement of conventional thermal light sources with light emitting diodes (LEDs), superluminescent diodes (SLDs) and lasers. Despite their brightness, lasers and SLDs are poorly suited for full-field imaging applications because their high spatial coherence leads to coherent artifacts known as speckle that corrupt image formation. We recently demonstrated that random lasers can be engineered to provide low spatial coherence. Here, we exploit the low spatial coherence of specifically-designed random lasers to perform speckle-free full-field imaging in the setting of significant optical scattering. We quantitatively demonstrate that images generated with random laser illumination exhibit higher resolution than images generated with spatially coherent illumination. By providing intense laser illumination without the drawback of coherent artifacts, random lasers are well suited for a host of full-field imaging applicatio...

Redding, Brandon; Cao, Hui

2011-01-01T23:59:59.000Z

102

advanced nuclear thermal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear thermal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 New Thermal Imaging Camera Advances UNL...

103

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

104

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

105

Thermal transport properties of grey cast irons  

SciTech Connect (OSTI)

Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy.

Hecht, R.L. [Ford Motor Co., Dearborn, MI (United States). Ford Research Lab.; Dinwiddie, R.B.; Porter, W.D.; Wang, Hsin [Oak Ridge National Lab., TN (United States)

1996-10-01T23:59:59.000Z

106

Thermal Conductivity in Nanocrystalline Ceria Thin Films  

SciTech Connect (OSTI)

The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

2014-02-01T23:59:59.000Z

107

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network [OSTI]

-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer;Leuchtstoffröhre Plasma-Bildschirm Energiesparlampe #12;electrical engineering light sources textile industry

Greifswald, Ernst-Moritz-Arndt-Universität

108

Test Images  

E-Print Network [OSTI]

Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

109

Thermal contact resistance  

E-Print Network [OSTI]

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

110

Thermal Processes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Current Technology Thermal Processes Thermal Processes Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass,...

111

Image Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recognition Image Analysis and Recognition Snapshot1498121slicesqResedison Fibers permeating imaged material (Courtesy: Bale, Loring, Perciano and Ushizima) Imagery coming from...

112

Multiwavelength Thermal Emission  

E-Print Network [OSTI]

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

113

Thermal Performance Benchmarking (Presentation)  

SciTech Connect (OSTI)

This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

Moreno, G.

2014-11-01T23:59:59.000Z

114

Thermal neutron detection system  

DOE Patents [OSTI]

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

115

Fusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition  

E-Print Network [OSTI]

Fusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition Jingu Heo, eyeglasses, which block thermal energy, are detected from thermal images and replaced with an eye template temperatures caused by physical exercise or ambient temperatures. Eyeglasses may result in loss of useful

Abidi, Mongi A.

116

Variable waveband infrared imager  

DOE Patents [OSTI]

A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

Hunter, Scott R.

2013-06-11T23:59:59.000Z

117

Thermal comfort during surgery  

E-Print Network [OSTI]

THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Industrial... Engineering THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Approved as to style and content by: airman of C it ee Head of Department Member Me er December 1978 ABSTRACT Thermal Comfort During Surgery (December 1978) David Harold...

Manning, David Harold

1978-01-01T23:59:59.000Z

118

Thermal Infrared Remote Sensing  

E-Print Network [OSTI]

Thermal Infrared Remote Sensing Thermal Infrared Remote Sensing #12;0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 and x-ray Ultraviolet Infrared Microwave and radio waves Wavelength in meters (m) Electromagnetic.77 700 red limit 30k0.041 2.48 green500 near-infrared far infrared ultraviolet Thermal Infrare refers

119

Variable pressure thermal insulating jacket  

DOE Patents [OSTI]

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

120

People Images  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

People Images People Images Several hundred of the 1700 U.S. scientists contributing to the LHC accelerator and experiments gathered in June 2008 in CERN's building 40 CE0252 Joel...

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NANO REVIEW Open Access Thermal conductivity and thermal boundary  

E-Print Network [OSTI]

NANO REVIEW Open Access Thermal conductivity and thermal boundary resistance of nanostructures and the thermal transport prop- erties is a key point to design materials with preferred thermal properties with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity

Boyer, Edmond

122

Image alignment  

DOE Patents [OSTI]

Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

Dowell, Larry Jonathan

2014-04-22T23:59:59.000Z

123

Thermal protection apparatus  

DOE Patents [OSTI]

The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

Bennett, G.A.; Elder, M.G.; Kemme, J.E.

1984-03-20T23:59:59.000Z

124

Mechanical Engineering & Thermal Group  

E-Print Network [OSTI]

Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

Mojzsis, Stephen J.

125

Thermal protection apparatus  

DOE Patents [OSTI]

An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

126

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

127

Tunable thermal link  

DOE Patents [OSTI]

Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

2014-07-15T23:59:59.000Z

128

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

129

Thermal treatment wall  

DOE Patents [OSTI]

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

130

Microsecond switchable thermal antenna  

SciTech Connect (OSTI)

We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

2014-07-21T23:59:59.000Z

131

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

132

Multilayer thermal barrier coating systems  

DOE Patents [OSTI]

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

133

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

134

Thermal insulations using vacuum panels  

DOE Patents [OSTI]

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

135

Manipulation of Thermal Phonons  

E-Print Network [OSTI]

to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many...

Hsu, Chung-Hao

2013-03-28T23:59:59.000Z

136

Thermally Polymerized Rylene Nanoparticles  

E-Print Network [OSTI]

Rylene dyes functionalized with varying numbers of phenyl trifluorovinyl ether (TFVE) moieties were subjected to a thermal emulsion polymerization to yield shape-persistent, water-soluble chromophore nanoparticles. Perylene ...

Andrew, Trisha Lionel

137

Thermal Insulation Systems  

E-Print Network [OSTI]

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

Stanley, T. F.

1982-01-01T23:59:59.000Z

138

Thermally driven circulation  

E-Print Network [OSTI]

Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

Nelken, Haim

1987-01-01T23:59:59.000Z

139

Contact thermal lithography  

E-Print Network [OSTI]

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

140

Computing Images  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computing Images The interior of an automated tape library in Brookhaven's RHIC and ATLAS Computing Facility. Brookhaven engineers in the RHIC and ATLAS Computing Facility....

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Photovoltaic-thermal collectors  

DOE Patents [OSTI]

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

142

Phenomenological study of passive image-based  

E-Print Network [OSTI]

for purposes of calibration ­ Tire imagery ­ 3 VIS (Nikon D50), 1 Thermal (FLIR A20) ­ Weather readings - wind - CBTTCR1 #12;28 THERMAL IMAGERY & DATA #12;29 #12;30 #12;31 Experimental Image FLIR System A20 #12;32 FLIR Calibration #12;33 FLIR Calibration #12;34 FLIR Calibration #12;35 FLIR Calibration #12;36 FLIR Calibration

Salvaggio, Carl

143

Dynamic modelling for thermal micro-actuators using thermal networks  

E-Print Network [OSTI]

Dynamic modelling for thermal micro-actuators using thermal networks Beatriz L´opez-Wallea,1 and analytical calculations. Key words: Micro-actuators, Thermal modelling, Electrical analogy, Thermal network 1 and MicroMechatronic Systems Department (AS2M), 24 rue Alain Savary, 25000 Besan¸con, France Abstract

Paris-Sud XI, Université de

144

Wolter mirror microscope : novel neutron focussing and imaging optic  

E-Print Network [OSTI]

In this thesis, I investigated the effectiveness of a Wolter Type I neutron microscope as a focusing and imaging device for thermal and cold neutrons sources by simulating the performance of the optics in a standard neutron ...

Bagdasarova, Yelena S. (Yelena Sergeyevna)

2010-01-01T23:59:59.000Z

145

Compound Refractive Lenses for Thermal Neutron Applications  

SciTech Connect (OSTI)

This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 ?m which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

Gary, Charles K.

2013-11-12T23:59:59.000Z

146

Thermal diffusivity mapping of 4D carbon-carbon composites  

SciTech Connect (OSTI)

High resolution, 2-D thermal diffusivity maps of carbon-carbon composites were obtained by a state-of-the-art infrared thermal imaging system. Unlike the traditional single-point IR detector used for thermal diffusivity measurements, the IR camera is capable of capturing images in its 256 x 256 pixel Focal Plane Array detector in a snap-shot mode. The camera takes up to 200 images at a rate of 120 frames/second. The temperature resolution of the Ir camera is 0.015 C and the spatial resolution is 20 {micro}m. Thermal diffusivity was calculated for each pixel. Four-direction carbon-carbon composites were used for the thermal diffusivity mapping study. The fiber bundles along the heat flow direction were found to have 25% higher diffusivity values than the surrounding matrix. The diffusivity map also showed detailed local variations in diffusivity which were impossible to measure using a single-point detector. Accurate diffusivity maps are very important to the design of composite materials.

Wang, H.; Dinwiddie, R.B.

1997-03-01T23:59:59.000Z

147

Microscopic thermal diffusivity mapping using an infrared camera  

SciTech Connect (OSTI)

Standard flash thermal diffusivity measurements utilize a single-point infrared detector to measure the average temperature rise of the sample surface after a heat pulse. The averaging of infrared radiation over the sample surface could smear out the microscopic thermal diffusivity variations in some specimens, especially in fiber-reinforced composite materials. A high-speed, high-sensitivity infrared camera was employed in this study of composite materials. With a special microscope attachment, the spatial resolution of the camera can reach 5.4 {micro}m. The images can then be processed to generate microscopic thermal diffusivity maps of the material. SRM 1462 stainless steel was tested to evaluate the accuracy of the system. Thermal diffusivity micrographs of carbon-carbon composites and SCS-6/borosilicate glass were generated. Thermal diffusivity values of the carbon fiber bundles parallel to the heat flow were found to be higher than the matrix material. A thermal coupling effect between SCS-6 fiber and matrix was observed. The thermal coupling and measured thermal diffusivity value of the fiber were also dependent upon the thickness of the specimen.

Wang, H.; Dinwiddie, R.B.

1997-12-31T23:59:59.000Z

148

Article for thermal energy storage  

DOE Patents [OSTI]

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

149

Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m  

ScienceCinema (OSTI)

Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

150

Looking Deep from the South Pole: Star Formation in the Thermal Infrared  

E-Print Network [OSTI]

Looking Deep from the South Pole: Star Formation in the Thermal Infrared Michael G.Burton, John W extra-galactic star formation through a deep survey of the Hubble Deep Field{South in this band. We-eminent conditions on the Earth for wide- eld imaging at thermal infrared wavelengths. We describe a project to equip

Ashley, Michael C. B.

151

A Fracture Mechanics Approach to Thermal Shock Investigation in Alumina-Based Refractory  

SciTech Connect (OSTI)

The thermal shock behavior of large grain size, alumina-based refractories was investigated experimentally using a standard water quench test. A mathematical model was employed to simulate the thermal stability behavior. Behavior of the samples under repeated thermal shock was monitored using ultrasonic measurements of dynamic Young's modulus. Image analysis was used to observe the extent of surface degradation. Analysis of the obtained results for the behavior of large grain size samples under conditions of rapid temperature changes is given.

Volkov-Husovic, T.; Heinemann, R. Jancic; Mitrakovic, D. [Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade (Serbia and Montenegro)

2008-02-15T23:59:59.000Z

152

Thermal insulated glazing unit  

SciTech Connect (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

1991-01-01T23:59:59.000Z

153

Thermal insulated glazing unit  

SciTech Connect (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

1988-04-05T23:59:59.000Z

154

Thermal trim for luminaire  

DOE Patents [OSTI]

A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

2013-11-19T23:59:59.000Z

155

Thermal Diffusivity and Viscosity of Suspensions of Disc Shaped Nanoparticles  

E-Print Network [OSTI]

In this work we conduct a transient heat conduction experiment with an aqueous suspension of nanoparticle disks of Laponite JS, a sol forming grade, using laser light interferometry. The image sequence in time is used to measure thermal diffusivity and thermal conductivity of the suspension. Imaging of the temperature distribution is facilitated by the dependence of refractive index of the suspension on temperature itself. We observe that with the addition of 4 volume % of nano-disks in water, thermal conductivity of the suspension increases by around 30%. A theoretical model for thermal conductivity of the suspension of anisotropic particles by Fricke as well as by Hamilton and Crosser explains the trend of data well. In turn, it estimates thermal conductivity of the Laponite nanoparticle itself, which is otherwise difficult to measure in a direct manner. We also measure viscosity of the nanoparticle suspension using a concentric cylinder rheometer. Measurements are seen to follow quite well, the theoretical relation for viscosity of suspensions of oblate particles that includes up to two particle interaction. This result rules out the presence of clusters of particles in the suspension. The effective viscosity and thermal diffusivity data show that the shape of the particle has a role in determining enhancement of thermophysical properties of the suspension.

Susheel S. Bhandari; K. Muralidhar; Yogesh M Joshi

2014-03-05T23:59:59.000Z

156

Thermal test options  

SciTech Connect (OSTI)

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

157

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

158

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

159

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

Copeland, R.J.

1981-08-01T23:59:59.000Z

160

Uncooled thin film pyroelectric IR detector with aerogel thermal isolation  

SciTech Connect (OSTI)

Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal Reactor Safety  

SciTech Connect (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

162

Thermal management of nanoelectronics  

E-Print Network [OSTI]

-state thermoelectric on- spot cooling, requiring efficient thermoelectric materials that can be integrated with the IC are further complicated by the fact that the material's ability to conduct heat deteriorates when at the packaging level but also at the nanoscale materials and device levels. THERMAL CHALLENGES AT NANOSCALE One

163

Thermal Infrared Remote Sensing  

E-Print Network [OSTI]

to us, like reflective ("nearreflective ("near--" infrared (0.7" infrared (0.7 -- 3.03.0 µµm)m) andand near-infrared far infrared ultraviolet Thermal Infrared refers to region o EM spectrum from ~3 - 14 µm.landscape. IMPORTANT: NEARIMPORTANT: NEAR--INFRARED is short enough wavelength toINFRARED is short enough wavelength

164

Low thermal conductivity skutterudites  

SciTech Connect (OSTI)

Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

1997-07-01T23:59:59.000Z

165

Thermal barrier coating  

DOE Patents [OSTI]

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

166

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

167

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

168

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

169

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

Authors, Various

2011-01-01T23:59:59.000Z

170

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

171

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

Sands, M.Dale

2013-01-01T23:59:59.000Z

172

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

173

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

174

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

175

Thermal Stabilization Blend Plan  

SciTech Connect (OSTI)

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

176

Thermal synthesis apparatus  

DOE Patents [OSTI]

An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

2009-08-18T23:59:59.000Z

177

Thermal reactor safety  

SciTech Connect (OSTI)

Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

Not Available

1980-06-01T23:59:59.000Z

178

Cermet fuel thermal conductivity  

E-Print Network [OSTI]

CERMET FUEL THERMAL CONDUCTIVITY A Thesis by JOHN MARK ALVIS, JR. Submitted to the Graduate College of Texas A&. M University in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Nuclear... particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work...

Alvis, John Mark

1988-01-01T23:59:59.000Z

179

Thermally actuated thermionic switch  

DOE Patents [OSTI]

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

180

Methods of forming thermal management systems and thermal management methods  

DOE Patents [OSTI]

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

Gering, Kevin L.; Haefner, Daryl R.

2012-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Multiscale thermal transport.  

SciTech Connect (OSTI)

A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

2004-02-01T23:59:59.000Z

182

DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect (OSTI)

Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

2007-12-19T23:59:59.000Z

183

MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.

Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E; Cary Tuckfield, C; Malcolm Pendergast, M

2009-01-20T23:59:59.000Z

184

Imaging acute thermal burns by photoacoustic Hao F. Zhang  

E-Print Network [OSTI]

coherence tomography5,6 PSOCT , indocyanine green dye fluorescence, thermography, ultrasound, and nuclear

Wang, Lihong

185

Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems  

E-Print Network [OSTI]

a common viewing plane perpen- dicular to a FLIR model P60ThermaCAM™ (FLIR Systems Inc. , North Billerica,For our experiments, the FLIR camera was set to display

Ryoo, Na; Kwon, Ji-Won; Wee, Won; Miller, Kevin M; Han, Young

2013-01-01T23:59:59.000Z

186

Thermal Imaging of Single Living Cells Using Semiconductor Quantum Dots  

E-Print Network [OSTI]

Berkeley. Thermoelectric Peltier temperature control unitsPetri dish. Eight small Peltier units (No. 81162, Ferrotec)Petri dish and two large Peltier units (No. 83335, Ferrotec)

Yang, Jui-Ming

2009-01-01T23:59:59.000Z

187

Butterfly-Inspired Thermal Imaging | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

primusenginefeaturedimage3 GE Innovation and Manufacturing in Europe 2-4-13-v-3d-printing-medical-devices Additive Manufacturing Demonstration at GE Global Research ...

188

Thermal Imaging Technique for Measuring Mixing of Fluids - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 Members ThemeTherapeuticInnovation Portal

189

Butterfly-Inspired Thermal Imaging | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technologyVisitors Report

190

Thermal Imaging of Single Living Cells Using Semiconductor Quantum Dots  

E-Print Network [OSTI]

wrapped nanoscaled thermometer for temperature control inA fluorescent molecular thermometer based on the nickel(II)Fluorescent Nanogel Thermometer for Intracellular

Yang, Jui-Ming

2009-01-01T23:59:59.000Z

191

Thermal control structure and garment  

DOE Patents [OSTI]

A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

Klett, James W. (Knoxville, TN); Cameron, Christopher Stan (Sanford, NC)

2012-03-13T23:59:59.000Z

192

THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS  

E-Print Network [OSTI]

on Thermal Performance of the Exterior Envelopes ofof thermal loads resulting from the building envelope areThermal Test Facility, LhL-9653, prepared for the ASHRAE/DOE Conference-on"t:heThermal Performance the Exterior Envelope

Selkowitz, S. E.

2011-01-01T23:59:59.000Z

193

Thermal management systems and methods  

DOE Patents [OSTI]

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

Gering, Kevin L.; Haefner, Daryl R.

2006-12-12T23:59:59.000Z

194

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

195

Integrated Vehicle Thermal Management Systems (VTMS) Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

196

Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide...

197

Report on workshop on thermal property measurements  

SciTech Connect (OSTI)

Results of thermogravimetric analysis of basalt is discussed. Heat capacity, thermal conductivity and thermal expansion are specifically addressed. (CBS)

Robertson, E.C.

1987-01-01T23:59:59.000Z

198

Infrared cloud imaging in support of Earth-space optical communication  

E-Print Network [OSTI]

Infrared cloud imaging in support of Earth- space optical communication Paul W. Nugent,1 Joseph A ground-station sites. A technique is described that uses a ground-based thermal infrared imager sensing and sensors; (010.1615) clouds; (110.3080) infrared imaging; (060.4510) optical communications

Shaw, Joseph A.

199

Thermal indicator for wells  

DOE Patents [OSTI]

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

200

Thermally switchable dielectrics  

DOE Patents [OSTI]

Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

Dirk, Shawn M.; Johnson, Ross S.

2013-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal network reduction  

SciTech Connect (OSTI)

A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

Balcomb, J.D.

1983-06-01T23:59:59.000Z

202

Thermal network reduction  

SciTech Connect (OSTI)

A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

203

Imaging bolometer  

DOE Patents [OSTI]

Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

Wurden, Glen A. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

204

Imaging bolometer  

DOE Patents [OSTI]

Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

Wurden, G.A.

1999-01-19T23:59:59.000Z

205

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

206

Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)  

SciTech Connect (OSTI)

This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

Rugh, J. P.; Pesaran, A.; Smith, K.

2013-07-01T23:59:59.000Z

207

Solar thermal power system  

DOE Patents [OSTI]

A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

Bennett, Charles L.

2010-06-15T23:59:59.000Z

208

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

Copeland, R. J.

1980-08-01T23:59:59.000Z

209

Thermal desorption for passive dosimeter  

E-Print Network [OSTI]

~ ~ ~ \\ ~ ~ ~ ~ Flare Tubes for Thermal Desorber . . . . . ~. . . . . . ~ ~ . 27 4. 5 ~ Thermal Desorber Manufactured by Century System Sample Flow from Thermal Desorber to Gas Chromatograph 29 6. Direct Injection Port for Therma1 Desorber . . . . . $2... the gas badges and. providing additional guidance in conducting the study. DEDICATZOil This thesis is cedicated to my parents and my wife, Unice, for their support during the last t', o years AHSTHACT ACKI;ODL DG~~. 'ITS D' DICATICI'. LIST OF TABL...

Liu, Wen-Chen

1981-01-01T23:59:59.000Z

210

Microviscometric studies on thermal diffusion  

E-Print Network [OSTI]

HICROVISCKStTRIC STUDIES THERMAL DIFFUSION A Thesis Eddie Reyfls Submitted to the Grsducte School of the Agricultursl sfld Mechanical College of Texas in partisl fulfillment of the requireeeflts far the degree of MASTER OF SCIENCE August... microliter samples to 1'/ reproduceability, This equipment is used to observe the thermal diffusion effects of polystyrene in toluene solutions in c 01uslus-Dickel thermal diffusion column. An inversion in the values of concentration and molecular veight...

Reyna, Eddie

2012-06-07T23:59:59.000Z

211

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect (OSTI)

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

212

Actively driven thermal radiation shield  

DOE Patents [OSTI]

A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

2002-01-01T23:59:59.000Z

213

Measuring Thermal Transport in Extreme Environments: Thermal Conductivity  

E-Print Network [OSTI]

Chen California Institute of Technology Jackie Li University of Michigan supported by CarnegieMeasuring Thermal Transport in Extreme Environments: Thermal Conductivity of Water Ice VII to 20 GPa David G. Cahill, Wen-Pin Hsieh, Dallas Trinkle, University of Illinois at Urbana-Champaign Bin

Braun, Paul

214

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

215

Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort  

E-Print Network [OSTI]

including cost, energy and thermal comfort analysis, whichfor greatest energy benefits, prioritize thermal comfortSetting Thermal Comfort Criteria and Minimizing Energy Use

Regnier, Cindy

2014-01-01T23:59:59.000Z

216

Nanometric Optical Imaging Frontiers in Chemical Imaging  

E-Print Network [OSTI]

Nanometric Optical Imaging Frontiers in Chemical Imaging Seminar Series Presented by... Professor growing field which has provided for nanometric optical imaging in the near-field. Even though a variety of techniques are being developed with nanometric optical imaging potential, near-field optics remains the most

217

Thermally stabilized heliostat  

DOE Patents [OSTI]

An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

Anderson, Alfred J. (Littleton, CO)

1983-01-01T23:59:59.000Z

218

Thermal protection apparatus  

DOE Patents [OSTI]

An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

Bennett, Gloria A. (Los Alamos, NM); Moore, Troy K. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

219

Thermally induced photon splitting  

E-Print Network [OSTI]

We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

Per Elmfors; Bo-Sture Skagerstam

1998-02-23T23:59:59.000Z

220

Thermal barrier coatings  

DOE Patents [OSTI]

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?˘ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?˘ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?˘ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?˘ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

222

Thermal microphotonic sensor and sensor array  

DOE Patents [OSTI]

A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

Watts, Michael R. (Albuquerque, NM); Shaw, Michael J. (Tijeras, NM); Nielson, Gregory N. (Albuquerque, NM); Lentine, Anthony L. (Albuquerque, NM)

2010-02-23T23:59:59.000Z

223

Thermalization of isolated quantum systems  

E-Print Network [OSTI]

Understanding the evolution towards thermal equilibrium of an isolated quantum system is at the foundation of statistical mechanics and a subject of interest in such diverse areas as cold atom physics or the quantum mechanics of black holes. Since a pure state can never evolve into a thermal density matrix, the Eigenstate Thermalization Hypothesis (ETH) has been put forward by Deutsch and Srednicki as a way to explain this apparent thermalization, similarly to what the ergodic theorem does in classical mechanics. In this paper this hypothesis is tested numerically. First, it is observed that thermalization happens in a subspace of states (the Krylov subspace) with dimension much smaller than that of the total Hilbert space. We check numerically the validity of ETH in such a subspace, for a system of hard core bosons on a two-dimensional lattice. We then discuss how well the eigenstates of the Hamiltonian projected on the Krylov subspace represent the true eigenstates. This discussion is aided by bringing the projected Hamiltonian to the tridiagonal form and interpreting it as an Anderson localization problem for a finite one-dimensional chain. We also consider thermalization of a subsystem and argue that generation of a large entanglement entropy can lead to a thermal density matrix for the subsystem well before the whole system thermalizes. Finally, we comment on possible implications of ETH in quantum gravity.

Sergei Khlebnikov; Martin Kruczenski

2014-03-12T23:59:59.000Z

224

Peg supported thermal insulation panel  

DOE Patents [OSTI]

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

225

Peg supported thermal insulation panel  

DOE Patents [OSTI]

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

226

Thermal Conductivity and Noise Attenuation in  

E-Print Network [OSTI]

.3.4 Corrosion-resistant and high-temperature filters 9 1.3.5 Acoustic Applications 9 2. THERMAL CONDUCTIVITY 2.1 THERMAL RESISTANCE 2.1.1 Thermal Conductors in Series 12 2.1.2 Thermal conductors in parallel 13 2 difference RTH Thermal resistance of conductor sb Stefan's constant T4 Temperature difference K* Total

Cambridge, University of

227

Nanoscale Thermal Transport andMicrorefrigeratorsonaChip  

E-Print Network [OSTI]

are promising candidates as thermal vias and thermal interface materials due to their inherently high thermal; superlattices; thermal boundary resistance; thermionics; thermotunneling; thermoelectrics I. INTRODUCTIONINVITED P A P E R Nanoscale Thermal Transport andMicrorefrigeratorsonaChip Devices for cooling high

228

A correlation of air-coupled ultrasonic and thermal diffusivity data for CFCC materials  

SciTech Connect (OSTI)

An air-coupled (non contact) through-transmission ultrasonic investigation has been conducted on 2D multiple ply Nicalon{trademark} SiC fiber/SiNC CFCC panels as a function of number of processing cycles. Corresponding thermal diffusivity imaging was also conducted. The results of the air-coupled ultrasonic investigation correlated with thermal property variations determined via infrared methods. Areas of delaminations were detected and effects of processing cycles were also detected.

Pillai, T.A.K. [Univ. of Wisconsin, LaCrosse, WI (United States). Dept. of Physics; Easler, T.E.; Szweda, A. [Dow Corning Corp., Midland, MI (United States). Advanced Ceramics Program] [and others

1997-01-01T23:59:59.000Z

229

MINIMIZING THE BONDLINE THERMAL RESISTANCE IN THERMAL INTERFACE MATERIALS WITHOUT AFFECTING RELIABILITY  

E-Print Network [OSTI]

MINIMIZING THE BONDLINE THERMAL RESISTANCE IN THERMAL INTERFACE MATERIALS WITHOUT AFFECTING microstructure, and bondline thermal resistance with the tradeoffs between material systems, manufacturability of devices to heat sinks using existing commercial thermal interface materials (TIMs). The present study

Paris-Sud XI, Université de

230

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents [OSTI]

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

231

Solar Thermal Demonstration Project  

SciTech Connect (OSTI)

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ?ť system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

232

Microelectromechanical (MEM) thermal actuator  

DOE Patents [OSTI]

Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

Garcia, Ernest J. (Albuquerque, NM); Fulcher, Clay W. G. (Sandia Park, NM)

2012-07-31T23:59:59.000Z

233

Scanning fluorescent microthermal imaging apparatus and method  

DOE Patents [OSTI]

A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

Barton, D.L.; Tangyunyong, P.

1998-01-06T23:59:59.000Z

234

Scanning fluorescent microthermal imaging apparatus and method  

DOE Patents [OSTI]

A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

Barton, Daniel L. (Albuquerque, NM); Tangyunyong, Paiboon (Albuquerque, NM)

1998-01-01T23:59:59.000Z

235

Split image optical display  

DOE Patents [OSTI]

A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

Veligdan, James T. (Manorville, NY)

2007-05-29T23:59:59.000Z

236

Longwave thermal infrared spectral variability in individual rocks  

SciTech Connect (OSTI)

A hyperspectral imaging spectrometer measuring in the longwave thermal infrared (7.6-11.6 {micro}m) with a spatial resolution less than 4 mm was used in the field to observe the variability of emissivity spectra within individual rocks. The rocks were obtained commercially, were on the order of 20 cm in size and were selected to have distinct spectral features: they include alabaster (gypsum), soapstone (steatite with talc), obsidian (volcanic glass), norite (plagioclase and orthopyroxene), and 'jasper' (silica with iron oxides). The advantages of using an imaging spectrometer to spectrally characterize these rocks are apparent. Large spectral variations were observed within individual rocks that may be attributed to roughness, surface geometry, and compositional variation. Non-imaging spectrometers would normally miss these variations as would small samples used in laboratory measurements, spatially averaged spectra can miss the optimum spectra for identification materials and spatially localized components of the rock can be obscured.

Balick, Lee K [Los Alamos National Laboratory; Gillespie, Alan [UN. WASHINGTON; French, Andrew [USDA-ARS; Danilina, Iryna [UN. WASHINGTON

2008-01-01T23:59:59.000Z

237

The Human leading the Thermal Comfort Control  

E-Print Network [OSTI]

2007 Zhang H., 2003, Human Thermal Sensation and Comfort in Transient and Non Uniform Thermal Environments; Phd Thesis Zhang H., Arens E., Huizinga C., Han T., 2010, Thermal sensations and comfort models for non-uniform and transient environments...

Zeiler, W.; Boxem, G.; Van Houten, R.; Vissers, D.; Maaijen, R.

2012-01-01T23:59:59.000Z

238

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

239

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftof ocean thermal energy conversion technology. U.S. Depart~June 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

240

Advanced nanofabrication of thermal emission devices  

E-Print Network [OSTI]

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network [OSTI]

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program COMMISSION May 2010 #12; The California Public

242

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftr:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

243

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

244

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

245

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

geo-thermal energy, ocean thermal energy, wasted heat ingeothermal energy, ocean thermal energy, wasted heat inthermal energy, geo/ocean-thermal energy, wasted heat in

Lim, Hyuck

2011-01-01T23:59:59.000Z

246

Ceramic thermal barrier coating for rapid thermal cycling applications  

DOE Patents [OSTI]

A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

Scharman, Alan J. (Hebron, CT); Yonushonis, Thomas M. (Columbus, IN)

1994-01-01T23:59:59.000Z

247

Thermal performance of the Brookhaven natural thermal storage house  

SciTech Connect (OSTI)

In the Brookhaven natural thermal storage house, an energy-efficient envelope, passive solar collectors, and a variety of energy conservation methods are incorporated. The thermal characteristics of the house during the tested heating season are evaluated. Temperature distributions at different zones are displayed, and the effects of extending heating supply ducts only to the main floor and heating return ducts only from the second floor are discussed. The thermal retrievals from the structure and the passive collectors are assessed, and the total conservation and passive solar contributions are outlined. Several correlation factors relating these thermal behaviors are introduced, and their diurnal variations are displayed. Finally, the annual energy requirements, and the average load factors are analyzed and discussed.

Ghaffari, H.T.; Jones, R.F.

1981-01-01T23:59:59.000Z

248

Rapid thermal processing by stamping  

DOE Patents [OSTI]

A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

Stradins, Pauls; Wang, Qi

2013-03-05T23:59:59.000Z

249

Integrated External Aerodynamic and Underhood Thermal Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles 2012 DOE Hydrogen and Fuel...

250

Continuous Processing of High Thermal Conductivity Polyethylene...  

Broader source: Energy.gov (indexed) [DOE]

Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of...

251

Materials Selection Considerations for Thermal Process Equipment...  

Broader source: Energy.gov (indexed) [DOE]

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

252

Develop & evaluate materials & additives that enhance thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

evaluate materials & additives that enhance thermal & overcharge abuse Develop & evaluate materials & additives that enhance thermal & overcharge abuse 2009 DOE Hydrogen Program...

253

Develop & Evaluate Materials & Additives that Enhance Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel...

254

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

255

REACTOR GROUT THERMAL PROPERTIES  

SciTech Connect (OSTI)

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

256

Femtosecond Transient Imaging  

E-Print Network [OSTI]

This thesis proposes a novel framework called transient imaging for image formation and scene understanding through impulse illumination and time images. Using time-of-flight cameras and multi-path analysis of global light ...

Kirmani, Ahmed (Ghulam Ahmed)

2010-01-01T23:59:59.000Z

257

Thermalization in External Magnetic Field  

E-Print Network [OSTI]

In the AdS/CFT framework meson thermalization in the presence of a constant external magnetic field in a strongly coupled gauge theory has been studied. In the gravitational description the thermalization of mesons corresponds to the horizon formation on the flavour D7-brane which is embedded in the AdS_5 x S^5 background in the probe limit. The apparent horizon forms due to the time-dependent change in the baryon number chemical potential, the injection of baryons in the gauge theory. We will numerically show that the thermalization happens even faster in the presence of the magnetic field on the probe brane. We observe that this reduction in the thermalization time sustains up to a specific value of the magnetic field.

Ali-Akbari, Mohammad

2012-01-01T23:59:59.000Z

258

Thermal analysis of vascular reactivity  

E-Print Network [OSTI]

dysfunction. Given the promising nature of thermal monitoring to study VR, this thesis focuses on the analysis of the underlying physics affecting fingertip temperature during vascular occlusion and subsequent hyperemia. I will quantify the contribution...

Deshpande, Chinmay Vishwas

2009-05-15T23:59:59.000Z

259

Power Electronics Thermal Control (Presentation)  

SciTech Connect (OSTI)

Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

Narumanchi, S.

2010-05-05T23:59:59.000Z

260

Lih thermal energy storage device  

DOE Patents [OSTI]

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

262

Imaging Sciences Workshop Proceedings  

SciTech Connect (OSTI)

This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

Candy, J.V.

1996-11-21T23:59:59.000Z

263

Advanced Thermal Simulator Testing: Thermal Analysis and Test Results  

SciTech Connect (OSTI)

Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

264

END MEMBER ANALYSES OF SPACEBORNE THERMAL INFRARED DATA OF METEOR CRATER, ARIZONA AND APPLICATION TO FUTURE MARS DATA SETS S. P. Wright and M. S. Ramsey,  

E-Print Network [OSTI]

TO FUTURE MARS DATA SETS S. P. Wright and M. S. Ramsey, Image Visualization and Infrared Spectroscopy (IVIS, Pittsburgh, PA 15260-3332, ShawnWright@pittsburghpanthers.com. Introduction: Thermal infrared data from

Ramsey, Michael

265

NUMERICAL DESIGN TOOLS FOR THERMAL REPLICATION OF  

E-Print Network [OSTI]

by heating Ceramic block Glass workpiece before heating Figure 1: Thermal Replication (after Smith et al. [14NUMERICAL DESIGN TOOLS FOR THERMAL REPLICATION OF OPTICAL­QUALITY SURFACES Y.M. Stokes 1 Department. #12; Thermal replication of optical surfaces 1 1 Introduction Thermal replication is an industrial

Stokes, Yvonne

266

Thermal storage module for solar dynamic receivers  

DOE Patents [OSTI]

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

267

Application of infrared imaging in ferrocyanide tanks  

SciTech Connect (OSTI)

This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

1994-09-28T23:59:59.000Z

268

A tight iteration-complexity upper bound for the MTY predictor ...  

E-Print Network [OSTI]

Aug 1, 2014 ... predictor-corrector algorithm via redundant Klee-Minty cubes. Murat Mut. Tamás Terlaky. Department of Industrial and Systems Engineering.

2014-08-14T23:59:59.000Z

269

Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051 ModificationRemote AccessJ.E.M.Remote

270

New High Power Li2MTi6O14Anode Material | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartmentEnergyHigh Power

271

Neutron imaging of alkali metal heat pipes  

SciTech Connect (OSTI)

High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had already cooled and solidified.

Kihm, Ken [University of Tennessee, Knoxville (UTK); Kirchoff, Eric [University of Tennessee, Knoxville (UTK); Golden, Matt [University of Tennessee, Knoxville (UTK); Rosenfeld, J. [Thermacore Inc.; Rawal, S. [Lockheed Martin Space Systems Company; Pratt, D. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Bilheux, Hassina Z [ORNL; Walker, Lakeisha MH [ORNL; Voisin, Sophie [ORNL; Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

2013-01-01T23:59:59.000Z

272

Device for thermal transfer and power generation  

DOE Patents [OSTI]

A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

2011-04-19T23:59:59.000Z

273

Active Thermal Extraction of Near-field Thermal Radiation  

E-Print Network [OSTI]

Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. Our study demonstrates a new approach to manipulate thermal radiation that could find applications in thermal management.

Ding, Ding

2015-01-01T23:59:59.000Z

274

NMR imaging of materials  

SciTech Connect (OSTI)

Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

1989-01-01T23:59:59.000Z

275

Validation of thermal models for a prototypical MEMS thermal actuator.  

SciTech Connect (OSTI)

This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

2008-09-01T23:59:59.000Z

276

Seismic Imaging and Monitoring  

SciTech Connect (OSTI)

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

277

High Performance Thermal Interface Technology Overview  

E-Print Network [OSTI]

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

R. Linderman; T. Brunschwiler; B. Smith; B. Michel

2008-01-07T23:59:59.000Z

278

High Performance Thermal Interface Technology Overview  

E-Print Network [OSTI]

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

Linderman, R; Smith, B; Michel, B

2008-01-01T23:59:59.000Z

279

Direct laser additive fabrication system with image feedback control  

DOE Patents [OSTI]

A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)

2002-01-01T23:59:59.000Z

280

Instrument effects in polarized infrared images Joseph A. Shaw, MEMBER SPIE  

E-Print Network [OSTI]

Instrument effects in polarized infrared images Joseph A. Shaw, MEMBER SPIE NOAA Environmental and fric- tional heating of the polarizer mount. Our model shows that the two surfaces of a wire uncertainties less than 1%. Subject terms: infrared polarization; thermal imaging; remote sensing. Optica

Shaw, Joseph A.

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Full-field characterization of thermal diffusivity in continuous- fiber ceramic composite materials and components  

SciTech Connect (OSTI)

Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC{sub (f)}/SiC), SiC-fiber-reinforced silicon nitride (SiC {sub (f)}/Si{sub 3}N{sub 4}), aluminum oxide (Al{sub 2}O{sub 3})-fiber-reinforced Al{sub 2}O{sub 3} (Al{sub 2}O{sub 3}{sub (f)}/Al{sub 2}O{sub 3}), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other ``defects`` would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide ``single-shot`` full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistant coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.

Steckenrider, J.S.; Ellingson, W.A. [Argonne National Lab., IL (United States); Rothermel, S.A. [South Dakota State Univ., Brookings, SD (United States)

1995-05-01T23:59:59.000Z

282

Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids  

E-Print Network [OSTI]

Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids J. A for the measurement of the thermal diffusivity of liquids. The thermal diffusivities of distilled water, glycerol the thermal diffusivity of gases, particularly air,8,9 and vapors10 to a high degree of precision. Although

Mandelis, Andreas

283

Ultralow thermal conductivity and the thermal d t f i t fconductance of interfaces  

E-Print Network [OSTI]

are critical at the nanoscale · Low thermal conductivity in nanostructured materials ­ improved thermoelectric to the thermal conductivity of materials. · Ultralow thermal conductivity: beating the amorphous limitUltralow thermal conductivity and the thermal d t f i t fconductance of interfaces David G. Cahill

Braun, Paul

284

INFRARED IMAGING OF CARBON AND CERAMIC COMPOSITES: DATA REPRODUCIBILITY  

SciTech Connect (OSTI)

Infrared NDE techniques have proven to be superior for imaging of flaws in ceramic matrix composites (CMC) and carbon silicon carbide composites (C/SiC). Not only can one obtain accurate depth gauging of flaws such as delaminations and layered porosity in complex-shaped components such as airfoils and other aeronautical components, but also excellent reproducibility of image data is obtainable using the STTOF (Synthetic Thermal Time-of-Flight) methodology. The imaging of large complex shapes is fast and reliable. This methodology as applied to large C/SiC flight components at the NASA Dryden Flight Research Center will be described.

Knight, B.; Howard, D. R.; Ringermacher, H. I. [GE Global Research Center, Niskayuna, NY 12309 (United States); Hudson, L. D. [NASA Dryden Flight Research Center, Edwards AFB, CA (United States)

2010-02-22T23:59:59.000Z

285

Thermal trim for a luminaire  

DOE Patents [OSTI]

A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

2013-02-19T23:59:59.000Z

286

Thermal-spectrum recriticality energetics  

SciTech Connect (OSTI)

Large computer codes have been created in the past to predict the energy release in hypothetical core disruptive accidents (CDA), postulated to occur in liquid metal reactors (LMR). These codes, such as SIMMER, are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents, such as for fuel storage basins and waste tanks containing fissile material. This paper resents results from recent one-dimensional kinetics simulations, performed for a recriticality accident in a thermal spectrum. Reactivity insertion rates generally are smaller than in LMR CDAs, and the energetics generally are more benign. Parametric variation of input was performed, including reactivity insertion and initial temperature.

Schwinkendorf, K.N.

1993-12-01T23:59:59.000Z

287

Thermal treatment for VOC control  

SciTech Connect (OSTI)

Catalytic and thermal oxidation are well-established technologies for controlling volatile organic compounds (VOCs). Oxidation destroys pollutants, rather than capturing them. Oxidation units can destroy nearly 100% of VOC and toxic emissions targeted by the Clean Air Act Amendments of 1990--some systems attain destruction efficiencies over 99.99%. To assist in the design of these systems, an engineer will often look a/t the heat of combustion of the gas stream, along with the type of pollutant, to best determine the correct type of oxidation device to use. The paper discusses catalytic and thermal oxidation, energy recovery, and equipment for these processes.

Cloud, R.A. [Huntington Environmental Systems, Schaumburg, IL (United States)

1998-07-01T23:59:59.000Z

288

Nanoscale thermal transport and the thermal conductance of interfaces  

E-Print Network [OSTI]

-8 2008 #12;Er-fiber laser system, UIUC Nov. 2007 #12;Solid-liquid interfaces: Two approaches · Transient-wide: ­ thermal interface materials ­ so-called "nanofluids" (suspensions in liquids) ­ polymer composites absorption depends on temperature of the nanotube · Assume heat capacity is comparable to graphite · Cooling

Braun, Paul

289

Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal  

E-Print Network [OSTI]

.M. Yin", G. H. Paulino", W.G. Buttlar", and L.Z. Sun'' '^Department of Civil and Environmental the effective thermal conductivity distribution in functionally graded materials (FGMs) considering the Kapitza is developed to derive the averaged heat flux field of the particle phase. Then the temperature gradient can

Paulino, Glaucio H.

290

Proceedings of Thermal VII, Thermal Performance of the Exterior Envelopes of Buildings,  

E-Print Network [OSTI]

LBNL-42871 BS-400 Proceedings of Thermal VII, Thermal Performance of the Exterior Envelopes locations. The user describes the physical, thermal and optical properties of the windows in each

291

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

292

Practical Solar Thermal Chilled Water  

E-Print Network [OSTI]

the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

Leavell, B.

2010-01-01T23:59:59.000Z

293

APPLIED THERMAL ENGINEERING Manuscript Draft  

E-Print Network [OSTI]

the heat pump from the grid during the two hours of electrical peak power · Design of a new heat exchangerAPPLIED THERMAL ENGINEERING Manuscript Draft TITLE: Experimental assessment of a PCM to air heat This paper presents a heat exchanger prototype containing PCM material designed to provide a 1kW heating

Paris-Sud XI, Université de

294

Solar mechanics thermal response capabilities.  

SciTech Connect (OSTI)

In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

Dobranich, Dean D.

2009-07-01T23:59:59.000Z

295

Space Science: Atmosphere Thermal Structure  

E-Print Network [OSTI]

Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

Johnson, Robert E.

296

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

297

Thermal Characterization of Graphitic Carbon Foams for Use in Thermal Storage Applications.  

E-Print Network [OSTI]

?? Highly conductive graphitic foams are currently being studied for use as thermal conductivity enhancers (TCEs) in thermal energy storage (TES) systems. TES systems store… (more)

Drummond, Kevin P.

2012-01-01T23:59:59.000Z

298

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network [OSTI]

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems.… (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

299

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,heat transfer in solar thermal power plants utilizing phase

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

300

Imaging infrared: Scene simulation, modeling, and real image tracking; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989  

SciTech Connect (OSTI)

Various papers on scene simulation, modeling, and real image tracking using IR imaging are presented. Individual topics addressed include: tactical IR scene generator, dynamic FLIR simulation in flight training research, high-speed dynamic scene simulation in UV to IR spectra, development of an IR sensor calibration facility, IR celestial background scene description, transmission measurement of optical components at cryogenic temperatures, diffraction model for a point-source generator, silhouette-based tracking for tactical IR systems, use of knowledge in electrooptical trackers, detection and classification of target formations in IR image sequences, SMPRAD: simplified three-dimensional cloud radiance model, IR target generator, recent advances in testing of thermal imagers, generic IR system models with dynamic image generation, modeling realistic target acquisition using IR sensors in multiple-observer scenarios, and novel concept of scene generation and comprehensive dynamic sensor test.

Triplett, M.J.; Wolverton, J.R.; Hubert, A.J.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced thermally stable jet fuels  

SciTech Connect (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

302

Imaging in radiotherapy  

SciTech Connect (OSTI)

The text contains details of recording media, image quality, sensitometry, processing and equipment used in radiotherapy for imaging. It reflects part of the syllabus for the College of Radiographers.

Taylor, J.

1987-01-01T23:59:59.000Z

303

User Science Images  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Image: OBrianImageBig.png | png | 5 MB SlavaFull.png FES: Small Scale Experimental Plasma Research October 21, 2010 | Author(s): Vyacheslav Lukin (NRL) | Category: Fusion Energy |...

304

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

305

Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares  

E-Print Network [OSTI]

The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

2007-01-12T23:59:59.000Z

306

Dual Plane Imaging  

E-Print Network [OSTI]

We outline a technique called Dual Plane Imaging which should significantly improve images which would otherwise be blurred due to atmospheric turbulence. The technique involves capturing all the spatial, directional and temporal information about the arriving photons and processing the data afterwards to produce the sharpened images. The technique has particular relevance for imaging at around 400-1000nm on extremely large telescopes (ELTs).

Parry, Ian

2015-01-01T23:59:59.000Z

307

Consumers' Image of Broilers.  

E-Print Network [OSTI]

which they feel the product possesses. This research was designed to determine consumers' favorable and unfavorable images as to broilers, both in making purchases in stores and in serving them as a meat dish. These images, summarized briefly here... count. The Preparation and Cooking Image: The h0u.l wife's image of broilers focuses on one metliotl- frying. The major deterrent to preparing othci dishes was that these are either too difficult or canno* be prepared satisfactorily...

Courtenay, Henry V.; Branson, Robert E.

1962-01-01T23:59:59.000Z

308

Imaging with Scattered Neutrons  

E-Print Network [OSTI]

We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

2006-10-30T23:59:59.000Z

309

Sensors, Cameras, and Systems for Industrial/Scientific Applications X, Edited by Erik Bodegom, Valerie Nguyen, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 7249, 72490R  

E-Print Network [OSTI]

cost fabrication. When (100) silicon is properly etched with KOH:IPA:H2O solution through a thermally is properly etched with KOH:IPA:H2O solution through a thermally grown oxide mask, square based pyramidal imaging in daylight conditions and in single- photon sensitive Geiger-mode for active or passive imaging

Cole, Dan C.

310

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network [OSTI]

Thermal-Barrier-Coating Applications,” Journa of American Ceramicthermal conductivity materials are typically found among ceramicsThermal Conductivity of Porous Materials: Application to Thick Barrier Coatings,” Journal of the European Ceramic

Yuen, Taylor S.

311

City of Dubuque- Solar Thermal Licensing Requirement  

Broader source: Energy.gov [DOE]

The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The...

312

Absorption Cooling Optimizes Thermal Design for Cogeneration  

E-Print Network [OSTI]

Contrary to popular concept, in most cases, thermal energy is the real VALUE in cogeneration and not the electricity. The proper consideration of the thermal demands is equal to or more important than the electrical demands. High efficiency two...

Hufford, P. E.

1986-01-01T23:59:59.000Z

313

Successfully Marketing Thermal Storage in Commercial Buildings  

E-Print Network [OSTI]

This paper first reviews the key hurdles to thermal energy storage. Next, case studies of three electric utility thermal storage marketing programs are reviewed. The results of these case studies. as well as advice and experiences from other...

McDonald, C.

1988-01-01T23:59:59.000Z

314

A COMPUTATIONAL STUDY ON THERMAL CONDUCITIVITY OF  

E-Print Network [OSTI]

aspect ratio, weight fraction, and thermal resistance at the interface between the SWNTsA COMPUTATIONAL STUDY ON THERMAL CONDUCITIVITY OF CARBON NANOTUBE DISPERSED BIOLOGICAL NANOFLUIDS: Massachusetts Institute of Technology 2: School of Chemical, Biological and Materials Engineering, Oklahoma

Maruyama, Shigeo

315

Thermal pumping of light-emitting diodes  

E-Print Network [OSTI]

The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

Gray, Dodd (Dodd J.)

2011-01-01T23:59:59.000Z

316

Medical imaging systems  

DOE Patents [OSTI]

A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

Frangioni, John V

2013-06-25T23:59:59.000Z

317

Magnetic Imaging Wolfgang Kuch  

E-Print Network [OSTI]

Magnetic Imaging Wolfgang Kuch Freie Universit¨at Berlin, Institut f¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials

Kuch, Wolfgang

318

Human Functional Brain Imaging  

E-Print Network [OSTI]

Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review Summary Brain Imaging #12 Dale ­ one of our first Trustees. Understanding the brain remains one of our key strategic aims today three-fold: · to identify the key landmarks and influences on the human functional brain imaging

Rambaut, Andrew

319

Human Functional Brain Imaging  

E-Print Network [OSTI]

Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review #12;2 | Portfolio Review: Human Functional Brain ImagingThe Wellcome Trust is a charity registered in England and Wales, no's role in supporting human functional brain imaging and have informed `our' speculations for the future

Rambaut, Andrew

320

Near-electrode imager  

DOE Patents [OSTI]

An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmont, IL); Woelk, Klaus (Wachtberg, DE); Gerald, II, Rex E. (Brookfield, IL)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network [OSTI]

thermal envelope..Branch Duct -Hot-Air Duct Outside Thermal Envelope. - - -Cold-Air Duct Outside Thermal Envelope =="-"Hot-Air Duct

Xu, T.

2011-01-01T23:59:59.000Z

322

Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors  

E-Print Network [OSTI]

of thermal expansion between polymers and ceramics. However,of thermal expansion for selected ceramics, metals, andof thermal expansion for selected ceramics, metals, and

Warren, Clinton Gregory

2010-01-01T23:59:59.000Z

323

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

324

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

325

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

density, making direct thermal energy storage methods, e.g.reduced. Conventional thermal energy harvesting and storageharvesting, storage, and utilization of thermal energy has

Lim, Hyuck

2011-01-01T23:59:59.000Z

326

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

327

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byand M.D. Sands. Ocean thermal energy conversion (OTEC) pilotfield of ocean thermal energy conversion discharges. I~. L.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

328

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryof the Fifth Ocean Thermal Energy Conversion Conference,

Sands, M. D.

2011-01-01T23:59:59.000Z

329

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

330

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, FebruarySixth Ocean Thermal Energy Conversion Conference, June 19-Fifth Ocean Thermal Energy Conversion Conference, February

Sullivan, S.M.

2014-01-01T23:59:59.000Z

331

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, Februarythe Sixth Ocean Thermal Energy Conversion Conference. OceanSixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

332

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, FebruaryFifth Ocean Thermal Energy Conversion Conference, FebruarySixth Ocean Thermal Energy Conversion Conference. June 19-

Sands, M. D.

2011-01-01T23:59:59.000Z

333

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

Akbari, H.

2010-01-01T23:59:59.000Z

334

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Thermally-Chargeable Supercapacitor Fluctuating Low-GradeThermally-Chargeable Supercapacitor for Fluctuating Low-Thermally-Chargeable Supercapacitor for Fluctuating Low-

Lim, Hyuck

2011-01-01T23:59:59.000Z

335

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALM.D. (editor). 1980. Ocean Thermal Energy Conversion DraftDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

336

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

Sullivan, S.M.

2014-01-01T23:59:59.000Z

337

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

338

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

Hawai'i at Manoa, University of

339

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

340

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants bySands. 1980. Ocean thermal energy conversion (OTEC) pilotof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of the Ocean Thermal Energy Conversion (OTEC) Biofouling,development of ocean thermal energy conversion (OTEC) plant-impact assessment ocean thermal energy conversion (OTEC)

Sands, M. D.

2011-01-01T23:59:59.000Z

342

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

343

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

344

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

the portion of thermal energy that can be converted toof high-performance thermal energy harvesting systems, butreferred to as the thermal energy from low- temperature heat

Lim, Hyuck

2011-01-01T23:59:59.000Z

345

A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface  

E-Print Network [OSTI]

and Mechanical Model of a Thermal Energy Harvesting Device”,M, and Ferrari V. , “Thermal energy harvesting throughand G. P. Carman, “Thermal energy harvesting device using

He, Hong

2012-01-01T23:59:59.000Z

346

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

Sullivan, S.M.

2014-01-01T23:59:59.000Z

347

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

348

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

for the commercialization of ocean thermal energy conversionE. Hathaway. Open cycle ocean thermal energy conversion. AElectric Company. Ocean thermal energy conversion mission

Sands, M. D.

2011-01-01T23:59:59.000Z

349

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion ( OTEC)the intermediate field of ocean thermal energy conversionII of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

350

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,and M.D. Sands. 1980. Ocean thermal energy conversion (OTEC)

Sullivan, S.M.

2014-01-01T23:59:59.000Z

351

Thermal Conductivity of Polycrystalline Semiconductors and Ceramics  

E-Print Network [OSTI]

Brown, C. M. ; Zhang, Q. ; Tritt, T. M. Nano Letters 2010,Monteiro, O. Microelectronics journal Tritt, T. M. , Thermal

Wang, Zhaojie

2012-01-01T23:59:59.000Z

352

Battery Thermal Modeling and Testing (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

353

Thermal Storage Options for HVAC Systems  

E-Print Network [OSTI]

THERMAL STORAGE OPTIONS FOR HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT With the ever-increasing cost of electricity and the high demand charges levied by utility compa nies, thermal storage... for cooling is rapidly becom ing a widely recognized method to lower cooling costs. There are three maior types of thermal stor age systems: ? Ice Storage: This utilizes the latent heat of fusion of ice for thermal storage. During off Deak periods...

Weston, R. F.; Gidwani, B. N.

354

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

355

Automation in image cytometry : continuous HCS and kinetic image cytometry  

E-Print Network [OSTI]

OF CALIFORNIA, SAN DIEGO Automation in Image Cytometry:xiv Abstract of Dissertation Automation in Image Cytometry:

Charlot, David J.

2012-01-01T23:59:59.000Z

356

Measurements of the Thermal Neutron Scattering Kernel  

E-Print Network [OSTI]

Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

Danon, Yaron

357

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process of converting the ocean thermal energy into electricity. OTEC transfer function The relationship between

358

Insulation products promote thermal efficiency  

SciTech Connect (OSTI)

The judicious use of thermal insulation products in non-residential buildings can provide a number of advantages including increased energy efficiency, lower first costs (by avoiding overside HVAC systems), improved fire safety and better acoustics. Thermal insulation products are those products which retard the flow of heat energy. Materials include glass, plastics, and organic materials such as wood fibers, vermiculite and perlite. Forms range from the familiar batts and blankets of glass fibers to foamed plastic, rigid boards, losse fill and systems combining two or more products, such as polystyrene boards covered with insulating plaster. The R values of selected insulation materials with a cost/sq. ft. of each material at R 10 are given. Costs cover both the material and installation and may vary depending on local conditions.

Chalmers, R.

1985-04-01T23:59:59.000Z

359

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

360

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coshcous turbulence and its thermalization  

SciTech Connect (OSTI)

Dissipation rate {mu}[cosh(k/k{sub c}) - 1] in Fourier space, which reduces to the Newtonian viscosity dissipation rate {nu}k{sup 2} for small k/k{sub c}, can be scaled to make a hydrodynamic system either actually or potentially converge to its Galerkin truncation. The former case acquires convergence to the truncation at a finite wavenumber k{sub G}; the latter realizes as the wavenumber grows to infinity. Intermittency reduction and vitiation of extended self-similarity (ESS) in the partially thermalized regime of turbulence are confirmed and clarified. Onsager's pictures of intermittent versus nonintermittent flows are visualized from thermalized numerical fields, showing cleanly spotty versus mistily uniform properties, the latter of which destroys self-organization and so the ESS property.

Zhu, Jian-zhou [Los Alamos National Laboratory; Taylor, Mark [SNL

2008-01-01T23:59:59.000Z

362

Solar Thermal Reactor Materials Characterization  

SciTech Connect (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

363

Calculate thermal-expansion coefficients  

SciTech Connect (OSTI)

To properly design and use process equipment, an engineer needs a sound knowledge of physical and thermodynamic property data. A lack of such knowledge can lead to design or operating mistakes that can be dangerous, costly or even fatal. One useful type of property data is the thermal-expansion coefficient. This article presents equations and tables to find the thermal-expansion coefficients of many liquids that contain carbon. These data are useful in process-engineering applications, including the design of relief systems which are crucial to safeguarding process equipment. Data are provided for approximately 350 compounds. A computer software program, which contains the thermophysical property data for all of the compounds discussed in this article, is available for $43 prepaid from the author (Carl L. Yaws, Box 10053, Lamar University, beaumont, TX 77710; Tel. 409-880-8787; fax 409-880-8404). The program is in ASCII format, which can be accessed by most other types of computer software.

Yaws, C.L. [Lamar Univ., Beaumont, TX (United States)

1995-08-01T23:59:59.000Z

364

Permanent magnet thermal energy system  

SciTech Connect (OSTI)

An improved rotary magnet thermal generator system of the type having an array of magnets in alternating disposition coaxially disposed about and parallel with the shaft of a motor driving the rotary array and having a copper heat absorber and a ferro-magnetic plate fixed on a face of the heat absorber, includes as efficiency improver a plurality of heat sink plates extending beyond the ferro-magnet plate into a plenum through a respective plurality of close-fitting apertures. In a further embodimetn the heat sink plates are in thermal contact with sinusoidally convoluted tubing that both increases surface area and provides for optional heating of gases and/or fluids at the same time.

Gerard, F.

1985-04-16T23:59:59.000Z

365

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

366

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

367

GCFR thermal-hydraulic experiments  

SciTech Connect (OSTI)

The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

1980-01-01T23:59:59.000Z

368

W-320 Project thermal modeling  

SciTech Connect (OSTI)

This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.

Sathyanarayana, K., Fluor Daniel Hanford

1997-03-18T23:59:59.000Z

369

Thermal well-test method  

DOE Patents [OSTI]

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

370

Sandia National Laboratories: solar thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facilitysolarsolar

371

Odne Stokke Burheim Thermal Signature and Thermal Conductivities of PEM Fuel Cells  

E-Print Network [OSTI]

Odne Stokke Burheim Thermal Signature and Thermal Conductivities of PEM Fuel Cells Thesis-Holst for believing in me and for giving me the opportunity to join the work on the "Thermal Effects in Fuel cell The work presented here gives estimates on thermal gradients within the PEM fuel cell, an experimental

Kjelstrup, Signe

372

Simple, accurate, and precise measurements of thermal diffusivity in liquids using a thermal-wave cavity  

E-Print Network [OSTI]

Simple, accurate, and precise measurements of thermal diffusivity in liquids using a thermal, and its application to the evaluation of the thermal diffusivity of liquids is described. The simplicity agreement was found with reported results in the literature. The accuracy of the thermal diffusivity

Mandelis, Andreas

373

The Need for a Full-Chip and Package Thermal Model for Thermally Optimized IC Designs  

E-Print Network [OSTI]

ceramic ball-grid array (CBGA) pack- age consisting of the chip (die), thermal interface material, heatThe Need for a Full-Chip and Package Thermal Model for Thermally Optimized IC Designs Wei Huang detailed die temperature with a full-chip thermal model at early design stages is important to discover

Skadron, Kevin

374

Thermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta,b,  

E-Print Network [OSTI]

effective stress is tensile near the injection well, illustrating the thermal contraction of the rock, whileThermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta, Australia Abstract Thermal recovery from a hot dry rock reservoir viewed as a deformable fractured medium

Paris-Sud XI, Université de

375

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA RIVERSIDE Phase Change Materials for Thermal Energy Storage in Concentrated Solar

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

376

Thermal Stability Of Formohydroxamic Acid  

SciTech Connect (OSTI)

The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}?C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}?C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}?C and thermally decomposed at 90 {degree}?C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}?C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

Fondeur, F. F.; Rudisill, T. S.

2011-10-21T23:59:59.000Z

377

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

378

Image compression technique  

DOE Patents [OSTI]

An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

Fu, C.Y.; Petrich, L.I.

1997-03-25T23:59:59.000Z

379

Nanoscale thermal transport. II. 2003–2012  

SciTech Connect (OSTI)

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

380

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Molecular Dynamic Study of Thermal Conductivity of Amorphous Nanoporous Silica  

E-Print Network [OSTI]

as a thermal isolation layer”. Ceramics International, 34(Thermal conductivity of highly porous zirconia”. Journal of the European Ceramic

Coquil, Thomas; Fang, Jin; Pilon, Laurent

2011-01-01T23:59:59.000Z

382

Optimized Structures for Low-Profile Phase Change Thermal Spreaders  

E-Print Network [OSTI]

of High-Thermal-Conductivity Aluminum Nitride Ceramics”,for a ceramic isolating material and the associated thermal

Sharratt, Stephen A.

2012-01-01T23:59:59.000Z

383

Thermal Interface Materials for Power Electronics Applications: Preprint  

SciTech Connect (OSTI)

The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

2008-07-01T23:59:59.000Z

384

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network [OSTI]

the discharge of thermal energy storage without releasingto low-energy cooling sources. Large thermal storage devices

Feustel, H.E.

2011-01-01T23:59:59.000Z

385

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

386

Thermal blooming experiments. Final report  

SciTech Connect (OSTI)

The goals of this program were to design an experiment for determining the effect of stimulated thermal Brillouin scattering (STBS) on single pulse laser propagation and to establish the ability of both a wave optics code and of linearized theory to predict the results of the experiment accurately. The second goal is particularly important because no experimental verification of analytical tools currently in use for single pulse high power laser propagation is available. When a high power laser propagates through the atmosphere, a small fraction of the laser energy is absorbed, creating acoustic waves that may move a significant distance transverse to the propagation direction during the pulse. Such waves lead to the well-known t{sup 3}-blooming refractive-index variations. When such blooming is sufficiently strong, the induced refractive-index alters the intensity profile of the beam farther along the propagation path. This altered intensity profile induces a somewhat different refractive-index profile that may reinforce the path-integrated t{sup 3} blooming. This self-enhancement may be called near-forward stimulated thermal Brillouin scattering (STBS). The design effort described here was carried out much like the proposed experimental program, which calls for the interaction of experimental work with analytical theory and with a wave optics code, A linearized theory of STBS was developed. Results from this theory were compared to output from a wave optics propagation code for several well defined sets of operating conditions. Once good agreement between theory and code simulation was obtained for these test conditions, the theory was used to define and operating regime for a laboratory scale thermal blooming experiment that would provide information relevant to high power laser propagation. A conceptual design for this experiment was then generated and, finally, and experimental set-up, including diagnostics, was proposed.

Not Available

1990-05-01T23:59:59.000Z

387

Thermal Shock-resistant Cement  

SciTech Connect (OSTI)

We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

Sugama T.; Pyatina, T.; Gill, S.

2012-02-01T23:59:59.000Z

388

Video Toroid Cavity Imager  

DOE Patents [OSTI]

A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

2004-08-10T23:59:59.000Z

389

Photon Clusters in Thermal Radiation  

E-Print Network [OSTI]

Within the framework of Bose-Einstein statistics, it is shown that the blackbody radiation, in addition to single photons, contains photon clusters, or coalescent photons. The probability to find a k-photon cluster versus radiation frequency and temperature is found, as well as the statistics of clusters. Spectra of photon-cluster radiation are calculated as functions of blackbody temperature. The Planck's radiation law is derived based on the existence of photon clusters. The possibility of experimental observation of photon clusters in thermal radiation is discussed.

Aleksey Ilyin

2014-10-30T23:59:59.000Z

390

Thermal well-test method  

DOE Patents [OSTI]

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

391

Neutrino Physics with Thermal Detectors  

SciTech Connect (OSTI)

The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

2009-11-09T23:59:59.000Z

392

Ocean Thermal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii:EnergyOpenTheOceanThermal

393

Ferroelectric optical image comparator  

DOE Patents [OSTI]

A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

1993-11-30T23:59:59.000Z

394

EMSL - image superimposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

image-superimposition en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structu...

395

image superimposition | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

superimposition image superimposition Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

396

Westinghouse thermal barrier coatings development  

SciTech Connect (OSTI)

Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

397

Measurements of thermal accommodation coefficients.  

SciTech Connect (OSTI)

A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

2005-10-01T23:59:59.000Z

398

Restoring functional PET Images using Anatomical MR Images  

E-Print Network [OSTI]

Restoring functional PET Images using Anatomical MR Images Peter Philipsen, Ulrik Kjems, Peter Toft signal to noise ratio and the low spa­ tial resolution in Positron Emission Tomography (PET) images ? And Positron Emission Tomography (PET) Images? ffl Segmentation of MR Images ­ Extraction of important edges

Mosegaard, Klaus

399

Compression of Computer Graphics Images with Image-Based Rendering  

E-Print Network [OSTI]

Compression of Computer Graphics Images with Image-Based Rendering Ilmi Yoon and Ulrich Neumann information from previously rendered images. Images predicted from prior images are combined with a residual-based rendering tech- nique provides accurate motion prediction and accelerates rendering at the same time

Shahabi, Cyrus

400

Improved Calculation of Thermal Fission Energy  

E-Print Network [OSTI]

Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

Ma, X B; Wang, L Z; Chen, Y X; Cao, J

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ultra low thermal expansion, highly thermal shock resistant ceramic  

DOE Patents [OSTI]

Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)

1996-01-01T23:59:59.000Z

402

Ultra low thermal expansion, highly thermal shock resistant ceramic  

DOE Patents [OSTI]

Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

Limaye, S.Y.

1996-01-30T23:59:59.000Z

403

We Didn't Start the Fire: Using Agent-Directed Thermal Modeler to Keep Servers Cool  

E-Print Network [OSTI]

model; thermal-aware I. INTRODUCTION The energy usage of datacenters has been a growing prob- lem Email: hamilton@research.msstate.edu Abstract--As energy use by datacenters has risen over the years graphs and images. There are very few parameters, making setup much easier - one simply has to configure

Qin, Xiao

404

Non-destructive assay of mechanical components using gamma-rays and thermal neutrons  

SciTech Connect (OSTI)

This work presents the results obtained in the inspection of several mechanical components through neutron and gamma-ray transmission radiography. The 4.46 Multiplication-Sign 10{sup 5} n.cm{sup -2}.s{sup -1} thermal neutron flux available at the main port of the Argonauta research reactor in Instituto de Engenharia Nuclear has been used as source for the neutron radiographic imaging. The 412 keV {gamma}-ray emitted by {sup 198}Au, also produced in that reactor, has been used as interrogation agent for the gamma radiography. Imaging Plates - IP specifically designed to operate with thermal neutrons or with X-rays have been employed as detectors and storage devices for each of these radiations.

Souza, Erica Silvani; Avelino, Mila R. [PPG-EM/UERJ, R. Sao Francisco Xavier, 524, Maracana - Rio de Janeiro - RJ (Brazil); Almeida, Gevaldo L. de; Souza, Maria Ines S. [IEN/CNEN, Rua Helio de Almeida, 75, Ilha do Fundao, Rio de Janeiro - RJ (Brazil)

2013-05-06T23:59:59.000Z

405

Decoherence of multimode thermal squeezed coherent states  

SciTech Connect (OSTI)

It is well known that any multimode positive definite quadratic Hamiltonian can be transformed into a hamiltonian of uncoupled harmonic oscillators. Based on this theorem, the multimode thermal squeezed coherent states are constructed in terms of density operators. Decoherence of multimode thermal squeezed coherent states in investigated via the characteristic function and it is shown that the decohered (reduced) states are still thermal squeezed coherent states in general.

Yeh, L.

1992-08-14T23:59:59.000Z

406

Why Granular Media Are, After All, Thermal  

E-Print Network [OSTI]

Granular media are considered "athermal", because the grains are too large to display Brownian type thermal fluctuations. Yet being macroscopic, every grain undergoes thermal expansion, possesses a temperature that may be measured with a thermometer, and consists of many, many internal degrees of freedom that in their sum do affect granular dynamics. Therefore, including them in a comprehensive approach to account for granular behavior entails crucial advantages. The pros and cons of thermal versus athermal descriptions are considered.

Yimin Jiang; Mario Liu

2014-07-27T23:59:59.000Z

407

DOUBLE MAJORS Imaging Science + ...  

E-Print Network [OSTI]

DOUBLE MAJORS Imaging Science + ... Applied Mathematics Biomedical Sciences Computer Science Undergraduate Research Internships and Cooperative Education (Co-op) (optional) Study Abroad WHY IMAGING SCIENCE Science: BS, MS, PhD Color Science: MS, PhD BS + MS/PhD Combos HUMAN VISION BIO- MEDICAL ASTRO- PHYSICS

Zanibbi, Richard

408

Directional Multiresolution Image Representations  

E-Print Network [OSTI]

) are not necessarily best suited for images. Thus, there is a strong motivation to search for more powerful schemes consid´er´ees comme de bonnes repr´esentations des images na- turelles. Le lien entre les courbelettes et

Do, Minh N.

409

Medical imaging systems  

DOE Patents [OSTI]

A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

Frangioni, John V. (Wayland, MA)

2012-07-24T23:59:59.000Z

410

Heart imaging method  

DOE Patents [OSTI]

A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

Collins, H. Dale (Richland, WA); Gribble, R. Parks (Richland, WA); Busse, Lawrence J. (Littleton, CO)

1991-01-01T23:59:59.000Z

411

Fluorescent image tracking velocimeter  

DOE Patents [OSTI]

A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

Shaffer, Franklin D. (Library, PA)

1994-01-01T23:59:59.000Z

412

Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours...

413

Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fischer (ANL), Aleks Obabko (ANL), and Hank Childs (LBNL) Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne...

414

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

415

Dish Stirling High Performance Thermal Storage  

Broader source: Energy.gov (indexed) [DOE]

metrology for development and production Glint and glare Design tools National Solar Thermal Test Facility: Rich Dish Stirling Tradition Involvement with most Dish...

416

Thermal Conductivity of Polycrystalline Semiconductors and Ceramics  

E-Print Network [OSTI]

semiconductors and ceramics with desired thermalthermal conductivity of several polycrystalline semiconductors and ceramics,Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

Wang, Zhaojie

2012-01-01T23:59:59.000Z

417

Thermal conductivity and heat transfer in superlattices  

SciTech Connect (OSTI)

Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

Chen, G.; Neagu, M.; Borca-Tasciuc, T.

1997-07-01T23:59:59.000Z

418

PCM energy storage during defective thermal cycling:.  

E-Print Network [OSTI]

??Incomplete thermal cycling affects storage capacities of phase change materials (PCMs). Existing PCM measuring methods are presented with their drawbacks. A new device named “the… (more)

Koekenbier, S.F.

2011-01-01T23:59:59.000Z

419

Thermal Energy Storage in Adsorbent Beds .  

E-Print Network [OSTI]

??Total produced energy in the world is mostly consumed as thermal energy which is used for space or water heating. Currently, more than 85% of… (more)

Ugur, Burcu

2013-01-01T23:59:59.000Z

420

Thermal Energy Storage:Analysis and Application.  

E-Print Network [OSTI]

??The purpose of this paper is to analyze and determine the feasibility of a cold thermal storage system in manufacturing Industries. Cooling loads and actual… (more)

Ogunkoya, Dolanimi Olugbenga

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Performance evaluation of thermal energy storage systems;.  

E-Print Network [OSTI]

??Solar thermal technologies are promising, given the fact that solar newlineenergy is the cheapest and most widely available of all renewable energy newlinetechnologies. The recent… (more)

Ramana A S

2014-01-01T23:59:59.000Z

422

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network [OSTI]

2.3.1 Electrical transport . . . . . . . . . . . . . . . .3.5 Controlling electrical conductivity and opticalthe variation of electrical and thermal con- ductivity and

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

423

Geothermal Reconnaissance From Quantitative Analysis Of Thermal...  

Open Energy Info (EERE)

From Quantitative Analysis Of Thermal Infrared Imagery Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Geothermal Reconnaissance From Quantitative...

424

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-01-01T23:59:59.000Z

425

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-08-01T23:59:59.000Z

426

Thermal Energy Storage Potential in Supermarkets.  

E-Print Network [OSTI]

?? The objective of this research is to evaluate the potential of thermal energy storage in supermarkets with CO2 refrigeration systems. Suitable energy storage techniques… (more)

Ohannessian, Roupen

2014-01-01T23:59:59.000Z

427

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

428

Adaptive wiener image restoration kernel  

DOE Patents [OSTI]

A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

Yuan, Ding (Henderson, NV)

2007-06-05T23:59:59.000Z

429

Time encoded radiation imaging  

DOE Patents [OSTI]

The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

Marleau, Peter; Brubaker, Erik; Kiff, Scott

2014-10-21T23:59:59.000Z

430

Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage  

E-Print Network [OSTI]

Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

2007-01-01T23:59:59.000Z

431

UNH Thermal WorkshopUNH Thermal Workshop or how important isor how important is  

E-Print Network [OSTI]

) EPA grants to UNH for thermal regimes of Northeast g g Streams and Thermal Impacts of Stormwater BMPs response curves Ecological targets Enviro. flow targets Implement program River types alteration Statewide

432

Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation  

SciTech Connect (OSTI)

Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO{sub 2} insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve.

Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Garnon, Julien, E-mail: juliengarnon@gmail.com; Ramamurthy, Nitin, E-mail: nitin_ramamurthy@hotmail.com; Buy, Xavier, E-mail: xbuy@ymail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [University Hospital of Strasbourg (France)] [University Hospital of Strasbourg (France)

2013-12-15T23:59:59.000Z

433

Building envelope thermal anomaly analysis  

SciTech Connect (OSTI)

A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.

Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.

1987-12-01T23:59:59.000Z

434

Radiation Imaging of Dry-Storage Casks for Spent Nuclear Fuel  

SciTech Connect (OSTI)

The authors report the results of a measurement campaign conducted on six dry-storage, spent-nuclear-fuel storage casks at the Idaho National Laboratory. a gamma-ray imager, a thermal-neutron imager and a Ge-spectrometer were used to collect data. The campaign was conducted to examine the feasibility of using cask radiation signatures as unique identifiers for individual casks as part of a safeguards regime. The results clearly show different morphologies for the various cask types although the signatures are deemed insufficient to uniquely identify individual casks of the same type. Based on results with the Ge-spectrometer and differences between thermal neutron images and neutron-dose meters, this result is attributed to the limitations of the extant imagers used, rather than of the basic concept.

Ziock, K; Caffrey, G; Lebrun, A; Forman, L; Vanier, P; Wharton, J

2005-11-08T23:59:59.000Z

435

Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management  

E-Print Network [OSTI]

to the thermal envelope of drive design. We present two mechanisms for buying back some of this IDR loss allowing higher RPMs than the thermal envelope, and employs dynamic throttling of disk drive activities to remain within this envelope. Keywords: Disk Drives, Thermal Management, Technology Scaling. 1

Gurumurthi, Sudhanva

436

Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management  

E-Print Network [OSTI]

the thermal envelope, and employs dynamic throttling of disk drive activities to remain within this envelopeDisk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management Sudhanva The importance of pushing the performance envelope of disk drives continues to grow, not just in the server

Sivasubramaniam, Anand

437

J. of Thermal Science Vol.3, No.3 Journal of Thermal Science Science Press 1994  

E-Print Network [OSTI]

more and more at- tractive to mankind. The solar energy is one of the most interesting one, because of its periodical nature, the problem of thermal energy storage becomes im- portant. The phase changeJ. of Thermal Science Vol.3, No.3 Journal of Thermal Science Science Press 1994 Analysis

Zhang, Yuwen

438

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network [OSTI]

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device

New Hampshire, University of

439

Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu Ocean Thermal Resources  

E-Print Network [OSTI]

Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu 1 Ocean Thermal Resources The vast size of the ocean thermal resource and the baseload capability of OTEC systems of Hawaii throughout the year and at all times of the day. This is an indigenous renewable energy resource

440

Polarization transfer NMR imaging  

DOE Patents [OSTI]

A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

Sillerud, Laurel O. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Thermal Conduction in Graphene and Graphene Multilayers  

E-Print Network [OSTI]

graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .graphene . . . . . . . . . . . . . . . . . . . . . . . . .image of a typical single-layer graphene (SLG) on Si/SiO 2

Ghosh, Suchismita

2009-01-01T23:59:59.000Z

442

Thermal neutron shield and method of manufacture  

DOE Patents [OSTI]

A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

Metzger, Bert Clayton; Brindza, Paul Daniel

2014-03-04T23:59:59.000Z

443

Thermal neutron shield and method of manufacture  

DOE Patents [OSTI]

A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

Brindza, Paul Daniel; Metzger, Bert Clayton

2013-05-28T23:59:59.000Z

444

Thermodynamics of nuclei in thermal contact  

E-Print Network [OSTI]

The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to the energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.

Karl-Heinz Schmidt; Beatriz Jurado

2010-10-05T23:59:59.000Z

445

GCFR core thermal-hydralic design  

SciTech Connect (OSTI)

The approach for developing the thermal-hydraulic core assembly designs for the gas-cooled fast reactor (GCFR) is reviewed, and key considerations for improving the core performance at all power and flow conditions are discussed. It is shown how the thermal-hydraulic core assembly designs evolve from evaluations of plant size, material limitations, safety criteria, and structural performance considerations.

Schleuter, G.; Baxi, C.B.; Bennett, F.O.

1980-05-01T23:59:59.000Z

446

Ghabezloo: Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste Micromechanics analysis of thermal expansion and thermal  

E-Print Network [OSTI]

pore fluid is anomalously higher than the one of pure bulk water. The micromechanics model water-to-cement ratios. It permits also to calculate the pore volume thermal expansion coefficient expansion and thermal pressurization of a hardened cement paste, Cement and Concrete Research, DOI 10.1016/j

Boyer, Edmond

447

Thermal Correlation Functions of Twisted Quantum Fields  

E-Print Network [OSTI]

We derive the thermal correlators for twisted quantum fields on noncommutative spacetime. We show that the thermal expectation value of the number operator is same as in commutative spacetime, but that higher correlators are sensitive to the noncommutativity parameters $\\theta^{\\mu\

Prasad Basu; Rahul Srivastava; Sachindeo Vaidya

2010-04-08T23:59:59.000Z

448

Thermal correlation functions of twisted quantum fields  

SciTech Connect (OSTI)

We derive the thermal correlators for twisted quantum fields on noncommutative spacetime. We show that the thermal expectation value of the number operator is same as in commutative spacetime, but that higher correlators are sensitive to the noncommutativity parameters {theta}{sup {mu}{nu}.}

Basu, Prasad; Srivastava, Rahul; Vaidya, Sachindeo [Centre for High Energy Physics, Indian Institute of Science, Bangalore, 560012 (India)

2010-07-15T23:59:59.000Z

449

Liquid cooled fiber thermal radiation receiver  

DOE Patents [OSTI]

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, B.L.

1985-03-29T23:59:59.000Z

450

NUMERICAL APPROACHES TO THERMALLY COUPLED PERFECT PLASTICITY  

E-Print Network [OSTI]

NUMERICAL APPROACHES TO THERMALLY COUPLED PERFECT PLASTICITY S¨OREN BARTELS AND TOM´AS ROUB at small strains exhibiting also stress-driven Prandtl-Reuss perfect plasticity are considered limit passage. Keywords: Thermodynamics, Prandtl-Reuss plasticity, Kelvin-Voigt rheology, thermal

Bartels, Soeren

451

Hard thermal loops in static external fields  

E-Print Network [OSTI]

We study, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop at zero external energies and momenta.

J. Frenkel; S. H. Pereira; N. Takahashi

2009-02-04T23:59:59.000Z

452

Thermal disconnect for high-temperature batteries  

DOE Patents [OSTI]

A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

2000-01-01T23:59:59.000Z

453

Nuclear medicine imaging system  

DOE Patents [OSTI]

It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

1983-03-11T23:59:59.000Z

454

A boron nitride nanotube peapod thermal rectifier  

SciTech Connect (OSTI)

The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

2014-06-28T23:59:59.000Z

455

Improvements of the Variable Thermal Resistance  

E-Print Network [OSTI]

A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

Székely, V; Kollar, E

2008-01-01T23:59:59.000Z

456

Improvements of the Variable Thermal Resistance  

E-Print Network [OSTI]

A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

V. Szekely; S. Torok; E. Kollar

2008-01-07T23:59:59.000Z

457

Low thermal stress ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Glezer, Boris (Del Mar, CA); Bagheri, Hamid (San Diego, CA); Fierstein, Aaron R. (San Diego, CA)

1996-01-01T23:59:59.000Z

458

Thermal and Structural Analysis of Targets and Windows  

E-Print Network [OSTI]

Thermal and Structural Analysis of Targets and Windows Materials, Irradiation Data and Fracture) = EDD/Cp Applied Thermal Stress Pa CTE*E*DeltaT Thermal Resistance Rts=UTS/(CTE*E *DeltaT) Thermal Shock 1147 1.16E+09 0.984 7445 Candidate Materials - Young's Modulus, UTS, Delta T, Thermal Stress

McDonald, Kirk

459

Thermal annealing of laser damage precursors on fused silica surfaces  

SciTech Connect (OSTI)

Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.

Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L

2012-03-19T23:59:59.000Z

460

Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture  

DOE Patents [OSTI]

Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

2013-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

JOB OPPORTUNITIES Breast imaging  

E-Print Network [OSTI]

Genitourinary Radiology Head and Neck Radiology Musculoskeletal Radiology Neuroradiology Pediatric RadiologyJOB OPPORTUNITIES Breast imaging Chest Radiology Emergency Radiology Gastrointestinal Radiology Interventional Radiology Nuclear Radiology Radiation Oncology What Can I Do With a Major in... Radiological

Jiang, Huiqiang

462

Overview of Image Reconstruction  

SciTech Connect (OSTI)

Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on Rn is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)

Marr, R.B.

1980-04-01T23:59:59.000Z

463

Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield  

SciTech Connect (OSTI)

Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10?W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400?K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device.

Loh, G. C., E-mail: jgloh@mtu.edu [Institute of High Performance Computing, 1 Fusionopolis Way, 16-16 Connexis, Singapore 138632 (Singapore); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

2013-11-14T23:59:59.000Z

464

Reflective optical imaging system  

DOE Patents [OSTI]

An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

Shafer, David R. (Fairfield, CT)

2000-01-01T23:59:59.000Z

465

S (LLV, 150 eV) and C (KLL, 265 eV) Auger peaks scale with varied TTPO coverage C peak loses significance in prolonged study as it is present following thermal annealing beyond TTPO  

E-Print Network [OSTI]

(a) STM image of Au(788) (b,c) STM images of 6,13-dichloropentacene (DCP) SAM 1 (d) DFT model of free complete desorption of remaining TTPO monolayer Thermal annealing for optimal TTPO SAM assembly safe- standing DCP SAM 1 Cylindrical Mirror Analyzer Auger Spectra Signal intensity is extremely low; output

New Hampshire, University of

466

Restoring functional PET Images using Anatomical MR Images  

E-Print Network [OSTI]

Restoring functional PET Images using Anatomical MR Images Peter Alshede Philipsen, Ulrik Kjems,uk,pto,lkh@imm.dtu.dk Abstract In this paper we present a Bayesian method to enhance functional 3D PET images using apriori as a true PET­MR result, and further more show how to obtain the desired information from the MR images. 1

Mosegaard, Klaus

467

Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room-Temperature Ionic Liquids by the Transient Grating Technique  

E-Print Network [OSTI]

Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room. The experiments give thermal diffusivities from which thermal conductivities can be determined, sound speeds not only on the sound speed but also on the thermal diffusivity and acoustic damping of the RTILs

Reid, Scott A.

468

Plates for vacuum thermal fusion  

DOE Patents [OSTI]

A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

2002-01-01T23:59:59.000Z

469

Thermal dileptons at SPS energies  

E-Print Network [OSTI]

Clear signs of excess dileptons above the known sources were found at the SPS since long. However, a real clarification of these observations was only recently achieved by NA60, measuring dimuons with unprecedented precision in 158A GeV, In-In collisions. The excess mass spectrum in the region M rho -> mu+mu- annihilation. The associated rho spectral function shows a strong broadening, but essentially no shift in mass. In the region M>1 GeV, the excess is found to be prompt, not due to enhanced charm production. The inverse slope parameter Teff associated with the transverse momentum spectra rises with mass up to the rho, followed by a sudden decline above. While the initial rise, coupled to a hierarchy in hadron freeze-out, points to radial flow of a hadronic decay source, the decline above signals a transition to a low-flow source, presumably of partonic origin. The mass spectra show at low transverse momenta the steep rise towards low masses characteristic for Planck-like radiation. The polarization of the excess referred to the Collins Soper frame is found to be isotropic. All observations are consistent with the interpretation of the excess as thermal radiation.

S. Damjanovic; for the NA60 Collaboration

2008-05-27T23:59:59.000Z

470

Design optimization of thermal paths in spacecraft systems  

E-Print Network [OSTI]

This thesis introduces a thermal design approach to increase thermal control system performance and decrease reliance on system resources, e.g., mass. Thermal design optimization has lagged other subsystems because the ...

Stout, Kevin Dale

2013-01-01T23:59:59.000Z

471

Investigation and Analysis of Winter Classroom Thermal Environment in Chongqing  

E-Print Network [OSTI]

the thermal sense value of the occupants, the winter classroom thermal environment was evaluated. Measures for improving the classroom indoor thermal environmental quality were also given. The lower limit air temperature of the non-air conditioned classrooms...

Liu, J.; Li, B.; Yao, R.

2006-01-01T23:59:59.000Z

472

Thermal Transport in Nanoporous Materials for Energy Applications  

E-Print Network [OSTI]

Theory of thermal conduction in thin ceramic ?lms”,Thermal resistance of grain boundaries in alumina ceramicsThermal conduc- tivity of highly porous zirconia”, Journal of the European Ceramic

Fang, Jin

2012-01-01T23:59:59.000Z

473

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

Since the ceramic wafers have a high thermal conductivity,easily altered ceramic blocks all had a thermal conductivityCeramics. Available Online: http://www.dynacer.com/thermal_

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

474

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network [OSTI]

iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

475

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

476

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

477

Assessment of Hypothermia Blankets Using an Advanced Thermal Manikin: Preprint  

SciTech Connect (OSTI)

A thermal manikin developed at NREL helped to assess thermal blankets used to treat U.S. Army personnel suffering from hypothermia. The chemical blanket showed the best thermal performance.

Rugh, J. P.; Barazanji, K.

2009-07-01T23:59:59.000Z

478

Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane (PDMS)  

E-Print Network [OSTI]

Heat transfer across thermal interface materials is a critical issue for microelectronics thermal management. Polydimethylsiloxane (PDMS), one of the most important components of thermal interface materials presents a large ...

Luo, Tengfei

479

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

Sands, M. D.

2011-01-01T23:59:59.000Z

480

Thermal properties of organic and inorganic aerogels  

SciTech Connect (OSTI)

Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal imager mti" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thermal sensitivity of the commercial sector  

SciTech Connect (OSTI)

We examined the thermal sensitivity of building total loads and heating, ventilating, and air-conditioning (HVAC) loads in all nine commercial building types. In groceries and restaurants, refrigeration loads were also studied. The data indicated that the thermal sensitivity of building total and HVAC loads is small for all types of buildings. We found the thermal sensitivity of refrigeration loads also to be small for groceries and restaurants. These findings led us to conclude that, although corrections for weather might improve forecasted loads, the improvement is probably too small to justify the effort required to do so. We next examined the effects of building size, age, and primary heating fuel on thermal sensitivity. We compared our results with common expectations that small buildings are more thermally sensitive than larger buildings, old buildings are more thermally sensitive than new buildings, and electrically-heated buildings are more thermally sensitive than those heated by other fuels. As expected, small buildings were found to be more sensitive to the weather because of the higher ratios of envelope area to conditioned volume. However, neither vintage nor fuel type was found to affect HVAC loads. We investigated the use of hearing and cooling degree-days calculated to a base temperature of 65{degree}F as the basis for a weather-adjustment procedure. We concluded that a simple degree-day correlation is a promising prospect because it would be easy to develop and implement.

Taylor, Z.T.

1990-12-01T23:59:59.000Z

482

Thermal conductivity measurements of Summit polycrystalline silicon.  

SciTech Connect (OSTI)

A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

2006-11-01T23:59:59.000Z

483

Thermal loading study for FY 1995  

SciTech Connect (OSTI)

This report provides the results of sensitivity analyses designed to assist the test planners in focusing their in-situ measurements on parameters that appear to be important to waste isolation. Additionally, the study provides a preliminary assessment of the feasibility of certain thermal management options. A decision on thermal loading is a critical part of the scientific and engineering basis for evaluating regulatory compliance of the potential repository for waste isolation. To show, with reasonable assurance, that the natural and engineered barriers will perform adequately under expected repository conditions (thermally perturbed) will require an integrated approach based on thermal testing (laboratory, and in-situ), natural analog observations, and analytic modeling. The Office of Civilian Radioactive Waste Management needed input to assist in the planning of the thermal testing program. Additionally, designers required information on the viability of various thermal management concepts. An approximately 18-month Thermal Loading Study was conducted from March, 1994 until September 30, 1995 to address these issues. This report documents the findings of that study. 89 refs., 71 figs., 33 tabs.

NONE

1996-01-31T23:59:59.000Z

484

A NEW MEASUREMENT STRATEGY FOR in situ TESTING OF WALL THERMAL PERFORMANCE  

E-Print Network [OSTI]

conservation, Dynamic thermal envelope thermal performanceTHERHAL TEST UNIT The envelope thermal test unit (ETTU) is athe thermal resistance of building envelope systems through

Condon, P.E.

2011-01-01T23:59:59.000Z

485

Project Profile: High-Temperature Thermal Array for Next-Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos...

486

Hard-thermal-loop QED thermodynamics  

E-Print Network [OSTI]

The weak-coupling expansion for thermodynamic quantities in thermal field theories is poorly convergent unless the coupling constant is tiny. We discuss the calculation of the free energy for a hot gas of electrons and photons to three-loop order using hard-thermal-loop perturbation theory (HTLpt). We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to the cancellations among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops.

Nan Su; Jens O. Andersen; Michael Strickland

2009-11-24T23:59:59.000Z

487

Thermalization of Strongly Coupled Field Theories  

SciTech Connect (OSTI)

Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first.

Balasubramanian, V. [David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Bernamonti, A.; Copland, N.; Craps, B.; Staessens, W. [Theoretische Natuurkunde, Vrije Universiteit Brussel, and International Solvay Institutes, B-1050 Brussels (Belgium); Boer, J. de [Institute for Theoretical Physics, University of Amsterdam, 1090 GL Amsterdam (Netherlands); Keski-Vakkuri, E. [Helsinki Institute of Physics and Department of Physics, FIN-00014 University of Helsinki (Finland); Mueller, B. [Department of Physics and CTMS, Duke University, Durham, North Carolina 27708 (United States); Schaefer, A. [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Shigemori, M. [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan)

2011-05-13T23:59:59.000Z

488

Method of making thermally removable epoxies  

DOE Patents [OSTI]

A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

Loy, Douglas A. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Russick, Edward M. (Rio Rancho, NM); McElhanon, James R. (Albuquerque, NM); Saunders, Randall S. (late of Albuquerque, NM)

2002-01-01T23:59:59.000Z

489

Lighting system with thermal management system  

DOE Patents [OSTI]

Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

2013-05-07T23:59:59.000Z

490

Lattice Boltzmann approach to thermal transpiration  

SciTech Connect (OSTI)

Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for variable fluid density and temperature along the walls. The capability of this model to capture the main characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is demonstrated. The thermal creep velocity is found to be proportional to the temperature gradient imposed at the wall, whereas the accuracy of the simulation results are found to be of first or second order, depending on the numerical scheme.

Sofonea, Victor [Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, RO - 300223 Timisoara (Romania)

2006-11-15T23:59:59.000Z

491

Electrical and thermal conductivities in dense plasmas  

SciTech Connect (OSTI)

Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

2014-09-15T23:59:59.000Z

492

Thermal conductivity of bulk nanostructured lead telluride  

SciTech Connect (OSTI)

Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

2014-01-13T23:59:59.000Z

493

Coating thermal noise for arbitrary shaped beams  

E-Print Network [OSTI]

Advanced LIGO's sensitivity will be limited by coating noise. Though this noise depends on beam shape, and though nongaussian beams are being seriously considered for advanced LIGO, no published analysis exists to compare the quantitative thermal noise improvement alternate beams offer. In this paper, we derive and discuss a simple integral which completely characterizes the dependence of coating thermal noise on shape. The derivation used applies equally well, with minor modifications, to all other forms of thermal noise in the low-frequency limit.

Richard O'Shaughnessy

2006-10-13T23:59:59.000Z

494

Increased thermal conductivity monolithic zeolite structures  

DOE Patents [OSTI]

A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

2008-11-25T23:59:59.000Z

495

VISDTA: A video imaging system for detection, tracking, and assessment: Prototype development and concept demonstration  

SciTech Connect (OSTI)

It has been demonstrated that thermal imagers are an effective surveillance and assessment tool for security applications because: (1) they work day or night due to their sensitivity to thermal signatures; (2) penetrability through fog, rain, dust, etc., is better than human eyes; (3) short or long range operation is possible with various optics; and (4) they are strictly passive devices providing visible imagery which is readily interpreted by the operator with little training. Unfortunately, most thermal imagers also require the setup of a tripod, connection of batteries, cables, display, etc. When this is accomplished, the operator must manually move the camera back and forth searching for signs of aggressor activity. VISDTA is designed to provide automatic panning, and in a sense, ''watch'' the imagery in place of the operator. The idea behind the development of VISDTA is to provide a small, portable, rugged system to automatically scan areas and detect targets by computer processing of images. It would use a thermal imager and possibly an intensified day/night TV camera, a pan/ tilt mount, and a computer for system control. If mounted on a dedicated vehicle or on a tower, VISDTA will perform video motion detection functions on incoming video imagery, and automatically scan predefined patterns in search of abnormal conditions which may indicate attempted intrusions into the field-of-regard. In that respect, VISDTA is capable of improving the ability of security forces to maintain security of a given area of interest by augmenting present techniques and reducing operator fatigue.

Pritchard, D.A.

1987-05-01T23:59:59.000Z

496

X-ray Imaging of Shock Waves Generated by High-Pressure  

E-Print Network [OSTI]

-speed sprays are an es- sential technology for many applications, in- cluding fuel injection systems, thermal if not impossible with optical imaging. Under injection conditions similar to those found in operating engines of fuel injection, an under- standing of the structure and dynamics of the fuel sprays is critical

Gruner, Sol M.

497

DIRECT NORMAL IRRADIANCE FOR CSP BASED ON SATELLITE IMAGES OF METEOSAT SECOND  

E-Print Network [OSTI]

DIRECT NORMAL IRRADIANCE FOR CSP BASED ON SATELLITE IMAGES OF METEOSAT SECOND GENERATION A. Hammer1 Ertragsprognose Solarthermischer Kraftwerke ­ standardization of yield prognosis for solar thermal power plants). As for concentrating solar power (CSP) the frequency distribution of DNI is of special importance, special attention

Heinemann, Detlev

498

In Situ Photoelectron Emission Microscopy of a Thermally Induced...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

499

Thermal Stress and Reliability for Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ape017okeefe2010o.pdf More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress...

500

Thermal Stress and Reliability for Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington D.C. ape14okeefe.pdf More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal...