Sample records for thermal hot water

  1. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    ). Conditions in Hot Creek can change very quickly. These fish--caught in a burst of high-temperature water" or intermittently spurting very hot, sediment-laden water as high as 6 feet (2 m) above the stream surface. At timesBoiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley

  2. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  3. Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve

    E-Print Network [OSTI]

    Cha, K. S.; Park, M. S.; Seo, H. Y.

    hot water piping system, Thermo controlled valve, Circulation, Mixing water pipe, Recirculation water pipe INTRODUCTION Finding ways to conserve energy while heating a building?s water supply can be approached from a number of angles. Still...?s disadvantage is that so much water is wasted until the optimal tap temperature is reached.(6) We tried to solve this problem by developing a water-saving hot water plumbing system that utilizes a thermo-controlled valve. The goal was to not allow...

  4. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Transportation Water Heaters and Hot Water DistributionLaboratory). 2008. Water Heaters and Hot Water Distributionfor instantaneous gas water heaters; and pressure loss

  5. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS: Lutz J.D. (Lawrence Berkeley National Laboratory). 2008. Water Heaters and Hot Water Distribution

  6. STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)

    E-Print Network [OSTI]

    storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements with Multiple Dwelling Units (required for prescriptive) TO COMPLY - ALL BOXES MUST BE CHECKED All hot water

  7. Modern hot water district heating

    SciTech Connect (OSTI)

    Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

    1984-06-01T23:59:59.000Z

    The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

  8. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  9. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

  10. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01T23:59:59.000Z

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  11. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01T23:59:59.000Z

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  12. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  13. Solar Hot Water Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

  14. Monitoring SERC Technologies ó Solar Hot Water

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

  15. Are we putting in hot water?

    E-Print Network [OSTI]

    Combes, Stacey A.

    Are we putting our fish in hot water? Global warming and the world's fisheries ∑ Hot, hungry, and gasping for air ∑ Shrinking fish and fewer babies? ∑ Global warming puts fish on the run ∑ Warm water ∑ Howmucharefishworth? ∑ Which fish are feeling the heat? ∑ How will fisheries change? ∑ 2įC is too much! ∑ What needs

  16. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    C: DIRECT LIQUID AND AIR COOLING COMPONENT TCASE FORECASTGRAPHICS Direct Liquid Cooling Thermal Components andThermal Design Margins Air Cooling Thermal Components and

  17. Solar Hot Water Resources and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of...

  18. Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

  19. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01T23:59:59.000Z

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  20. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  1. Model Simulating Real Domestic Hot Water Use - Building America...

    Energy Savers [EERE]

    Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

  2. INSTALLATION CERTIFICATE CF-6R-MECH-01 Domestic Hot Water (DHW) (Page 1 of 2)

    E-Print Network [OSTI]

    storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements Dwelling Units (required for prescriptive) TO COMPLY - ALL BOXES MUST BE CHECKED All hot water piping

  3. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Zacharakis, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,...

  4. The Chilled Water and Hot Water Building Differential Pressure Setpoint Calculation - Chilled Water and Hot Water Pump Speed Control

    E-Print Network [OSTI]

    Turner, W. D.; Bruner, H., Jr.; Claridge, D.; Liu, C.; Deng, S.

    2002-01-01T23:59:59.000Z

    A&M University College Station, TX ABSTRACT More and more variable frequency devices (VFD) are being installed on the chilled water and hot water pumps on the TAMU campus. Those pump speeds are varied to maintain chilled water... and the rest 46 buildings are located on the west campus. More and more variable frequency devices (VFD) are installed on chilled water and hot water pumps. The variable speed pump has reduced the over-pressuring of water systems and reduced pump...

  5. Solar Hot Water Contractor Licensing

    Broader source: Energy.gov [DOE]

    In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North...

  6. Continuous Commissioning of a Central Chilled Water & Hot Water System

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

    2000-01-01T23:59:59.000Z

    the campus loops and the building loops. Some optimization of the plant chiller 1 boiler operation is also necessary and beneficial. In general, through Continuous Commissioning, chilled water and hot water loop temperature differences will be improved...

  7. CC Retrofits and Optimal Controls for Hot Water Systems

    E-Print Network [OSTI]

    Wu, L.; Liu, M.; Wang, G.

    2007-01-01T23:59:59.000Z

    Continuous Commissioning (CC) technologies, three old boilers (13.39 MMBH each) were replaced by three new boilers (1.675 MMBH each) and hot water pumps. Optimal controls for the hot water systems included optimal hot water temperature reset, hot water pump...

  8. home power 114 / august & september 2006 in Solar Hot Water

    E-Print Network [OSTI]

    Knowles, David William

    : Heliotrope Thermal DTT-84 Solar Collectors: Two Heliodyne Gobi 410, 4 x 10 ft. Cold Supply In Hot to House

  9. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    efficient gas water heating appliance to market; a plan toefficient gas water heating appliance to market; and to planefficient gas water heating appliance to market; and 3) to

  10. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    24 Figure 7. Comparison of Daily Water Heater28 Figure 8. Monitored Field Efficiency of Tankless Water28 Figure 9. Monitored Lab Efficiency of Tankless Water

  11. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    step in developing a realistic degradation term for tankless water heatersstep (water draw event) in the simulation. Instantaneous Gas Water Heater

  12. Computerized, Transient Hot-Wire Thermal Conductivity (HWTC) Apparatus for Nanofluids

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Computerized, Transient Hot-Wire Thermal Conductivity (HWTC) Apparatus for Nanofluids M. KOSTIC for thermal conductivity measurements of common fluids and nanofluids has been recently developed, designed nanofluids of 1 % volumetric concentration of 35 nm size copper nanoparticles in ethylene glycol and in water

  13. Hot Water Heating System Operation and Energy Conservation

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  14. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    heat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculationsheat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculations

  15. Alternatives for reducing hot-water bills

    SciTech Connect (OSTI)

    Bennington, G.E.; Spewak, P.C.

    1981-06-01T23:59:59.000Z

    A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

  16. Hot water bitumen extraction process

    SciTech Connect (OSTI)

    Rendall, J.S.

    1989-10-24T23:59:59.000Z

    This patent describes a method of extracting bitumen oils from tar-sands ore. It includes an initial conditioning step comprising crushing tar-sands ore to yield solid particles of a maximum size required by a log washer conditioner in a second conditioning step; a bitumen extraction step; a bitumen separation step; a solvent recovery step; a sand washing and water clarification step; and a sand solvent recovery step.

  17. Solar Hot Water Creates Savings for Homeless Shelters | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts?...

  18. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  19. Hot water can freeze faster than cold?!?

    E-Print Network [OSTI]

    Monwhea Jeng

    2005-12-29T23:59:59.000Z

    We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

  20. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

    1998-01-01T23:59:59.000Z

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  1. Design package for solar domestic hot water system

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  2. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Office of Environmental Management (EM)

    Residential Hot Water Event Schedules: Preprint Presented at SimBuild 2010; New York, New York; August 1519, 2010 47685.pdf More Documents & Publications Model Simulating...

  3. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Energy Savers [EERE]

    Paper NRELCP-550-47685 August 2010 Tool for Generating Realistic Residential Hot Water Event Schedules Preprint Bob Hendron and Jay Burch National Renewable Energy...

  4. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    R. H. Carpenter (Colorado Geological Survey in Cooperation with the U.S. Department of Energy). 1981. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,...

  5. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  6. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    and monitoring at the water heater and hot water end uses.water at the trunk (water heater) and twigs (individual end-and outlet of the water heater and several hot water end-

  7. Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah

    SciTech Connect (OSTI)

    Rohrs D.T.; Bowman, J.R.

    1980-05-01T23:59:59.000Z

    The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

  8. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

    1981-01-01T23:59:59.000Z

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  9. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01T23:59:59.000Z

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  10. Hot Spot Conditions during Cavitation in Water Yuri T. Didenko,

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Hot Spot Conditions during Cavitation in Water Yuri T. Didenko, William B. McNamara III-13 the effective hot spot temperature during aqueous cavitation remains unresolved. Given the importance of aqueous cavitation (sonography and bioeffects of ultrasound, sonochemical remediation of aqueous pollutants

  11. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  12. DOE ZERH Webinar: Efficient Hot Water Distribution II: How to...

    Broader source: Energy.gov (indexed) [DOE]

    II: How to Get it Right DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right Watch the video or view the presentation slides below Zero Energy Ready Homes...

  13. DOE Zero Energy Ready Home Efficient Hot Water Distribution I...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

  14. DOE Zero Energy Ready Home Efficient Hot Water Distribution II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- How to Get it Right Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution II -- How to Get it Right Webinar (Text Version) Below is the text...

  15. Indoor air movement acceptability and thermal comfort in hot-humid climates

    E-Print Network [OSTI]

    Candido, Christhina Maria

    2010-01-01T23:59:59.000Z

    Bittencourt, L. S. (2010) Air movement acceptability limitsthermal acceptability and air movement assessments in a hot-e ķmidos. (Applicability of air velocity limits for thermal

  16. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    implement demand-response programs involving buildingthan the building envelope in demand response effectiveness.demand response, thermal mass, hot climates, office buildings

  17. STATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS

    E-Print Network [OSTI]

    Certified Water Heater §111, §113 (a) Water Heater Efficiency §113 (b) Service Water Heating Installation/A" in the column next to the measure. 2: For each water heater, pool heat and domestic water loop (or groupsSTATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS CEC-MECH-2C

  18. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect (OSTI)

    Lutz, Jim; Melody, Moya

    2012-11-08T23:59:59.000Z

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  19. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01T23:59:59.000Z

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  20. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

    1996-11-01T23:59:59.000Z

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  1. Evaporative system for water and beverage refrigeration in hot countries

    E-Print Network [OSTI]

    Evaporative system for water and beverage refrigeration in hot countries A Saleh1 and MA Al-Nimr2 1 Abstract: The present study proposes an evaporative refrigerating system used to keep water or other are found to be consistent with the available literature data. Keywords: evaporative refrigeration, heat

  2. STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW)

    E-Print Network [OSTI]

    attached CEC F-Chart) # of Collectors in System Collector Size Solar Tank Volume (gallons) ß150(j)1B piping shall be insulated. ß150(j)4: Solar water-heating system and/or/collectors are certifiedSTATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08

  3. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect (OSTI)

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01T23:59:59.000Z

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  4. Solar Hot Water Heater Industry in Barbados

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,SmartEnergyEnergy ResourceSolar Hot

  5. CPS Energy- Solar Hot Water Rebate Program

    Broader source: Energy.gov [DOE]

    As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

  6. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11T23:59:59.000Z

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  7. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home National Program encourages, but does not require,...

  8. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S. (Monroeville, PA)

    1990-01-01T23:59:59.000Z

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  9. Direct Use for Building Heat and Hot Water Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

  10. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    end use point, at the water heater in one second intervalsand monitoring at the water heater and hot water end uses.of water at the trunk (water heater) and twigs (individual

  11. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  12. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01T23:59:59.000Z

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  13. DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right

    Broader source: Energy.gov [DOE]

    Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance.† Hot water distribution is one of these critical systems Ė affecting energy use , water...

  14. DOE ZERH Webinar: Efficient Hot Water Distribution I: What's at Stake

    Broader source: Energy.gov [DOE]

    Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance.† Hot water distribution is one of these critical systems Ė affecting energy use , water...

  15. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  16. Design manual for high temperature hot water and steam systems

    SciTech Connect (OSTI)

    Cofield, R.E. Jr.

    1984-01-01T23:59:59.000Z

    The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

  17. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  18. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    U.S. Geothermal Inc. (2010) Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement U.S. Geothermal Inc. (2009) U.S. Geothermal Starts New Drilling...

  19. Thermal Conductivity of Ordered Molecular Water

    SciTech Connect (OSTI)

    W Evans; J Fish; P Keblinski

    2006-02-16T23:59:59.000Z

    We use molecular dynamics simulation to investigate thermal transport characteristics of water with various degree of orientational and translational order induced by the application of an electric field. We observe that orientational ordering of the water dipole moments has a minor effect on the thermal conductivity. However, electric-field induced crystallization and associated translational order results in approximately a 3-fold increase of thermal conductivity with respect to the base water, i.e., to values comparable with those characterizing ice crystal structures.

  20. Reduce Hot Water Use for Energy Savings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| DepartmentReduce Hot Water Use for Energy Savings

  1. Solar Hot Water Heater Industry in Barbados | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and|WaterEnergyFieldHot

  2. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    (1993) Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGr...

  3. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01T23:59:59.000Z

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  4. Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi

    SciTech Connect (OSTI)

    Hewett, R. (National Renewable Energy Lab., Golden, CO (United States)); Gee, R.; May, K. (Industrial Solar Technology, Arvada, CO (United States))

    1991-12-01T23:59:59.000Z

    Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

  5. Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence

    E-Print Network [OSTI]

    Steven A. Balbus; Christopher S. Reynolds

    2008-06-05T23:59:59.000Z

    The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population.

  6. Targeted removal of ant colonies in ecological experiments, using hot water

    E-Print Network [OSTI]

    . An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water perTargeted removal of ant colonies in ecological experiments, using hot water Walter R. Tschinkela

  7. Evaporative water losses of exercising sheep in neutral and hot climates

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Evaporative water losses of exercising sheep in neutral and hot climates T Othman KG Johnson, DW, Australia Hot climates require an accelerated water loss to allowed for thermoregulation (Rai et al, 1979, Trop Anim Hlth Prod, 11, 51-56). The water losses associated with locomotion should be greater

  8. Practical Solar Thermal Chilled Water

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  9. Practical Solar Thermal Chilled Water

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  10. Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application

    E-Print Network [OSTI]

    Meckler, G.

    1985-01-01T23:59:59.000Z

    Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy...

  11. Thermal Comfort Study in a Naturally Ventilated Residential Building in a Tropical Hot-Humid Climate Region

    E-Print Network [OSTI]

    Soebarto, V. I.; Handjarinto, S.

    1998-01-01T23:59:59.000Z

    This paper presents a thermal comfort study in a naturally ventilated residential building located in a tropical hot-humid climate region. The specific objective of this study is to investigate whether thermal comfort in this house can be achieved...

  12. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,...

  13. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern of shallow ground water flow at Mount Princeton Hot Springs,...

  14. Enhanced Thermal Conductivity of Water with Surfactant Encapsulated and Individualized Single-Walled Carbon Nanotube Dispersions

    E-Print Network [OSTI]

    Maruyama, Shigeo

    experimentally using a transient hot wire technique at room temperature. Single-walled carbon nanotubes (SWNTs] Maruyama.S, Kojima.R, Miyauchi.Y, Chiashi.S, Kohno.M, Low temperature synthesis of high purity singleEnhanced Thermal Conductivity of Water with Surfactant Encapsulated and Individualized Single

  15. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands,EnergyHot-Dry-RockAl., 1993) |

  16. Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates

    E-Print Network [OSTI]

    Johnson, K. F.; Shedd, A. C.

    Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

  17. "Hot Water" in Lassen Volcanic National Park--Fumaroles, Steaming Ground, and Boiling Mudpots

    E-Print Network [OSTI]

    Torgersen, Christian

    "Hot Water" in Lassen Volcanic National Park-- Fumaroles, Steaming Ground, and Boiling Mudpots U, ydrothermal (hot water) and steaming ground. These features are re- lated to active volcanism, the largest fumarole (steam and volcanic-gas vent) in the park. The temperature of the high-velocity steam

  18. Commissioning the Domestic Hot Water System on a Large University Campus: A Case Study

    E-Print Network [OSTI]

    Chen, H.; Bensouda, N.; Claridge, D.; Bruner, H.

    2004-01-01T23:59:59.000Z

    was to investigate the causes of these problems and help determine how to best operate the system. It was found that reported problems of low flows, low temperatures and long hot water lag time resulted from reverse flows and no hot water circulation caused by: 1...

  19. Water, Vapor, and Salt Dynamics in a Hot Repository

    SciTech Connect (OSTI)

    Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

    2007-07-01T23:59:59.000Z

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  20. Promising freeze protection alternatives in solar domestic hot water systems

    SciTech Connect (OSTI)

    Bradley, D.E.

    1997-12-31T23:59:59.000Z

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  1. Thermal structure of hot non-flaring corona from Hinode/EIS

    E-Print Network [OSTI]

    Petralia, A; Testa, P; Del Zanna, G

    2014-01-01T23:59:59.000Z

    In previous studies a very hot plasma component has been diagnosed in solar active regions through the images in three different narrow-band channels of SDO/AIA. This diagnostic from EUV imaging data has also been supported by the matching morphology of the emission in the hot Ca XVII line, as observed with Hinode/EIS. This evidence is debated because of unknown distribution of the emission measure along the line of sight. Here we investigate in detail the thermal distribution of one of such regions using EUV spectroscopic data. In an active region observed with SDO/AIA, Hinode/EIS and XRT, we select a subregion with a very hot plasma component and another cooler one for comparison. The average spectrum is extracted for both, and 14 intense lines are selected for analysis, that probe the 5.5 = 6.3, the distribution of the hot region shows a well-defined peak at log T = 6.6 and gradually decreasing trends on both sides, thus supporting the very hot nature of the hot component diagnosed with imagers. The other ...

  2. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01T23:59:59.000Z

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  3. Hot wire needle probe for in-reactor thermal conductivity measurement

    SciTech Connect (OSTI)

    JE Daw; JL Rempe; DL Knudson

    2012-08-01T23:59:59.000Z

    Thermal conductivity is a key property that must be known for proper design, test, and application of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are measured out-of-pile by Post Irradiated Examination (PIE) using a ďcook and lookĒ approach in hot-cells. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for simulation design codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses recent efforts to develop and evaluate an in-pile thermal conductivity sensor based on a hot wire needle probe. Testing has been performed on samples with thermal conductivities ranging from 0.2 W/m-K to 22 W-m-K in temperatures ranging from 20 įC to 600 įC. Thermal conductivity values measured using the needle probe match data found in the literature to within 5% for samples tested at room temperature, 5.67% for low thermal conductivity samples tested at high temperatures, and 10% for high thermal conductivity samples tested at high temperatures. Experimental results also show that this sensor is capable of operating in various test conditions and of surviving long duration irradiations.

  4. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01T23:59:59.000Z

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  5. Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky)

    E-Print Network [OSTI]

    Khalil, M. H.; Sheble, S. S.; Helal, M. A.; El-Demirdash, M.

    2010-01-01T23:59:59.000Z

    Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky Region) S.S. Sheble* M. H. Khalil M. A. Helal Prof. M. El- Demirdash3 Asso. Prof. Building Physics Institute (HBRC) Asso. Prof. Building Physics... Institute (HBRC) Prof. & head of Building Physics Institute (HBRC) Prof. & Chairman of HBRC Housing & Building National Research Center (HBRC) Cairo, Egypt * Author ABSTRACT Toshky region is a desert region located in the south east...

  6. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

  7. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect (OSTI)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; He, Hongbo (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM) [Building Specialists, Inc., Albuquerque, NM; Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; Burch, Jay (National Renewable Energy Laboratory, Golden CO) [National Renewable Energy Laboratory, Golden CO

    2011-07-01T23:59:59.000Z

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  8. Hot

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in graphene by Meng-Chieh Ling A

  9. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System†

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  10. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  11. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  12. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

  13. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  14. Hot water decontamination of beef carcasses to increase microbiological safety and shelf-life

    E-Print Network [OSTI]

    Barakate, Michelle Lee

    1991-01-01T23:59:59.000Z

    : -:r . ~ &:: ? ri:~ 4 c:r l, &, ?a??. . ' ' !"-' &! ~i i 4?'&. " ~ li r, '?Pil ril i '. ' rl iit'~'. ~a', '. ''+, I";= t I t h( ii il HOT WATER DECONTAMINATION OF BEEF CARCASSES TO INCREASE MICROBIOLOGICAL SAFETY AND SHELF-LIFE A Thesis... by MICHELLE LEE BARKATE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1991 Major Subject: Food Science and Technology HOT WATER DECONTAMINATION...

  15. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,for Residential Water Heaters, Direct Heating Equipment, andthe Energy Consumption of Water Heaters. Title 10 Code of

  16. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  17. Measured electric hot water standby and demand loads from Pacific Northwest homes

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  18. Modelling of unidirectional thermal diffusers in shallow water

    E-Print Network [OSTI]

    Lee, Joseph Hun-Wei

    1977-01-01T23:59:59.000Z

    This study is an experimental and theoretical investigation of the temperature field and velocity field induced by a unidirectional thermal diffuser in shallow water. A multiport thermal diffuser is essentially a pipe laid ...

  19. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect (OSTI)

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13T23:59:59.000Z

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  20. X-ray thermal coronae of galaxies in hot clusters -- ubiquity of embedded mini cooling cores

    E-Print Network [OSTI]

    M. Sun; C. Jones; W. Forman; A. Vikhlinin; M. Donahue; M. Voit

    2006-11-14T23:59:59.000Z

    We present a systematic investigation of X-ray thermal coronae in 157 early-type galaxies and 22 late-type galaxies from a survey of 25 hot (kT>3 keV), nearby (zcoronae (kT=0.5-1.1 keV generally) have been found to be very common, >60% in NIR selected galaxies that are more luminous than 2L*, and >40% in L* coronae in hot clusters are generally smaller (1.5-4 kpc radii), less luminous (coronae in poor environments, demonstrating the negative effects of hot cluster environments on galactic coronae. Nevertheless, these coronae still manage to survive ICM stripping, evaporation, rapid cooling, and powerful AGN outflows, making them a rich source of information about gas stripping, microscopic transport, and feedback processes in the cluster environment. Heat conduction across the boundary of the coronae has to be suppressed by a factor of >100, which implies the X-ray gas in early-type galaxies is magnetized and the magnetic field plays an important role in energy transfer. Stripping through transport processes (viscosity or turbulence) also needs to be suppressed by at least a factor of ten at the coronal boundary... (abridged) Diffuse thermal coronae have also been detected in at least 8 of 22 late-type (Sb or later) galaxies in our sample. Evidence for enhanced star formation triggered by the ICM pressure has been found in four late-type galaxies. The fraction of luminous X-ray AGN (>10^41 ergs s^-1) is not small (~ 5%) in our sample.

  1. Thermal Emission from a Hot Cocoon Surrounding the Jet of XRF 060218

    E-Print Network [OSTI]

    Liang, E; Zhang, B B; Dai, Z G; Liang, Enwei; Zhang, Bing; Zhang, Bin-Bin

    2006-01-01T23:59:59.000Z

    It is long speculated that long duration gamma-ray bursts (GRBs) originate froma relativistic jet emerging from a collapsing massive star progenitor. Although associations of core-collapsing supernovae with long GRB afterglows have been identified in a number of systems, including the latest X-ray flash (XRF) 060218/SN 2006aj connection detected by Swift, direct evidence of a relativistic jet emerging from a collapsing star is still lacking. Here we report the detection of a thermal emission component (high-T component) accompanying the prompt X-ray emission of XRF 060218, with temperature kT_H=1.21+0.22/-0.24 keV and effective blackbody radius R_H~ 5\\times 10^{9} cm. This high-T component co-exists with another low-T thermal component as reported by Campana et al. 2006 for at least 2700 seconds, but evolves independently with respect to the low-T component by tracing the lightcurve of the non-thermal component. We identify this high-T thermal component as the emission of a hot cocoon surrounding the relativi...

  2. Detection of the thermal radio continuum emission from the G9.62+0.19-F Hot Core

    E-Print Network [OSTI]

    L. Testi; P. Hofner; S. Kurtz; M. Rupen

    2000-06-15T23:59:59.000Z

    We present new high resolution and high sensitivity multi-frequency VLA radio continuum observations of the G9.62+0.19-F hot molecular core. We detect for the first time faint centimetric radio continuum emission at the position of the core. The centimetric continuum spectrum of the source is consistent with thermal emission from ionised gas. This is the first direct evidence that a newly born massive star is powering the G9.62+0.19-F hot core.

  3. Comparison of experimental and simulated thermal ratings of drain-back solar water heaters

    SciTech Connect (OSTI)

    Davidson, J.H.; Carlson, W.T.; Duff, W.S. (Colorado State Univ., Fort Collins (United States)); Schaefer, P.J.; Beckman, W.A.; Klein, S.A. (Univ. of Wisconsin, Madison (United States))

    1993-05-01T23:59:59.000Z

    Short-term experimental tests of drain-back solar water heaters are compared to ratings obtained using TRNSYS to determine if computer simulations can effectively replace laboratory thermal ratings of solar domestic hot water heating systems. The effectiveness of TRNSYS in predicting changes in rating due to limited changes in collector area, collector flow rate, recirculation flow rate, storage tank volume, and storage tank design is validated to within [plus minus]10 percent. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards.

  4. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  5. FEMP Solar Hot Water Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace CenterEverlightOpenEyeforenergyFEMSolar Hot

  6. Savings Project: Insulate Hot Water Pipes for Energy Savings | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal InvestigatorsSave Energy onof Energy Hot

  7. Reduce Hot Water Use for Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,Past OpportunitiesRedAirReduce Hot

  8. Sacramento Ordinance to Waive Fees for Solar Hot Water

    Broader source: Energy.gov [DOE]

    An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

  9. Ocala Utility Services- Solar Hot Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive...

  10. NV Energy (Northern Nevada)- Solar Hot Water Incentive Program

    Broader source: Energy.gov [DOE]

    NV Energy is providing an incentive for its residential customers, small commercial, nonprofit, school and other public customers to install solar water heaters on their homes and facilities. ...

  11. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is more efficient? Tell Us Addthis Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy...

  12. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  13. Solar Water Heating: What's Hot and What's Not†

    E-Print Network [OSTI]

    Stein, J.

    1992-01-01T23:59:59.000Z

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  14. Solar Water Heating: What's Hot and What's Not

    E-Print Network [OSTI]

    Stein, J.

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  15. Opportunities for utility involvement with solar domestic hot water

    SciTech Connect (OSTI)

    Carlisle, N.; Christensen, C. (National Renewable Energy Lab., Golden, CO (United States)); Barrett, L. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

    1992-05-01T23:59:59.000Z

    Solar water heating is one of a number of options that can be considered under utility demand-side management (DSM) programs. Utilities perceive a range of potential benefits for solar water heating in terms of customer service, energy conservation, load management, environmental enhancement, and public relations. The solar industry may benefit from utility marketing efforts, economies of scale, added credibility, financing options, and long-term maintenance arrangements. This paper covers three topics: (1) the energy and demand impacts of solar water heating on utility load profiles based on the results of four studies in the literature, (2) the results of workshops sponsored by the National Renewable Energy Laboratory (NREL) to identify key issues faced by utilities in considering residential solar water heating as a DSM option, (3) several current or planned utility programs to promote solar water heating. 7 refs.

  16. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, John W. (Sag Harbor, NY)

    1983-06-28T23:59:59.000Z

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  17. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, J.W.

    1980-06-25T23:59:59.000Z

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  18. New Hampshire Electric Co-Op- Solar Hot Water

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum...

  19. NV Energy (Southern Nevada)- Solar Hot Water Incentive Program

    Broader source: Energy.gov [DOE]

    NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

  20. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil†

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  1. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  2. Comparison Between TRNSYS Software Simulation and F-Chart Program on Solar Domestic Hot Water System

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This study presents the accuracy test of a TRNSYS Solar Domestic Hot Water (SDHW) System simulation. The testing is based on comparing the results with the F-Chart software. The selected system to carry out the tests was the Active Solar Domestic...

  3. Comparison Between TRNSYS Software Simulation and F-Chart Program on Solar Domestic Hot Water System†

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This study presents the accuracy test of a TRNSYS Solar Domestic Hot Water (SDHW) System simulation. The testing is based on comparing the results with the F-Chart software. The selected system to carry out the tests was the Active Solar Domestic...

  4. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina. Final report

    SciTech Connect (OSTI)

    None

    1981-05-01T23:59:59.000Z

    Included in this report is detailed information regarding the design and installation of a heating and hot water system in a commercial application. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  5. Trout in hot water Understanding the effects of climate change on ecosystems is a complex

    E-Print Network [OSTI]

    Brierley, Andrew

    Trout in hot water Understanding the effects of climate change on ecosystems is a complex business as we set out for the Hengill geothermal valley. You might think of Iceland as a cold, dark country up the breakdown of organic matter and nutrients are recycled more quickly, leading to more resources

  6. HOT PHENOL RNA EXTRACTION PROTOCOL 1) Set the water bath to 800

    E-Print Network [OSTI]

    Gill, Kulvinder

    HOT PHENOL RNA EXTRACTION PROTOCOL 1) Set the water bath to 800 C. 2) Make 50 mL Extraction bufferL SDS = 0.5 gm DEPC treated water = 43.2 mL Total = 50 mL 3) Add 50 mL phenol (pH = 4.7), in 50 mL extraction buffer (final concentration of 1:1). For small sample add 200 to 300ul of 1Extraction buffer: 1

  7. MODELLING RADIATIVELY ACTIVE WATER-ICE CLOUDS: IMPACT ON THE THERMAL STRUCTURE AND WATER CYCLE.

    E-Print Network [OSTI]

    Madeleine, Jean-Baptiste

    MODELLING RADIATIVELY ACTIVE WATER-ICE CLOUDS: IMPACT ON THE THERMAL STRUCTURE AND WATER CYCLE. J. The essential role of water-ice clouds in shaping the thermal structure of the martian atmosphere has been long presumed [1] but neglected in GCMs because of the lack of observations and difficulty to predict

  8. Thermal properties of hot and dense matter with finite range interactions

    E-Print Network [OSTI]

    Constantinou, Constantinos; Prakash, Madappa; Lattimer, James M

    2015-01-01T23:59:59.000Z

    We explore the thermal properties of hot and dense matter using a model that reproduces the empirical properties of isospin symmetric and asymmetric bulk nuclear matter, optical model fits to nucleon-nucleus scattering data, heavy-ion flow data in the energy range 0.5-2 GeV/A, and the largest well-measured neutron star mass of 2 $\\rm{M}_\\odot$. Results of this model which incorporates finite range interactions through Yukawa type forces are contrasted with those of a zero-range Skyrme model that yields nearly identical zero-temperature properties at all densities for symmetric and asymmetric nucleonic matter and the maximum neutron star mass, but fails to account for heavy-ion flow data due to the lack of an appropriate momentum dependence in its mean field. Similarities and differences in the thermal state variables and the specific heats between the two models are highlighted. Checks of our exact numerical calculations are performed from formulas derived in the strongly degenerate and non-degenerate limits....

  9. Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

  10. Geochemical Data for 95 Thermal and Nonthermal Waters of the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data for 95 Thermal and Nonthermal Waters of the Valles Caldera - Southern Jemez Mountains...

  11. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  12. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01T23:59:59.000Z

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  13. Low rank coal upgrading in a flow of hot water

    SciTech Connect (OSTI)

    Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

    2009-09-15T23:59:59.000Z

    Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

  14. Sometimes hot water will have a "sour" smell, similar to that of an old damp rag. This smell often

    E-Print Network [OSTI]

    . Odor-causing bacteria live and thrive in warm water and can infest the water heater. The problem (approximately 160 degrees F) for 8 hours. This will kill the bacteria. (Caution: Be sure the water heater has#12;Sometimes hot water will have a "sour" smell, similar to that of an old damp rag. This smell

  15. Indoor air movement acceptability and thermal comfort in hot-humid climates

    E-Print Network [OSTI]

    Candido, Christhina Maria

    2010-01-01T23:59:59.000Z

    HVAC) and the thermal envelope of buildings, but designments concern the thermal envelope, lighting and acoustics,HVAC and buildingís thermal envelope. Yet requirements for

  16. Condensation potential in high thermal performance walls. Hot, humid summer climate. Forest Service research paper

    SciTech Connect (OSTI)

    Sherwood, G.E.

    1985-07-01T23:59:59.000Z

    To observe actual moisture patterns and the potential for condensation due to long periods of air conditioning in a hot, humid climate, a test structure was constructed near Gulfport, Mississippi, for exposure of eight types of insulated wall panels at controlled indoor conditions and typical outdoor weather conditions. Panels were instrumented with moisture sensors and tested without (Phase 1) and with (Phase 2) penetrations (electrical outlets) in the indoor surface. There was no sustained condensation in any of the walls during either winter season. One type of high thermal performance wall had sustained condensation during both summers, but the wall dried out as the weather became cooler, and moisture content of framing never exceeded 17 percent. Low-permeance sheathing appeared to provide resistance to the buildup of moisture during summer in walls with high overall R values. Penetrating the walls with electrical outlets resulted in slightly higher moisture levels in all of the walls throughout the year. This paper should be useful to building designers, builders, and building code officials in establishing vapor retarder requirements for walls.

  17. Solar hot water system installed at Quality Inn, Key West, Florida. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings, is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50% of the energy required for the domestic hot water system. The solar system consists of approximately 1400 ft/sup 2/ of flat plate collector, two 500 gal storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in 40% fuel savings.

  18. Multiphysics Thermal-Fluid Design Analysis of a Non-Nuclear Tester for Hot-Hydrogen Materials and Component Development

    SciTech Connect (OSTI)

    Wang, T.-S.; Foote, John; Litchford, Ron [NASA Marshall Space Flight Center, Huntsville, Alabama, 35812 (United States)

    2006-01-20T23:59:59.000Z

    The objective of this effort is to perform design analyses for a non-nuclear hot-hydrogen materials tester, as a first step towards developing efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber design and analysis. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective, and thermal radiative heat transfers. The goals of the design analyses are to maintain maximum hot-hydrogen jet impingement energy and to minimize chamber wall heating. The results of analyses on three test fixture configurations and the rationale for final selection are presented. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  19. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, M.

    2014-09-01T23:59:59.000Z

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  20. Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah

    SciTech Connect (OSTI)

    Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

    1980-02-01T23:59:59.000Z

    Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

  1. A phenomenological model of thermal-hydraulics of convective boiling during the quenching of hot rod bundles

    SciTech Connect (OSTI)

    Unal, C.; Nelson, R.

    1991-01-01T23:59:59.000Z

    After completion of the thermal-hydraulic model developed in a companion paper, the authors performed developmental assessment calculation of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The overall interfacial drag model predicted reasonable drag coefficients for both the nucleate boiling and the inverted annular flow (IAF) regimes. The predicted pressure drops agreed reasonably well with the measured data of two transient experiments, CCTF Run 14 and a Lehigh reflood test. The thermal-hydraulic model for post-CHF convective heat transfer predicted the rewetting velocities reasonably well for both experiments. The predicted average slope of the wall temperature traces for these tests showed reasonable agreement with the measured data, indicating that the transient-calculated precursory cooling rates agreed with measured data. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. The interfacial heat-transfer model tended to slightly underpredict the vapor temperatures. The maximum difference between calculated and measured vapor temperatures was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall temperatures were in reasonable agreement with measured data with a maximum relative error of less than 13%.

  2. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  3. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect (OSTI)

    Nick Soelberg; Joe Enneking

    2011-05-01T23:59:59.000Z

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  4. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Diagram 1: A Typical Tank Water Heater Source: http://California households. Tank water heaters stayed constant.the same impact as tank water heaters. The project results

  5. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Study on Eco-Design of Water Heaters, Van Holstein en Kemnaand AssessmentĒ in Water Heating Rulemaking TechnicalG. Smith, Tankless Gas Water Heaters: Oregon Market Status,

  6. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Study on Eco-Design of Water Heaters, Van Holstein en Kemnaheater. Eco-design of Water Heaters and Methodology studyboth storage-type water heaters and tankless water heaters.

  7. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    for PAH emissions. The PAHs from tank water heaters in theIncreased Tankless Water Usage: PAHs Heavy Metals to WaterIncreased Tankless Water Usage: VOCs PAHs Heavy Metals to

  8. Solar-induced thermal activity and stratification in pond water

    E-Print Network [OSTI]

    Brownridge, James D

    2015-01-01T23:59:59.000Z

    Ponds are universally used to store water for a large number of uses. With the increasing demand for more fresh water, ponds, lakes and reservoirs are likely to be constructed on a larger scale. We must understand the effects of environmental changes on fresh water if we are to most efficiently utilize this resource. This study undertakes to increase our understanding of the rate of thermal response of ponds and other bodies of water to every-day environmental changes. The central research agenda is to investigate how the temperature of pond water from top to bottom responds to the day/night cycle, changes in air temperature just above the surface, cloud conditions, and other sudden environmental changes. Data collection for this study spanned October 2007 to June 2011 and had a continuous time resolution of 50 seconds.

  9. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01T23:59:59.000Z

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  10. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30T23:59:59.000Z

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  11. U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

  12. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Study on Eco-Design of Water Heaters, Van Holstein en Kemnaon Eco-Design of Water HeatersĒ, Task 5 Report, DefinitionTesting of Tankless Gas Water Heater Performance. Davis

  13. Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel

    E-Print Network [OSTI]

    Meng, Q.; Zhang, Y.; Zhang, L.

    2006-01-01T23:59:59.000Z

    rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results...

  14. Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel†

    E-Print Network [OSTI]

    Meng, Q.; Zhang, Y.; Zhang, L.

    2006-01-01T23:59:59.000Z

    rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results...

  15. DESIGN AND ANALYSIS OF THE SNS CCL HOT MODEL WATER COOLING SYSTEM USING THE SINDA/FLUINT NETWORK MODELING TOOL

    SciTech Connect (OSTI)

    C. AMMERMAN; J. BERNARDIN

    1999-11-01T23:59:59.000Z

    This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.

  16. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect (OSTI)

    Burch, J.; Thomas, K.E.

    1998-01-01T23:59:59.000Z

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  17. Thermal Performance of Exposed Composed Roofs in Very Hot Dry Desert Region in Egypt (Toshky)

    E-Print Network [OSTI]

    Khalil, M. H.; Sheble, S.; Morsey, M. S.; Fakhry, S.

    2010-01-01T23:59:59.000Z

    is considered the major part of the building envelop which exposed to high thermal load due to the high solar intensity and high outdoor air temperature through summer season which reach to 6 months. In Egypt the thermal effect of roof is increased as one go...

  18. Measurement of temperature-dependent thermal conductivity and viscosity of TiO{sub 2}-water nanofluids

    SciTech Connect (OSTI)

    Duangthongsuk, Weerapun; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, 126 Bangmod, Bangkok 10140 (Thailand)

    2009-04-15T23:59:59.000Z

    Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Many attempts have been made to investigate its thermal conductivity and viscosity, which are important thermophysical properties. No definitive agreements have emerged, however, about these properties. This article reports the thermal conductivity and dynamic viscosity of nanofluids experimentally. TiO{sub 2} nanoparticles dispersed in water with volume concentration of 0.2-2 vol.% are used in the present study. A transient hot-wire apparatus is used for measuring the thermal conductivity of nanofluids whereas the Bohlin rotational rheometer (Malvern Instrument) is used to measure the viscosity of nanofluids. The data are collected for temperatures ranging from 15 C to 35 C. The results show that the measured viscosity and thermal conductivity of nanofluids increased as the particle concentrations increased and are higher than the values of the base liquids. Furthermore, thermal conductivity of nanofluids increased with increasing nanofluid temperatures and, conversely, the viscosity of nanofluids decreased with increasing temperature of nanofluids. Moreover, the measured thermal conductivity and viscosity of nanofluids are quite different from the predicted values from the existing correlations and the data reported by other researchers. Finally, new thermophysical correlations are proposed for predicting the thermal conductivity and viscosity of nanofluids. (author)

  19. Hot Water Distribution System Program Documentation and Comparison to Experimental Data

    SciTech Connect (OSTI)

    Baskin, Evelyn [GE Infrastructure Energy; Craddick, William G [ORNL; Lenarduzzi, Roberto [ORNL; Wendt, Robert L [ORNL; Woodbury, Professor Keith A. [University of Alabama, Tuscaloosa

    2007-09-01T23:59:59.000Z

    In 2003, the California Energy Commission s (CEC s) Public Interest Energy Research (PIER) program funded Oak Ridge National Laboratory (ORNL) to create a computer program to analyze hot water distribution systems for single family residences, and to perform such analyses for a selection of houses. This effort and its results were documented in a report provided to CEC in March, 2004 [1]. The principal objective of effort was to compare the water and energy wasted between various possible hot water distribution systems for various different house designs. It was presumed that water being provided to a user would be considered suitably warm when it reached 105 F. Therefore, what was needed was a tool which could compute the time it takes for water reaching the draw point to reach 105 F, and the energy wasted during this wait. The computer program used to perform the analyses was a combination of a calculational core, produced by Dr. Keith A. Woodbury, Professor of Mechanical Engineering and Director, Alabama Industrial Assessment Center, University of Alabama, and a user interface based on LabVIEW, created by Dr. Roberto Lenarduzzi of ORNL. At that time, the computer program was in a relatively rough and undocumented form adequate to perform the contracted work but not in a condition where it could be readily used by those not involved in its generation. Subsequently, the CEC provided funding through Lawrence Berkeley National Laboratory (LBNL) to improve the program s documentation and user interface to facilitate use by others, and to compare the program s results to experimental data generated by Dr. Carl Hiller. This report describes the program and provides user guidance. It also summarizes the comparisons made to experimental data, along with options built into the program specifically to allow these comparisons. These options were necessitated by the fact that some of the experimental data required options and features not originally included in the program. A more detailed description of these program modifications along with detailed comparisons to the experimental data are provided in a report produced by Dr. Woodbury, which accompanies this report as Appendix H.

  20. Assembly and comparison of available solar hot water system reliability databases and information.

    SciTech Connect (OSTI)

    Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

    2009-05-01T23:59:59.000Z

    Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

  1. Thermal and lighting performance of toplighting systems in the hot and humid climate of Thailand

    E-Print Network [OSTI]

    Harntaweewongsa, Siritip

    2006-10-30T23:59:59.000Z

    , light distribution, and uniformity. EnergyPlus was used as the thermal analysis tool, and RADIANCE, along with a physical scale model, was used as the lighting performance analysis tool. The sky conditions tested were overcast, clear sky...

  2. Violent Reactions and DDT in Hot, Thermally Damaged HMX-Based PBXs

    SciTech Connect (OSTI)

    Parker, Gary R. Jr. [Los Alamos National Laboratory; Holmes, Matthew D. [Los Alamos National Laboratory; Dickson, Peter [Los Alamos National Laboratory; Asay, Blaine W. [Los Alamos National Laboratory; McAfee, John M. [Los Alamos National Laboratory

    2012-07-03T23:59:59.000Z

    Conventional high explosives (e.g. PBX 9501, LX-07) have been observed to react violently following thermal insult: (1) Fast convective and compressive burns (HEVR); (2) Thermal explosions (HEVR); and (3) Deflagration-to-detonation transition (DDT). No models exist that sufficiently capture/predict these complex multiphase and multiscale behaviors. For now, research is focused on identifying vulnerabilities and factors that control this behavior.

  3. Effects of Courtyard on Thermal Performance of Commercial Buildings in Hot-Dry Climate, Ahmedabad, India

    E-Print Network [OSTI]

    Kumar, R,

    of the simulation exercise has been established on the available weather data. The result would be the analysis of energy performance of different building models. Keywords: Courtyards, Building Configuration, Energy Consumption, Thermal Simulation, Computer... in reducing energy consumption of buildings. Many research studies suggest that courtyard as a climatic modifier helps in improving thermal environment and enhancing daylight deep into the interior thus reducing energy consumption of the building...

  4. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net at the core of a zero-net-energy demonstration home designed to generate enough electricity to also power policy initiatives to advance zero net energy homes as standard practice. #12;As heat pump systems become

  5. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for

    E-Print Network [OSTI]

    Berning, Torsten

    Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat oxide fuel cell, Cogeneration, Storage heat Tank 1. Introduction In residential sector, energy

  6. Water and Energy Savings using Demand Hot Water Recirculating Systems in Residential Homes: A Case Study of Five Homes in Palo Alto, California

    SciTech Connect (OSTI)

    Ally, M.R.

    2002-11-14T23:59:59.000Z

    This report summarizes a preliminary study aimed at estimating the potential of saving potable water, (and the electrical energy used to heat it), that is presently lost directly to the drain while occupants wait for hot water to arrive at the faucet (point of use). Data were collected from five single-family homes in Palo Alto, California. Despite the small sample size in this study, the results make a compelling case for retrofitting homes with hot water recirculation systems to eliminate unnecessary wastage of water at the point of use. Technical as well as behavioral and attitudinal changes towards water conservation are necessary for a fulfilling and successful conservation effort. This report focuses on the technical issues, but behavioral issues are also noted, which may be factored into future studies involving local and state governments and utility companies.

  7. Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Metzger, C.; Puttagunta, S.; Williamson, J.

    2013-11-01T23:59:59.000Z

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  8. Improving thermosyphon solar domestic hot water system model performance. Final report, March 1994--February 1995

    SciTech Connect (OSTI)

    Swift, T.N.

    1996-09-01T23:59:59.000Z

    Data from an indoor solar simulator experimental performance test is used to develop a systematic calibration procedure for a computer model of a thermosyphoning, solar domestic hot water heating system with a tank-in-tank heat exchanger. Calibration is performed using an indoor test with a simulated solar collector to adjust heat transfer in the heat exchanger and heat transfer between adjacent layers of water in the storage tank. An outdoor test is used to calibrate the calculation of the friction drop in the closed collector loop. Additional indoor data with forced flow in the annulus of the heat exchanger leads to improved heat transfer correlations for the inside and outside regions of the tank-in-tank heat exchanger. The calibrated simulation model is compared to several additional outdoor tests both with and without auxiliary heating. Integrated draw energies are predicted with greater accuracy and draw temperature profiles match experimental results to a better degree. Auxiliary energy input predictions improve significantly. 63 figs., 29 tabs.

  9. Thermal neutron flux perturbation due to indium foils in water

    E-Print Network [OSTI]

    Stinson, Ronald Calvin

    1961-01-01T23:59:59.000Z

    of MASTER OF SCIENCE August, i 96I Major Subject: Nuclear Engineering THERMAL NEUTRON FLUX PERTURBATION DUE TO INDIUM FOILS IN WATER A Thesis by Ronald C. Stinson, Jr. Approved as to style and content by: Chai man of Committee Head of Department.... 2. Tittle, C. N. , Nucleonics 8, (6), 5 (1951); Ibid 9 (1), 60 (1951). 3. Skyrme, T, H. R. , "Reduction in Neutron Density Caused by an Absorbing Disc. " MS-91 (N. D. ) 4. Dalton, G. R. and Osborn, R. K. , Nuclear Science and En ineerin 9, 19...

  10. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect (OSTI)

    Sokolov, A. S. [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)] [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)

    2013-07-15T23:59:59.000Z

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  11. The Hot Interstellar Medium in Normal Elliptical Galaxies III: The Thermal Structure of the Gas

    E-Print Network [OSTI]

    Steven Diehl; Thomas S. Statler

    2008-06-11T23:59:59.000Z

    This is the third paper in a series analyzing X-ray emission from the hot interstellar medium in a sample of 54 normal elliptical galaxies observed by Chandra, focusing on 36 galaxies with sufficient signal to compute radial temperature profiles. We distinguish four qualitatively different types of profile: positive gradient (outwardly rising), negative gradients (falling), quasi-isothermal (flat) and hybrid (falling at small radii, then rising). We measure the mean logarithmic temperature gradients in two radial regions: from 0--2 $J$-band effective radii $R_J$ (excluding the central point source), and from 2--$4R_J$. We find the outer gradient to be uncorrelated with intrinsic host galaxy properties, but strongly influenced by the environment: galaxies in low-density environments tend to show negative outer gradients, while those in high-density environments show positive outer gradients, suggesting influence of circumgalactic hot gas. The inner temperature gradient is unaffected by the environment but strongly correlated with intrinsic host galaxy characteristics: negative inner gradients are more common for smaller, optically faint, low radio-luminosity galaxies, whereas positive gradients are found in bright galaxies with stronger radio sources. There is no evidence for bimodality in the distribution of inner or outer gradients. We propose three scenarios to explain the inner temperature gradients: (1) Weak AGN heat the ISM locally, higher-luminosity AGN heat the system globally through jets inflating cavities at larger radii; (2) The onset of negative inner gradients indicates a declining importance of AGN heating relative to other sources, such as compressional heating or supernovae; (3) The variety of temperature profiles are snapshots of different stages of a time-dependent flow.

  12. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    consumer/your_home/water_ heating/index.cfm/mytopic=12980heating is a large source of energy use in California homes.heating is the third largest source of energy use in homes [

  13. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01T23:59:59.000Z

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  14. Thermal Monitoring Approaches for Energy Savings Verification

    E-Print Network [OSTI]

    McBride, J. R.; Bohmer, C. J.; Lippman, R. H.; Zern, M. J.

    This paper reviews and summarizes techniques for monitoring thermal energy flows for the purpose of verifying energy savings in industrial and large institutional energy conservation projects. Approaches for monitoring hot and chilled water, steam...

  15. Reducing Thermal Losses and Gains With Buried and Encapsulated Ducts in Hot-Humid Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Magee, A.; Zoeller, W.

    2013-02-01T23:59:59.000Z

    The Consortium for Advanced Residential Buildings (CARB) monitored three houses in Jacksonville, FL, to investigate the effectiveness of encapsulated and encapsulated/buried ducts in reducing thermal losses and gains from ductwork in unconditioned attics. Burying ductwork beneath loose-fill insulation has been identified as an effective method of reducing thermal losses and gains from ductwork in dry climates, but it is not applicable in humid climates where condensation may occur on the outside of the duct jacket. By encapsulating the ductwork in closed cell polyurethane foam (ccSPF) before burial beneath loose-fill mineral fiber insulation, the condensation potential may be reduced while increasing the R-value of the ductwork.

  16. High temperature hot water distribution system study, Directorate of Public Works, Fort Drum, New York; executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA01-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: (1) Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. (2) Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  17. HOT WATER IN THE INNER 100 AU OF THE CLASS 0 PROTOSTAR NGC 1333 IRAS2A

    SciTech Connect (OSTI)

    Visser, Ruud; Bergin, Edwin A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Jorgensen, Jes K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Kristensen, Lars E.; Van Dishoeck, Ewine F., E-mail: visserr@umich.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-05-20T23:59:59.000Z

    Evaporation of water ice above 100 K in the inner few 100 AU of low-mass embedded protostars (the so-called hot core) should produce quiescent water vapor abundances of {approx}10{sup -4} relative to H{sub 2}. Observational evidence so far points at abundances of only a few 10{sup -6}. However, these values are based on spherical models, which are known from interferometric studies to be inaccurate on the relevant spatial scales. Are hot cores really that much drier than expected, or are the low abundances an artifact of the inaccurate physical models? We present deep velocity-resolved Herschel-HIFI spectra of the 3{sub 12}-3{sub 03} lines of H{sub 2}{sup 16}O and H{sub 2}{sup 18}O (1097 GHz, E{sub u}/k = 249 K) in the low-mass Class 0 protostar NGC 1333 IRAS2A. A spherical radiative transfer model with a power-law density profile is unable to reproduce both the HIFI data and existing interferometric data on the H{sub 2}{sup 18}O 3{sub 13}-2{sub 20} line (203 GHz, E{sub u}/k = 204 K). Instead, the HIFI spectra likely show optically thick emission from a hot core with a radius of about 100 AU. The mass of the hot core is estimated from the C{sup 18}O J = 9-8 and 10-9 lines. We derive a lower limit to the hot water abundance of 2 Multiplication-Sign 10{sup -5}, consistent with the theoretical predictions of {approx}10{sup -4}. The revised HDO/H{sub 2}O abundance ratio is 1 Multiplication-Sign 10{sup -3}, an order of magnitude lower than previously estimated.

  18. The ASME handbook on water technology for thermal power systems

    SciTech Connect (OSTI)

    Cohen, P. (ed.)

    1989-01-01T23:59:59.000Z

    The idea that a handbook on water technology be developed was initially put forth in 1978 by the ASME Research Committee on Water in Thermal Power Systems. A prospectus was issued in 1979 to solicit funding from industry and government. The preparation of the handbook began in 1980 under the direct control of a Handbook Steering Subcommittee established by the Research Committee and an editor reporting to that subcommittee. Handbook content was carefully monitored by an editorial committee of industry experts and by a special honorary editorial committee from the Chemistry Committee of the Edison Electric Institute. This handbook summarizes the current state of the art of water technology for steam power plant cycles. It is intended to serve both as a training text and a reference volume for power station chemists, engineers, manufacturers, and research and development institutions. While the primary emphasis is on Electric Utility Power Generation cycles (fossil and nuclear), the book will also serve as a valuable reference on high pressure industrial steam system technology.

  19. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  20. A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrotherm...

    Open Energy Info (EERE)

    Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  1. EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM

    E-Print Network [OSTI]

    Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because-scale thermal energy storage via hot compressed liquid water. Such a cycle is potentially interesting becauseEXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM Paul T. O'Brien 1 , and John Pye 2 1

  2. An Itegrated Approach to Water Treatment in Oil and Gas Industry via Thermal Membrane Distillation†

    E-Print Network [OSTI]

    Elsayed, Nesreen Ahmed Abdelmoez Mohamed

    2014-10-14T23:59:59.000Z

    an increasing level of interest in the area of high-purity separation especially in water treatment. It is driven primarily by heat which creates a vapor-pressure difference across a porous hydrophobic membrane. Hot produced water and excess low-level heat from...

  3. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    of Natural Gas Tankless Water Heaters. Center for Energy andhot water from the water heater to each end-use locationMixed Temperature Water Water Heater Drain Indoor Boundary

  4. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    of Natural Gas Tankless Water Heaters. Center for Energy andof water at the water heater and at several end-use pointsshowerhead, entering the water heater and leaving the water

  5. Report on the analysis of field data relating to the reliability of solar hot water systems.

    SciTech Connect (OSTI)

    Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

    2011-07-01T23:59:59.000Z

    Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

  6. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    SciTech Connect (OSTI)

    Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)] [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28T23:59:59.000Z

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

  7. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    heaters, hot water supply boilers, and unfired hot water storage tanks.heaters, hot water supply boilers, and unfired hot water storage tanks.

  8. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01T23:59:59.000Z

    DEALING WITH ďBIG CIRCULATION FLOW RATE, SMALL TEMPERATURE DIFFERENCEĒ BASED ON VERIFIED DYNAMIC MODEL SIMULATIONS OF A HOT WATER DISTRICT HEATING SYSTEM Li Lian Zhong, Senior Sales Consultant, Danfoss Automatic Controls Management (Shanghai...) Co.,Ltd, Anshan, China ABSTRACT Dynamic models of an indirect hot water district heating system were developed based on the first principle of thermodynamics. The ideal model was verified by using measured operational data. The ideal...

  9. Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Two Demand Electric Water Heaters for Northeast Utilities.Two Demand Electric Water Heaters for Northeast Utilities.Johnson. Heat Pump Water Heater Field Test: 30 Crispaire

  10. Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate

    E-Print Network [OSTI]

    Bahnfleth, W. P.; Musser, A.

    1998-01-01T23:59:59.000Z

    by approximately $1.5 million per year. The thermal storage tank is a fully buried cylindrical, precast, pre-stressed tank with four-ring single pipe octagonal diffusers. It holds 5.2 million gallons (1 9.7 million L) of water, and is 140 ft (42.7 m... of the system and its operation is followed by presentation of operating data taken during 1997. INTRODUCTION Chilled water thermal energy storage ('TES) in naturally stratified tanks has been shown to be a valuable central cooling plant load management...

  11. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  12. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  13. Thermal Neutron Computed Tomography of Soil Water and Plant Roots

    E-Print Network [OSTI]

    Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans

    2007-01-01T23:59:59.000Z

    and L.A.G. Aylmore. 1986. Water extraction by a single plantgrowth, water uptake, and nutrient extraction (Asseng et

  14. The Study on Thermal Performance and Applicability of Energy-saving Wall Materials in Hot Summer and Cold Winter Zones

    E-Print Network [OSTI]

    Ren, W.; Lan, M.; Hao, Y.

    2006-01-01T23:59:59.000Z

    The hot summer and cold winter zone is a transition zone between the cold zone and hot zone, sweltering in summer and chilly in winter, of which climate is worse. In recent years, with people's raised requirements on indoor living environments...

  15. Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    and R.K. Johnson. Heat Pump Water Heater Field Test: 30a Market-Optimized Heat- Pump Water Heater. Prepared by TIAXcost savings of heat pump water heaters Field test of

  16. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  17. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  18. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems

    E-Print Network [OSTI]

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01T23:59:59.000Z

    , encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

  19. Analysis of the Temporal Evolution of Thermal Conductivity in Alumina-Water Nanofluid†

    E-Print Network [OSTI]

    Fortenberry, Stephen

    2009-09-30T23:59:59.000Z

    In this effort, the temporal behavior of a manufactured alumina (Al2O3) Ė water nanofluid was evaluated. Measurements of nanofluid effective thermal conductivity were acquired over an extended time period. Analysis of acquired measurements...

  20. Analysis of the Temporal Evolution of Thermal Conductivity in Alumina-Water Nanofluid

    E-Print Network [OSTI]

    Fortenberry, Stephen

    2009-09-30T23:59:59.000Z

    In this effort, the temporal behavior of a manufactured alumina (Al2O3) Ė water nanofluid was evaluated. Measurements of nanofluid effective thermal conductivity were acquired over an extended time period. Analysis of acquired measurements...

  1. Thermal desalination : structural optimization and integration in clean power and water

    E-Print Network [OSTI]

    Zak, Gina Marie

    2012-01-01T23:59:59.000Z

    A large number of resources are dedicated to seawater desalination and will only grow as world-wide water scarcity increases. In arid areas with high temperature and salinity seawater, thermal desalination and power plants ...

  2. Water-induced Bulk Ba(NO3)2 Formation From NO2 Exposed Thermally...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Ba(NO3)2 Formation From NO2 Exposed Thermally Aged BaOAl2O3. Water-induced Bulk Ba(NO3)2 Formation From NO2 Exposed Thermally Aged BaOAl2O3. Abstract: Phase changes in high...

  3. Thermal Waters Along The Konocti Bay Fault Zone, Lake County...

    Open Energy Info (EERE)

    in the diluted spring waters suggest that the diluting water is old. Authors J. M. Thompson, R. H. Mariner, L. D. White, T. S. Presser and W. C. Evans Published Journal Journal...

  4. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  5. Limited Energy Engineering Analysis (EEAP) study of summer boiler at high temperature hot water plants, Fort Leonard Wood, Missouri. Final report

    SciTech Connect (OSTI)

    NONE

    1993-09-02T23:59:59.000Z

    This report is a study of the existing High Temperature Hot Water Distribution Systems at Fort Leonard Wood, Missouri. There are two systems with central boilers located in Buildings 1021 and 2369. The study focuses on the operation of the boilers during the summer months which is required to provide domestic hot water and sanitizing steam to various buildings. Because the boilers are operating under a reduced load condition, it may be cost effective in terms of energy conservation to implement one of the following energy conservation opportunities (ECO`s).

  6. Commercial thermal distribution systems, Final report for CIEE/CEC

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    thermal envelope..Branch Duct -Hot-Air Duct Outside Thermal Envelope. - - -Cold-Air Duct Outside Thermal Envelope =="-"Hot-Air Duct

  7. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids

    SciTech Connect (OSTI)

    Jha, Neetu; Ramaprabhu, S. [Department of Physics, Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Indian Institute of Technology Madras, Chennai 600036 (India)

    2009-10-15T23:59:59.000Z

    High thermal conducting metal nanoparticles have been dispersed on the multiwalled carbon nanotubes (MWNTs) outer surface. Structural and morphological characterizations of metal dispersed MWNTs have been carried out using x-ray diffraction analysis, high resolution transmission electron microscopy, energy dispersive x-ray analysis, and Fourier transform infrared spectroscopy. Nanofluids have been synthesized using metal-MWNTs in de-ionized water (DI water) and ethylene glycol (EG) base fluids. It has been observed that nanofluids maintain the same sequence of thermal conductivity as that of metal nanoparticles Ag-MWNTs>Au-MWNTs>Pd-MWNTs. A maximum enhancement of 37.3% and 11.3% in thermal conductivity has been obtained in Ag-MWNTs nanofluid with DI water and EG as base fluids, respectively, at a volume fraction of 0.03%. Temperature dependence study also shows enhancement of thermal conductivity with temperature.

  8. A cash-flow economic model for analyzing utility/ESCO solar hot water programs

    SciTech Connect (OSTI)

    Bircher, C. [ENSTAR, De Pere, WI (United States); DeLaune, J.L. [Wisconsin Public Service Corp., Green Bay, WI (United States); Lyons, C.R. [Energy Alliance Group, Boston, MA (United States)

    1996-11-01T23:59:59.000Z

    Wisconsin Public Service Corporation (WPSC), in partnership with Energy Alliance Group (EAG), has developed a robust cash-flow economic model to analyze an energy service company (ESCO) approach to utility solar water heating programs. This paper describes the ESCO approach and its potential to increase penetration of solar water heating. The economic model is presented, and its use in designing WPSC`s Solar-Wise Water Heating Service program is described. The model`s results for WPSC are positive, indicating that an ESCO approach has strong potential. A feasibility study of ESCO solar water heating programs for a varied sample of other US utilities was also conducted using the model, and the results are summarized. Sensitivity analyses from the study reveal that the three key drivers of ESCO solar water heating success are electric rate, length of the service agreement, and the amount of the customer`s payment for the service.

  9. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOE Patents [OSTI]

    Ackerman, Carl D. (Olympia, WA)

    1983-03-29T23:59:59.000Z

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  10. Supercritical fluid extraction of bitumen free solids separated from Athabasca oil sand feed and hot water process tailings pond sludge

    SciTech Connect (OSTI)

    Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

    1990-01-01T23:59:59.000Z

    The presence of strongly bound organic matter (SOM), in association with certain solids fractions, causes serious problems in the processability of Athabasca oil sands as well as in the settling and compaction of hot water process tailing pond sludge. It has been demonstrated that a substantial amount of this SOM can be separated from oil sands feed and sludge solids, after removal of bitumen by toluene, using a supercritical fluid extraction (SFE) method. The extracted material is soluble in common organic solvents which allows a direct comparison, between the SOM separated from oil sands and sludges, from the point of view of both gross analysis of the major compound types and detailed analysis of chemical structures.

  11. Pilot plant studies for a new hot water process for extraction of bitumen from Utah tar sands

    SciTech Connect (OSTI)

    Dahlstrom, D.A.

    1996-12-31T23:59:59.000Z

    A process development pilot plant for extracting bitumen from tar sands under arid conditions are described. The hot water recovery process under development is required to maximize heat and water recovery, recover more than 90% of the bitumen, minimize the operating cost, and eliminate the use of a tailings pond by increasing the effectiveness of solids separation and dewatering. Technical aspects of process flow conditions, the liquid cyclone separator under development, and testing to analyze the influence of flow rates, size distribution in discharge streams, amount of bitumen recovery from different streams, and air addition are summarized. Test results indicate that bitumen recovery should be at least 90%, water content from thickener underflow and dewater coarse solids averages about 30 weight percent moisture, and the forced vortex cyclone can produce an underflow solids concentration of 69 to 72 weight percent moisture. The proposed flow sheet is believed to be a very low-cost method for bitumen recovery. 5 refs., 3 figs., 2 tabs.

  12. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles

    SciTech Connect (OSTI)

    Nelson, R.A.; Unal, C.

    1991-01-01T23:59:59.000Z

    In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs.

  13. An Analysis Method for Operations of Hot Water Heaters by Artificial Neural Networks†

    E-Print Network [OSTI]

    Yamaha, M.; Takahashi, M.

    2004-01-01T23:59:59.000Z

    Authors tried to apply an Artificial Neural Network (ANN) to estimation of state of building systems. The systems used in this study were gas combustion water heaters. Empirical equations to estimate gas consumption from measureble properies...

  14. An Analysis Method for Operations of Hot Water Heaters by Artificial Neural Networks

    E-Print Network [OSTI]

    Yamaha, M.; Takahashi, M.

    2004-01-01T23:59:59.000Z

    Authors tried to apply an Artificial Neural Network (ANN) to estimation of state of building systems. The systems used in this study were gas combustion water heaters. Empirical equations to estimate gas consumption from measureble properies...

  15. Isotope Geochemistry of Thermal and Nonthermal Waters in the...

    Open Energy Info (EERE)

    geothermal fluids display a positive oxygen 18 shift of not less than 2 because of rock-water isotopic exchange at 220-300C. The Valles geothermal system is capped by a...

  16. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  17. Thermal Storage Systems at IBM Facilities

    E-Print Network [OSTI]

    Koch, G.

    1981-01-01T23:59:59.000Z

    In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27...

  18. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22T23:59:59.000Z

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 įC and 60 įC. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  19. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    v i i where, h = molar enthalpy, Btu/mol (J/mol), M = molarEnergy Used at Shower Water Heater average 5169 BTU ( 5.454MJ ) 4335 BTU ( 4.573 MJ ) 4151 BTU ( 4.379 MJ ) 4192 BTU (

  20. Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials†

    E-Print Network [OSTI]

    Mero, Claire Renee

    2012-07-16T23:59:59.000Z

    , studs in walls are also thermal bridges, since the thermal resistance of wood is much less than the insulation surrounding them. [5] In order to block thermal bridging, either exterior insulation or Aerogel stud strips can be used. [4]. Most exterior... components. [6] 3 3 Aerogel is a silica based nano-scale structure originally developed by NASA and used on the Mars Rover that is 98% air [7], [8]. Until recently aerogel has been far too expensive to even consider using in homes, however...

  1. Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials

    E-Print Network [OSTI]

    Mero, Claire Renee

    2012-07-16T23:59:59.000Z

    , studs in walls are also thermal bridges, since the thermal resistance of wood is much less than the insulation surrounding them. [5] In order to block thermal bridging, either exterior insulation or Aerogel stud strips can be used. [4]. Most exterior... components. [6] 3 3 Aerogel is a silica based nano-scale structure originally developed by NASA and used on the Mars Rover that is 98% air [7], [8]. Until recently aerogel has been far too expensive to even consider using in homes, however...

  2. Environmental Radioactivity 47 (2000) 127}133 Radon concentrations in hot spring waters in

    E-Print Network [OSTI]

    HorvŠth, Ńkos

    2000-01-01T23:59:59.000Z

    in northern Venezuela AD . HorvaH th *, L.O. Bohus , F. Urbani , G. Marx , A. PiroH th , E.D. Greaves Eo( tvo and underground waters stemming from uranium-rich soil are the "rst candidates for high radon and radium

  3. Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization

    E-Print Network [OSTI]

    Wang, R.; Zhai, X.

    2006-01-01T23:59:59.000Z

    collectors on the south tilted roofs, south walls, balconies or awnings. Experiences on solar thermal utilization are mainly introduced in this paper, which include solar hot water systems with different design methods in residential buildings and solar-powered...

  4. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Mark K. Gee

    2008-10-01T23:59:59.000Z

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to improve system efficiency and reduce packaging size.

  5. Stable thermal oscillations in columns of partially supercool water

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    theoretical and experimental studies of the phenomenon described by Veronis, heat was supplied from below. Here we cool from below and used either heavy water (D2O) and or sugar as the solute. We show several of cooling or during cooling. However, the effects are quite different. The oscillations often (but

  6. Thermal and Water Pinch Success Stories in Europe

    E-Print Network [OSTI]

    Eastwood, A.

    "Pinch Analysisô for energy is now becoming commonplace in Europe with many companies (eg, BP Amoco and Shell) incorporating Pinch Analysis as a routine part of their process designs. In recent years, WaterPinchTM has emerged as an equally important...

  7. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    J. E. O'Brien

    2008-11-01T23:59:59.000Z

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  8. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater PowerInformation

  9. Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater

  10. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformation Beowawe

  11. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformation

  12. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformationEnergy

  13. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect (OSTI)

    East, J.

    1982-04-01T23:59:59.000Z

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  14. Exergetic analysis of a steam-flashing thermal storage Paul T. O'Brien

    E-Print Network [OSTI]

    @vipac.com.au 2 PhD, Australian National University ABSTRACT Thermal energy storage is attractive in the design of the performance of a cycle that uses large-scale thermal energy storage via hot compressed liquid waterExergetic analysis of a steam-flashing thermal storage system Paul T. O'Brien 1 and John Pye 2 1

  15. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System†

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  16. Thermal Economic Analysis of an Underground Water Source Heat Pump System

    E-Print Network [OSTI]

    Zhang, W.; Lin, B.

    2006-01-01T23:59:59.000Z

    The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

  17. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  18. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  19. Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report

    SciTech Connect (OSTI)

    Kauffman, D.; Houghton, A.V.

    1980-12-31T23:59:59.000Z

    The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

  20. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    SciTech Connect (OSTI)

    He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

    2012-06-01T23:59:59.000Z

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

  1. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01T23:59:59.000Z

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  2. Thermal simulation of quenching uranium-0. 75% titanium alloy in water

    SciTech Connect (OSTI)

    Siman-Tov, M.; Llewellyn, G.H.; Childs, K.W.; Ludtka, G.M.; Aramayo, G.A.

    1985-01-01T23:59:59.000Z

    A computer model, The Quench Simulator, has been developed to simulate and predict in detail the behavior of U-0.75 Ti alloy when quenched at high temperature (about 850/sup 0/C) in cold water. The code allows one to determine the time- and space-dependent distributions of temperature, residual stress, distortion, and microstructure that evolve during the quenching process. The nonlinear temperature- and microstructure-dependent properties, as well as the cooling rate-dependent heats of transformation, are incorporated into the model. The complex boiling heat transfer with its various regimes and other thermal boundary conditions are simulated. Experiments have been performed and incorporated into the model. Both sudden submersion and gradual controlled immersion can be applied. A parametric and sensitivity study has been performed demonstrating the importance of the thermal boundary conditions applied for achieving certain product characteristics. The thermal aspects of the model and its applications are discussed and demonstrated.

  3. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    SciTech Connect (OSTI)

    Pearson, J. Boise; Stewart, Eric T. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Reid, Robert S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2007-01-30T23:59:59.000Z

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  4. A thermal method for measuring the rate of water movement in plants

    E-Print Network [OSTI]

    Bloodworth, Morris Elkins

    1958-01-01T23:59:59.000Z

    L?BP A 8 V a L ?BPA8B8 op A THERMAL METHOD FOR MEASURING THE RATE OF WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Vao Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial... and content by: ???? ???? '? ^p?P? ?? ???^??^? ?ip?^?? ?p?? ?? ??^?????^??????????????????????????????????? ? ??? ?????? ?? P ? ^ ? ? p ^ ? ? ???????????????????? ?? ? ? ???? ???????P?? ???? ?i??i ^i? ??^i?? ?? ?p??? ? ? ? p? ?Bo? ?Bo?A??8 ??? ????A...

  5. The detection and modelling of surface thermal structures and ground water discharges

    E-Print Network [OSTI]

    Roberts, Douglas Vincent

    1985-01-01T23:59:59.000Z

    . , Southern Illinois University Chairman of Advisory Committee: Dr. Earl R. Hoskins On March 29, 1973, data were collected by a thermal infrared scanner mounted in a twin-engine aircraft over a 55-mile stretch of the Clark Fork River in northwestern... on a VAX Il/750 interfaced with an I'S Model 70 processing system. Both qualitative and quantitative processing techniques were employed to identify and describe the surface temperature patterns and ground water discharges into the river. Computer...

  6. IR Hot Wave

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01T23:59:59.000Z

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  7. Simulation of Thermal Plant Optimization and Hydraulic Aspects of Thermal Distribution Loops for Large Campuses

    E-Print Network [OSTI]

    Chen, Q.

    simulation models for chilled water and heating hot water distribution systems. The simulation model was used in a $2.3 million Ross Street chilled water pipe replacement project at Texas A&M University. A second project conducted at the University... of Texas at San Antonio was used as an example to demonstrate how to identify and design an optimal distribution system by using a simulation model. The author found that the minor losses of these closed loop thermal distribution systems...

  8. Droplet impingement and vapor layer formation on hot hydrophobic surfaces Ji Yong Park1

    E-Print Network [OSTI]

    Cahill, David G.

    diameter) water droplets that bounce from hydrophobic surfaces whose temperature exceeds the boiling point angle. The residence time determined by high-speed imaging is constant at 1 msec over the temperature-speed imaging is approximately independent of the temperature of the hot surface. Measurements of thermal

  9. Study of Water Speed Sensitivity in a Multifunctional Thick-film Sensor by Analytical Thermal Simulations and Experiments

    E-Print Network [OSTI]

    F. Stefani; P. E. Bagnoli; S. Luschi

    2008-01-07T23:59:59.000Z

    The present paper deals with an application of the analytical thermal simulator DJOSER. It consist of the characterization of a water speed sensor realized in hybrid technology. The capability of the thermal solver to manage the convection heat exchange and the effects of the passivating layers make the simulation work easy and fast.

  10. Task 15 -- Remediation of organically contaminated soil using hot/liquid (subcritical) water. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Hawthorne, S.B.

    1997-12-31T23:59:59.000Z

    This activity involves a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies are being performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal are also being performed. Liquid water is normally considered to be too polar a solvent to be effective for removal of organic contaminants from contaminated soils and sludges. However, the Energy and Environmental Research Center (EERC) has demonstrated that the polarity of liquid water can be changed from that of a very polar solvent at ambient conditions to that of an organic solvent (e.g., ethanol or acetonitrile) by simply raising the temperature. The EERC has exploited this unique property of liquid water to obtain highly selective extractions of polar (at lower temperatures) to nonpolar (at 200 to 250 C) organics from contaminated soils and sludges. Only moderate pressures (a maximum of about 45 atm at 250 C and lower pressures at lower temperatures) are required. With this procedure, all detectable hazardous organics were removed from the sludge, thus making the remaining material (about 99% of the original mass) a nonhazardous material. The present understanding of hot/liquid water extraction for the removal of hazardous organics from contaminated soils and sludges is being used to develop the engineering parameters needed to perform a pilot-scale demonstration of the remediation technology. Progress during the report period is summarized.

  11. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    or (2) from solar energy collectors, and to retrieve the hotof Hot Water from Solar Energy Collectors," Proceedings of

  12. Probing the thermal character of analogue Hawking radiation for shallow water waves?

    E-Print Network [OSTI]

    Florent Michel; Renaud Parentani

    2014-09-15T23:59:59.000Z

    We study and numerically compute the scattering coefficients of shallow water waves blocked by a stationary counterflow. When the flow is transcritical, the coefficients closely follow Hawking's prediction according to which black holes should emit a thermal spectrum. We study how the spectrum deviates from thermality when reducing the maximal flow velocity, with a particular attention to subcritical flows since these have been recently used to test Hawking's prediction. For such flows, we show that the emission spectrum is strongly suppressed, and that its Planckian character is completely lost. For low frequencies, we also show that the scattering coefficients are dominated by elastic hydrodynamical channels. Our numerical results reproduce rather well the observations made by S. Weinfurtner {\\it et al.} in the Vancouver experiment. Nevertheless, we propose a new interpretation of what has been observed, as well as new experimental tests.

  13. Adsorption of water on O(2x2)/Ru(0001): thermal stability and inhibition of dissociation by H2O-O bonding

    E-Print Network [OSTI]

    Mugarza, Aitor

    2009-01-01T23:59:59.000Z

    Adsorption of water on O(2x2)/Ru(0001): thermal stabilitySaitama 351-0198, Japan. Adsorption of water on O(2x2)/Ru(oxygen on the subsequent adsorption and reactions of water

  14. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect (OSTI)

    Zia Mirza, Program Manager

    2011-12-06T23:59:59.000Z

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  15. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  16. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 5, MAY 2006 501 HotSpot: A Compact Thermal Modeling Methodology

    E-Print Network [OSTI]

    Skadron, Kevin

    -chip interconnect self-heating power and thermal model such that the thermal impacts on interconnects can also computationally efficient. Index Terms--Compact thermal model, early design stages, in- terconnect self-heating

  17. Water and Methanol Adsorption on MgO(100)/Mo(100) Studied by Electron Spectroscopies and Thermal Programmed Desorption

    E-Print Network [OSTI]

    Goodman, Wayne

    Water and Methanol Adsorption on MgO(100)/Mo(100) Studied by Electron Spectroscopies and Thermal, 2000 The adsorption of methanol (CH3OH) and water (D2O) on the MgO(100)/Mo(100) surface at 100 K has covered MgO(100)/Mo(100) surface. On the other hand, the formation of a methanol multilayer desorption

  18. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND

    E-Print Network [OSTI]

    J. Stene

    designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

  19. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01T23:59:59.000Z

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  20. 1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive

    E-Print Network [OSTI]

    J. Stene

    2008-01-01T23:59:59.000Z

    designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

  1. Method and apparatus for separation of heavy and tritiated water

    DOE Patents [OSTI]

    Lee, Myung W. (late of North Augusta, SC)

    2001-01-01T23:59:59.000Z

    The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.

  2. Geothermal resource assessment of Hot Sulphur Springs, Colorado

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    Approximately 10 springs whose waters are used for recreation, steam baths and laundry purposes are located at Hot Sulphur Springs. Estimated heat-flow at Hot Sulphur Springs is approximately 100 mW/m2, which is about normal for western Colorado. Recent work tends to show that surface and reduced heat flow in the mountains of northern Colorado could be high. The thermal waters have an estimated discharge of 50 gpm, a temperature that ranges from 104/sup 0/F (40/sup 0/C) to a high of 111/sup 0/F (44/sup 0/C), and a total dissolved solid content of 1200 mg/l. The waters are a sodium bicarbonate type with a large concentration of sulphate. It is estimated that the most likely reservoir temperature of this system ranges from 167/sup 0/F (75/sup 0/F) to 302/sup 0/F (150/sup 0/C) and that the areal extent of the system could encompass 1.35 sq mi (3.50 sq km) and could contain 0.698 Q's (1015 B.T.U.'s) of heat energy. Soil mercury and electrical resistivity surveys were conducted. The geophysical survey delineated several areas of low resistivity associated with the north trending fault that passes just to the west of the spring area. It appears that this fault is saturated with thermal waters and may be the conduit along which the thermal waters are moving up from depth. The appendices to this report include tables showing water temperatures required for various industrial processes, as well as dissolved minerals, trace elements and radioactivity levels found in the thermal waters. Also presented are a complete description of the factors affecting the electrical resistivity measurements, a description of the electrical resistivity equipment used, and the resistivity field procedures. Electrical resistivity calculations are also included in the appendices.

  3. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect (OSTI)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01T23:59:59.000Z

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  4. Use of a submersible viscometer in the primary separation step of the hot water process for recovery of bitumen from tar sand

    SciTech Connect (OSTI)

    Schramm, L.L.

    1987-01-20T23:59:59.000Z

    The patent describes the primary separation step of the hot water process for extracting bitumen from tar sand in primary separation vessel. The bitumen floats upwardly in a tar sand slurry to form a froth layer, the coarse solids drop to form a tailings layer, and a middlings layer is formed between the froth and the tailings. The improvement described here comprises: providing a submerged viscometer in the middlings layer and actuating the viscometer to measure the viscosity of the middlings at one or more levels in the vertical column of middlings and produce signals, external of the vessel, which are indicative of the measurements; taking sufficient measurements to determine the viscosity of the region of maximum viscosity within the middlings layer and adjusting the viscosity of the middlings in response to the signals to maintain the maximum viscosity in the column below a predetermined value, whereby the flotation of the bitumen through the middlings layer to the froth layer is substantially enhanced.

  5. Photovoltaic-Thermal New Technology Demonstration

    SciTech Connect (OSTI)

    Dean, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McNutt, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Dennis [Group14 Engineering, Inc., Denver, CO (United States); Heinicke, David [Group14 Engineering, Inc., Denver, CO (United States)

    2015-01-01T23:59:59.000Z

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  6. Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

    2002-01-01T23:59:59.000Z

    The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

  7. Development of an Approach to Compare the `Value' of Electrical and Thermal Output from a Domestic PV/Thermal System

    E-Print Network [OSTI]

    "Mandatory Renewable Energy Target" in Australia allows a unit of energy as solar hot water to be counted PV/Thermal System J.S. Coventry and K. Lovegrove Centre for Sustainable Energy Systems Australian National University Canberra 0200 ACT Australia E-mail: joe@faceng.anu.edu.au Abstract When considering

  8. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  9. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  10. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15T23:59:59.000Z

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  11. A Detection of Water in the Transmission Spectrum of the Hot Jupiter WASP-12b and Implications for its Atmospheric Composition

    E-Print Network [OSTI]

    Kreidberg, Laura; Bean, Jacob L; Stevenson, Kevin B; Desert, Jean-Michel; Madhusudhan, Nikku; Fortney, Jonathan J; Barstow, Joanna K; Henry, Gregory W; Williamson, Michael; Showman, Adam P

    2015-01-01T23:59:59.000Z

    Detailed characterization of exoplanets has begun to yield measurements of their atmospheric properties that constrain the planets' origins and evolution. For example, past observations of the dayside emission spectrum of the hot Jupiter WASP-12b indicated that its atmosphere has a high carbon-to-oxygen ratio (C/O $>$ 1), suggesting it had a different formation pathway than is commonly assumed for giant planets. Here we report a precise near-infrared transmission spectrum for WASP-12b based on six transit observations with the Hubble Space Telescope/Wide Field Camera 3. We bin the data in 13 spectrophotometric light curves from 0.84 - 1.67 $\\mu$m and measure the transit depths to a median precision of 51 ppm. We retrieve the atmospheric properties using the transmission spectrum and find strong evidence for water absorption (7$\\sigma$ confidence). This detection marks the first high-confidence, spectroscopic identification of a molecule in the atmosphere of WASP-12b. The retrieved 1$\\sigma$ water volume mixin...

  12. Trace Element Geochemical Zoning in the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Capuano. 1980. Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah. In: Transactions. GRC Annual Meeting; 09091980; Salt Lake City, UT. Salt...

  13. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    of water heaters and hot water storage tanks of June 2010,for water heaters and hot water storage tanks, and of theof water heaters and hot water storage tanks," 2010. http://

  14. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  15. Charm and Beauty in a Hot Environment

    E-Print Network [OSTI]

    Helmut Satz

    2006-02-28T23:59:59.000Z

    We discuss the spectral analysis of quarkonium states in a hot medium of deconfined quarks and gluons, and we show that such an analysis provides a way to determine the thermal properties of the quark-gluon plasma.

  16. Thermal hydraulic performance analysis of a small integral pressurized water reactor core

    E-Print Network [OSTI]

    Blair, Stuart R. (Stuart Ryan), 1972-

    2003-01-01T23:59:59.000Z

    A thermal hydraulic analysis of the International Reactor Innovative and Secure (IRIS) core has been performed. Thermal margins for steady state and a selection of Loss Of Flow Accidents have been assessed using three ...

  17. Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCR systems

    E-Print Network [OSTI]

    Boyer, Edmond

    on the UWS evaporation is taken into account using a NRTL activity model. The thermal decomposition model

  18. Impact of component selection and operation on thermal ratings of drain-back solar water heaters

    SciTech Connect (OSTI)

    Davidson, J.H.; Carlson, W.T.; Duff, W.S. (Colorado State Univ., Fort Collins, CO (United States). Solar Energy Applications Lab.)

    1992-11-01T23:59:59.000Z

    In this paper a half-factorial, two-level experimental design is used to determine the effects of changes in collector area, storage tank volume, collector flow rate, recirculation flow rate, and storage tank design on thermal rating of a solar drain-back water heating system. Experimental ratings are determined in accordance with the Solar Rating and Certification Corporation guidelines. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards. Statistical analyses indicate that a change in collector area accounts for nearly 90 percent of the variation in heat output. Doubling collector area from 2.78 m[sup 2] to 5.56 m[sup 2] increases delivered solar energy by 31 percent. Use of a stratification manifold increases the delivery of solar energy by six percent. Doubling collector flow rate from 0.057 to 0.114 1/s increases solar output by aproximately three percent; however, the increase in pumping energy outweighs the benefits of increasing collector flow rate. The effects of recirculation flow rate and tank volume are obscured by experimental error.

  19. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  20. A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    in Residential Hot Water Heaters. Berkeley, CA: Lawrenceelectricity savings because gas hot water heaters are moreprevalent than electric water heaters in California. Bathing

  1. Treatment of primary tailings and middlings from the hot water extraction process for recovering bitumen from tar sand

    SciTech Connect (OSTI)

    Cymbalisty, L. M. O.; Cymerman, J.

    1995-10-08T23:59:59.000Z

    The primary tailings and middlings are combined and fed to a vessel having the general form of a deep cone thickener. The feed is deflected outwardly and generally horizontally by a baffle, as it is delivered to the vessel. Simultaneously, the outwardly radiating layer of newly added feed is contacted from below by an upwelling stream of aerated middlings, which stream moves in parallel with the aforesaid layer. Bitumen froth is formed and recovered. The upwelling stream is provided by circulating middlings through eductor/aerator assemblies and a plenum chamber mounted centrally in the body of middlings in the vessel. A generally circular circulation of middlings is generated. In this manner, the newly added bitumen is quickly and efficiently recovered. Recirculation of middlings to the aeration zone yields an additional recovery of bitumen. Use of the deep cone ensures that the tailings from the vessel are relatively low in water and bitumen content.

  2. Enhancement of thermal stability and water resistance in yttrium-doped GeO{sub 2}/Ge gate stack

    SciTech Connect (OSTI)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Hyun Lee, Choong; Zhang, Wenfeng; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan); JST, CREST, 7-3-1 Hongo, Tokyo 113-8656 (Japan)

    2014-03-03T23:59:59.000Z

    We have systematically investigated the material and electrical properties of yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) on Germanium (Ge). A significant improvement of both thermal stability and water resistance were demonstrated by Y-GeO{sub 2}/Ge stack, compared to that of pure GeO{sub 2}/Ge stack. The excellent electrical properties of Y-GeO{sub 2}/Ge stacks with low D{sub it} were presented as well as enhancement of dielectric constant in Y-GeO{sub 2} layer, which is beneficial for further equivalent oxide thickness scaling of Ge gate stack. The improvement of thermal stability and water resistance are discussed both in terms of the Gibbs free energy lowering and network modification of Y-GeO{sub 2}.

  3. Development of a Detailed Simulation Model to Support Evaluation of Water Load Shifting Across a Range of Use Patterns

    E-Print Network [OSTI]

    Samuel, A.; Tuohy, P.

    2014-01-01T23:59:59.000Z

    ). DHWcalc: Program to generate domestic hot water profiles with statistical means for user defined conditions. Proc. ISES Solar World Congress 2005, Orlando, USA. Lorenzetti, D. M. 2002. Computational Aspects of Nodal Multizone Airflow Systems... Optimum demand matched Weather: Based on monitored conditions Renewables: Wind Solar thermal Bio-mass Loads available for shifting: Hot water tank Space heating Plug loads Refrigeration Laundry Load shifting (Orchestration) function: input power...

  4. Evaluation of Hot Water Wash Parameters to Achieve Maximum Effectiveness in Reducing Levels of Salmonella Typhimurium, Escherichia coli O157:H7 and coliforms/Escherichia coli on Beef Carcass Surfaces

    E-Print Network [OSTI]

    Davidson, Melissa A.

    2010-07-14T23:59:59.000Z

    EVALUATION OF HOT WATER WASH PARAMETERS TO ACHIEVE MAXIMUM EFFECTIVENESS IN REDUCING LEVELS OF SALMONELLA TYPHIMURIUM, ESCHERICHIA COLI O157:H7 AND COLIFORMS/ ESCHERICHIA COLI ON BEEF CARCASS SURFACES A Thesis by MELISSA ANN DAVIDSON... PARAMETERS TO ACHIEVE MAXIMUM EFFECTIVENESS IN REDUCING LEVELS OF SALMONELLA TYPHIMURIUM, ESCHERICHIA COLI O157:H7 AND COLIFORMS/ ESCHERICHIA COLI ON BEEF CARCASS SURFACES A Thesis by MELISSA ANN DAVIDSON Submitted to the Office of Graduate...

  5. An Itegrated Approach to Water Treatment in Oil and Gas Industry via Thermal Membrane Distillation

    E-Print Network [OSTI]

    Elsayed, Nesreen Ahmed Abdelmoez Mohamed

    2014-10-14T23:59:59.000Z

    and discharge to conserve water resources and reduce the negative environmental impact associated with discharging wastewater into the environment. Wastewater treatment enables providing water with specifications suitable for either recycle in the same... process or reuse in other ways within the process or outside the process. Therefore, water treatment and recycle/reuse contribute to addressing both of the aforementioned water problems: fresh water sacristy and environmental impact of wastewater...

  6. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01T23:59:59.000Z

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation, and the obstacles that must be overcome in order for produced water to support the nascent oil shale and oil sands industries.

  7. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26T23:59:59.000Z

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  8. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    points for maximum cooling liquid supply temperatures thatLiquid cooling guidelines may include: Supply temperatureliquid supply temperature for liquid cooling guidelines. Due

  9. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    defining liquid cooling guidelines for future use. The goalis key to reducing cooling energy consumption for futureliquid-cooling temperatures to guide future supercomputer

  10. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    This is because the heat capacity of liquids is orders ofthe heat capacity and transfer efficiency of liquids is

  11. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    Format Locations sorted by Dry Bulb Temperature Locationssorted by Wet Bulb Temperature 11. APPENDIX C: DIRECT LIQUIDis constrained by outdoor wet bulb temperature) or dry

  12. dist_hot_water.pdf

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working34 30

  13. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Hot tap water, air conditioning, and industrial process heat demands could also be readily satisfied, with high-temperature

  15. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austinís thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  16. Water skin anomalies: density, elasticity, hydrophobicity, thermal stability, interface repulsivity, etc

    E-Print Network [OSTI]

    Chang Q. Sun

    2015-02-26T23:59:59.000Z

    Molecular undercoordination induced O:H-O bond relaxation and dual polarization dictates the supersolid behavior of water skins interacting with other substances such as flowing in nanochannels, dancing of water droplets, floating of insects. The BOLS-NEP notion unifies the Wenzel-Cassie-Baxter models and explains controllable transition between hydrophobicity and hydrophilicity.

  17. Hydrogeologic investigation of Coso Hot Springs, Inyo County...

    Open Energy Info (EERE)

    for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water...

  18. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    SciTech Connect (OSTI)

    Blackett, R.E.

    1994-07-01T23:59:59.000Z

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  19. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01T23:59:59.000Z

    cold water to the water heater and hot water from the waterinduced draft water heaters, water heaters with flue designsInput Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1. Tank

  20. The US Hot Dry Rock project

    SciTech Connect (OSTI)

    Hendron, R.H.

    1987-01-01T23:59:59.000Z

    The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

  1. Maximizing Commercial Hydraulic Software Simulation in Thermal Distribution System Continuous Commissioning

    E-Print Network [OSTI]

    Chen, Q.; Xu, C.; Claridge, D. E.; Turner, W. D.; Deng, S.

    2005-01-01T23:59:59.000Z

    Hot Water ESL Energy Systems Laboratory HHW Heating Hot Water SS3 South Satellite Plant #3 TAMU Texas A&M University TEP Thermal Energy Plant UTSA University of Texas at San Antonio WC1 West Campus Plant #1 WC2 West Campus Plant #2 WC4 West... Campus Plant #4 INTRODUCTION Continuous Commissioning ģ began as part of the Texas LoanSTAR program at the Energy Systems Laboratory (ESL) at Texas A&M University (TAMU). Based on current usage, instead of design intent, this process identifies...

  2. On the Thermodynamic Geometry of Hot QCD

    E-Print Network [OSTI]

    Stefano Bellucci; Vinod Chandra; Bhupendra Nath Tiwari

    2010-10-07T23:59:59.000Z

    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.

  3. On the Thermodynamic Geometry of Hot QCD

    E-Print Network [OSTI]

    Bellucci, Stefano; Tiwari, Bhupendra Nath

    2008-01-01T23:59:59.000Z

    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.

  4. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the California Building Energy Efficiency Standards (Titlethe 2008 California Building Energy Efficiency Standards forrevision to the Building Energy Efficiency Standards (Title

  5. Measurements of the spatial and energy distribution of thermal neutrons in uranium, heavy water lattices

    E-Print Network [OSTI]

    Brown, Paul S. (Paul Sherman)

    1962-01-01T23:59:59.000Z

    Intracell activity distributions were measured in three natural uranium, heavy water lattices of 1. 010 inch diameter, aluminum clad rods on triangular spacings of 4. 5 inches, 5. 0 inches, and 5. 75 inches, respectively, ...

  6. Results of scoping tests in corium-water thermal interactions in ex-vessel geometry

    SciTech Connect (OSTI)

    Spencer, B.W.; McUmber, L.; Sehgal, B.R.; Sienicki, J.J.; Squarer, D.

    1983-01-01T23:59:59.000Z

    Results of scoping tests are reported which were performed in the ANL/EPRI Corium Ex-vessel interactions (COREXIT) Facility located at ANL. These tests are examining issues related to containment loading (i.e., steam generation, H/sub 2/ production, and debris dispersal) for hypothetical LWR accidents that are postulated to progress to the point of molten corium breaching the vessel bottom head and entering the reactor cavity. The geometry selected for these tests is a 1 : 30 linear scale of the Zion PWR containment design in which the cavity is connected to the containment volume by an open tunnel through which pass the in-core detector guide tubes. The effects of the corium-water mixing modes were investigated in the first two tests in the series. In test CWTI-1 the molten corium was ejected into water which filled the cavity mockup volume to one-half the passageway height. In CWTI-2, the molten corium was dropped atop the refractory base in the cavity mockup without the presence of water, and water was injected atop the corium melt immediately afterward as per accumulator discharge. These tests have shown significant differences in fuel fragmentation, steam generation rate, hydrogen production, and fuel dispersal. Particularly noteworthy was the significant amount of dispersal of both water and corium debris from the cavity mockup due to the initially rapid steam generation rate in CWTI-1.

  7. Analysis of the Energy Savings Potential in K-5 Schools in Hot and Humid Climates: Application of High Performance Measures and Renewable Energy Systems

    E-Print Network [OSTI]

    Im, P.; Haberl, J.

    -08-05 of the building. Since the DOE-2 simulation program is not capable of simulating solar thermal and PV systems, the F-Chart and PV F-Chart program were used to calculate the hot water and the electricity generation from a solar thermal and PV system... measures were applied to the target building. Those measures include: increased glazing U-value, VFD application for the HVAC system, cold deck reset, variable speed for pumps, high-efficiency boiler, skylights, and the application of solar thermal...

  8. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    SciTech Connect (OSTI)

    PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

    2012-09-29T23:59:59.000Z

    This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

  9. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    SciTech Connect (OSTI)

    Not Available

    2004-09-01T23:59:59.000Z

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of$6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities.

  10. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect (OSTI)

    Dick Benoit; David Blackwell

    2006-01-01T23:59:59.000Z

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500í deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400í encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105í but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

  11. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect (OSTI)

    Todd M. Francis, Paul R. Lichty, Christopher Perkins, Melinda Tucker, Peter B. Kreider, Hans H. Funke, Allan Lewandowski, and Alan W. Weimer

    2012-10-24T23:59:59.000Z

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500¬įC and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700¬įC and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar‚?źdriven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  12. Process and apparatus for thermal enhancement

    DOE Patents [OSTI]

    Burrill, Jr., Charles E. (Billerica, MA); Smirlock, Martin E. (Brimfield, MA); Krepchin, Ira P. (Newton Upper Falls, MA)

    1984-06-26T23:59:59.000Z

    Thermal treatment apparatus for downhole deployment comprising a combustion stage with an elongated hot wall combustion zone for the substantially complete combustion of the fuel-air mixture and an ignition zone immediately upstream from the combustion zone in which a mixture of atomized liquid fuel and air at or below stoichiometric ratio is ignited; together with a water injection stage immediately downstream from the combustion zone through which essentially partuculate free high temperature combustion products flow from the combustion zone and into which water is sprayed. The resulting mixture of steam and combustion products is injected into an oil formation for enhancing the speed and effectiveness of reservoir response due to physical, chemical, and/or thermal stimulation interactions.

  13. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect (OSTI)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01T23:59:59.000Z

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  14. Investigation of the thermal conductivity of unconsolidated sand packs containing oil, water, and gas

    E-Print Network [OSTI]

    Gore, David Eugene

    1958-01-01T23:59:59.000Z

    of the requirements for the degree of EASTER OF SCIENCE August, lBSS Najor Subject: Petroleum Engineering INVESTIGATION OF THE THERNAI CONDUCTIVITY OF UNCONSOI IDATED SAND PACKS CONTAINING OII, WATER, AND GAS A Thesis By David E, Gore APProved as to style... expressed in degrees Fahrenheit, and, at 0 oF, , the abscissa would become ini'inite. This restriction does not limit the application of the data to petroleum reservoirs as the tem- perature normally encountered is in excess of 100 oF. The reservoir...

  15. Thermal-hydraulic instabilities in pressure tube graphite-moderated boiling water reactors

    SciTech Connect (OSTI)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01T23:59:59.000Z

    Thermally induced two-phase instabilities in non-uniformly heated boiling charmers in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to {minus}150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  16. Thermal unfolding of barstar and the properties of interfacial water around the unfolded forms

    SciTech Connect (OSTI)

    Pal, Somedatta; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302 (India)] [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302 (India)

    2013-12-21T23:59:59.000Z

    Identification of the intermediates along the folding-unfolding pathways and probing their interactions with surrounding solvent are two important but relatively unexplored issues in protein folding. In this work, we have carried out atomistic molecular dynamics simulations to study the thermal unfolding of barstar in aqueous solution from its folded native form at two different temperatures (400 K and 450 K). The calculations at 400 K reveal partial unfolding of two ?-helices (helix-1 and helix-2) and their interconnecting loop. At 450 K, on the other hand, the entire protein attains an expanded flexible conformation due to disruption of a large fraction of tertiary contacts and breaking of almost all the secondary structures. These two disordered structures obtained at such high temperatures are then studied around room temperature to probe their influence on the properties of surrounding solvent. It is found that though the unfolding of the protein in general leads to increasingly hydrated interface, but new structural motifs with locally dehydrated interface may also form during the structural transition. Additionally, independent of the conformational state of the protein, its influence on surrounding solvent has been found to be restricted to the first hydration layer.

  17. Selecting Thermal Storage Systems for Schools

    E-Print Network [OSTI]

    Maxwell, C. L.

    1990-01-01T23:59:59.000Z

    measurement at six equally spaced elevations. Charged by chiller or hydronic vent cycle. B. Hot Water Storage Tank - Concrete lined steel 17,000 gallon with four headers arranged for dual temperature storage. C. Chiller - Variable frequency drive, 196... for Thermal Storage Projects since 1985: KW SCHOOL REDUCTION Kimball E.S. 7 1 Poteet H.S. 210 Phases I & I1 AC New M.S. 18 4 Pirrung E.S. 7 6 Poteet H.S. 14 0 Phase I11 Kimball E.S. 2 0 Phase I1 Black E.S. 3 7 Cannaday E.S. 9 0 Austin E.S. 94 N...

  18. Please cite this article in press as: Shuffler, C., et al., Thermal hydraulic analysis for grid supported pressurized water reactor cores. Nucl. Eng. Des. (2009), doi:10.1016/j.nucengdes.2008.12.028

    E-Print Network [OSTI]

    Malen, Jonathan A.

    2009-01-01T23:59:59.000Z

    Please cite this article in press as: Shuffler, C., et al., Thermal hydraulic analysis for grid.elsevier.com/locate/nucengdes Thermal hydraulic analysis for grid supported pressurized water reactor cores C. Shuffler , J. Trant, J online xxx a b s t r a c t This paper presents the methodology and results for thermal hydraulic analysis

  19. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08T23:59:59.000Z

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  20. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01T23:59:59.000Z

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  1. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1994-01-01T23:59:59.000Z

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  2. Shutdown heat removal system reliability in thermal reactors

    SciTech Connect (OSTI)

    Sun, Y.H.; Bari, R.A.

    1980-01-01T23:59:59.000Z

    An analysis of the failure probability per year of the shutdown heat removal system (SHRS) at hot standby conditions for two thermal reactor designs is presented. The selected reactor designs are the Pressurized Water Reactor and the Nonproliferation Alternative System Assessment Program Heavy Water Reactor. Failures of the SHRS following the initiating transients of loss of offsite power and loss of main feedwater system are evaluated. Common mode failures between components are incorporated in this anlaysis via the ..beta..-factor method and the sensitivity of the system reliability to common mode failures is investigated parametrically.

  3. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al{sub 2}O{sub 3}/water nanofluid

    SciTech Connect (OSTI)

    Chandrasekar, M.; Suresh, S. [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620 015 (India); Chandra Bose, A. [Nanomaterials Laboratory, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2010-02-15T23:59:59.000Z

    Experimental investigations and theoretical determination of effective thermal conductivity and viscosity of Al{sub 2}O{sub 3}/H{sub 2}O nanofluid are reported in this paper. The nanofluid was prepared by synthesizing Al{sub 2}O{sub 3} nanoparticles using microwave assisted chemical precipitation method, and then dispersing them in distilled water using a sonicator. Al{sub 2}O{sub 3}/water nanofluid with a nominal diameter of 43 nm at different volume concentrations (0.33-5%) at room temperature were used for the investigation. The thermal conductivity and viscosity of nanofluids are measured and it is found that the viscosity increase is substantially higher than the increase in thermal conductivity. Both the thermal conductivity and viscosity of nanofluids increase with the nanoparticle volume concentration. Theoretical models are developed to predict thermal conductivity and viscosity of nanofluids without resorting to the well established Maxwell and Einstein models, respectively. The proposed models show reasonably good agreement with our experimental results. (author)

  4. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01T23:59:59.000Z

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plantís thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  5. Mean Radiant Cooling in a Hot-Humid Climate

    E-Print Network [OSTI]

    Garrison, M.

    1996-01-01T23:59:59.000Z

    Shaded interior mass walls in a hot-humid climate can be thermally grounded to an earth heat sink under an insulated structure. The mean radiant temperature (MRT) of the shaded and thermally grounded interior mass walls will be cooler in summer than...

  6. 7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    , and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant

  7. Major transitions in evolution linked to thermal gradients above hydrothermal vents

    E-Print Network [OSTI]

    Anthonie W. J. Muller

    2012-12-03T23:59:59.000Z

    The emergence of the main divisions of today's life: (1) unicellular prokaryotes, (2) unicellular eukaryotes, (3) multicellular eukaryotes, and (4) metazoans, are examples of the--still unexplained--major transitions in evolution. Regarding the origin of life, I have proposed that primordial life functioned as heat engine (thermosynthesis) while thermally cycled in convecting volcanic hot springs. Here I argue for a role of thermal gradients above submarine hydrothermal vents (SHV) in several major transitions. The last decade has witnessed the emergence of phononics, a novel discipline in physics based on controlled heat transport in thermal gradients. It builds thermal analogs to electronic devices: the thermal diode, the thermal transistor, the thermal switch, the thermal amplifier, the thermal memory--the thermal computer has been proposed. Encouraged by (1) the many similarities between microtubules (MT) and carbon nanotubes, which have a very high thermal conductivity, and (2) the recent discovery of a silk protein which also has a very high thermal conductivity, I combine and extend the mentioned ideas, and propose the general conjecture that several major transitions of evolution were effected by thermal processes, with four additional partial conjectures: (1) The first organisms used heat engines during thermosynthesis in convection cells; (2) The first eukaryotic cells used MT during thermosynthesis in the thermal gradient above SHV; (3) The first metazoans used transport of water or in water during thermosynthesis above SHV under an ice-covered ocean during the Gaskiers Snowball Earth; and (4) The first mammalian brain used a thermal machinery based on thermal gradients in or across the cortex. When experimentally proven these conjectures, which are testable by the methods of synthetic biology, would significantly enhance our understanding of life.

  8. Small-scale AFBC hot air gas turbine power cycle

    SciTech Connect (OSTI)

    Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center; Hall, A.W. [USDOE Morgantown Energy Technology Center, WV (United States)

    1995-12-31T23:59:59.000Z

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  9. Small-scale AFBC hot air gas turbine power cycle

    SciTech Connect (OSTI)

    Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center; Hall, A.W. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

    1995-12-31T23:59:59.000Z

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately} 25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  10. Thermal Storage for Energy Efficient Structures (Poteet High School Case Study)

    E-Print Network [OSTI]

    Utesch, A. L.

    1988-01-01T23:59:59.000Z

    and cooling valves in sequence for temperature control. Ventilation air dampers and control valves close when units are de-energized. I. DDC CONTROL SYSTEM Controls equipment, provides system operation information, generates historical data files... with air units or fan and coil units with hot and chilled water coils. Whenever occupancy is sensed the lights and HVAC equipment are energized and automatically oontrolled by sequencing coil valves to maintain the temperature setting. The thermal...

  11. Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment†

    E-Print Network [OSTI]

    Hokoi, S.; Miura, H.; Huang, Y.; Nakahara, N.; Iwamae, A.

    2004-01-01T23:59:59.000Z

    the specified performance was realized at the heat-pump, e) whether the pipes for fan-coil units are suitably insulated. Output Heat loss from piping Upward and downward heat flow from hot-water mat Heat loss from piping (boiler - header) Heat loss from...Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment S. Hokoi*, H. Miura*, Y. Huang*, N. Nakahara** and A. Iwamae*** * Kyoto University, Kyoto 606-8501, Japan ** Nakahara Laboratory, Environmental Syst...

  12. Florida Sunshine -- Natural Source for Heating Water

    SciTech Connect (OSTI)

    Not Available

    2002-05-01T23:59:59.000Z

    This brochure, part of the State Energy Program (SEP) Stellar Project series, describes a utility solar hot water program in Lakeland, Florida. It is the first such utility-run solar hot water program in the country.

  13. Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

  14. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

  15. Title COMBINATION OF THERMAL SOLAR COLLECTORS, HEAT PUMP AND THERMAL ENERGY STORAGE FOR DWELLINGS IN BELGIUM.

    E-Print Network [OSTI]

    Contact Raf; De Herdt; Roel De Coninck; Filip Van Den Schoor; Lieve Helsen

    The amount of available solar energy in Belgium is more than sufficient to meet local heat demand for space heating and domestic hot water in a dwelling. However, the timing of both the availability of solar energy and the need for thermal energy, match only to a limited extent. Therefore, compact storage of the surplus of thermal energy is a critical issue. Depending on the temperature at which this energy is available, directly from the sun or indirectly through the storage, different combinations with a heat pump can be considered. By combining solar energy with a heat pump one may benefit on both sides since the fraction of solar energy increases as well as the performance of the heat pump. The aim of this thesis is to select the best out of three configurations that combine thermal solar collectors, heat pump and thermal energy storage for heating purposes in dwellings in Belgium, based on model simulations. Energetic, exergetic and economic criteria are used to evaluate the different configurations, while thermal comfort and domestic hot water tap profiles should be met. One (or more) performance index (indices) is (are) defined enabling an objective comparison between different systems. Today several systems are already commercially available on the international market [4]. Since these systems consist of different components, the system design is a crucial issue. Therefore, special attention should be paid to the sizing of the individual components, the interaction of the components within the global system, and the strategy for operational control. To study the interaction with the building, three types of buildings (already defined in a previous project) are considered.

  16. Aquifer thermal energy storage: a survey

    SciTech Connect (OSTI)

    Tsang, C.F.; Hopkins, D.; Hellstroem, G.

    1980-01-01T23:59:59.000Z

    The disparity between energy production and demand in many power plants has led to increased research on the long-term, large-scale storage of thermal energy in aquifers. Field experiments have been conducted in Switzerland, France, the United States, Japan, and the People's Republic of China to study various technical aspects of aquifer storage of both hot and cold water. Furthermore, feasibility studies now in progress include technical, economic, and environmental analyses, regional exploration to locate favorable storage sites, and evaluation and design of pilot plants. Several theoretical and modeling studies are also under way. Among the topics being studied using numerical models are fluid and heat flow, dispersion, land subsidence or uplift, the efficiency of different injection/withdrawal schemes, buoyancy tilting, numerical dispersion, the use of compensation wells to counter regional flow, steam injection, and storage in narrow glacial deposits of high permeability. Experiments to date illustrate the need for further research and development to ensure successful implementation of an aquifer storage system. Some of the areas identified for further research include shape and location of the hydrodynamic and thermal fronts, choice of appropriate aquifers, thermal dispersion, possibility of land subsidence or uplift, thermal pollution, water chemistry, wellbore plugging and heat exchange efficiency, and control of corrosion.

  17. Thermally-enhanced oil recovery method and apparatus

    DOE Patents [OSTI]

    Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

    1987-01-01T23:59:59.000Z

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  18. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01T23:59:59.000Z

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  19. Hot Summer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot PlateHotHot

  20. Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado

    SciTech Connect (OSTI)

    Zehner, Richard

    2012-11-01T23:59:59.000Z

    Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado By Richard ďRickĒ Zehner Geothermal Development Associates Reno Nevada USA For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,215,000 South boundary: approximately 4,160,000 West boundary: approximately 216,000 East boundary: approximately 245,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs have geochemistry and geothermometry values indicative of high-temperature systems. In addition, the explorationists discovered a very young Climax-style molybdenum porphyry system northeast of Rico, and drilling intersected thermal waters at depth. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRIís GIS servers. Datasets include: 1. Structural data collected by Flint Geothermal 2. Point information 3. Mines and prospects from the USGS MRDS dataset 4. Results of reconnaissance shallow (2 meter) temperature surveys 5. Air photo lineaments 6. Areas covered by travertine 7. Groundwater geochemistry 8. Land ownership in the Rico area 9. Georeferenced geologic map of the Rico Quadrangle, by Pratt et al. 10. Various 1:24,000 scale topographic maps

  1. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    1999-01-01T23:59:59.000Z

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  2. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11T23:59:59.000Z

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  3. Hot and dark matter

    E-Print Network [OSTI]

    D'Eramo, Francesco

    2012-01-01T23:59:59.000Z

    In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

  4. The effect of thermal aging and boiling water reactor environment on Type 316L stainless steel welds

    E-Print Network [OSTI]

    Lucas, Timothy R

    2011-01-01T23:59:59.000Z

    The thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels and duplex stainless steels. Spinodal decomposition is largely responsible for the well known "475įC" embrittlement ...

  5. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    generation of 17,445 TWh (69). 4.2 Thermal Electric Powergeneration in 2009 (33). Water used in thermal electric

  6. Tankless Gas Water Heater Performance - Building America Top...

    Energy Savers [EERE]

    Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

  7. Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation

    E-Print Network [OSTI]

    Cho, S.; Haberl, J.

    to achieve further energy consumption reductions. To accomplish this, the F- Chart program was used for the solar thermal system analysis and the PV F-Chart program for the solar photovoltaic (PV) system analysis. Authors show how DOE-2.1e simulation... Time series plots of space heating and service hot water loads from SYSTEMS and PLANT simulation runs Due to the fact that the solar thermal systems analysis program, F-Chart, takes into account the system efficiencies in its loads calculation...

  8. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

  9. An energy equivalency analysis of trade-offs between thermal efficiency and standby loss requirements for commercial gas service water heaters

    SciTech Connect (OSTI)

    Somasundaram, S.; Jarnagin, R.E.; Keller, J.M.; Schliesing, J.S.

    1992-06-01T23:59:59.000Z

    The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) Standing Standard Project Committee 90.1 has approved an addendum (90.lb) to ASHRAE/IES Standard 90.1-1989. The addendum specifies an increase in the minimum thermal efficiency requirement (from 77% to 78%), accompanied by an easing of the standby loss requirements, for commercial gas-fired service water heaters. The Pacific Northwest Laboratory performed an energy equivalency analysis to assess the impact of trade-offs between the improved thermal efficiency and the less stringent standby loss requirements. The analysis objective was to estimate whether the energy savings during firing would offset the increased energy losses during standby periods. The primary focus of this report is to summarize the major results of the analysis and provide a recommendation for minimum energy-efficiency commercial gas-fired service water heaters. Limitations to the availability of detailed performance and energy-use data for these commercial water heaters are also pointed out.

  10. Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs

    E-Print Network [OSTI]

    Simunic, Tajana

    Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs Shervin propose a joint thermal and energy management technique specifically designed for heterogeneous MPSo technique simultaneously reduces the thermal hot spots, temperature gradients, and energy consumption

  11. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  12. OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 test data report : thermal hydraulic results, Rev. 0 September 20, 2002.

    SciTech Connect (OSTI)

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the second water ingression test, designated SSWICS-2. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

  13. OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002.

    SciTech Connect (OSTI)

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the first water ingression test, designated SSWICS-1. The report includes a description of the test apparatus, the instrumentation used, plots of the recorded data, and some rudimentary data reduction to obtain an estimate of the heat flux from the corium to the overlying water pool.

  14. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  15. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  16. Hot filament CVD of boron nitride films

    DOE Patents [OSTI]

    Rye, Robert R. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  17. INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles

    E-Print Network [OSTI]

    Denver, University of

    INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles Angela M. Monateri emitters, even thought they have no repairable fault. This study investigates the use of thermal infrared be differentiated from hot vehicles by infrared imaging, which can distinguish between: ·Hot and cold exhaust system

  18. Thermal Conductivity of Coated Paper

    SciTech Connect (OSTI)

    Kerr, Lei L [ORNL; Pan, Yun-Long [Smart Papers, Hamilton, OH 45013; Dinwiddie, Ralph Barton [ORNL; Wang, Hsin [ORNL; Peterson, Robert C. [Miami University, Oxford, OH

    2009-01-01T23:59:59.000Z

    In this paper, we introduce a method for measuring the thermal conductivity of paper using a hot disk system. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper although it is important to various forms of today s digital printing where heat is used for imaging as well as for toner fusing. This motivates us to investigate the thermal conductivity of paper coating. Our investigation demonstrates that thermal conductivity is affected by the coat weight and the changes in the thermal conductivity affect ink gloss and density. As the coat weight increases, the thermal conductivity increases. Both the ink gloss and density decrease as the thermal conductivity increases. The ink gloss appears to be more sensitive to the changes in the thermal conductivity.

  19. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 1The heating and cooling system used in Osakaís Nakanoshima district uses heat pumps and river water to achieve the efficient use of the heat source and mitigate the heat... source -Utilize waste heat discharged from substation, and supply in large difference of temperature Water intake Heat exchangers Water discharge Turbo chiller Screw heat pump pumps ESL-IC-14-09-19 Proceedings of the 14th International Conference...

  20. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  1. Thermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta,b,

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    , Australia Abstract Thermal recovery from a hot dry rock reservoir viewed as a deformable fractured mediumThermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta phase being made by impermeable solid blocks separated by saturated fractures. The finite element

  2. Utilization of Heat Pump Water Heaters for Load Management

    SciTech Connect (OSTI)

    Boudreaux, Philip R [ORNL; Jackson, Roderick K [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL

    2014-01-01T23:59:59.000Z

    The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

  3. Post-Synthesis Crystallinity Tailoring of Water-Soluble Polymer Encapsulated CdTe Nanoparticles using Rapid Thermal Annealing

    E-Print Network [OSTI]

    Post-Synthesis Crystallinity Tailoring of Water-Soluble Polymer Encapsulated CdTe Nanoparticles CdTe NPs have been demonstrated suitable for use in applications involving efficient solar cells

  4. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Hot water, steam, process heat kW kW Split reformer / electrolyzer / pipeline stream High Temperature

  5. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  6. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03T23:59:59.000Z

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  7. KOI 1224: A FOURTH BLOATED HOT WHITE DWARF COMPANION FOUND WITH KEPLER

    E-Print Network [OSTI]

    Breton, R. P.

    We present an analysis and interpretation of the Kepler binary system KOI 1224. This is the fourth binary found with Kepler that consists of a thermally bloated, hot white dwarf in a close orbit with a more or less normal ...

  8. Hot One-Temperature Accretion Flows Revisited

    E-Print Network [OSTI]

    Feng Yuan; Ronald E. Taam; Yongquan Xue; Wei Cui

    2005-09-11T23:59:59.000Z

    The effectiveness of the thermal coupling of ions and electrons in the context of optically thin, hot accretion flows is investigated. In the limit of complete coupling, we focus on the one-temperature accretion flows. Based on a global analysis, the results are compared with two-temperature accretion flow models and with the observations of black hole sources. Many features are quite similar. That is, hot one-temperature solutions are found to exist for mass flow rates less than a critical value; i.e., $\\dot{M}\\la 10\\alpha^2\\dot{M}_{\\rm Edd}$, where $\\dot{M}_{\\rm Edd}= L_{\\rm Edd}/c^2$ is the Eddington accretion rate. At low mass flow rates, $\\dot{M}\\la 10^{-3}\\alpha^2 \\dot{M}_{\\rm Edd}$, the solution is in the advection-dominated accretion flow (ADAF) regime. But at higher rates, radiative cooling is effective and is mainly balanced by advective {\\em heating}, placing the solution in the regime of luminous hot accretion flow (LHAF). To test the viability of the one-temperature models, we have fitted the spectra of the two black hole sources, Sgr A* and XTE J1118+480, which have been examined successfully with two-temperature models. It is found that the one-temperature models do not provide acceptable fits to the multi-wavelength spectra of Sgr A* nor to XTE J1118+480 as a result of the higher temperatures characteristic of the one-temperature models. It is concluded that the thermal coupling of ions and electrons cannot be fully effective and that a two-temperature description is required in hot accretion flow solutions.

  9. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01T23:59:59.000Z

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plantís thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  10. Energy-efficient water heating

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

  11. Commercial Solar Hot Water Financing Program

    Broader source: Energy.gov [DOE]

    A variety of financing options will be available depending on the project, including power purchase agreements or energy service agreements. A third party will finance the construction, maintenan...

  12. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01T23:59:59.000Z

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  13. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Integration of new thermochronometric, structural and geological analyses, reflection and refraction seismic surveys and existing geophysical data into a 3-D Earth Model to elucidate the tectonic and 4-D thermal evolution of southern Clayton Valley and the Weepah Hills (Pearl Hot Spring geothermal play).

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  15. Considerations for Energy Efficient Showers in Hot-Humid Climates

    E-Print Network [OSTI]

    Claridge, D. E.; Turner, W. D.

    1989-01-01T23:59:59.000Z

    CONSIDERATIONS FOR ENERGY EFFICIENT SHOWERS IN HOT-HUMID CLIMATES D. E. Claridge and W.D. Turner Energy Systems Laboratory Department of Mechanical Engineering Texas ALM University ABSTRACT Measurements have been conducted on four low... for typical operation in Texas. This has significant implications for everyone who purchases or uses showerheads; this is particularly true in hot climates where supply water temperatures are relatively high. TESTS CONDUCTED Showerheads Tested Two...

  16. Working in Hot Weather or Hot Workplace Environments Subject: Procedures and Guidelines for Working in Hot Environments

    E-Print Network [OSTI]

    Lennard, William N.

    Working in Hot Weather or Hot Workplace Environments Subject: Procedures and Guidelines for Working is intended to prevent potential heat induced illness as a result of hot weather or hot workplace environments in hot weather or hot workplace environments. The following parameters will serve as triggers

  17. Analytical and experimental investigations of the behavior of thermal neutrons in lattices of uranium metal rods in heavy water

    E-Print Network [OSTI]

    Simms, Richard

    1963-01-01T23:59:59.000Z

    Measurements of the intracellular distribution of the activation of foils by neutrons were made in lattices of 1/4-inch diameter, 1.03% U-235, uranium rods moderated by heavy water, with bare and cadmium-covered foils of ...

  18. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    demonstrated how well a molten salt thermal storage systembased CSP plant. Cold molten salt is pumped from a largetemperature and send to a hot molten salt tank. Salt is then

  19. Brackish water pond polyculture of estuarine fishes in power plant thermal effluent and their use as biological monitors of water quality

    E-Print Network [OSTI]

    Branch, Mark Roy

    1977-01-01T23:59:59.000Z

    -Old Striped Mullet, 2-Year-Old Atlantic Croaker, 1-Year-Old Southern Flounder Miscellaneous Organisms Unstocked-Unfiltered Ponds. . . . . . . . . . . . Stocked Ponds. Selected Metals and Pesticides Analyses. . . . 21 21 22 23 26 33 40 43 43 46... Station consists of three 750 megawatt units. Name-plate ratings specify maximum cooling water requirements of 76, 840 m /hr. However, ac- 3 tual pumping rates exceed the name-plate ratings by 2% for unit 1, 6% for unit 2, and less than 1% for unit 3...

  20. Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance

    E-Print Network [OSTI]

    Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

    2012-01-01T23:59:59.000Z

    a comparison of room cooling load and supply air to roomtemperatures, cooling load profiles, supply airflow rate,water cooling coil, hot water heating coil and supply fan.

  1. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01T23:59:59.000Z

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  2. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    E-Print Network [OSTI]

    Gustavsen Ph.D., Arild

    2010-01-01T23:59:59.000Z

    one aluminum frame and one PVC frame), found from numericalcellular polyvinylchloride (PVC) frame. Hot box results aremade of polyvinylchloride (PVC) (Frame E). The two thermally

  3. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    blankets to electric hot water heaters in South Africa,Ē J.for Residential Water Heaters, Direct Heating Equipment, andfor Residential Water Heaters, Direct Heating Equipment, and

  4. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    SciTech Connect (OSTI)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01T23:59:59.000Z

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  5. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    SciTech Connect (OSTI)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01T23:59:59.000Z

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  7. Debris dispersal in reactor material experiments on corium-water thermal interactions in ex-vessel geometry

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.; Squarer, D.

    1984-01-01T23:59:59.000Z

    An analysis has been performed of corium sweepout behavior in the ANL/EPRI CWTI-series reactor material experiments involving the gas pressure-driven injection of molten corium into the reactor cavity region of a 1:30 scale mockup of a PWR containment. A computer model was developed to calculate the sweepout versus retention of corium and water from the cavity. The model consists of hydrodynamics and freezing calculations describing the pressure-driven two-phase flow of corium, water, steam and gas out of the cavity, freezing of corium upon structural surfaces, and levitation of corium within the cavity by the vessel blowdown gas jet. The model has had good success predicting the disposition of corium for the available CWTI tests, indicating retention in the cavity of between 40 and 70% of the injected corium masses. For conditions representative of the TMLB' sequence in the reactor system, the model predicts essentially complete sweepout of corium from the full-scale cavity region before the dispersive forces arising from the blowdown of the primary system have decayed. However, this large sweepout does not imply that the swept out material would deliver its energy directly to the containment atmosphere.

  8. Pilgrim Hot Springs, Alaska

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic TroughPhotoCell StructureUranium MillPilgrim Hot

  9. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot Plate

  10. Idaho_HotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. 43 deg.

  11. Chemistry of spring and well waters on Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    the chemistry of dilute meteoric water, mixtures with sea water,and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water...

  12. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    power plants, water withdrawals for electricity generationelectricity generation in 2009 (33). Water used in thermal electric power plantsplant with CCS technologies requires roughly 1,000 gallons of water for every megawatt-hour of electricity generation (

  13. Theoretical studies on some aspects of molten fuel-coolant thermal interaction

    E-Print Network [OSTI]

    Kazimi, Mujid S.

    1973-01-01T23:59:59.000Z

    Rapid generation of high pressures and mechanical work may result when thermal energy is transferred from the hot molten nuclear fuel to the coolant in an LMFBR accident. Such energetic thermal interactions are facilitated ...

  14. Small-scale AFBC-hot air gas turbine power cycle

    SciTech Connect (OSTI)

    Ashworth, R.C. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States); Hall, A.W. [Morgantown Energy Technology Center, Morgantown, WV (United States)

    1995-02-01T23:59:59.000Z

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the U.S. Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW, plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1450{degrees}F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  15. Evaluation of 27+ Years Old Photovoltaic Modules Operated in a Hot-Desert Climatic Condition

    SciTech Connect (OSTI)

    Tang, Y.; Raghutaman, B.; Kuitche, J.; TamizhMani, G.; Backus, C. E.; Osterwald, C.

    2006-01-01T23:59:59.000Z

    Identification of failure mechanisms from the long-term field deployed modules is of great importance to the photovoltaic industry. This paper investigates the modules removed from a water pumping array operated over 27+ years in a hot-desert climatic condition, Arizona. Thirty-two modules were evaluated in this investigation. Each module is comprised of silicone rubber superstrate/encapsulant, mono-Si cells, fiberglass-like substrate, potted junction box and neoprene cable. Ten of these thirty-two modules were either non-functional or near non-functional with less than 30% of the original power. The other twenty-two functional modules showed an average power degradation of 1.08% per year over 27 years of operation. After the damp-heat (1000 hours of 85degC/85%RH), thermal cycling (two-hundred cycles of 90degC/-40degC) and hot-spot stress tests the modules lost about 11%, 9.8% and 3.5% of power, respectively.

  16. Hot hollow cathode gun assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1983-11-22T23:59:59.000Z

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  17. Quantification of thermophilic archaea and bacteria in a Nevada hot spring using fluorescent in situ hybridization

    E-Print Network [OSTI]

    Walker, Lawrence R.

    in situ hybridization Abstract Previous studies of high temperature hot springs in Yellowstone National temperatures. The cells, which were concentrated from 300 liters of hot spring water through tangential flow dominate in high-temperature environments such as Yellowstone National Park. However, our study indicates

  18. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    In Switzerland, district heating accounts for 50% of totalproposed hot-water district heating system in the St. Paul/an industrial in a district heating Washington Market and

  19. Steam treatment of surface soil: how does it affect water-soluble organic matter, C mineralization, and bacterial community composition?

    E-Print Network [OSTI]

    Roux-Michollet, Dad; Dudal, Yves; Jocteur-Monrozier, Lucile; Czarnes, Sonia

    2010-01-01T23:59:59.000Z

    organic components Water extraction was performed by shakingresulting from hot water extraction, as measured by Sparlingboiling soil in water resulted in the extraction of both

  20. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    conditioners and heat pumps, and water heaters We modifiedConditioners and Heat Pumps NAECA 1987 Water Heaters NAECAConditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

  1. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    conditioners and heat pumps, and water heaters We modifiedConditioning Heat Pumps NAECA 1987 Water Heaters NAECA 1987Conditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

  2. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    conditioners and heat pumps, and water heaters We modifiedConditioners and Heat Pumps NAECA 1987 Water Heaters NAECAConditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

  3. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect (OSTI)

    Toby McIntosh, Jackola Engineering

    2012-09-26T23:59:59.000Z

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬įF exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?center√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬įF or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  4. Waverly Light and Power- Residential Solar Thermal Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

  5. Making Steel Framing as Thermally Efficient as Wood†

    E-Print Network [OSTI]

    Kosny, J.; Childs, P.

    2002-01-01T23:59:59.000Z

    the steel web with a less conductive material, and 4) placing foam insulation in locations where the thermal shorts are most critical. Researchers at Oak Ridge National Laboratory (ORNL) have utilized both hot box testing and computer simulations in aim...

  6. Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis Known shallow hot spot in Animas Valley Notes Four thermal gradient holes were authorized to be drilled by AMEX, but no results were...

  7. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  8. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect (OSTI)

    Wen, B.; Yakobov, R.; Vitkalov, S. A. [Department of Physics, City College of New York, New York 10031 (United States)] [Department of Physics, City College of New York, New York 10031 (United States); Sergeev, A. [SUNY Research Foundation, SUNY at Buffalo, Buffalo, New York 14226 (United States)] [SUNY Research Foundation, SUNY at Buffalo, Buffalo, New York 14226 (United States)

    2013-11-25T23:59:59.000Z

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2?x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, ?V??I{sup 3}, with a coefficient ?(T) that correlates with the temperature variation of the resistivity d?/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e?ph}?1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  9. Process for making ceramic hot gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    2001-01-01T23:59:59.000Z

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  10. Telescopic nanotube device for hot nanolithography

    DOE Patents [OSTI]

    Popescu, Adrian; Woods, Lilia M

    2014-12-30T23:59:59.000Z

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  11. Water vapour in the atmosphere of a transiting extrasolar planet

    E-Print Network [OSTI]

    Giovanna Tinetti; Alfred Vidal-Madjar; Mao-Chang Liang; Jean-Philippe Beaulieu; Yuk Yung; Sean Carey; Robert J. Barber; Jonathan Tennyson; Ignasi Ribas; Nicole Allard; Gilda E. Ballester; David K. Sing; Franck Selsis

    2007-07-20T23:59:59.000Z

    Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal vertical profile of the planet.s atmosphere. Our results show that water is detectable on extrasolar planets using the primary transit technique and that the infrared should be a better wavelength region than the visible, for such searches.

  12. Hot carrier diffusion in graphene

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew; Wang, Shuai; Werake, Lalani Kumari; Weintrub, Ben; Loh, Kian Ping; Zhao, Hui

    2010-11-01T23:59:59.000Z

    We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal...

  13. The decay of hot nuclei

    SciTech Connect (OSTI)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01T23:59:59.000Z

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  14. Thermal metastabilities in the solar core

    E-Print Network [OSTI]

    Attila Grandpierre; Gabor Agoston

    2002-01-18T23:59:59.000Z

    Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

  15. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    RICHARD A. WAGNER

    1998-09-04T23:59:59.000Z

    This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 įC including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

  16. Coping with Hot Work Environments

    E-Print Network [OSTI]

    Smith, David

    2005-04-28T23:59:59.000Z

    exposed to these conditions. A hot work environment can impair safety and health. Both workers and their employers are responsi- ble for taking steps to prevent heat stress in the work- place. How Your Body Handles Heat Humans are warm-blooded, which... evaporation. Wiping sweat from the skin with a cloth also prevents cooling from evaporation. In hot, humid conditions, hard work becomes harder. The sweat glands release moisture and essential David W. Smith, Extension Safety Program The Texas A...

  17. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  18. Hot Pot Detail - Evidence of Quaternary Faulting

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27T23:59:59.000Z

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  19. Hot spot generation in energetic materials created by long-wavelength infrared radiation

    SciTech Connect (OSTI)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.; Dlott, Dana D., E-mail: dlott@illinois.edu [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-02-10T23:59:59.000Z

    Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub 2} laser operating in the 28-30?THz range. Hot spot generation was studied using relatively low intensity (?100?W cm{sup ?2}), long-duration (450 ms) LWIR pulses. The hot spots could be produced repeatedly in individual RDX crystals, to investigate the fundamental mechanisms of hot spot generation by LWIR, since the peak hot-spot temperatures were kept to ?30?K above ambient. Hot spots were generated preferentially beneath RDX crystal planes making oblique angles with the LWIR beam. Surprisingly, hot spots were more prominent when the LWIR wavelength was tuned to be weakly absorbed (absorption depth ?30??m) than when the LWIR wavelength was strongly absorbed (absorption depth ?5??m). This unexpected effect was explained using a model that accounts for LWIR refraction and RDX thermal conduction. The weakly absorbed LWIR is slightly focused underneath the oblique crystal planes, and it penetrates the RDX crystals more deeply, increasing the likelihood of irradiating RDX defect inclusions that are able to strongly absorb or internally focus the LWIR beam.

  20. Solar Thermal Conversion

    SciTech Connect (OSTI)

    Kreith, F.; Meyer, R. T.

    1982-11-01T23:59:59.000Z

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  1. SMUD- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the...

  2. Performance contracting for parabolic trough solar thermal systems

    SciTech Connect (OSTI)

    Brown, H.; Hewett, R.; Walker, A. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Golden, CO (United States)

    1997-12-31T23:59:59.000Z

    Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

  3. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    SciTech Connect (OSTI)

    Showman, Adam P.; Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States)] [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)] [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Shabram, Megan, E-mail: showman@lpl.arizona.edu [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)] [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)

    2013-01-01T23:59:59.000Z

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  4. DEPOSITIONAL FACIES AND AQUEOUS-SOLID GEOCHEMISTRY OF TRAVERTINE-DEPOSITING HOT SPRINGS (ANGEL TERRACE, MAMMOTH HOT SPRINGS, YELLOWSTONE NATIONAL PARK, U.S.A.)

    E-Print Network [OSTI]

    Farmer, Jack D.

    include hot spring travertine (precipitates from high-temperature springs, also called carbonate sinters spring water in the higher-temperature (-50-73¬įC) depositional facies. Conversely, travertine from waters in low- to high- * Present Address: Department of Geology, Arizona State University, Box

  5. Hot Beverages Cold Beverages

    E-Print Network [OSTI]

    New Hampshire, University of

    Juices $3.19 Vitamin Water $1.79 Java Tree Iced Coffee $2.59 Milk, 2% or Low Fat $1.39 20 oz. Coke Products $1.39 Energy Drinks Rockstar $2.39 Full Throttle $2.39 Red Bull Energy Drink $2.39 Rejuvenation in a sustainable way. 12 oz. 16 oz. 20 oz. House Blend $1.69 $1.79 $1.90 French Roast $1.69 $1.79 $1.90 Decaf Dark

  6. Controlling and maximizing effective thermal properties by manipulating transient behaviors during energy-system cycles

    E-Print Network [OSTI]

    Gao, Z J; Merlitz, H; Pagni, P J; Chen, Z

    2014-01-01T23:59:59.000Z

    Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers' needs. In the present study, behaviors related to both thermal conductivities ($\\kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $\\kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as "nonlinear thermal bias", is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transien...

  7. Thermal Stabilization Blend Plan

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-05-02T23:59:59.000Z

    This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

  8. air-water interactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 27 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE...

  9. Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the geothermal...

  10. Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  11. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    fault zones. The focus of Lake City Geothermal's current effort is on enhancing the site interpretation by re-evaluating the existing seismic data, conducting a detailed gravity...

  12. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...

    Office of Environmental Management (EM)

    Design, and Operation Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Establishing the Technical Basis for...

  13. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    Open Energy Info (EERE)

    planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300...

  14. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy Copyin Salt | Department

  15. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  16. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year openEnergy2003)Energy|2008) ||1981)

  17. Thermal Characteristics of the Chena Hot Springs Alaska Geothermal System |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands,Energy Information|Open

  18. Optimized Structures for Low-Profile Phase Change Thermal Spreaders

    E-Print Network [OSTI]

    Sharratt, Stephen A.

    2012-01-01T23:59:59.000Z

    reservoir Heater chip h water Figure 5.5: Numerical model to account for thermal spreading for accurate characterization

  19. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06T23:59:59.000Z

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  20. Measuring Thermal Transport in Extreme Environments: Thermal Conductivity

    E-Print Network [OSTI]

    Braun, Paul

    Chen California Institute of Technology Jackie Li University of Michigan supported by CarnegieMeasuring Thermal Transport in Extreme Environments: Thermal Conductivity of Water Ice VII to 20 GPa David G. Cahill, Wen-Pin Hsieh, Dallas Trinkle, University of Illinois at Urbana-Champaign Bin

  1. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin

    E-Print Network [OSTI]

    Boyer, Edmond

    of around 45 to 50įC. The study of uranium activity ratios for these Triassic formation waters allows us with water essentially resulting from a seawater-derived brine endmember diluted by meteoric waters. The data, uranium isotopes, oxygen isotopes, hydrogen isotopes, geothermometry, Trias, Paris Basin 1 hal-00563924

  2. Hot Gas Halos in Galaxies

    SciTech Connect (OSTI)

    Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

    2010-06-08T23:59:59.000Z

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  3. Hot Spot | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpenHotPot,Hot

  4. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18T23:59:59.000Z

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  5. Robust Control-theoretic Thermal Balancing for Server Clusters

    E-Print Network [OSTI]

    Lu, Chenyang

    Robust Control-theoretic Thermal Balancing for Server Clusters Yong Fu, Chenyang Lu, Hongan Wang for clusters because of the increasing power consumption of modern processors, compact server architectures and growing server density in data centers. Thermal balancing mitigates hot spots in a cluster through dynamic

  6. Utilizing Predictors for Efficient Thermal in Multiprocessor SoCs

    E-Print Network [OSTI]

    Simunic, Tajana

    , we investigate how to use predictors for forecasting future temperature and workload dynamicsCs. Cooling costs continue to increase following the trend in power density. In addition to thermal hot spots, spatial thermal gradients on the die affect the cooling cost as large gradients decrease cooling

  7. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)

    SciTech Connect (OSTI)

    Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

    2013-05-01T23:59:59.000Z

    This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

  8. Thermal Radiation from Nucleons and Mesons

    E-Print Network [OSTI]

    Jan-e Alam; Pradip Roy; Sourav Sarkar

    2003-04-17T23:59:59.000Z

    Thermal photon emission rates due to meson-nucleon interactions have been evaluated. An exhaustive set of reactions involving p(\\bar p), n(\\bar n), rho, omega, a_1, pi and eta is seen to provide a sizeable contribution to the emission rate from hot hadronic matter. Contributions from baryonic resonances are found to be negligibly small.

  9. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater heaters, thermal protection for electronics, spacecrafts, and solar

  10. How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    efficiency of commercial water heaters and hot water supplyheat pump water heaters). http://edocket.access.gpo.gov/2004/CSA 4.3- 2004 Gas Water Heaters - Volume III, Storage

  11. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01T23:59:59.000Z

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  12. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  13. Hot galactic winds constrained by the X-ray luminosities of galaxies

    SciTech Connect (OSTI)

    Zhang, Dong; Thompson, Todd A. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Murray, Norman [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada); Quataert, Eliot, E-mail: dzhang@astronomy.ohio-state.edu, E-mail: thompson@astronomy.ohio-state.edu [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States)

    2014-04-01T23:59:59.000Z

    Galactic superwinds may be driven by very hot outflows generated by overlapping supernovae within the host galaxy. We use the Chevalier and Clegg (CC85) wind model and the observed correlation between X-ray luminosities of galaxies and their star formation rates (SFRs) to constrain the mass-loss rates ( M-dot {sub hot}) across a wide range of SFRs, from dwarf starbursts to ultraluminous infrared galaxies. We show that for fixed thermalization and mass-loading efficiencies, the X-ray luminosity of the hot wind scales as L{sub X} ?SFR{sup 2}, significantly steeper than is observed for star-forming galaxies: L{sub X} ?SFR. Using this difference, we constrain the mass-loading and thermalization efficiency of hot galactic winds. For reasonable values of the thermalization efficiency (? 1) and for SFR ? 10 M {sub ?} yr{sup Ė1} we find that M-dot {sub hot}/SFR? 1, which is significantly lower than required by integrated constraints on the efficiency of stellar feedback in galaxies and potentially too low to explain observations of winds from rapidly star-forming galaxies. In addition, we highlight the fact that heavily mass-loaded winds cannot be described by the adiabatic CC85 model because they become strongly radiative.

  14. apoplastic water flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    district heating system Texas A&M University - TxSpace Summary: -rise building hot water heating system. Energy for sustainable development, the journal of the international...

  15. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOE Patents [OSTI]

    Jha, Mahesh C. (Arvada, CO); Blandon, Antonio E. (Thornton, CO); Hepworth, Malcolm T. (Edina, MN)

    1988-01-01T23:59:59.000Z

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  16. 0-7803-XXXX-X/06/$20.00 2006 IEEE 22nd IEEE SEMI-THERM Symposium Hot Spot Cooling using Embedded Thermoelectric Coolers

    E-Print Network [OSTI]

    Thermoelectric Coolers G. Jeffrey Snyder, Marco Soto, Randy Alley, David Koester, Bob Conner Nextreme Thermal spot temperatures when efficiently integrated with a heat spreader. Embedded thermoelectric cooling (e by today's advanced processors. Keywords Localized hot spot cooling. Thermoelectric, Peltier Cooling

  17. Geothermal potential of West-Central New Mexico from geochemical and thermal gradient data

    SciTech Connect (OSTI)

    Levitte, D.; Gambill, D.T.

    1980-11-01T23:59:59.000Z

    To study the low temperature and Hot Dry Rock (HDR) geothermal potential of west-central New Mexico, 46 water samples were collected and geothermal gradient measurements were made in 29 wells. Water chemistry data indicate that all the samples collected are meteoric waters. High temperatures of samples taken from wells between Gallup and Tohatchi indicate these wells may derive water from a warm aquifer below the depth of the wells. The chemistries of the samples farther south on the Zuni Indian reservation suggest these waters are not circulating below 600 m of the surface. Geothermometry calculations support the conclusion that the waters sampled are meteoric. The geothermometry also indicates that the deep reservoir between Gallup and Tohatchi may be greater than 60/sup 0/C. Thermal gradient data indicate an area of high gradient on the Zuni Indian Reservation with a measured maximum of 67/sup 0/C/km between 181 m and 284 m. This high probably is not hydrologically controlled. The maximum gradients in the study area are 76/sup 0/C/km and 138/sup 0/C/km, measured just east of Springerville, Arizona. These gradients are undoubtedly controlled by circulating water, possibly heated by a magmatic source at depth and circulating back to the surface.

  18. Is My Water Safe? disaster may disrupt the electricity needed to pump

    E-Print Network [OSTI]

    . Emergency water Your hot water heater or water pressure tank could supply many gallons of safe water during the water heater on again until the water system is back in service. Water from the toilet tank may be used an emergency. Before using water from the water heater, switch off the gas or elec- tricity that heats

  19. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15T23:59:59.000Z

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  20. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  1. Statistical mechanics of hot dense matter

    SciTech Connect (OSTI)

    More, R.

    1986-10-01T23:59:59.000Z

    Research on properties of hot dense matter produced with high intensity laser radiation is described in a brief informal review.

  2. Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot

    E-Print Network [OSTI]

    Fouke, Bruce W.

    flow of spring water from the high-temperature to low-temperature facies. These results suggest of depositional facies models that correlate (1) the depth, velocity, temperature, and chemistry of waterPartitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs

  3. 2000 Astronomy Department, University of Texas at Austin Full Of Hot Air?

    E-Print Network [OSTI]

    Hemenway, Mary Kay

    ©2000 Astronomy Department, University of Texas at Austin Full Of Hot Air? Introduction Light has standing by a pool, the medium is air. If you are looking at the Moon from under water after you jump into the pool, the mediums are both air and water. The Moon would appear dif- ferent from underwater because

  4. Wind information derived from hot air

    E-Print Network [OSTI]

    Haak, Hein

    Wind information derived from hot air balloon flights for use in short term wind forecasts E Introduction/Motivation Hot air balloons as wind measuring device Setup of nested HIRLAM models Results ∑ Three, The Nertherlands #12;Hot air balloon ∑Displacement/time unit = wind speed ∑Vertical resolution 30m ∑Inertia (500 kg

  5. Development of hot dry rock geothermal resources; technical and economic issues

    SciTech Connect (OSTI)

    Tester, J.W.

    1980-01-01T23:59:59.000Z

    Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat are discussed. Topics covered include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return. The current status of research and deveopment efforts in the US are also summarized.

  6. Development of NDE methods for hot gas filters.

    SciTech Connect (OSTI)

    Deemer, C.; Ellingson, W. A.; Koehl, E. R.; Lee, H.; Spohnholtz, T.; Sun, J. G.

    1999-07-21T23:59:59.000Z

    Ceramic hot gas candle filters are currently under development for hot gas particulate cleanup in advanced coal-based power systems. The ceramic materials for these filters include nonoxide monolithic, nonoxide-fiber-reinforced composites, and nonoxide reticulated foam. A concern is the lack of reliable data on which to base decisions for reusing or replacing hot gas filters during plant shutdowns. The work in this project is aimed at developing nondestructive evaluation (FIDE) technology to allow detection, and determination of extent, of life-limiting characteristics such as thermal fatigue, oxidation, damage from ash bridging such as localized cracking, damage from local burning, and elongation at elevated temperature. Although in-situ NDE methods are desirable in order to avoid disassembly of the candle filter vessels, the current vessel designs, the presence of filter cakes and possible ash bridging, and the state of NDE technology prevent this. Candle filter producers use a variety of NDE methods to ensure as-produced quality. While impact acoustic resonance offers initial promise for examining new as-produced filters and for detecting damage in some monolithic filters when removed from service, it presents difficulties in data interpretation, it lacks localization capability, and its applicability to composites has yet to be demonstrated. Additional NDE technologies being developed and evaluated in this program and whose applicability to both monolithics and composites has been demonstrated include (a) full-scale thermal imaging for analyzing thermal property variations; (b) fret, high-spatial-resolution X-ray imaging for detecting density variations and dimensional changes; (c) air-coupled ultrasonic methods for determining through-thickness compositional variations; and (d) acoustic emission technology with mechanical loading for detecting localized bulk damage. New and exposed clay-bonded SiC filters and CVI-SiC composite filters have been tested with these additional NDE methods.

  7. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15T23:59:59.000Z

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  8. Hard-thermal-loop QED thermodynamics

    E-Print Network [OSTI]

    Nan Su; Jens O. Andersen; Michael Strickland

    2009-11-24T23:59:59.000Z

    The weak-coupling expansion for thermodynamic quantities in thermal field theories is poorly convergent unless the coupling constant is tiny. We discuss the calculation of the free energy for a hot gas of electrons and photons to three-loop order using hard-thermal-loop perturbation theory (HTLpt). We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to the cancellations among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops.

  9. Thermal Insulation Performance in the Process Industries: Facts and Fallacies

    E-Print Network [OSTI]

    Tye, R. P.

    Guarded Hot Box Study on Thermal Performance of Fibrous Insulations Used in Lofts," private com munication. 295 ESL-IE-85-05-54 Proceedings from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 ...THERMAL INSULATION PERFORMANCE IN 'mE PROCESS INDUSTRIES: FACTS AND FALLACIES R.P. Tye Dynatech RID Company, Cambridge, MA, U.S.A. ABSTRACT The efficient use of thermal insulation materials and systems for design of cryogenic and elevated...

  10. Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    isotope redistribution by thermal diffusion leading to enrichment of light isotopes at the hot endStable isotope fractionation by thermal diffusion through partially molten wet and dry silicate 2012 Editor: T.M. Harrison Keywords: thermal diffusion hydrogen isotope separation oxygen isotopes

  11. Distributed Task Migration for Thermal Management in Many-core Systems

    E-Print Network [OSTI]

    Qiu, Qinru

    chip complexity and power envelope elevate peak temperatures of chip and imbalance the thermal gradientDistributed Task Migration for Thermal Management in Many-core Systems Yang Ge, Parth Malani, Qinru York {yge2, pmalani1, qqiu}@binghamton.edu ABSTRACT In the deep submicron era, thermal hot spots

  12. A HEAVY ISOTOPE IN A SOLID DRIFTS DOWN A THERMAL ENERGY GRADIENT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    183 A HEAVY ISOTOPE IN A SOLID DRIFTS DOWN A THERMAL ENERGY GRADIENT R. V. HESKETH CEGB Berkeley, and indeed, related to the second law ; to the familar statement that thermal energy diffuses from hot to cold we merely add the corollary even when the carriers of thermal energy are isotopic defects

  13. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Alger, Terry W. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  14. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  15. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  16. Ghabezloo: Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste Micromechanics analysis of thermal expansion and thermal

    E-Print Network [OSTI]

    Boyer, Edmond

    pore fluid is anomalously higher than the one of pure bulk water. The micromechanics model water-to-cement ratios. It permits also to calculate the pore volume thermal expansion coefficient expansion and thermal pressurization of a hardened cement paste, Cement and Concrete Research, DOI 10.1016/j

  17. Emergency Factsheet for Disinfecting Water Wells by Shock Chlorination

    E-Print Network [OSTI]

    an alternate water source during the treatment period. Most water treatment equipment (such as water heaters, release the air to allow the tank to be filled with chlorinated water. Drain all hot water heatersEmergency Factsheet for Disinfecting Water Wells by Shock Chlorination Mark L. McFarland, Associate

  18. Design and installation manual for thermal energy storage

    SciTech Connect (OSTI)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  19. Fracture behavior of advanced ceramic hot gas filters: Final report

    SciTech Connect (OSTI)

    Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-03-01T23:59:59.000Z

    This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Drain Water Heat Recovery

    E-Print Network [OSTI]

    household, the NPV of DWHR is -$203.68 for homes with electric water heaters and -$464.88 for homes with natural gas water heaters. DWHR is much more economical for households with electric hot water heaters as their energy costs are much higher. A household of 4 or more people with an electric hot water heater would