National Library of Energy BETA

Sample records for thermal energy te

  1. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling[Thermoelectric (TE) HVAC

    Broader source: Energy.gov [DOE]

    Discusses results from TE HVAC project to add detail to a human thermal comfort model and further allow load reduction in the climate control energy through a distributed TE network

  2. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  3. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  4. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  5. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  6. NREL: Energy Storage - Energy Storage Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The lab's performance assessments factor in the design of the thermal management system, the thermal behavior of the cell, battery lifespan, and safety of the energy storage system...

  7. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  8. Battle Mountain Band - Te-Moak: Solar Energy Park

    Energy Savers [EERE]

    Battle Mountain Band - Te-Moak Chairman Joseph Holley and Vice-chairman Mark Oppenhein, Members Donna Hill, Delbert Holley, Lydia Johnson, and Lydell Oppenhein Solar Energy Park ...

  9. Thermal Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Jump to: navigation, search Name: Thermal Energy Systems Place: London, United Kingdom Sector: Biomass Product: UK based company that constructs and installs boilers...

  10. Evaluation of Thermal to Electrical Energy Conversion of High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules | Department of Energy Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications deer11_salvador.pdf (2.68

  11. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...

  12. Biomass Thermal Energy Council (BTEC) | Open Energy Information

    Open Energy Info (EERE)

    Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Thermal Energy Council (BTEC) AgencyCompany Organization: Biomass Thermal Energy...

  13. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  14. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  15. Solar Thermal Energy Technology; (USA)

    SciTech Connect (OSTI)

    Williams, L.E.; Hicks, S.C.

    1991-01-01

    Solar Thermal Energy Technology (STT) announces on a bimonthly basis the current worldwide research and development information that would expand the technology base required for the advancement of solar thermal systems as a significant energy source. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in STT and other citations to information on solar thermal energy date back to 1974.

  16. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  17. Substrate CdTe Efficiency Improvements - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate CdTe Efficiency Improvements National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication 11-28PCT Application as-published (984 KB) Technology Marketing Summary Thin film solar cells have been the focus of many research facilities in recent years that are working to decrease manufacturing costs and increase cell efficiency. Cadmium telluride (CdTe) has been well recognized as a promising photovoltaic material for thin film solar cells

  18. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  19. High energy density thermal cell

    SciTech Connect (OSTI)

    Fletcher, A.N.

    1980-04-29

    A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.

  20. Stewart Thermal Ltd | Open Energy Information

    Open Energy Info (EERE)

    Thermal Ltd Jump to: navigation, search Name: Stewart Thermal Ltd Place: United Kingdom Sector: Biomass Product: Provides specialist advice in the field of biomass energy....

  1. Energy Sources for Yotta-TeV Iceberg Showers (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Energy Sources for Yotta-TeV Iceberg Showers Citation Details In-Document Search Title: Energy Sources for Yotta-TeV Iceberg Showers You are accessing a document from the ...

  2. Energy Sources for Yotta-TeV Iceberg Showers (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Energy Sources for Yotta-TeV Iceberg Showers Citation Details In-Document Search Title: Energy Sources for Yotta-TeV Iceberg Showers In late February of 2002, warming climate along ...

  3. Thermal energy storage program description

    SciTech Connect (OSTI)

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  4. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  5. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  6. NRG Thermal LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: NRG Thermal LLC Place: Minneapolis, Minnesota Zip: 55402-2200 Product: A subsidiary of NRG Energy that specialises in district energy systems...

  7. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Topics: Resource assessment Website: www.nrel.govotec NREL-Ocean Energy Thermal Conversion Screenshot References: OTEC1 Logo: NREL-Ocean...

  8. MEMS based pyroelectric thermal energy harvester (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results MEMS based pyroelectric thermal energy harvester Title: MEMS based pyroelectric thermal energy harvester A pyroelectric thermal energy harvesting ...

  9. Thermal Transistor for Energy Smart Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Transistor for Energy Smart Buildings Thermal Transistor for Energy Smart Buildings Assumptions & Limitations: * Current LANL prototype: ~50 cm 2 active area. Assume it can be scaled to sq.ft size relevant for applications * Switching requires ~200 Volts but only draws a few ”A. The associated drive electronics comprises only off-the- shelf components. Thermally adaptive devices and systems may be a game changer in energy efficiency, buildings and beyond: * Thermally agile walls can

  10. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  11. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  12. MEMS-Based Pyroelectric Thermal Energy Scavenger - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycled pyroelectric materials as thermal energy harvesters, this invention can ... energy generation cycle with minimal power loss, leading to very efficient power generation. ...

  13. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics

    SciTech Connect (OSTI)

    Li, Chen [ORNL] [ORNL; Ma, Jie [ORNL] [ORNL; May, Andrew F [ORNL] [ORNL; Cao, Huibo [ORNL] [ORNL; Christianson, Andrew D [ORNL] [ORNL; Ehlers, Georg [ORNL] [ORNL; Singh, David J [ORNL] [ORNL; Sales, Brian C [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL

    2014-01-01

    The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode.

  14. Sandia Energy - Thermal Pulses for Boeing Test Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Pulses for Boeing Test Article Home Renewable Energy Energy Partnership News EC Concentrating Solar Power Solar National Solar Thermal Test Facility Thermal Pulses for...

  15. Solar Thermal Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories 1 Success Stories Category Title and Abstract Company Laboratories Date Solar Thermal NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy Huge ...

  16. Trinity Thermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Place: Texas Zip: 75028 Product: Trinity Thermal Systems provides power storage products aimed a shifting energy use from air conditioning systems to off-peak times....

  17. Maximizing Thermal Efficiency and Optimizing Energy Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... gas, electric, and solar hot water evaluation * Energy Storage Laboratory is home to the world's most accurate battery calorimeters of their kind, thermal imaging, battery ...

  18. Te

    U.S. Energy Information Administration (EIA) Indexed Site

    N u n a v u t O n t a r i o A l b e r t a Te x a s N o r t h w e s t Te r r i t o r i e s M a n i t o b a B r i t i s h C o l u m b i a S a s k a t c h e w a n Y u k o n M o n t a n a U t a h I d a h o C a l i f o r n i a N e v a d a O r e g o n A r i z o n a I o w a K a n s a s C o l o r a d o W y o m i n g S o n o r a N e w M e x i c o M i n n e s o t a N e b r a s k a O h i o C h i h u a h u a I l l i n o i s M i s s o u r i F l o r i d a G e o r g i a O k l a h o m a W a s h i n g t o n S o

  19. Te

    U.S. Energy Information Administration (EIA) Indexed Site

    A l a s k a N u n a v u t O n t a r i o A l b e r t a Te x a s N o r t h w e s t Te r r i t o r i e s M a n i t o b a B r i t i s h C o l u m b i a S a s k a t c h e w a n Y u k o n M o n t a n a U t a h I d a h o C a l i f o r n i a N e v a d a O r e g o n A r i z o n a I o w a K a n s a s C o l o r a d o W y o m i n g S o n o r a N e w M e x i c o M i n n e s o t a N e b r a s k a O h i o C h i h u a h u a I l l i n o i s M i s s o u r i F l o r i d a G e o r g i a O k l a h o m a W a s h i n

  20. Te

    U.S. Energy Information Administration (EIA) Indexed Site

    D u N o r d - O u e s t Te r r e - N e u v e - e t - L a b r a d o r Q u Ă© b e c Í l e - d u - P r i n c e - É d o u a r d N o u v e l l e - É c o s s e N o u v e a u - B r u n s w i c k C o l o m b i e - B r i t a n n i q u e B a f f i n I s l a n d Í l e d u B a f f i n E l l e s m e r e I s l a n d Í l e d u E l l e s m e r e V i c t o r i a I s l a n d Í l e d u V i c t o r i a N e w f o u n d l a n d a n d L a b r a d o r Te r r e - N e u v e - e t - L a b r a d o r A l a s k a N u n

  1. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  2. ON THE ENERGY SPECTRA OF GeV/TeV COSMIC RAY LEPTONS (Journal...

    Office of Scientific and Technical Information (OSTI)

    The models rely on either dark matter annihilationdecay or specific nearby astrophysical ... is the Klein-Nishina suppression of the electron cooling rate around TeV energies. ...

  3. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons (Journal...

    Office of Scientific and Technical Information (OSTI)

    The models rely on either dark matter annihilationdecay or specific nearby astrophysical ... is the Klein-Nishina suppression of the electron cooling rate around TeV energies. ...

  4. Thermal conductivity of Bi{sub 2}Te{sub 3} tilted nanowires, a molecular dynamics study

    SciTech Connect (OSTI)

    Li, Shen Lacroix, David; Termentzidis, Konstantinos; Chaput, Laurent; Stein, Nicolas; Frantz, Cedric

    2015-06-08

    Evidence for an excellent compromise between structural stability and low thermal conductivity has been achieved with tilted Bi{sub 2}Te{sub 3} nanowires. The latter ones were recently fabricated and there is a need in modeling and characterization. The structural stability and the thermal conductivity of Bi{sub 2}Te{sub 3} nanowires along the tilted [015]* direction and along the [010] direction have been explored. For the two configurations of nanowires, the effect of the length and the cross section on the thermal conductivity is discussed. The thermal conductivity of infinite size tilted nanowire is 0.34?W/m K, significantly reduced compared to nanowire along the [010] direction (0.59?W/m K). This reveals that in Bi{sub 2}Te{sub 3} nanowires the structural anisotropy can be as important as size effects to reduce the thermal conductivity. The main reason is the reduction of the phonon mean free path which is found to be 1.7?nm in the tilted nanowires, compared to 5.3?nm for the nanowires along the [010] direction. The fact that tilted Bi{sub 2}Te{sub 3} nanowire is mechanically stable and it has extremely low thermal conductivity suggests these nanowires as a promising material for future thermoelectric generation application.

  5. Battery and Thermal Energy Storage | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery and Thermal Energy Storage Not long ago, the mantra among electric utilities was that "you can't store electricity"-instantaneous power production had to nearly equal demand. But NREL research is changing this belief, demonstrating the high performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy storage system NREL examines how best to integrate these energy storage technologies into the electrical grid and potentially into

  6. Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules

    SciTech Connect (OSTI)

    Salvador, James R.; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E.; Thompson, Alan; Sharp, Jeff W.; Konig, Jan; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeff; Wang, Hsin; Wereszczak, Andrew A; Meisner, G P

    2013-01-01

    The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

  7. Ocean Thermal Extractable Energy Visualization: Final Technical Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world’s ocean thermal resources.

  8. U.S. CHP Installations Incorporating Thermal Energy Storage ...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC) was prepared by the ... Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), 2004 Guide to ...

  9. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under ...

  10. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  11. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative ... FOA, developed a thermal energy storage system based on encapsulated phase change ...

  12. Innovative Phase Change Thermal Energy Storage Solution for Baseload...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power ... salt thermal energy storage (TES) system that can interface with Infinia's ...

  13. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Project Profile: Reducing the Cost of Thermal Energy Storage for ... is looking at innovative ways to reduce thermal energy storage (TES) system costs. ...

  14. Thermal Bypass Air Barriers in the 2009 International Energy...

    Energy Savers [EERE]

    Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code - Building America Top Innovation Thermal Bypass Air Barriers in the 2009 International Energy ...

  15. Reversible Metal Hydride Thermal Energy Storage for High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation ...

  16. Innovative Phase hange Thermal Energy Storage Solution for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase hange Thermal Energy Storage Solution for Baseload Power Innovative Phase hange Thermal Energy ... for Dish Engine Solar Power Generation Dish Stirling High Performance ...

  17. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  18. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    SciTech Connect (OSTI)

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; Kanatzidis, M. G.; He, J.

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.

  19. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; et al

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observationsmore » and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.« less

  20. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    SciTech Connect (OSTI)

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; Kanatzidis, M. G.; He, J.

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.

  1. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    the ability to produce 10000 TWh per year, which is greater than other types of ocean energy such as tides, marine currents and salinity gradient. OTEC functions best when...

  2. Taofang Zeng | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taofang Zeng Alumni Taofang Zeng Director of Center of Thermal Energy Systems, Huaneng Group Corporation, China

  3. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect (OSTI)

    2011-02-01

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  4. PVA TePla AG | Open Energy Information

    Open Energy Info (EERE)

    search Name: PVA TePla AG Place: Asslar, Germany Zip: 35614 Product: Supplier of plants and equipment for vacuum systems, crystal-growing systems and plasma systems, some of...

  5. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  6. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  7. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect (OSTI)

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  8. Phase change thermal energy storage material

    DOE Patents [OSTI]

    Benson, David K.; Burrows, Richard W.

    1987-01-01

    A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

  9. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  10. Beijing Tianyin Thermal Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianyin Thermal Development Co Ltd Jump to: navigation, search Name: Beijing Tianyin Thermal Development Co Ltd Place: Beijing, China Zip: 100000 Sector: Geothermal energy Product:...

  11. High thermal stability Sb{sub 3}Te-TiN{sub 2} material for phase change memory application

    SciTech Connect (OSTI)

    Ji, Xinglong; Zhou, Wangyang; Wu, Liangcai Zhu, Min; Rao, Feng; Song, Zhitang; Cao, Liangliang; Feng, Songlin

    2015-01-12

    For phase change memory (PCM) applications, it has been widely accepted that ή phase Sb-Te has fast operation speed and good phase stability. However, the fast growth crystallization mechanism will cause poor amorphous phase stability and overlarge grain size. We introduce TiN{sub 2} into ή phase Sb-Te (Sb{sub 3}Te) to enhance the amorphous thermal stability and refine the grain size. With TiN{sub 2} incorporating, the temperature for 10-year data retention increases from 79 °C to 124 °C. And the grain size decreases to dozens of nanometers scale. Based on X-ray photoelectron spectroscopy and transmission electron microscopy results, we knew that nitrogen atoms bond with titanium, forming disorder region at the grain boundary of Sb{sub 3}Te-TiN{sub 2} (STTN). Thus, STTN has a quite different crystallization mechanism from Sb{sub 3}Te. Furthermore, PCM device based on STTN can realize reversible phase change under 20 ns electrical pulse.

  12. CdTe portfolio offers commercial ready high efficiency solar - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Find More Like This Return to Search CdTe portfolio offers commercial ready high efficiency solar National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication MktgSummary CdTe.pdf (117 KB) Schematic illustration of a typical CdTe superstrate thin-film PV device. In this design, the layers of the device are deposited onto a glass "superstrate" that allows sunlight to enter. The sunlight passes through the

  13. Development of MEMS based pyroelectric thermal energy harvesters

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Development of MEMS based pyroelectric thermal energy harvesters Citation Details In-Document Search Title: Development of MEMS based pyroelectric thermal energy harvesters The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type

  14. Optic phonon bandwidth and lattice thermal conductivity: The case of Li2X ( X=O , S, Se, Te)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m-1K-1), BeTe (370 W/m-1K-1) and cubic BAs (3150 W/m-1K-1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carryingmore » acoustic phonons in Li2Se and Li2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  15. Environmental impacts of ocean thermal energy conversion

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  16. Thermal Profiling of Residential Energy Use

    SciTech Connect (OSTI)

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  17. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect (OSTI)

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  18. Parallel Integrated Thermal Management - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Early Stage R&D Early Stage R&D Find More Like This Return to Search Parallel Integrated Thermal Management National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Many current cooling systems for hybrid electric vehicles (HEVs) with a high power electric drive system utilize a low temperature liquid cooling loop for cooling the power electronics system and electric machines associated with the electric

  19. Thermal Regenerator Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regenerator Testing Thermal Regenerator Testing Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_crane.pdf (64.03 KB) More Documents & Publications Phase 1 of the Advanced Collaborative Emissions Study (ACES): Highlights of Project Finding Engine Tests of an Active PM Filter

  20. Project Profile: Novel Thermal Energy Storage Systems for Concentratin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems for Concentrating Solar Power Project Profile: Novel Thermal Energy ... reduce thermal resistances within the TES system of a large-scale CSP plant and, in turn, ...

  1. Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation | Department of Energy Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo The University of South Florida, under the Baseload CSP FOA, developed a thermal energy storage system based on encapsulated phase change materials (PCM) that meets the utility-scale baseload CSP plant requirements at significantly lower system costs. Approach Previous thermal

  2. Project Profile: Novel Molten Salts Thermal Energy Storage for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Generation | Department of Energy Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Alabama logo The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems. Approach They will conduct

  3. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  4. High Efficiency Thermal Energy Storage System for CSP | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermal Energy Storage System for CSP High Efficiency Thermal Energy Storage System for CSP This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_singh.pdf (1.63 MB) More Documents & Publications High Efficiency Thermal Energy Storage System for CSP - FY13 Q1 High-Efficiency Thermal Energy Storage System for CSP - FY13 Q3 High-Efficiency Thermal Energy Storage

  5. Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum

    SciTech Connect (OSTI)

    2012-12-31

    The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AMℱ) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AMℱ advances a radically different approach to commercial building design, operation, maintenance, and end-­‐of-­‐life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AMℱ courses and certificates to the professional community and continuously improve TE2AMℱ course materials. The TE2AMℱ project supports the DOE Strategic Theme 1 -­‐ Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AMℱ curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AMℱ curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was

  6. Review of pyroelectric thermal energy harvesting and new MEMs...

    Office of Scientific and Technical Information (OSTI)

    Conference: Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques Citation Details In-Document Search Title: Review of ...

  7. Beijing Shenwu Thermal Energy Technology Co Ltd BSTET | Open...

    Open Energy Info (EERE)

    highly efficient, energy saving and low pollution combustion technology, such as WDH serial gas atomization burners. References: Beijing Shenwu Thermal Energy Technology Co Ltd...

  8. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  9. Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluid Containment Materials | Department of Energy Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials National Renewable Energy Laboratory logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL), with support from the University of Wisconsin and Sandia National Laboratories, under the National

  10. Thermal stability and transport studies of (100 - 2x)TeO{sub 2}-xAg{sub 2}O-xWO{sub 3} (7.5 {<=} x {<=} 30) glass system

    SciTech Connect (OSTI)

    Upender, G.; Ramesh, Ch.; Mouli, V. Chandra

    2011-02-15

    Graphical abstract: Typical modulated DSC (NRHF and C{sub p}) results during a heating scan in the 85TeO{sub 2}-7.5Ag{sub 2}O-7.5WO{sub 3} glass sample. Research highlights: {yields} The addition of equal mol% of WO{sub 3} and Ag{sub 2}O to TeO{sub 2} increases the thermal stability. {yields} The 55TeO{sub 2}-22.5WO{sub 3}-22.5Ag{sub 2}O shows the highest thermal stability ({Delta}T = 237 {sup o}C). {yields} These glasses are more useful for drawing of optical fibers. {yields} The present glass system shows higher conductivity. -- Abstract: Differential scanning calorimetry (DSC), infrared (IR) and direct current (DC) conductivity studies have been carried out on (100 - 2x)TeO{sub 2}-xAg{sub 2}O-xWO{sub 3} (7.5 {<=} x {<=} 30) glass system. The IR studies show that the structure of glass network consists of [TeO{sub 4}], [TeO{sub 3}]/[TeO{sub 3+1}], [WO{sub 4}] units. Thermal properties such as the glass transition (T{sub g}), onset crystallization (T{sub o}), thermal stability ({Delta}T), glass transition width ({Delta}T{sub g}), heat capacities in the glassy and liquid state (C{sub pg} and C{sub pl}), heat capacity change ({Delta}C{sub p}) and ratios C{sub pl}/C{sub pg} of the glass systems were calculated. The highest thermal stability (237 {sup o}C) obtained in 55TeO{sub 2}-22.5Ag{sub 2}O-22.5WO{sub 3} glass suggests that this new glass may be a potentially useful candidate material host for rare earth doped optical fibers. The DC conductivity of glasses was measured in temperature region 27-260 {sup o}C, the activation energy (E{sub act}) values varied from 1.393 to 0.272 eV and for the temperature interval 170-260 {sup o}C, the values of conductivity ({sigma}) of glasses varied from 8.79 x 10{sup -9} to 1.47 x 10{sup -6} S cm{sup -1}.

  11. Improving Energy Efficiency by Developing Components for Distributed...

    Broader source: Energy.gov (indexed) [DOE]

    on Thermal Comfort Modeling Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC

  12. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high

  13. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    SciTech Connect (OSTI)

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) #12;eld distributions as well as the grain scale #12;eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local #12;elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  14. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  15. Thermal stability and thermoelectric properties of Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y} semiconducting glasses

    SciTech Connect (OSTI)

    Vaney, J.B.; Piarristeguy, A.; Pradel, A.; Alleno, E.; Lenoir, B.; Candolfi, C.; Dauscher, A.; Gonçalves, A.P.; Lopes, E.B.; Monnier, J.; Ribes, M.; Godart, C.

    2013-07-15

    We report on the thermal behavior and thermoelectric properties of bulk chalcogenide glasses in the systems Cu{sub x}As{sub 40−x}Te{sub 60} (20≀x≀32.5) and Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y}, (0≀y≀9) synthesized by conventional melt-quenching techniques. The thermal stability of these glasses was probed by differential scanning calorimetry to determine the characteristic T{sub g} and ΔT temperatures, both of which increasing noticeably with y. Thermoelectric properties were found to be mainly influenced by the Cu concentration with respect to the Se content. The thermal conductivity is practically composition-independent throughout the compositional range covered. A maximum ZT value of 0.02 at 300 K increasing to 0.06 at 375 K was achieved for the composition Cu{sub 30}As{sub 10}Te{sub 54}Se{sub 6}. - Graphical abstract: Effect of substitution of Te by Se and As by Cu on thermal stability and thermoelectric properties of Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y} semiconducting glasses. - Highlights: ‱ We studied substitution of Te by Se in Cu–As–Te thermoelectric chalcogenide glasses. ‱ Cu–As–Te–Se glasses were prepared by conventional melt-quenching method. ‱ Se inclusion increases thermal stability in Cu–As–Te glasses. ‱ Increasing copper concentration enhances thermoelectric properties. ‱ ZT of 0.02 was achieved at 300 K and 0.06 at 375 K.

  16. Ocean thermal energy conversion: Perspective and status

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  17. Solar Thermal Collectors - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Collectors Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook

  18. Solar Thermal Power Plants - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Power Plants Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From

  19. Solar Thermal Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Thermal Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Marketing Summaries (40) Success Stories (1) Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Solar Thermal

  20. Project Profile: Innovative Phase Change Thermal Energy Storage Solution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Baseload Power | Department of Energy Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia, under the Baseload CSP FOA, developed and demonstrated a subscale system for baseload CSP power generation using thermal energy storage (TES) in a unique integration of innovative enhancements that improves performance and reduces cost. Approach Illustration of two gray

  1. Project Profile: Novel Thermal Energy Storage Systems for Concentrating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power | Department of Energy Energy Storage Systems for Concentrating Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal Storage FOA, is developing innovative heat transfer devices and methodologies for novel thermal energy storage (TES) systems for CSP involving phase change materials (PCMs). Approach Specific objectives include embedding thermosyphons and/or

  2. Thermogalvanics | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermogalvanics Thermogalvanic (TG) cells refer to electrochemical cells that convert heat into electricity in a device configuration similar to that of thermoelectric (TE) devices. It is well-known that the potentials of electrochemical reactions have temperature coefficients (often called thermogalvanic coefficient a) on the order of 1 mV/K, much higher than that of typical TE materials. However, the electrical conductivity of electrolytes is low, and thus the achieved efficiencies have been

  3. Amulaire Thermal Technology | Open Energy Information

    Open Energy Info (EERE)

    Amulaire Thermal Technology Jump to: navigation, search Name: Amulaire Thermal Technology Address: 11555 Sorrento Valley Road Place: San Diego, California Zip: 92121 Region:...

  4. Alumni | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Visit Website Bo Qiu ThermalMechanical Engineer, Intel Corporation Visit Website Veronika Rinnerbauer Innovation Management, Bosch Visit Website Nitin Shukla Thermal Testing ...

  5. Nextreme Thermal Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Nextreme Thermal Solutions Inc Jump to: navigation, search Name: Nextreme Thermal Solutions Inc Place: North Carolina Zip: 27709-3981 Product: String representation "Manufactures...

  6. Cool Trends in District Energy: A Survey of Thermal Energy Storage Use in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    District Energy Utility Applications, June 2005 | Department of Energy in District Energy: A Survey of Thermal Energy Storage Use in District Energy Utility Applications, June 2005 Cool Trends in District Energy: A Survey of Thermal Energy Storage Use in District Energy Utility Applications, June 2005 This 2005 survey considers the use of cool Thermal Energy Storage (TES) in District Cooling utility applications. cool_trends_in_de.pdf (86.08 KB) More Documents & Publications Cool Trends

  7. New proposal for photovoltaic-thermal solar energy utilization method

    SciTech Connect (OSTI)

    Takashima, Takumi; Tanaka, Tadayoshi; Doi, Takuya ); Kamoshida, Junji ); Tani, Tatsuo ); Horigome, Takashi )

    1994-03-01

    One of the most effective methods of utilizing solar energy is to use the sunlight and solar thermal energy such as a photovoltaic-thermal panel (PV/T panel) simultaneously. From such a viewpoint, systems using various kinds of PV panels were constructed in the world. In these panels, solar cells are set up at an absorber collecting solar thermal energy. Therefore, temperature of solar cell increases up to the prescribed temperature of thermal energy use, although it is lower than the cell temperature when using only solar cell panel. For maintaining cell conversion efficiency at the standard conditions, it is necessary to keep the cell at lower temperature. In this paper, electric and thermal energy obtained form a PV/T panel is evaluated in terms of energy. BAsed on this evaluation, the method of not to decrease cell conversion efficiency with collecting solar thermal energy was proposed.

  8. ELUTIONS Inc formerly TeCom | Open Energy Information

    Open Energy Info (EERE)

    Florida Zip: 33605 Sector: Efficiency Product: Tampa-based wireless enterprise automation solutions firm. Elutions provides an Active Energy Management service allowing users...

  9. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  10. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  11. MEMS based pyroelectric thermal energy harvester

    DOE Patents [OSTI]

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  12. News - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives Events/News Archives 1st Annual CSTEC External Workshop: August 4, 2010 2nd Annual CSTEC External Workshop: May 3, 2011 3rd Annual CSTEC External Workshop: October 2, 2012 DOE to establish Energy Frontier Research Center in solar energy at U-M CSTEC investigators co-chair ICEL2010 Forcing mismatched elements together could yield better solar cells Recycling waste heat into energy: Researchers take a step toward more efficient conversion Multi-EFRC Collaborative Effort on TE in

  13. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Final Report (Technical Report) | SciTech Connect Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report Citation Details In-Document Search Title: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia's family of free-piston

  14. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Final Report (Technical Report) | SciTech Connect Technical Report: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report Citation Details In-Document Search Title: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia's family of

  15. Project Profile: Degradation Mechanisms for Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for thermal energy storage (TES) and heat transfer fluid (HTF) containment materials. ... fluids operating at temperatures between 600C and 900C as HTF and TES materials. ...

  16. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating...

    Office of Scientific and Technical Information (OSTI)

    Concentrating Solar Power Systems Final Report Citation Details In-Document Search Title: Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems ...

  17. Molten Nitrate Salt Development for Thermal Energy Storage in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An important component of thermal energy storage system optimization is selecting the working fluid used as the storage media andor heat transfer fluid. Large quantities of the ...

  18. Project Profile: Novel Molten Salts Thermal Energy Storage for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project ... They will conduct detailed tests using a laboratory-scale TES system to: Graphic of a ...

  19. Project Profile: Innovative Phase Change Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative ... developed and demonstrated a subscale system for baseload CSP power generation using ...

  20. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses ...

  1. Quantifying the Value of CSP with Thermal Energy Storage | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage This PowerPoint slide deck was originally presented at the SunShot Concentrating Solar Power ... other variable generation sources including solar ...

  2. District Energy Corporation SW 40th Street Thermal Energy Plant

    SciTech Connect (OSTI)

    Davlin, Thomas

    2014-06-06

    The overall deliverable from the project is the design, construction and commissioning of a detention facility heating and cooling system that minimizes ownership costs and maximizes efficiency (and therefore minimizes environmental impact). The primary deliverables were the proof of concept for the application of geothermal systems for an institutional facility and the ongoing, quarterly system operating data downloads to the Department of Energy . The primary advantage of geothermal based heat pump systems is the higher efficiency of the system compared to a conventional chiller, boiler, cooling tower based system. The higher efficiency results in a smaller environmental foot print and lower energy costs for the detention facility owner, Lancaster County. The higher efficiency for building cooling is primarily due to a more constant compressor condensing temperature with the geothermal well field acting as a thermal “sink” (in place of the conventional system’s cooling tower). In the heating mode, Ground Couple Heat Pump (GCHP) systems benefits from the advantage of a heat pump Coefficient of Performance (COP) of approximately 3.6, significantly better than a conventional gas boiler. The geothermal well field acting as a thermal “source” allows the heat pumps to operate efficiently in the heating mode regardless of ambient temperatures. The well field is partially located in a wetland with a high water table so, over time, the project will be able to identify the thermal loading characteristics of a well field located in a high water table location. The project demonstrated how a large geothermal well field can be installed in a wetland area in an economical and environmentally sound manner. Finally, the SW 40th Street Thermal Energy Plant project demonstrates the benefits of providing domestic hot water energy, as well as space heating, to help balance well filed thermal loading in a cooling dominated application. During the period of August 2012 thru

  3. Effect of thermal annealing on structure and optical band gap of Se{sub 66}Te{sub 25}In{sub 9} thin films

    SciTech Connect (OSTI)

    Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin

    2015-05-15

    Thin films of a-Se{sub 66}Te{sub 25}In{sub 9} have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (E{sub g}) of a-Se{sub 66}Te{sub 25}In{sub 9} have been studied.

  4. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - Abstracts and Highlight Slides Efficiency of Thermoelectric Energy Conversion in Biphenyl-dithiol Junctions: Effect of Electron-Phonon Interactions Plasmonic Backscattering Enhanced Inverted Photovoltaics Femtosecond Laser-induced Nanostructure Formation in Sb2Te3 Ideal Diode Equation For Organic Heterojunctions. I and II

  5. Tunable Thermal Link - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Thermal Link Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryThermal links are incorporated into everything from frying pans to internal combustion engine spark plugs and heat sinks on integrated circuit boards. Typically, the link's thermal resistance is fixed and cannot be tuned after manufacture. While the ability to tune electrical resistors is widespread, virtually no tunable thermal resistance link exists, which has held back the

  6. Sandia Energy - National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety,...

  7. Project Profile: Nanomaterials for Thermal Energy Storage in CSP Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nanomaterials for Thermal Energy Storage in CSP Plants Project Profile: Nanomaterials for Thermal Energy Storage in CSP Plants National Renewable National Laboratory logo The National Renewable Energy Laboratory (NREL), under an ARRA CSP Award, is extending previous work on nanoscale phase change materials to develop materials with technologically relevant temperature ranges and encapsulation structures. Approach Image of round and square particles floating together on

  8. Ocean thermal energy conversion: a review

    SciTech Connect (OSTI)

    Yuen, P.C.

    1981-10-01

    The OTEC principle is discussed along with general system and cycle types, specific OTEC designs, OTEC applications, and the ocean thermal resource. The historic development of OTEC is briefly reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. US efforts are detailed and DOE's strategy outlined with OTEC-1 and Mini-OTEC information. Power system components of the more technically advanced closed-cycle OTEC concept are discussed. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater systems. Several open-cycle features are also discussed. A critical review is presented of the ocean engineering aspects of OTEC power systems. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed. Tentative comparisons are made between OTEC and traditional fuel costs, and OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International, national, and local laws regulating OTEC plants and OTEC energy products are reviewed. Tax incentives, attitudes of the utilities, and additional legislative needs are considered. (LEW)

  9. Composite materials for thermal energy storage

    DOE Patents [OSTI]

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  10. Composite materials for thermal energy storage

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  11. Method and apparatus for thermal energy storage. [Patent application

    DOE Patents [OSTI]

    Gruen, D.M.

    1975-08-19

    A method and apparatus for storing energy by converting thermal energy to potential chemically bound energy in which a first metal hydride is heated to dissociation temperature, liberating hydrogen gas which is compressed and reacted with a second metal to form a second metal hydride while releasing thermal energy. Cooling the first metal while warming the second metal hydride to dissociation temperature will reverse the flow of hydrogen gas back to the first metal, releasing additional thermal energy. The method and apparatus are particularly useful for the storage and conversion of thermal energy from solar heat sources and for the utilization of this energy for space heating purposes, such as for homes or offices.

  12. Plasma-Thermal Synthesis - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Synthesis Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels. Description This process provides a method and apparatus for increasing acetylene yield from the thermal conversion of natural gas. The reactants inserted into the reactor chamber are applied at a high temperature of ionized gas. At this time, the reactants are changed to

  13. Thermal Management Using Carbon Nanotubes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Management Using Carbon Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Vertically Aligned Carbon Nanotubes Vertically Aligned Carbon Nanotubes...

  14. Solar Thermal Collector Manufacturing Activities - Energy Information...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Solar Thermal Manufacturing Activities Release Date: December 2010 | Next Release Date: ... Year: (PDF) 2009 2008 2007 2006 2005 2004 2003 1993 Go Overview Total shipments26 of solar ...

  15. Thermal Ion Dispersion | Open Energy Information

    Open Energy Info (EERE)

    Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0)...

  16. Thermal Waters of Nevada | Open Energy Information

    Open Energy Info (EERE)

    to library Report: Thermal Waters of Nevada Abstract Abstract unavailable. Authors Larry J. Garside and John H. Schilling Organization Nevada Bureau of Mines and Geology Published...

  17. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (67) Areas (48) Regions (4) NEPA(33) Exploration...

  18. Southside Thermal Services Ltd | Open Energy Information

    Open Energy Info (EERE)

    Services Ltd Jump to: navigation, search Name: Southside Thermal Services Ltd Place: London, Greater London, United Kingdom Zip: SW7 2AZ Product: String representation "Southside...

  19. ThermalSoul | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Austin, Texas-based parabolic trough-based solar thermal electrical generation systems maker. Coordinates: 30.267605, -97.742984 Show Map Loading...

  20. Maximizing Thermal Efficiency and Optimizing Energy Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... energy systems. * Research Space: 11,000 sq. ft * Advanced HVAC Laboratory enables rapid, ... of the U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  1. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  2. Thermal Bypass Air Barriers in the 2009 International Energy Conservation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code - Building America Top Innovation | Department of Energy Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code - Building America Top Innovation Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code - Building America Top Innovation Image of a San Antonio home. Since air leakage is so critical to home performance, Building America research consistently focused on promoting better air sealing and air barrier details, including field

  3. Using Encapsulated Phase Change Material for Thermal Energy Storage for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baseload CSP | Department of Energy Encapsulated Phase Change Material for Thermal Energy Storage for Baseload CSP Using Encapsulated Phase Change Material for Thermal Energy Storage for Baseload CSP This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_mathur.pdf (1.04 MB) More Documents & Publications Development of Low Cost Industrially Scalable PCM Capsules for

  4. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  5. Thermophotovoltaics | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermophotovoltaics Solar Thermophotovoltaics (STPVs) are solar driven heat engines which extract electrical power from thermal radiation. The overall goal is to absorb and convert the broadband solar radiation spectrum into a narrowband thermal emission spectrum tuned to the spectral response of a photovoltaic cell (PV) [1]. STPVs are of significant interest as they have the potential to overcome the well-known Shockley-Queisser limit for single junction PV given sufficient spectral control.

  6. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    SciTech Connect (OSTI)

    Regnier, Cindy

    2012-08-31

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  7. Phase-change thermal energy storage: Final subcontract report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    The research and development described in this document was conducted within the US Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100{degree}C in low-temperature troughs to over 1500{degree}C in dish and central receiver systems. 12 refs., 119 figs., 4 tabs.

  8. Pulse thermal energy transport/storage system

    DOE Patents [OSTI]

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  9. Aquifer thermal energy storage reference manual: seasonal thermal energy storage program

    SciTech Connect (OSTI)

    Prater, L.S.

    1980-01-01

    This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

  10. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect (OSTI)

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  11. Concentrated Solar Power with Thermal Energy Storage Can Help Utilities'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bottom Line, Study Shows - News Releases | NREL Concentrated Solar Power with Thermal Energy Storage Can Help Utilities' Bottom Line, Study Shows December 20, 2012 The storage capacity of concentrating solar power (CSP) can add significant value to a utility company's optimal mix of energy sources, a new report by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) suggests. The report found that CSP with a six-hour storage capacity can lower peak net loads when the

  12. Publications | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Publications supported by S3TEC: 339 Yang, J.; Xi, L.; Qiu, W.; Wu, L.; Shi, X.; Chen, L.; Yang, J.; Zhang, W.; Uher, C.; Singh, D.J., On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective, Npj Computational Materials, 2, (2016). [DOI: ] 338 Sun, J.; Singh, D.J., Thermoelectric Properties of {\$}{\{}{$\backslash$}mathrm{\{}Mg{\}}{\}}{\_}{\{}2{\}}({$\backslash$}mathrm{\{}Ge{\}},{$\backslash$}mathrm{\{}Sn{\}}){\$}: Model and

  13. Solar Thermal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Solar Glare Hazard Analysis Tool (SGHAT) With growing numbers of solar energy systems being proposed and installed throughout the United States, the potential ...

  14. Advisors | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisors Robert Armstrong Director, MIT Energy Initiative Visit Website George W. Crabtree Senior Scientist, Argonne National Laboratory Argonne Distinguished Fellow Visit Website ...

  15. Sandia Energy » National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solarreserve-is-testing-prototype-heliostats-at-nsttffeed 0 Solar Regional Test Center in Vermont Achieves Milestone Installation http:energy.sandia.gov...

  16. Maximizing Thermal Efficiency and Optimizing Energy Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhancement. Research results are delivered to industry in order to accelerate adoption of best practices and technologies. In this way, building owners can manage energy...

  17. Cool Trends in District Energy: A Survey of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This 2005 survey considers the use of cool Thermal Energy Storage (TES) in District Cooling utility applications. cooltrendsinde.pdf (86.08 KB) More Documents & Publications ...

  18. Thermal conductor for high-energy electrochemical cells

    DOE Patents [OSTI]

    Hoffman, Joseph A.; Domroese, Michael K.; Lindeman, David D.; Radewald, Vern E.; Rouillard, Roger; Trice, Jennifer L.

    2000-01-01

    A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

  19. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  20. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe1-xSex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Zhijun; Xu, Guangyong; Schneeloch, J. A.; Wen, Jinsheng; Bozin, E. S.; Granroth, G. E.; Winn, B. L.; Feygenson, M.; Birgeneau, R. J.; Gu, Genda; et al

    2016-03-14

    It has recently been demonstrated that dynamical magnetic correlations measured by neutron scattering in iron chalcogenides can be described with models of short-range correlations characterized by particular choices of four-spin plaquettes, where the appropriate choice changes as the parent material is doped towards superconductivity. Here we apply such models to describe measured maps of magnetic scattering as a function of two-dimensional wave vectors obtained for optimally superconducting crystals of FeTe1–xSex. We show that the characteristic antiferromagnetic wave vector evolves from that of the bicollinear structure found in underdoped chalcogenides (at high temperature) to that associated with the stripe structure ofmore » antiferromagnetic iron arsenides (at low temperature); these can both be described with the same local plaquette, but with different interplaquette correlations. While the magnitude of the low-energy magnetic spectral weight is substantial at all temperatures, it actually weakens somewhat at low temperature, where the charge carriers become more itinerant. The observed change in spin correlations is correlated with the dramatic drop in the electronic scattering rate and the growth of the bulk nematic response upon cooling. Lastly, we also present powder neutron diffraction results for lattice parameters in FeTe1–xSex indicating that the tetrahedral bond angle tends to increase towards the ideal value upon cooling, in agreement with the increased screening of the crystal field by more itinerant electrons and the correspondingly smaller splitting of the Fe 3d orbitals.« less

  1. Integrated solar thermal energy collector system

    SciTech Connect (OSTI)

    Garrison, J.D.

    1987-08-18

    A solar thermal collector system is described one of a class of devices which converts solar radiation into heat and transmits this heat to storage from whence it is utilized, comprising: an evacuated glass solar collector, the evacuated glass solar collector having a glass vacuum envelope, the upper portion of the glass vacuum envelope also serving as window to pass solar radiation, the evacuated glass solar collector having a multiplicity of substantially parallel linear adjacent concentrating troughs, each trough shaped and mirror surfaced so as concentrate solar radiation in the vacuum, the mirror surface inside the vacuum and the concentration approximately ideal, the multiplicity of substantially parallel linear adjacent troughs extending substantially over the entire length and width of the evacuated glass solar collector; a heat storage system, the heat storage system adjacent to the evacuated glass solar collector, the heat storage system having a heat storage tank which is thermally insulated, the heat storage tank containing a heat storage medium, and the heat storage system including means of removal of heat from the heat storage tank for utilization.

  2. Staff | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff and Contractors Staff and Contractors Watch the video above to hear a message from Secretary Moniz, highlighting the FY 2016 budget request for the Department of Energy and his appreciation for the vital mission and dedicated employees of the Department. As referenced in the video, employees are encouraged to visit the Department's website to view the full FY 2016 budget presentation, which proposes approximately $30 billion to support nuclear security, clean energy, environmental cleanup,

  3. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  4. Improving Energy Efficiency by Developing Components for Distributed...

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing ...

  5. Thermoelectrics | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermoelectrics One of the central themes of S3TEC is to develop more efficient thermoelectric materials to directly convert heat into electricity via the Seebeck effect, or provide cooling via the Peltier effect. Their ability to harvest waste heat and deliver cooling power through solid-state devices without moving parts makes them important candidates of sustainable energy technologies in the future. Despite the benefits, the current bottleneck of thermoelectric technology is its relatively

  6. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  7. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  8. Research and development on ocean thermal energy conversion in Japan

    SciTech Connect (OSTI)

    Uehara, H.

    1982-08-01

    The study of Ocean Thermal Energy Conversion (OTEC) in Japan has been conducted under the leadership of a team of the ''Sunshine Project'', a national new energy development project promoted by the Ministry of International Trade and Industries (MITI) since 1974. At present, two experimental OTEC power plants -Nauru's OTEC plant and Imari's OTEC plant are operating. In this paper, the review of research and development activity of these two OTEC plants in Japan is made.

  9. Quantitative evaluation of ocean thermal energy conversion (OTEC): executive briefing

    SciTech Connect (OSTI)

    Gritton, E.C.; Pei, R.Y.; Hess, R.W.

    1980-08-01

    Documentation is provided of a briefing summarizing the results of an independent quantitative evaluation of Ocean Thermal Energy Conversion (OTEC) for central station applications. The study concentrated on a central station power plant located in the Gulf of Mexico and delivering power to the mainland United States. The evaluation of OTEC is based on three important issues: resource availability, technical feasibility, and cost.

  10. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  11. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect (OSTI)

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  12. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect (OSTI)

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  13. Energy Spectrum of Cosmic-Ray Electrons at TeV Energies

    SciTech Connect (OSTI)

    Aharonian, F.; Akhperjanian, A. G.; Sahakian, V.; Barres de Almeida, U.; Chadwick, P. M.; Cheesebrough, A.; Dickinson, H. J.; Hadjichristidis, C.; Keogh, D.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Osborne, J. L.; Rayner, S. M.; Rulten, C. B.; Spangler, D.; Ward, M.; Bazer-Bachi, A. R.; Borrel, V.; Olive, J-F.

    2008-12-31

    The very large collection area of ground-based {gamma}-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

  14. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  15. Nanoparticles for heat transfer and thermal energy storage

    DOE Patents [OSTI]

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  16. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Abstracts and Highlight Slides Energy Level Modulation in Conjugated Polymers for Organic Photovoltaic Applications Aligning Carbon Nanotubes (CNTs) Using Ultrafast Laser Irradiation Disordered Interfaces Improve Organic Photovoltaics New Way of Reducing Thermal Conductivity in Thermoelectric Materials Phase-field Simulations of GaN/InGaN Quantum Dot Growth by Selective Area Epitaxy High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites Effect

  17. Solar energy collection, concentration, and thermal conversion; A review

    SciTech Connect (OSTI)

    Haddock, C.; McKee, J.S.C. )

    1991-01-01

    The efficiency with which solar energy can be converted into more useful forms is one of the most important parameters concerning its utilization as a viable alternate source of energy. High efficiencies can be obtained by utilizing higher temperature working fluids. This in turn implies concentrating the intensity of sunlight using focusing type collector systems is discussed. Potential applications of concentrated solar intensity are presented in this article. A description of a new and potentially highly efficient solar thermal to electric converter based on a solar sustained cesium plasma is presented. Photovoltaics are not discussed in any detail in this article.

  18. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    1 Market Share of Major HVAC Equipment Manufacturers ($2009 Million) Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123 Source(s): Total Market Size BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

  19. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex

    SciTech Connect (OSTI)

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.

    2015-12-07

    Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.

  20. Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trough Solar Power Plants | Department of Energy Concentrating Solar Power » Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Abengoa logo Abengoa, under the Thermal Storage FOA, is looking at innovative ways to reduce thermal energy storage (TES) system costs. Approach Graphic of a large red cylinder to the right of many small red

  1. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module | Department of Energy Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it. Approach A computational modeling of molten salt heat transfer fluid

  2. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross-Cutting Collaborations and Research The synergistic interactions between the three thrust areas have been responsible for the development of hybrid organic/inorganic materials for TE and PV devices. In addition, research in thrust areas 1 and 2 has led to the development of inorganic materials that serve a dual purpose, for both TE and PV applications. A number of these cross-cutting projects are highlighted below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via

  3. Thermal energy storage for coal-fired power generation

    SciTech Connect (OSTI)

    Drost, M.K.; Somasundaram, S.; Brown, D.R.; Antoniak, Z.I.

    1990-11-01

    This paper presents an engineering and economic evaluation of using thermal energy storage (TES) with coal-fired conventional and combined cycle power plants. In the first case, conventional pulverized coal combustion equipment was assumed to continuously operate to heat molten nitrate salt which was then stored in a tank. During intermediate-load demand periods, hot salt was withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allowed the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The use of nitrate salt TES also reduced the levelized cost of power by between 5% and 24% depends on the operating schedule. The second case evaluate the use of thermal energy storage with an integrated gasification combined cycle (IGCC) power plant. In this concept, the nitrate salt was heated by a combination of the gas turbine exhaust and the hot fuel gas. The IGCC plant also contained a low-temperature storage unit that uses a mixture of oil and rock as the thermal storage medium. Thermal energy stored in the low-temperature TES was used to preheat the feedwater after it leaves the condenser and to produce process steam for other applications in the IGCC plant. This concept study also predicted a 5% to 20% reduction in levelized cost of power compared to other coal-fired alternatives. If significant escalation rates in the price of fuel were assumed, the concept could be competitive with natural-gas-fired intermediate-load power generation. A sensitivity analysis of using a direct-contact heat exchanger instead of the conventional finned-tube design showed a significant reduction in the installed capital cost. 3 refs., 2 figs., 6 tabs.

  4. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion PDF icon chen.pdf More ...

  5. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect (OSTI)

    Hunter, Scott Robert; Lavrik, Nickolay V; Mostafa, Salwa; Rajic, Slobodan; Datskos, Panos G

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal

  6. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect (OSTI)

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  7. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  8. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    3 Thermal Distribution Design Load and Electricity Intensities, by Building Activity Education 0.5 1.3 Food Sales 1.1 6.4 Food Service 1.5 6.4 Health Care 1.5 5.6 Lodging 0.5 1.9 Mercantile and Service 0.9 2.7 Office 1.3 3.3 Public Assembly 1.2 3.0 Warehouse 0.4 1.8 All Buildings 1.0 2.8 Source(s): Design Load Intensity End Use Intensity (W/SF) (kWh/SF) BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment,

  9. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect (OSTI)

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  10. Local composition and carrier concentration in Pb0.7Ge0.3Te and Pb0.5Ge0.5Te alloys from 125Te NMR and microscopy

    SciTech Connect (OSTI)

    Levin, E M; Kramer, M J; Schmidt-Rohr, K

    2014-11-01

    Pb0.7Ge0.3Te and Pb0.5Ge0.5Te alloys, (i) quenched from 923 K or (ii) quenched and annealed at 573 K for 2 h, have been studied by 125Te NMR, X-ray diffraction, electron and optical microscopy, as well as energy dispersive spectroscopy. Depending on the composition and thermal treatment history, 125Te NMR spectra exhibit different resonance frequencies and spin-lattice relaxation times, which can be assigned to different phases in the alloy. Quenched and annealed Pb0.7Ge0.3Te alloys can be considered as solid solutions but are shown by NMR to have components with various carrier concentrations. Quenched and annealed Pb0.5Ge0.5Te alloys contain GeTe- and PbTe-based phases with different compositions and charge carrier concentrations. Based on the analysis of non-exponential 125Te NMR spin-lattice relaxation, the fractions and carrier concentrations of the various phases have been estimated. Our data show that alloying of PbTe with Ge results in the formation of chemically and electronically inhomogeneous systems. 125Te NMR can be used as an efficient probe to detect the local composition in equilibrium as well as non-equilibrium states, and to determine the local carrier concentrations in complex multiphase tellurides.

  11. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  12. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    Turner, E. Bruce; Brown, Tim; Mardiat, Ed

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  13. Search for Z? events with large missing transverse energy in pp? collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magańa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Stutte, L.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.

    2012-10-02

    We present the first search for new phenomena in Z? final states with large missing transverse energy using data corresponding to an integrated luminosity of 6.2 fb?č collected with the D0 experiment in pp? collisions at ?s=1.96 TeV. This signature is predicted in gauge-mediated supersymmetry-breaking models, where the lightest neutralino ?˜?? is the next-to-lightest supersymmetric particle and is produced in pairs, possibly through decay from heavier supersymmetric particles. The ?˜?? can decay either to a Z boson or a photon and an associated gravitino that escapes detection. We exclude this model at the 95% C.L. for supersymmetry-breaking scales of ?<87 TeV.

  14. Bibliography of the seasonal thermal energy storage library

    SciTech Connect (OSTI)

    Prater, L.S.; Casper, G.; Kawin, R.A.

    1981-08-01

    The Main Listing is arranged alphabetically by the last name of the first author. Each citation includes the author's name, title, publisher, publication date, and where applicable, the National Technical Information Service (NTIS) number or other document number. The number preceding each citation is the identification number for that document in the Seasonal Thermal Energy Storage (STES) Library. Occasionally, one or two alphabetic characters are added to the identification number. These alphabetic characters indicate that the document is contained in a collection of papers, such as the proceedings of a conference. An Author Index and an Identification Number Index are included. (WHK)

  15. Solar-thermal-energy collection/storage-pond system

    DOE Patents [OSTI]

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  16. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect (OSTI)

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  17. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  18. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  19. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    2 U.S. Commercial Buildings Conditioned Floorspace, Building Type and System Type (Million SF) Total Education Food Sales Food Service Health Care Lodging Mercantile and Service Office Public Buildings Warehouse/Storage Total Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1. 3,988 4,771 19,767 5,287 2,822 3,352 12,065 48,064 119 1,482 0 0 102

  20. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than

  1. Thermal energy storage for cooling of commercial buildings

    SciTech Connect (OSTI)

    Akbari, H. ); Mertol, A. )

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  2. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  3. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  4. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  5. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect (OSTI)

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  6. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    SciTech Connect (OSTI)

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  7. Simulation of diurnal thermal energy storage systems: Preliminary results

    SciTech Connect (OSTI)

    Katipamula, S.; Somasundaram, S.; Williams, H.R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system, and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  8. Project Profile: High-Efficiency Thermal Energy Storage System for CSP |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Thermal Energy Storage System for CSP Project Profile: High-Efficiency Thermal Energy Storage System for CSP -- This project is inactive -- ANL logo Argonne National Laboratory and project partner Ohio Aerospace Institute, under the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system with rapid charging and discharging times. By

  9. Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Metal Hydride Thermal Energy Storage System Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System Savannah River National Laboratory logo -- This project is inactive -- The Savannah River National Laboratory (SRNL), under the National Laboratory R&D competitive funding opportunity, is collaborating with Curtin University (CU) to evaluate new metal hydride materials for thermal energy storage (TES) that meet the SunShot cost and performance targets for

  10. U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Inlet Cooling (TIC), September 2003 | Department of Energy CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003 This 2003 chart of U.S. CHP installations incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC) was prepared by the Cool Solutions Company of Lisle, Illinois, for UT-Battelle,

  11. Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    District Energy Systems, May 2005 | Department of Energy on Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005 Cool Trends on Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005 A survey was conducted to develop a database documenting and quantifying the use of Thermal Energy Storage (TES) in campus applications. cool_trends_on_campus.pdf (97.88 KB) More Documents & Publications Cool Trends in District Energy:

  12. U.S. Department of Energy thermal energy storage research activities review: 1989 Proceedings

    SciTech Connect (OSTI)

    Hoffman, H.W.; Tomlinson, J.J.

    1989-03-01

    Thermal Energy Storage (TES) offers the opportunity for the recovery and re-use of heat currently rejected to the ambient environment. Further, through the ability of TES to match an energy supply with a thermal energy demand, TES increases efficiencies of energy systems and improves capacity factors of power plants. The US Department of Energy has been the leader in TES research, development, and demonstration since recognition in 1976 of the need for fostering energy conservation as a component of the national energy budget. The federal program on TES R and D is the responsibility of the Office of Energy Storage and Distribution within the US Department of Energy (DOE). The overall program is organized into three program areas: diurnal--relating primarily to lower temperature heat for use in residential and commercial buildings on a daily cycle; industrial--relating primarily to higher temperature heat for use in industrial and utility processes on an hourly to daily cycle; seasonal--relating primarily to lower temperature heat or chill for use in residential complexes (central supply as for apartments or housing developments), commercial (light manufacturing, processing, or retail), and industrial (space conditioning) on a seasonal to annual cycle. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Category:Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    in category "Thermal Gradient Holes" This category contains only the following page. T Thermal Gradient Holes Retrieved from "http:en.openei.orgwindex.php?titleCategory:T...

  14. Wujiang Oasis Environment Thermal Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wujiang Oasis Environment Thermal Co Ltd Jump to: navigation, search Name: Wujiang Oasis Environment Thermal Co Ltd Place: Wujiang, Jiangsu Province, China Sector: Biomass Product:...

  15. List of Solar Thermal Process Heat Incentives | Open Energy Informatio...

    Open Energy Info (EERE)

    List of Solar Thermal Process Heat Incentives Jump to: navigation, search The following contains the list of 211 Solar Thermal Process Heat Incentives. CSV (rows 1 - 211) Incentive...

  16. Nanotubes as Robust Thermal Conductors - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in thermal management and engineering the thermal noise distribution of a material become feasible. Defected acoustic crystals can potentially be used as "mirrors" for ...

  17. Anyang Lingrui Thermal Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Anyang Lingrui Thermal Power Co Ltd Jump to: navigation, search Name: Anyang Lingrui Thermal Power Co., Ltd Place: Anyang, Henan Province, China Zip: 455000 Sector: Biomass...

  18. Energy Storage R&D: Thermal Management Studies and Modeling (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2009-05-01

    Here we summarize NREL's FY09 energy storage R&D studies in the areas of 1. thermal characterization and analysis, 2. cost, life, and performance trade-off studies, and 3. thermal abuse modeling.

  19. Temperature scaling in the quantum-Hall-effect regime in a HgTe quantum well with an inverted energy spectrum

    SciTech Connect (OSTI)

    Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R. Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-12-15

    The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.

  20. Sandia-AREVA Commission Solar Thermal/Molten Salt Energy-Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration - Sandia Energy Energy ... for storage, and removes the need for two sets of heat-exchangers in the system. ...

  1. Thermal analysis of solar thermal energy storage in a molten-salt thermocline

    SciTech Connect (OSTI)

    Yang, Zhen; Garimella, Suresh V.

    2010-06-15

    A comprehensive, two-temperature model is developed to investigate energy storage in a molten-salt thermocline. The commercially available molten salt HITEC is considered for illustration with quartzite rocks as the filler. Heat transfer between the molten salt and quartzite rock is represented by an interstitial heat transfer coefficient. Volume-averaged mass and momentum equations are employed, with the Brinkman-Forchheimer extension to the Darcy law used to model the porous-medium resistance. The governing equations are solved using a finite-volume approach. The model is first validated against experiments from the literature and then used to systematically study the discharge behavior of thermocline thermal storage system. Thermal characteristics including temperature profiles and discharge efficiency are explored. Guidelines are developed for designing solar thermocline systems. The discharge efficiency is found to be improved at small Reynolds numbers and larger tank heights. The filler particle size strongly influences the interstitial heat transfer rate, and thus the discharge efficiency. (author)

  2. Sandia-AREVA Commission Solar Thermal/Molten Salt Energy-Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration AREVA Commission Solar Thermal/Molten Salt Energy-Storage Demonstration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  3. Expected benefits of federally-funded thermal energy storage research

    SciTech Connect (OSTI)

    Spanner, G.E.; Daellenbach, K.K.; Hughes, K.R.; Brown, D.R.; Drost, M.K.

    1992-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE`s thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps- The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a ``supply side`` limitation, and in other sectors, the maximum benefit is determined by a ``demand side`` limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research, and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

  4. Expected benefits of federally-funded thermal energy storage research

    SciTech Connect (OSTI)

    Spanner, G E; Daellenbach, K K; Hughes, K R; Brown, D R; Drost, M K

    1992-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE's thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps- The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a supply side'' limitation, and in other sectors, the maximum benefit is determined by a demand side'' limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research, and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

  5. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  6. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    4 Thermal Distribution Equipment Design Load and Electricity Intensities, by System Type Central VAV Central CAV Packaged CAV Central VAV Central CAV Packaged CAV Condenser Fan 0.3 0.2 Cooling Tower Fan 0.2 0.1 0.2 0.0 Condenser Water Pump 0.2 0.3 0.3 0.0 Chilled Water Pump 0.2 0.1 0.2 0.0 Supply & Return Fans 0.7 0.5 0.6 1.2 1.9 1.9 Chiller/Compressor 1.9 1.8 3.3 1.7 2.3 4.0 Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:

  7. SOLTES: simulator of large thermal energy systems (Conference...

    Office of Scientific and Technical Information (OSTI)

    energy, fossil-fired power plantstotal energy, nuclear-fired power plantstotal energy, solar energy heating and cooling, geothermal energy, and solar hot water, are discussed. ...

  8. Design and installation manual for thermal energy storage

    SciTech Connect (OSTI)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  9. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect (OSTI)

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  10. List of Solar Thermal Electric Incentives | Open Energy Information

    Open Energy Info (EERE)

    List of Solar Thermal Electric Incentives Jump to: navigation, search The following contains the list of 562 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-562)...

  11. Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-04-01

    A search for supersymmetry with R-parity conservation in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data correspond to an integrated luminosity of 35 inverse picobarns collected by the CMS experiment at the LHC. The search is performed in events with jets and significant missing transverse energy, characteristic of the decays of heavy, pair-produced squarks and gluinos. The primary background, from standard model multijet production, is reduced by several orders of magnitude to a negligible level by the application of a set of robust kinematic requirements. With this selection, the data are consistent with the standard model backgrounds, namely t t-bar, W + jet and Z + jet production, which are estimated from data control samples. Limits are set on the parameters of the constrained minimal supersymmetric extension of the standard model. These limits extend those set previously by experiments at the Tevatron and LEP colliders.

  12. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center

    Broader source: Energy.gov (indexed) [DOE]

    (S3TEC ) | Department of Energy Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion chen.pdf (2.01 MB) More Documents & Publications Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion DOE Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics

  13. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  14. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  15. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  16. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  17. Production of desalinated water using ocean thermal energy

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.

    1991-01-01

    This paper describes an Ocean Thermal Energy Conversion (OTEC) desalination plant that consists of a multistage flash evaporator (MSF), a closed-cycle OTEC power plant, and an appropriate seawater system depending if the desalination plant is land based or floating. OTEC desalination plants of this type are preferred because the production of desalinated water far exceeds that obtained from other OTEC plant types employing the same size seawater system. The focus of the paper is on the multistage flash evaporator. The similarities and differences between conventional MSF and OTEC multistage flash evaporators (OTEC-MSF) are first described. Then the details of the OTEC-MSF evaporator design are discussed and preliminary correlations are recommended for the three major elements: the flash chamber, the moisture removal device, and the condenser. Recent advances such as enhanced condenser tubes, condensers of the compact type, and corrugated-plate moisture separators are introduced into the design. Comparisons of the water production capability, evaporator shell volume, and material cost are then presented for state-of-the-art and the new design concepts. 20 refs., 11 figs., 5 tabs.

  18. Fluoride based cathodes and electrolytes for high energy thermal batteries

    SciTech Connect (OSTI)

    Briscoe, J.D.

    1998-07-01

    A research and development program is being conducted at the Saft Advanced Technologies Division in Hunt Valley, MD to double the energy density of a thermal battery. A study of high voltage cathodes to replace iron disulfide is in progress. Single cells are being studied with a lithium anode and either a copper(II) fluoride, silver(II) fluoride, or iron(III) fluoride cathode. Due to the high reactivity of these cathodes, conventional alkali metal chloride and bromide salt electrolytes must be replaced by alkali metal fluoride electrolytes. Parametric studies using design-of-experiments matrices will be performed so that the best cathode for an improved battery design can be selected. Titanium hardware for the design will provide a higher strength to weight ratio with lower emissivity than conventional stainless steel. The battery will consist of two power sections. The goals are battery activation in less than 0.2 s, 88 Wh/kg, 1,385 W/kg, and 179 Wh/L over an environmental temperature range of {minus}40 C to +70 C.

  19. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Thermal Load Reduction CoolCab Truck Thermal Load Reduction 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vssp_09_proc.pdf (2.28 MB) More Documents & Publications CoolCab Test and Evaluation CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Test and Evaluation and

  20. Thermal Product Solutions aka Kayex | Open Energy Information

    Open Energy Info (EERE)

    Product Solutions aka Kayex Jump to: navigation, search Name: Thermal Product Solutions (aka Kayex) Place: Rochester, New York Zip: 14624 Product: Makes industrial ovens and...

  1. List of Ocean Thermal Incentives | Open Energy Information

    Open Energy Info (EERE)

    Cells Fuel Cells using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydrogen Landfill Gas Methanol Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  2. Noble Gas Geochemistry In Thermal Springs | Open Energy Information

    Open Energy Info (EERE)

    Noble Gas Geochemistry In Thermal Springs Abstract The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was...

  3. Research Overview | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primarily based on thermal-mechanical systems such as steam and gas turbines and internal combustion engines. Such engines are most suitable for power generation at large scales ...

  4. SOLID PARTICLE THERMAL ENERGY STORAGE DESIGN FOR A FLUIDIZED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and ...

  5. Battery Thermal Modeling and Testing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es110smith2011p.pdf (852.63 KB) More Documents & Publications NREL Battery Thermal and Life Test ...

  6. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  7. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons (Journal...

    Office of Scientific and Technical Information (OSTI)

    by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. ...

  8. Ger te und Akkumulatorwerk Zwickau GmbH GAZ | Open Energy Information

    Open Energy Info (EERE)

    Zwickau GmbH (GAZ) Place: Germany Product: GAZ manufactures special nickel-based batteries mainly used in the energy, rail, telecom and UPS sectors. References: Gerte- und...

  9. The Path to a 50% Thermal Efficient Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Path to a 50% Thermal Efficient Engine The Path to a 50% Thermal Efficient Engine 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_easley.pdf (575.85 KB) More Documents & Publications Demonstration of a 50% Thermal Efficient Diesel Engine - Including HTCD Program Overview Engine System Approach to Exhaust Energy Recovery An Engine System Approach to Exhaust Waste Heat Recovery

  10. Thermal Bypass Air Barriers in the 2009 International Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    have been mandated to include this vitally important energy efficiency measure. ... Homes Case Study: Ravenwood Homes and Energy Smart Home Plans, Inc., Cape Coral, Florida ...

  11. A high-pressure route to thermoelectrics with low thermal conductivity: The solid solution series AgIn{sub x}Sb{sub 1?x}Te{sub 2} (x=0.1–0.6)

    SciTech Connect (OSTI)

    Schröder, Thorsten; Rosenthal, Tobias; Souchay, Daniel; Petermayer, Christian; Grott, Sebastian; Scheidt, Ernst-Wilhelm; Gold, Christian; Scherer, Wolfgang; Oeckler, Oliver

    2013-10-15

    Metastable rocksalt-type phases of the solid solution series AgIn{sub x}Sb{sub 1?x}Te{sub 2} (x=0.1, 0.2, 0.4, 0.5 and 0.6) were prepared by high-pressure synthesis at 2.5 GPa and 400 °C. In these structures, the coordination number of In{sup 3+} is six, in contrast to chalcopyrite ambient-pressure AgInTe{sub 2} with fourfold In{sup 3+} coordination. Transmission electron microscopy shows that real-structure phenomena and a certain degree of short-range order are present, yet not very pronounced. All three cations are statistically disordered. The high degree of disorder is probably the reason why AgIn{sub x}Sb{sub 1?x}Te{sub 2} samples with 0.4thermal conductivities with a total ?<0.5 W/K m and a lattice contribution of ?{sub ph} ?0.3 W/K m at room temperature. These are lower than those of other rocksalt-type tellurides at room temperature; e.g. the well-known thermoelectric AgSbTe{sub 2} (? ?0.6 W/K m). The highest ZT value (0.15 at 300 K) is observed for AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}, mainly due to its high Seebeck coefficient of 160 ”V/K. Temperature-dependent X-ray powder patterns indicate that the solid solutions are metastable at ambient pressure. At 150 °C, the quaternary compounds decompose into chalcopyrite-type AgInTe{sub 2} and rocksalt-type AgSbTe{sub 2}. - Graphical abstract: Reaction scheme, temperature characteristics of the ZT value and a selected-area electron diffraction pattern (background) of AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}, which crystallizes in a rocksalt-type structure with statistical cation disorder. Display Omitted - Highlights: • High-pressure synthesis yields the novel solid solution series AgIn{sub x}Sb{sub 1?x}Te{sub 2}. • In contrast to AgInTe{sub 2}, the compounds are inert at ambient pressure. • HRTEM shows no pronounced short-range order in the disordered NaCl-type structure. • The metastable phases exhibit very low total thermal conductivities <0.5 W/K m. • ZT values of 0.15 at room temperature were

  12. Thermal Performance Benchmarking; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Moreno, Gilbert

    2015-06-09

    This project proposes to seek out the SOA power electronics and motor technologies to thermally benchmark their performance. The benchmarking will focus on the thermal aspects of the system. System metrics including the junction-to-coolant thermal resistance and the parasitic power consumption (i.e., coolant flow rates and pressure drop performance) of the heat exchanger will be measured. The type of heat exchanger (i.e., channel flow, brazed, folded-fin) and any enhancement features (i.e., enhanced surfaces) will be identified and evaluated to understand their effect on performance. Additionally, the thermal resistance/conductivity of the power module’s passive stack and motor’s laminations and copper winding bundles will also be measured. The research conducted will allow insight into the various cooling strategies to understand which heat exchangers are most effective in terms of thermal performance and efficiency. Modeling analysis and fluid-flow visualization may also be carried out to better understand the heat transfer and fluid dynamics of the systems.

  13. EFRC Director's Conference Call | Solid State Solar Thermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis EERE Success Storyñ€”Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office

  14. Emma Anquillare | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type Joyce McLaren, John Miller, Eric O'Shaughnessy, Eric Wood, and Evan Shapiro National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64852 April 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at

  15. Cool Trends on Campus: A Survey of Thermal Energy Storage Use...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A survey was conducted to develop a database documenting and quantifying the use of Thermal Energy Storage (TES) in campus applications. cooltrendsoncampus.pdf (97.88 KB) More ...

  16. S3TEC Annual Workship | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saturday Feb 13, 2016 9:00am to 8:00pm Location: MIT Faculty Club Annual Workshop - Solid State Solar Thermal Energy Conversion February 13, 2016 9:00 am-8:00 pm Location: MIT ...

  17. Applied research in the solar thermal-energy-systems program

    SciTech Connect (OSTI)

    Brown, C. T.; Lefferdo, J. M.

    1981-03-01

    Within the Solar Thermal Research and Advanced Development (RAD) program a coordinated effort in materials research, fuels and chemical research and applied research is being carried out to meet the systems' needs. Each of these three program elements are described with particular attention given to the applied research activity.

  18. Enhanced thermoelectric performance in Cu-intercalated BiTeI by compensation weakening induced mobility improvement

    SciTech Connect (OSTI)

    Wu, Lihua; Yang, Jiong; Chi, Miaofang; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2015-09-23

    The low weighted carrier mobility has long been considered to be the key challenge for improvement of thermoelectric (TE) performance in BiTeI. The Rashba-effect-induced two-dimensional density of states in this bulk semiconductor is beneficial for thermopower enhancement, which makes it a prospective compound for TE applications. In this report, we show that intercalation of minor Cu-dopants can substantially alter the equilibria of defect reactions, selectively mediate the donor-acceptor compensation, and tune the defect concentration in the carrier conductive network. Consequently, the potential fluctuations responsible for electron scattering are reduced and the carrier mobility in BiTeI can be enhanced by a factor of two to three between 10 K and 300 K. The carrier concentration can also be optimized by tuning the Te/I composition ratio, leading to higher thermopower in this Rashba system. Cu-intercalation in BiTeI gives rise to higher power factor, slightly lower lattice thermal conductivity, and consequently improved figure of merit. Compared with pristine BiTe0.98I1.02, the TE performance in Cu0.05BiTeI reveals a 150% and 20% enhancement at 300 and 520 K, respectively. Ultimately, these results demonstrate that defect equilibria mediated by selective doping in complex TE and energy materials could be an effective approach to carrier mobility and performance optimization.

  19. Enhanced thermoelectric performance in Cu-intercalated BiTeI by compensation weakening induced mobility improvement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Lihua; Yang, Jiong; Chi, Miaofang; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2015-09-23

    The low weighted carrier mobility has long been considered to be the key challenge for improvement of thermoelectric (TE) performance in BiTeI. The Rashba-effect-induced two-dimensional density of states in this bulk semiconductor is beneficial for thermopower enhancement, which makes it a prospective compound for TE applications. In this report, we show that intercalation of minor Cu-dopants can substantially alter the equilibria of defect reactions, selectively mediate the donor-acceptor compensation, and tune the defect concentration in the carrier conductive network. Consequently, the potential fluctuations responsible for electron scattering are reduced and the carrier mobility in BiTeI can be enhanced by amore » factor of two to three between 10 K and 300 K. The carrier concentration can also be optimized by tuning the Te/I composition ratio, leading to higher thermopower in this Rashba system. Cu-intercalation in BiTeI gives rise to higher power factor, slightly lower lattice thermal conductivity, and consequently improved figure of merit. Compared with pristine BiTe0.98I1.02, the TE performance in Cu0.05BiTeI reveals a 150% and 20% enhancement at 300 and 520 K, respectively. Ultimately, these results demonstrate that defect equilibria mediated by selective doping in complex TE and energy materials could be an effective approach to carrier mobility and performance optimization.« less

  20. Method for transferring thermal energy and electrical current in thin-film electrochemical cells

    DOE Patents [OSTI]

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2003-05-27

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  1. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¹�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  2. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Abstracts and Highlight Slides Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance Reduction of Open Circuit Voltage Loss in a Polymer Photovoltaic Cell via Interfacial Molecular Design Mechanisms of Quantum Dot Formation During Annealing of Metallic Islands Improved Measurements of Ultrafast Pulses of Light Recovering Lost Excitons in Organic Photovoltaics using a Transparent Dissociation Layer A Predictive approach for Calculating Electron Charge Transfer within

  3. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Thermoelectric thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an array of assembled molecules. The CSTEC team tackles the challenges of thermoelectricity comprehensively by studying transport phenomena from a multi-dimensional perspective that spans charge and energy transport in molecular junctions, conduction processes in two-dimensional films, and the role the

  4. Development of MEMS based pyroelectric thermal energy harvesters...

    Office of Scientific and Technical Information (OSTI)

    used to power remote monitoring sensor systems, or recycled to provide electrical power. ... ENERGY CONVERSION; FABRICATION; MONITORING; ORNL; SECURITY; SENSORS; SIMULATION; ...

  5. Development of MEMS based pyroelectric thermal energy harvesters...

    Office of Scientific and Technical Information (OSTI)

    devices, concentrated photovoltaic solar cells, computers and large waste heat ... Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; ...

  6. British Thermal Units (Btu) - Energy Explained, Your Guide To...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wood and Wood Waste Waste-to-Energy (MSW) Landfill Gas and Biogas Biomass & the Environment See also: Biofuels Biofuels: Ethanol & Biodiesel Ethanol Use of Ethanol Ethanol & the ...

  7. Welcome - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Bridge LEDs' Green Gap, Scientists Think Small ... Really Small Read about CSTEC's latest Research Energy Transport in Organic and Hybrid Systems Absorption and Carrier ...

  8. Contact - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Prof. Peter Green, CSTEC Director Research Group Leader for Thrust 3 - Energy transport in organic and hybrid systems Materials Science & Engineering Dept. H H Dow ...

  9. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green was a member of the decadal study on Condensed Matter and Materials Physics ... particularly for functional coatings, sensors and energy conversion applications. ...

  10. Thermal management system and method for a solid-state energy storing device

    DOE Patents [OSTI]

    Rouillard, Roger; Domroese, Michael K.; Gauthier, Michel; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Rouillard, Jean; Shiota, Toshimi; St-Germain, Philippe; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2000-01-01

    An improved electrochemical energy storing device includes a number of thin-film electrochemical cells which are maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of each electrochemical cell, conducts current into and out of the electrochemical cells and also conducts thermal energy between the electrochemical cells and thermally conductive material disposed on a wall structure adjacent the conductors. The wall structure includes electrically resistive material, such as an anodized coating or a thin film of plastic. The thermal conductors are fabricated to include a spring mechanism which expands and contacts to maintain mechanical contact between the electrochemical cells and the thermally conductive material in the presence of relative movement between the electrochemical cells and the wall structure. An active cooling apparatus may be employed external to a hermetically sealed housing containing the electrochemical cells to enhance the transfer of thermal energy into and out of the electrochemical cells. An integrated interconnect board may be disposed within the housing onto which a number of electrical and electro-mechanical components are mounted. Heat generated by the components is conducted from the interconnect board to the housing using the thermal conductors.

  11. Solid-State Solar-Thermal Energy Conversion Center (S3TEC) | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Print Text Size: A A A FeedbackShare Page S<sup>3</sup>TEC Header Director Gang Chen Lead Institution Massachusetts Institute of Technology Year Established 2009

  12. Event Archives | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Archives Seminar S3TEC - Thermal Engineering of GaN Semiconductor Devices Friday, Jul 22, 2016 12:00 am 3-270 The development of gallium nitride (GaN) on a variety of substrates from SiC to diamond is under development to create high power RF technologies for advanced communications and power electronic devices. In general, GaN devices can accommodate high operational frequencies, high junction... more Seminar Cross Cutting seminar series: Generation, transport and relaxation of

  13. Seasonal thermal energy storage program. Progress report, January 1980-December 1980

    SciTech Connect (OSTI)

    Minor, J.E.

    1981-05-01

    The objectives of the Seasonal Thermal Energy Storage (STES) Program is to demonstrate the economic storage and retrieval of energy on a seasonal basis, using heat or cold available from waste sources or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. Aquifers, ponds, earth, and lakes have potential for seasonal storage. The initial thrust of the STES Program is toward utilization of ground-water systems (aquifers) for thermal energy storage. Program plans for meeting these objectives, the development of demonstration programs, and progress in assessing the technical, economic, legal, and environmental impacts of thermal energy storage are described. (LCL)

  14. Physics with linear colliders in the TeV CM energy region

    SciTech Connect (OSTI)

    Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.

    1982-07-01

    From a technical point of view a linear collider of high energy and luminosity cannot be operated economically at the present date. A series of R and D efforts in different areas are required to produce the necessary technology for an economically feasible linear collider. No fundamental limits, however, have been found as yet that would prevent us from reaching the goals outlined in this report. Most of the critical component will be tested in a real like situation once the SLC comes into operation. Beyond that much R and D is required in rf-power sources to reduce the power consumption and in high gradient accelerating structures to minimize the required real estate and linear construction costs.

  15. Developments in European Thermal Energy Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possibly the most important question is, will natural gas fracking be allowed in Germany? ... when it comes to energy with major investments in coal-fired power plants of 24 ...

  16. Energy Conversion and Thermal Efficiency Sales Tax Exemption

    Office of Energy Efficiency and Renewable Energy (EERE)

    Qualifying energy conversion facilities are those that are used for the primary purpose of converting natural gas or fuel oil to an alternate fuel or power source excluding propane, butane, napht...

  17. Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling - Depth...

    Open Energy Info (EERE)

    Author National Renewable Energy Laboratory Maintainer Nicholas Langle bureaucode 019:20 Catalog DOE harvestobjectid 3ba3acfd-d54a-4a3d-a971-1cf4ac97fcb0 harvestsourceid...

  18. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the bulk. In particular, we aim to exploit unique quantum effects at the nanoscale which are promising for the realization of new paradigms in solar energy conversion such as intermediate band or hot carrier solar cells. Thrust Leaders: Prof. Rachel Goldman (MSE)&nbspand Prof. Jamie Phillips (EECS) Recent Publications -

  19. Ocean Thermal Extractable Energy Visualization: Final Technical Report

    Broader source: Energy.gov (indexed) [DOE]

    Retrofit Product | Department of Energy DOE laboratories that are participating in the Lab-Corps pilot program have assembled entrepreneurial teams to identify private sector opportunities for commercializing promising sustainable energy technologies. Each Lab-Corps team has its own industry mentor. Oak Ridge National Laboratory's (ORNL's) CI-ReClad team evaluated the commercialization potential of a building envelope retrofit system for commercial buildings. The retrofit system is based on

  20. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

    SciTech Connect (OSTI)

    Kucharski, TJ; Ferralis, N; Kolpak, AM; Zheng, JO; Nocera, DG; Grossman, JC

    2014-04-13

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  1. Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage

    SciTech Connect (OSTI)

    Blahnik, D.E.

    1980-11-01

    Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

  2. Rapid Solar-Thermal Conversion of Biomass to Syngas - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Rapid Solar-Thermal Conversion of Biomass to Syngas Production of synthesis gas or hydrogen by gasification or pyrolysis of biological feedstocks using solar-thermal energy. University of Colorado Contact CU About This Technology Technology Marketing Summary The invention provides processes that perform biomass gasification or pyrolysis for production of hydrogen, synthesis gas, liquid fuels, or other

  3. Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities

    SciTech Connect (OSTI)

    Chvala, William D.

    2001-07-31

    This document presents the findings of a technology market assessment for thermal energy storage (TES) in space cooling applications. The potential impact of TES in Federal facilities is modeled using the Federal building inventory with the appropriate climatic and energy cost data. In addition, this assessment identified acceptance issues and major obstacles through interviews with energy services companies (ESCOs), TES manufacturers, and Federal facility staff.

  4. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the $13 billion global company designs and manufactures more than 500,000 different electronic connectivity products for the automotive, energy, industrial, broadband communications, consumer device, healthcare, aerospace, and defense industries. TE Connectivity has a long-standing commitment to innovation and engineering

  5. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the $13 billion global company designs and manufactures more than 500,000 different electronic connectivity products for the automotive, energy, industrial, broadband communications, consumer device, healthcare, aerospace, and defense industries. TE Connectivity has a long-standing commitment to innovation and engineering

  6. Ocean thermal energy. Quarterly report, January-March 1982

    SciTech Connect (OSTI)

    Not Available

    1982-03-30

    This quarterly report summarizes work of the following tasks as of March 31, 1982: OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential Navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  7. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    and p. 28 for energy efficient motor sales. 738 59.6 1.0% 412 56.5 0.8% 6,927 81.8 2.0% 2,376 78.2 1.5% Existing Replacements (thousands) Share of New Motors 20,784 59.6 2.5%

  8. Ocean thermal energy. Quarterly report, April-June 1982

    SciTech Connect (OSTI)

    Not Available

    1982-06-30

    This quarterly report includes summaries of the following tasks: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) management decision requirements for OTEC construction; (4) hybrid geothermal - OTEC (GEOTEC) power plant performance estimates; and (5) supervision of testing of pneumatic wave energy conversion system.

  9. Search for ZÎł events with large missing transverse energy in pp̄ collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; et al

    2012-10-02

    We present the first search for new phenomena in ZÎł final states with large missing transverse energy using data corresponding to an integrated luminosity of 6.2 fb⁻Âč collected with the D0 experiment in pp̄ collisions at √s=1.96 TeV. This signature is predicted in gauge-mediated supersymmetry-breaking models, where the lightest neutralino χ˜⁰₁ is the next-to-lightest supersymmetric particle and is produced in pairs, possibly through decay from heavier supersymmetric particles. The χ˜⁰₁ can decay either to a Z boson or a photon and an associated gravitino that escapes detection. We exclude this model at the 95% C.L. for supersymmetry-breaking scales of Λ<87more » TeV.« less

  10. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect (OSTI)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  11. Verification Of Energy Balance In The Ansys V5.4 Thermal Calculations

    SciTech Connect (OSTI)

    H. Marr; M.J. Anderson

    2001-02-08

    The objective of this calculation is to verify the energy balance of the thermal calculations analyzed by ANSYS Version (V) 5.4 solver (see Section 4). The scope of this calculation is limited to calculating the energy balance of a two-dimensional repository thermal representation using the temperatures obtained from ANSYS V5.4. The procedure, AP-3.124, Calculations (Ref. 3), and the Technical Work Plan for: Waste Package Design Description for LA (Ref. 2) are used to develop this calculation. The associated activity is the development of engineering evaluations to support the Licensing Application design activities.

  12. Project Profile: Low-Cost Solar Thermal Collector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Solar Thermal Collector Project Profile: Low-Cost Solar Thermal Collector SunTrough Energy logo SunTrough, under the Baseload CSP FOA, developed a new class of solar concentrators with geometries and manufacturability that can significantly reduce the fully installed cost of the solar collector field. Approach Rendering of an L-shaped metal frame faced to the sky. SunTrough Energy developed a single-axis tracking, line-focus solar concentrator and a pilot manufacturing facility under this

  13. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect (OSTI)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  14. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid material systems with the goal of producing highly efficient materials and morphological structures for OPVs. Our efforts to develop and to maximize the performance/efficiency of OPVs include: (1) a combined experimental/ computational approach to the molecular design and synthesis of new materials; (2) design and develop

  15. Gang Chen | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gang Chen Principal Investigator Gang Chen Department Head, MIT Mechanical Engineering Carl Richard Soderberg Professor of Power Engineering Director of Pappalardo Micro and Nano Engineering Laboratories Phone: 617.253.0006 Fax: 617.258.6156 Email: gchen2@mit.edu Web: http://web.mit.edu/nanoengineering Administrative Contact: Keke Xu Phone: 617.253.2201 Email: kekex@mit.edu Research Interests: Micro- and nanoscale heat transfer and energy conversion with applications in thermoelectrics,

  16. Thermoelectrics and Photovoltaics - Center for Solar and Thermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion Thermoelectrics and Photovoltaics Thermoelectrics A significant amount of heat is wasted from industrial processes, home heating and vehicle exhausts that could otherwise be converted to electricity through the use of thermoelectric devices. The interconversion between heat and electricity, through the use of thermoelectrics, is environmentally friendly and highly reliable. With improved efficiency, thermoelectrics could have a significant impact on the energy consumption

  17. Stand-Alone Battery Thermal Management System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy The stack characterization system (SCS) is a tele-operated remote system that collects samples and data to characterize the quantitative and qualitative levels of contamination inside off-gas stacks protecting workers from the physical, radiological and chemical hazards of deteriorating contaminated stacks. Stack Characterization System for Inspection of Contaminated Off-Gas Stacks (130.58 KB) More Documents & Publications Uranium Downblending and Disposition

  18. Thermal Management Studies and Modeling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Storage | Department of Energy Presentation on the Theory and Modeling of Weakly Bound/Physisorbed Materials for Hydrogen Storage given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006. storage_theory_session_williamson.pdf (836.55 KB) More Documents & Publications Summary Report from Theory Focus Session on Hydrogen Storage Materials Materials Go/No-Go Recommendation Document Summary Report from DOE Theory Focus Session on Hydrogen Storage Materials

    i T T

  19. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  20. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  1. Bo Zhen | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Climate Experiment | Department of Energy Bluer Skies and Brighter Days: The U.S. and India Collaborate in First Long-Term Climate Experiment Bluer Skies and Brighter Days: The U.S. and India Collaborate in First Long-Term Climate Experiment June 27, 2011 - 12:42pm Addthis ARM Mobile Facility instrumentation is installed in June 2011 at the ARIES Observatory in Nainital, India, for the Ganges Valley Aerosol Experiment (GVAX). | Courtesy of ARM.gov ARM Mobile Facility

  2. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  3. Thermal energy storage with liquid-liquid systems

    SciTech Connect (OSTI)

    Santana, E.A.; Stiel, L.I.

    1989-03-01

    The use of liquid-liquid mixtures for heat and cool storage applications has been investigated. Suitable mixtures exhibit large changes in the heat of mixing above and below the critical solution temperature of the system. Analytical procedures have been utilized to determine potential energy storage capabilities of systems with upper or lower critical solution temperatures. It has been found that aqueous systems with lower critical solution temperatures in a suitable range can result in large increases in the effective heat capacity in the critical region. For cool storage with a system of this type, the cooling process results in a transformation from two liquid phases to a single phase. Heats of mixing have been measured with a flow calorimeter system for a number of potential mixtures, and the results are summarized.

  4. High Temperature Phase Change Materials for Thermal Energy Storage Applications: Preprint

    SciTech Connect (OSTI)

    Gomez, J.; Glatzmaier, G. C.; Starace, A.; Turchi, C.; Ortega, J.

    2011-08-01

    To store thermal energy, sensible and latent heat storage materials are widely used. Latent heat thermal energy storage (TES) systems using phase change materials (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation. Molten salt PCM candidates for cascaded PCMs were evaluated for the temperatures near 320 degrees C, 350 degrees C, and 380 degrees C. These temperatures were selected to fill the 300 degrees C to 400 degrees C operating range typical for parabolic trough systems, that is, as one might employ in three-PCM cascaded thermal storage. Based on the results, the best candidate for temperatures near 320 degrees C was the molten salt KNO3-4.5wt%KCl. For the 350 degrees C and 380 degrees C temperatures, the evaluated molten salts are not good candidates because of the corrosiveness and the high vapor pressure of the chlorides.

  5. Field testing of a high-temperature aquifer thermal energy storage system

    SciTech Connect (OSTI)

    Sterling, R.L.; Hoyer, M.C.

    1989-03-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) System has been operated as a field test facility for the past six years. Four short-term and two long-term cycles have been completed to data providing a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. A third long-term cycle is currently being planned to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact on the aquifer from heated waste storage cycles. The most critical activities in the preparation for the next cycle have proved to be the applications for the various permits and variances necessary to conduct the third cycle and the matching of the characteristics of the ATES system during heat recovery with a suitable adjacent building thermal load.

  6. Surfactant-Free Synthesis of Bi?Te?-Te Micro-Nano Heterostructure with Enhanced Thermoelectric Figure of Merit

    SciTech Connect (OSTI)

    Zhang, Yichi; Wang, Heng; Kraemer, Stephan; Shi, Yifeng; Zhang, Fan; Snedaker, Matt; Ding, Kunlun; Moskovits, Martin; Snyder, G. Jeffrey; Stucky, Galen D.

    2011-01-01

    An ideal thermoelectric material would be a semiconductor with high electrical conductivity and relatively low thermal conductivity: an “electron crystal, phonon glass”. Introducing nanoscale heterostructures into the bulk TE matrix is one way of achieving this intuitively anomalous electron/phonon transport behavior. The heterostructured interfaces are expected to play a significant role in phonon scattering to reduce thermal conductivity and in the energy-dependent scattering of electrical carriers to improve the Seebeck coefficient. A nanoparticle building block assembly approach is plausible to fabricate three-dimensional heterostructured materials on a bulk commercial scale. However, a key problem in applying this strategy is the possible negative impact on TE performance of organic residue from the nanoparticle capping ligands. Herein, we report a wet chemical, surfactant-free, low-temperature, and easily up-scalable strategy for the synthesis of nanoscale heterophase Bi?Te?-Te via a galvanic replacement reaction. The micro-nano heterostructured material is fabricated bottom-up, by mixing the heterophase with commercial Bi?Te?. This unique structure shows an enhanced zT value of ~0.4 at room temperature. This heterostructure has one of the highest figures of merit among bismuth telluride systems yet achieved by a wet chemical bottom-up assembly. In addition, it shows a 40% enhancement of the figure of merit over our lab-made material without nanoscale heterostructures. This enhancement is mainly due to the decrease in the thermal conductivity while maintaining the power factor. Overall, this cost-efficient and room-temperature synthesis methodology provides the potential for further improvement and large-scale thermoelectric applications.

  7. Solar-Thermal Fluid-Wall Reaction Processing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Solar-Thermal Fluid-Wall Reaction Processing University of Colorado National Renewable Energy Laboratory Contact CU About This Technology Technology Marketing Summary Currently most hydrogen is produced through a process of heating natural gas with water vapor called steam reforming. This process requires energy to heat the gasses and produces greenhouse gases such as CO2 as its byproducts. These conditions

  8. Mechanism of Thermal Reversal of the (Fulvalene)tetracarbonyldiruthenium Photoisomerization: Toward Molecular Solar-Thermal Energy Storage

    SciTech Connect (OSTI)

    Kanai, Y; Srinivasan, V; Meier, S K; Vollhardt, K P; Grossman, J C

    2010-02-18

    In the currently intensifying quest to harness solar energy for the powering of our planet, most efforts are centered around photoinduced generic charge separation, such as in photovoltaics, water splitting, other small molecule activation, and biologically inspired photosynthetic systems. In contrast, direct collection of heat from sunlight has received much less diversified attention, its bulk devoted to the development of concentrating solar thermal power plants, in which mirrors are used to focus the sun beam on an appropriate heat transfer material. An attractive alternative strategy would be to trap solar energy in the form of chemical bonds, ideally through the photoconversion of a suitable molecule to a higher energy isomer, which, in turn, would release the stored energy by thermal reversal. Such a system would encompass the essential elements of a rechargeable heat battery, with its inherent advantages of storage, transportability, and use on demand. The underlying concept has been explored extensively with organic molecules (such as the norbornadiene-quadricyclane cycle), often in the context of developing photoswitches. On the other hand, organometallic complexes have remained relatively obscure in this capacity, despite a number of advantages, including expanded structural tunability and generally favorable electronic absorption regimes. A highly promising organometallic system is the previously reported, robust photo-thermal fulvalene (Fv) diruthenium couple 1 {l_reversible} 2 (Scheme 1). However, although reversible and moderately efficient, lack of a full, detailed atom-scale understanding of its key conversion and storage mechanisms have limited our ability to improve on its performance or identify optimal variants, such as substituents on the Fv, ligands other than CO, and alternative metals. Here we present a theoretical investigation, in conjunction with corroborating experiments, of the mechanism for the heat releasing step of 2 {yields} 1 and

  9. Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

  10. Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

  11. External review of the thermal energy storage (TES) cogeneration study assumptions. Final report

    SciTech Connect (OSTI)

    Lai, B.Y.; Poirier, R.N.

    1996-08-01

    This report is to provide a detailed review of the basic assumptions made in the design, sizing, performance, and economic models used in the thermal energy storage (TES)/cogeneration feasibility studies conducted by Pacific Northwest Laboratory (PNL) staff. This report is the deliverable required under the contract.

  12. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  13. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ÂșC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go

  14. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  15. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    SciTech Connect (OSTI)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: ‱ The topic of energy recovery from waste by thermal treatment is reviewed. ‱ Combustion, gasification and pyrolysis were considered. ‱ Data about energy recovery performances were collected and compared. ‱ Main limitations to high values of energy performances were illustrated. ‱ Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  16. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  17. Search for Higgs boson production in oppositely charged dilepton and missing energy events in pp? collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magańa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.

    2012-08-20

    We present a search for the standard model Higgs boson using events with two oppositely charged leptons and large missing transverse energy as expected in H?WW decays. The events are selected from data corresponding to 8.6 fb?č of integrated luminosity in pp? collisions at ?s=1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. No significant excess above the standard model background expectation in the Higgs boson mass range this search is sensitive to is observed, and upper limits on the Higgs boson production cross section are derived.

  18. Search for Large Extra Dimensions via Single Photons Plus Missing Energy Final States at s^(1/2) = 1.96 TeV

    SciTech Connect (OSTI)

    Carrera, Edgar Fernando; /Florida State U.

    2008-12-01

    This dissertation presents a search for large extra dimensions in the single photon plus missing transverse energy final states. We use a data sample of approximately 2.7 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV (recorded with the D{sup -} detector) to investigate direct Kaluza Klein graviton production and set limits, at the 95% C.L., on the fundamental mass scale M{sub D} from 970 GeV to 816 GeV for two to eight extra dimensions.

  19. Search for Higgs boson production in oppositely charged dilepton and missing energy events in pp̄ collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; et al

    2012-08-20

    We present a search for the standard model Higgs boson using events with two oppositely charged leptons and large missing transverse energy as expected in H→WW decays. The events are selected from data corresponding to 8.6 fb⁻Âč of integrated luminosity in pp̄ collisions at √s=1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. No significant excess above the standard model background expectation in the Higgs boson mass range this search is sensitive to is observed, and upper limits on the Higgs boson production cross section are derived.

  20. Limits on the thermal energy release from radioactive wastes in a mined geologic repository

    SciTech Connect (OSTI)

    Scott, J.A.

    1983-03-01

    The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300/sup 0/C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed.

  1. Thermal testing of the proposed HUD energy efficiency standard for new manufactured homes

    SciTech Connect (OSTI)

    Judkoff, R.D.; Barker, G.M.

    1992-06-01

    Thermal testing of two manufactured homes was performed at the National Renewable Energy Laboratory's (NREL's) Collaborative Manufactured Buildings Facility for Energy Research and Testing (CMFERT) environmental enclosure in the winter and spring of 1991. The primary objective of the study was to directly measure the thermal performance of the two homes, each built according to a proposed new US Department of Housing and Urban Development (HUD) standard. Secondary objectives were to test the accuracy of an accompanying compliance calculation method and to help manufacturers find cost-effective ways to meet the new standard. Both homes performed within the standard without major design or production line modifications. Their performance fell within 8% of predictions based on the new draft HUD calculation manual; however, models with minimum window area were selected by the manufacturer. Models with more typical window area would have required substantive design changes to meet the standard. Several other tests were also performed on the homes by both NREL and the Florida Solar Energy Center (FSEC) to uncover potential thermal anomalies and to explore the degradation in thermal performance that might occur because of (a) penetrations in the rodent barrier from field hookups and repairs, (b) closing of interior doors with and without operation of the furnace blower, and (c) exposure to winds.

  2. Thermal testing of the proposed HUD energy efficiency standard for new manufactured homes

    SciTech Connect (OSTI)

    Judkoff, R.D.; Barker, G.M.

    1992-06-01

    Thermal testing of two manufactured homes was performed at the National Renewable Energy Laboratory`s (NREL`s) Collaborative Manufactured Buildings Facility for Energy Research and Testing (CMFERT) environmental enclosure in the winter and spring of 1991. The primary objective of the study was to directly measure the thermal performance of the two homes, each built according to a proposed new US Department of Housing and Urban Development (HUD) standard. Secondary objectives were to test the accuracy of an accompanying compliance calculation method and to help manufacturers find cost-effective ways to meet the new standard. Both homes performed within the standard without major design or production line modifications. Their performance fell within 8% of predictions based on the new draft HUD calculation manual; however, models with minimum window area were selected by the manufacturer. Models with more typical window area would have required substantive design changes to meet the standard. Several other tests were also performed on the homes by both NREL and the Florida Solar Energy Center (FSEC) to uncover potential thermal anomalies and to explore the degradation in thermal performance that might occur because of (a) penetrations in the rodent barrier from field hookups and repairs, (b) closing of interior doors with and without operation of the furnace blower, and (c) exposure to winds.

  3. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    SciTech Connect (OSTI)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  4. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  5. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2015-05-01

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of ?s = 7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8*|–1. Jets are identified using the anti-kt algorithm with two different jet radiusmore »parameters, R = 0.4 and R = 0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.« less

  6. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-05-27

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of √s=7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8<|Y*|<10. These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of 4.51 fb11. Jets are identified using the anti-kt algorithm with two different jet radius parameters, R=0.4more » and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.« less

  7. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  8. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling [Thermoelectric (TE) HVAC

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  10. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    SciTech Connect (OSTI)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the cost and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.

  11. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect (OSTI)

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  12. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    SciTech Connect (OSTI)

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∌38%, compared to that of an undoped material, is expected.

  13. Search for squark production in events with jets, hadronically decaying tau leptons and missing transverse energy at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan U. /Northeastern U.

    2009-05-01

    A search for supersymmetric partners of quarks is performed in the topology of multijet events accompanied by at least one tau lepton decaying hadronically and large missing transverse energy. Approximately 1 fb-1 of ppbar collision data from the Fermilab Tevatron Collider at a center of mass energy of 1.96 TeV recorded by the D0 detector is analyzed. Results are combined with the previously published D0 inclusive search for squarks and gluinos. No evidence of physics beyond the standard model is found and lower limits on the squark mass up to 410 GeV are derived in the framework of minimal supergravity with tan(beta)=15, A{sub 0}=-2m{sub 0} and mu<0, in the region where decays to tau leptons dominate. Gaugino masses m{sub 1/2} are excluded up to 172 GeV.

  14. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  15. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  16. Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants

    SciTech Connect (OSTI)

    Su-Jong Yoon; Piyush Sabharwall

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

  17. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  18. Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at ?s = 8 TeV

    SciTech Connect (OSTI)

    Aad, G.

    2015-07-02

    This study describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy ?s=8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb–1. An uncertainty on the offline reconstructed tau energy scale of 2–4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2–8%, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton–proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS.

  19. Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at √s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-07-02

    This study describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy √s=8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb–1. An uncertainty on the offline reconstructed tau energy scale of 2–4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured withmore » a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2–8%, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton–proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS.« less

  20. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  1. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect (OSTI)

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  2. Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of a database, in Excel format, listing CHP installations incorporating thermal energy storage or turbine inlet cooling.

  3. Search for anomalous quartic WW?? couplings in dielectron and missing energy final states in pp? collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Holzbauer, J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magańa-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.

    2013-07-29

    We present a search for anomalous components of the quartic gauge boson coupling WW?? in events with an electron, a positron and missing transverse energy. The analyzed data correspond to 9.7 fb?č of integrated luminosity collected by the D0 detector in pp? collisions at s?=1.96 TeV. The presence of anomalous quartic gauge couplings would manifest itself as an excess of boosted WW events. No such excess is found in the data, and we set the most stringent limits to date on the anomalous coupling parameters aW0 and aWC. When a form factor with ?cutoff=0.5 TeV is used, the observed upper limits at 95% C.L. are |aW0/?Č|<0.0025 GeV?Č and |aWC/?Č|<0.0092 GeV?Č.

  4. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    SciTech Connect (OSTI)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  5. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    SciTech Connect (OSTI)

    R. Panneer Selvam; Hale, Micah; Strasser, Matt

    2013-03-31

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 °C to 600 °C) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal. Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal. The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES

  6. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introducedmore » by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.« less

  7. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    SciTech Connect (OSTI)

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.

  8. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept

    SciTech Connect (OSTI)

    Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled

    2010-11-15

    This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

  9. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOE Patents [OSTI]

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  10. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOE Patents [OSTI]

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  11. Measurement of the inclusive jet cross section in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    SciTech Connect (OSTI)

    Voutilainen, Mikko Antero; /Helsinki Inst. of Phys. /Helsinki U. of Tech. /Nebraska U. /Saclay

    2008-07-01

    This thesis studies the high-energy collisions of protons and antiprotons. The data used in the measurement were collected during 2004-2005 with the D0 detector at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to 0.7 fb{sup -1} of integrated luminosity. High energy hadron collisions usually produce collimated sprays of particles called jets. The energy of the jets is measured using a liquid Argon-Uranium calorimeter and the production angle is determined with the help of silicon microstrip and scintillating fiber trackers. The inclusive jet cross section in proton-antiproton collisions is measured as a function of jet transverse momentum p{sub T} in six bins of jet rapidity at the center-of-mass energy {radical}s = 1.96 TeV. The measurement covers jet transerve momenta from 50 GeV up to 600 GeV and jet rapidities up to |y| = 2.4. The data are collected using a set of seven single jet triggers. Event and jet cuts are applied to remove non-physical backgrounds and cosmic-ray interactions. The data are corrected for jet energy calibration, cut and trigger efficiencies and finite jet p{sub T} resolution. The corrections are determined from data and the methods are tested with Monte Carlo simulation. The main experimental challenges in the measurement are the calibration of jet energies and the determination of the jet p{sub T} resolution. New methods are developed for the jet energy calibration that take into account physical differences between the {gamma}+jet and dijet calibration samples arising from quark and gluon jet differences. The uncertainty correlations are studied and provided as a set of uncertainty sources. The production of particle jets in hadron collisions is described by the theory of quantum chromodynamics (QCD). When the transverse jet momentum is large, the contributions from long-distance physics processes are small and the production rates of jets can be predicted by perturbative QCD. The inclusive jet cross

  12. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  13. Nonlinear terahertz response of HgTe/CdTe quantum wells

    SciTech Connect (OSTI)

    Chen, Qinjun; Sanderson, Matthew; Zhang, Chao

    2015-08-24

    Without breaking the topological order, HgTe/CdTe quantum wells can have two types of bulk band structure: direct gap type (type I) and indirect gap type (type II). We report that the strong nonlinear optical responses exist in both types of bulk states under a moderate electric field in the terahertz regime. Interestingly, for the type II band structure, the third order conductivity changes sign when chemical potentials lies below 10 meV due to the significant response of the hole excitation close to the bottom of conduction band. Negative nonlinear conductivities suggest that HgTe/CdTe quantum wells can find application in the gain medium of a laser for terahertz radiation. The thermal influences on nonlinear optical responses of HgTe/CdTe quantum wells are also studied.

  14. Spatial and temporal modeling of sub- and supercritical thermal energy storage

    SciTech Connect (OSTI)

    Tse, LA; Ganapathi, GB; Wirz, RE; Lavine, AS

    2014-05-01

    This paper describes a thermodynamic model that simulates the discharge cycle of a single-tank thermal energy storage (TES) system that can operate from the two-phase (liquid-vapor) to supercritical regimes for storage fluid temperatures typical of concentrating solar power plants. State-of-the-art TES design utilizes a two-tank system with molten nitrate salts; one major problem is the high capital cost of the salts (International Renewable Energy Agency, 2012). The alternate approach explored here opens up the use of low-cost fluids by considering operation at higher pressures associated with the two-phase and supercritical regimes. The main challenge to such a system is its high pressures and temperatures which necessitate a relatively high-cost containment vessel that represents a large fraction of the system capital cost. To mitigate this cost, the proposed design utilizes a single-tank TES system, effectively halving the required wall material. A single-tank approach also significantly reduces the complexity of the system in comparison to the two-tank systems, which require expensive pumps and external heat exchangers. A thermodynamic model is used to evaluate system performance; in particular it predicts the volume of tank wall material needed to encapsulate the storage fluid. The transient temperature of the tank is observed to remain hottest at the storage tank exit, which is beneficial to system operation. It is also shown that there is an optimum storage fluid loading that generates a given turbine energy output while minimizing the required tank wall material. Overall, this study explores opportunities to further improve current solar thermal technologies. The proposed single-tank system shows promise for decreasing the cost of thermal energy storage. (C) 2014 Elsevier Ltd. All rights reserved.

  15. Modeling of thermal storage systems in MILP distributed energy resource models

    SciTech Connect (OSTI)

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.

  16. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect (OSTI)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  17. Search for supersymmetry in events with a lepton, a photon, and large missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-06-01

    A search is performed for an excess of events, over the standard model expectations, with a photon, a lepton, and large missing transverse energy in pp collisions at sqrt(s) = 7 TeV. Such events are expected in many new physics models, in particular a supersymmetric theory that is broken via a gauge-mediated mechanism, when the lightest charged and neutral gauginos are mass degenerate. The data sample used in this search corresponds to an integrated luminosity of 35 inverse picobarns collected with the CMS detector at the LHC. No evidence of such an excess above the standard model backgrounds, dominated by W-gamma production, is found. The results are presented as 95% confidence level upper limits on the cross section for a benchmark gauge-mediated scenario, and are then converted into exclusion limits on the squark, gluino, and wino masses.

  18. Search for Dark Matter in Events with One Jet and Missing Transverse Energy in pp̄ Collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez Gonzålez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-05-23

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻Âč recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction belowmore » a dark matter candidate mass of 5 GeV/cÂČ, and on spin-dependent interactions up to masses of 200 GeV/cÂČ.« less

  19. Search for Dark Matter in Events with One Jet and Missing Transverse Energy in pp? Collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Bai, Y.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Fox, P. J.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harnik, R.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.

    2012-05-01

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?č recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/cČ, and on spin-dependent interactions up to masses of 200 GeV/cČ.

  20. Search for New Physics with a Dijet plus Missing Transverse Energy Signature in p-pbar Collisions at sqrt(s) = 1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2009-12-01

    We present results of a signature-based search for new physics using a dijet plus missing transverse energy (E{sub T}) data sample collected in 2 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. We observe no significant event excess with respect to the standard model prediction and extract a 95% C.L. upper limit on the cross section times acceptance for a potential contribution from a non-standard model process. Based on this limit the mass of a potential first or second generation scalar leptoquark is constrained to be above 187 GeV/c{sup 2}.

  1. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with

  2. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  3. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  4. Evaluation of diurnal thermal energy storage combined with cogeneration systems. Phase 2

    SciTech Connect (OSTI)

    Somasundaram, S.; Brown, D.R.; Drost, M.K.

    1993-07-01

    This report describes the results of a study of thermal energy storage (TES) systems integrated with combined-cycle gas turbine cogeneration systems. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers two significant advantages. First, electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced. Second, although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. An earlier study analyzed TES integrated with a simple-cycle cogeneration system. This follow-on study evaluated the cost of power produced by a combined-cycle electric power plant (CC), a combined-cycle cogeneration plant (CC/Cogen), and a combined-cycle cogeneration plant integrated with thermal energy storage (CC/TES/Cogen). Each of these three systems was designed to serve a fixed (24 hr/day) process steam load. The value of producing electricity was set at the levelized cost for a CC plant, while the value of the process steam was for a conventional stand-alone boiler. The results presented here compared the costs for CC/TES/Cogen system with those of the CC and the CC/Cogen plants. They indicate relatively poor economic prospects for integrating TES with a combined-cycle cogeneration power plant for the assumed designs. The major reason is the extremely close approach temperatures at the storage media heaters, which makes the heaters large and therefore expensive.

  5. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

    SciTech Connect (OSTI)

    Bowyer, J.M.

    1984-04-15

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

  6. Thermalization of color gauge fields in high energy heavy ion collisions

    SciTech Connect (OSTI)

    Iwazaki, Aiichi [International Politics Economics, Nishogakusha University, Ohi Kashiwa Chiba 277-8585 (Japan)

    2008-03-15

    We discuss the quantum mechanical decay of the color magnetic field generated initially during high-energy heavy-ion collisions. The decay is caused by Nielsen-Olesen unstable modes and is accomplished possibly in a period <1 fm/c. We show that the decay products (i.e., incoherent gluons) may be thermalized in a sufficiently short period (<1 fm/c). The precise determination of the period is made by calculating the two-point function of the color magnetic field in a color glass condensate model.

  7. Ocean thermal energy conversion: environmental effects assessment program plan, 1981-85. [Monograph

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The Ocean Thermal Energy Conversion (OTEC) Act of 1980 calls for a legal regime to encourage commercial OTEC while protecting the oceanic and coastal environments. The Act also requires a generic plan for assessing the environmental effects of OTEC development. The plan outlined in this report establishes a priority list of nine environmental effects and a research strategy for reducing uncertainties, with an emphasis on large-scale and long-term ecosystem implications and on the impacts of multiple facilities. 70 references, 4 figures, 4 tables. (DCK)

  8. Ocean thermal energy conversion report to congress: fiscal year 1981. public law 96-320

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    After a section on the background of Ocean Thermal Energy Conversion, which deals with the national interest and the nature of the industry, this report discusses OTEC technology, the legal regime, environmental considerations and the international impact and future of OTEC. At the current time no amendments to the ACT are recommended. NOAA is analyzing several areas in which technical amendments would clarify the original intent of the Act. The most significant of these relates to the specific requirements for issuance of OTEC licenses for facilities that are located partly on land and partly in ocean waters.

  9. Definitional mission: Ocean Thermal Energy Conversion, Republic of the Marshall Islands. Export trade information

    SciTech Connect (OSTI)

    Dean, S.R.; Ross, J.M.

    1990-09-01

    The objective of the study was to determine the commercial viability of an Ocean Thermal Energy Conversion (OTEC) electric power plant at the Majuro Atoll in the Marshall Islands. It was concluded that various technology improvements and economic factors have converged to present a feasible opportunity. United States industrial and research organizations are technically capable of developing a commercial OTEC industry for domestic and export markets. It is estimated that 100% of OTEC equipment and services could be supplied by United States firms. However, Japan has aggressively pursued OTEC development with an apparent goal of dominating the export market.

  10. Energy and costs scoping study for plasma pyrolysis thermal processing system

    SciTech Connect (OSTI)

    Sherick, K.E.; Findley, J.E.

    1992-01-01

    The purpose of this study was to provide information in support of an investigation of thermal technologies as possible treatment process for buried wastes at the INEL. Material and energy balances and a cost estimate were generated for a representative plasma torch-based thermal waste treatment system operating in a pyrolysis mode. Two waste streams were selected which are representative of INEL buried wastes, large in volume, and difficult to treat by other technologies. These streams were a solidified nitrate sludge waste stream and a waste/soil mix of other buried waste components. The treatment scheme selected includes a main plasma chamber operating under pyrolyzing conditions; a plasma afterburner to provide additional residence time at high temperature to ensure complete destruction of hazardous organics; an off-gas treatment system; and a incinerator and stack to oxidize carbon monoxide to carbon dioxide and vent the clean, oxidized gases to atmosphere. The material balances generated provide materials flow and equipment duty information of sufficient accuracy to generate initial rough-order-of-magnitude (ROM) system capital and operating cost estimates for a representative plasma thermal processing system.

  11. Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at $\\sqrt{s}= 7$ TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2012-01-01

    A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.

  12. Neutron capture of /sup 122/Te, /sup 123/Te, /sup 124/Te, /sup 125/Te, and /sup 126/Te

    SciTech Connect (OSTI)

    Macklin, R.L.; Winters, R.R.

    1989-07-01

    Isotopically enriched samples of the tellurium isotopes from mass 122 to mass 126 were used to measure neutron capture in the energy range 2.6 keV to 600 keV at the Oak Ridge Electron Linear Accelerator pulsed neutron source. Starting at 2.6 keV, over 200 Breit-Wigner resonances for each isotope were used to describe the capture data. Least-squares adjustment gave parameters and their uncertainties for a total of 1659 resonances. Capture cross sections averaged over Maxwellian neutron distributions with temperatures ranging from kT = 5 keV to kT = 100 keV were derived for comparison with stellar nucleosynthesis calculations. For the three isotopes shielded from the astrophysical r-process, /sup 122/Te, /sup 123/Te and /sup 124/Te at kT = 30 keV the respective values were (280 /plus minus/ 10) mb, (819 /plus minus/ 30) mb and (154 /plus minus/ 6) mb. The corresponding products of cross section and solar system abundance are nearly equal in close agreement with s-process nucleosynthesis calculations. 26 refs., 8 figs., 10 tabs.

  13. Analyzing the Effects of Climate and Thermal Configuration on Community Energy Storage Systems (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Coleman, D.; Chen, D.

    2013-10-01

    Community energy storage (CES) has been proposed to mitigate the high variation in output from renewable sources and reduce peak load on the electrical grid. Thousands of these systems may be distributed around the grid to provide benefits to local distribution circuits and to the grid as a whole when aggregated. CES must be low cost to purchase and install and also largely maintenance free through more than 10 years of service life to be acceptable to most utilities.Achieving the required system life time is a major uncertainty for lithium-ion batteries. The lifetime and immediate system performance of batteries can change drastically with battery temperature, which is a strong function of system packaging, local climate, electrical duty cycle, and other factors. In other Li-ion applications, this problem is solved via air or liquid heating and cooling systems that may need occasional maintenance throughout their service life. CES requires a maintenance-free thermal management system providing protection from environmental conditions while rejecting heat from a moderate electrical duty cycle. Thus, the development of an effective, low-cost, zero-maintenance thermal management system poses a challenge critical to the success of CES. NREL and Southern California Edison have collaborated to evaluate the long-term effectiveness of various CES thermal configurations in multiple climates by building a model of CES based on collected test data, integrating it with an NREL-developed Li-ion degradation model, and applying CES electrical duty cycles and historic location-specific meteorological data to forecast battery thermal response and degradation through a 10-year service life.

  14. Energy losses in thermally cycled optical fibers constrained in small bend radii

    SciTech Connect (OSTI)

    Guild, Eric; Morelli, Gregg

    2012-09-23

    High energy laser pulses were fired into a 365ÎŒm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

  15. Optimal electron, phonon, and magnetic characteristics for low energy thermally induced magnetization switching

    SciTech Connect (OSTI)

    Atxitia, U.; Ostler, T. A.; Chantrell, R. W.; Chubykalo-Fesenko, O.

    2015-11-09

    Using large-scale computer simulations, we thoroughly study the minimum energy required to thermally induced magnetization switching (TIMS) after the application of a femtosecond heat pulse in transition metal-rare earth ferrimagnetic alloys. We find that for an energy efficient TIMS, a low ferrimagnetic net magnetization with a strong temperature dependence is the relevant factor for the magnetic system. For the lattice and electron systems, the key physics for efficient TIMS is a large electron-phonon relaxation time. Importantly, we show that as the cooling time of the heated electrons is increased, the minimum power required to produce TIMS can be reduced by an order of magnitude. Our results show the way to low power TIMS by appropriate engineering of magnetic heterostructures.

  16. Development of a high-power and high-energy thermal battery

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.; SCHARRER,GREGORY L.; REINHARDT,FREDERICK W.

    2000-04-18

    The Li(Si)/FeS{sub 2} and Li(Si)/CoS{sub 2} couples were evaluated with a low-melting LiBr-KBr-LiF eutectic and all-Li LiCl-LiBr-LiF electrolyte for a battery application that required both high energy and high power for short duration. Screening studies were carried out with 1.25 inch-dia. triple cells and with 10-cell batteries. The Li(Si)/LiCl-LiBr-LiF/CoS{sub 2} couple performed the best under the power load and the Li(Si)/LiCl-LiBr-LiF/FeS{sub 2} was better under the energy load. The former system was selected as the best overall performer for the wide range of temperatures for both loads, because of the higher thermal stability of CoS{sub 2}.

  17. Thermal charm production in a quark-gluon plasma in Pb-Pb collisions at {radical}(s{sub NN})=5.5 TeV

    SciTech Connect (OSTI)

    Zhang Benwei; Ko Cheming; Liu Wei

    2008-02-15

    Charm production from the quark-gluon plasma created in the midrapidity of central heavy ion collisions at the Large Hadron Collider (LHC) is studied in the next-to-leading order in QCD. Using a schematic longitudinally boost-invariant and transversally expanding fire-cylinder model, we find that charm production could be appreciably enhanced at LHC as a result of the high temperature that is expected to be reached in the produced quark-gluon plasma. Sensitivities of our results to the number of charm quark pairs produced from initial hard scattering, the initial thermalization time and temperature of the quark-gluon plasma, and the charm quark mass are also studied.

  18. Characterization of Energy Savings and Thermal Comfort Improvements Derived from Using Interior Storm Windows

    SciTech Connect (OSTI)

    Knox, Jake R.; Widder, Sarah H.

    2013-09-30

    This field study of a single historic home in Seattle, WA documents the performance of Indow Windows’s interior storm window inserts. Energy use and the temperature profile of the house were monitored before and after the installation of the window inserts and changes in the two recorded metrics were examined. Using the defined analysis approach, it was determined that the interior storm windows produced a 22% reduction of the HVAC energy bill and had an undetermined effect on the thermal comfort in the house. Although there was no measurable changes in the thermal comfort of the house, the occupant noted the house to be “warmer in the winter and cooler in the summer” and that the “temperatures are more even (throughout the house).” The interior storm windows were found to be not cost effective, largely due to the retrofits completed on its heating system. However, if the economic analysis was conducted based on the old heating system, a 72% efficient oil fired furnace, the Indow Windows proved to be economical and had a simple payback period of 9.0 years.

  19. Ocean thermal energy at the Johns Hopkins University Applied Physics Laboratory, quarterly report. Report for Jan-Mar 82

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The following are included: Ocean thermal energy conversion (OTEC)--OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  20. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations aremore » based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  1. Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-01-15

    The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of \\(\\sqrt{s}=7\\) TeV corresponding to an integrated luminosity of \\(4.7\\) \\(\\,\\,\\text{ fb }^{-1}\\). Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-\\(k_{t}\\) algorithm with distance parameters \\(R=0.4\\) or \\(R=0.6\\), and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transversemore » momentum balance between a jet and a reference object such as a photon or a \\(Z\\) boson, for \\({20} \\le p_{\\mathrm {T}}^\\mathrm {jet}<{1000}\\, ~\\mathrm{GeV }\\) and pseudorapidities \\(|\\eta |<{4.5}\\). The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region (\\(|\\eta |<{1.2}\\)) for jets with \\({55} \\le p_{\\mathrm {T}}^\\mathrm {jet}<{500}\\, ~\\mathrm{GeV }\\). For central jets at lower \\(p_{\\mathrm {T}}\\), the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for \\(p_{\\mathrm {T}}^\\mathrm {jet}> 1\\) TeV. The calibration of forward jets is derived from dijet \\(p_{\\mathrm {T}}\\) balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-\\(p_{\\mathrm {T}}\\) jets at \\(|\\eta |=4.5\\). In addition, JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light

  2. Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-01-15

    The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of \\(\\sqrt{s}=7\\) TeV corresponding to an integrated luminosity of \\(4.7\\) \\(\\,\\,\\text{ fb }^{-1}\\). Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-\\(k_{t}\\) algorithm with distance parameters \\(R=0.4\\) or \\(R=0.6\\), and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a \\(Z\\) boson, for \\({20} \\le p_{\\mathrm {T}}^\\mathrm {jet}<{1000}\\, ~\\mathrm{GeV }\\) and pseudorapidities \\(|\\eta |<{4.5}\\). The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region (\\(|\\eta |<{1.2}\\)) for jets with \\({55} \\le p_{\\mathrm {T}}^\\mathrm {jet}<{500}\\, ~\\mathrm{GeV }\\). For central jets at lower \\(p_{\\mathrm {T}}\\), the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for \\(p_{\\mathrm {T}}^\\mathrm {jet}> 1\\) TeV. The calibration of forward jets is derived from dijet \\(p_{\\mathrm {T}}\\) balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-\\(p_{\\mathrm {T}}\\) jets at \\(|\\eta |=4.5\\). In addition, JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or

  3. Potential industrial applications for composite phase-change materials as thermal energy storage media

    SciTech Connect (OSTI)

    Spanner, G.E.; Wilfert, G.L.

    1989-07-01

    Considerable effort has been spent by the US Department of Energy and its contractors over the last few years to develop composite phase-change materials (CPCMs) for thermal energy storage (TES). This patented TES medium consists of a phase-change material (typically a salt or metal alloy) that is retained within the porous structure of a supporting material (typically a ceramic). The objectives of this study were to (1) introduce CPCMs to industries that may not otherwise be aware of them, (2) identify potentially attractive applications for CPCM in industry, (3) determine technical requirements that will affect the design of CPCM's for specific applications, and (4) generate interest among industrial firms for employing CPCM TES in their processes. The approach in this study was to examine a wide variety of industries using a series of screens to select those industries that would be most likely to adopt CPCM TES in their processes. The screens used in this study were process temperature, presence of time-varying energy flows, energy intensity of the industry, and economic growth prospects over the next 5 years. After identifying industries that passed all of the screens, representatives of each industry were interviewed by telephone to introduce them to CPCM TES, assess technical requirements for CPCM TES in their industry, and determine their interest in pursuing applications for CPCM TES. 11 refs., 4 tabs.

  4. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect (OSTI)

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  5. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Miller, Mackay; Zhou, Ella; Wang, Caixia

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  6. Search for Supersymmetry Using Diphoton Events in p anti-p Collisions at a center of mass energy of 1.96-TeV

    SciTech Connect (OSTI)

    Lee, Eun Sin; /Texas A-M

    2010-05-01

    This dissertation presents the results of a search for supersymmetry in proton-antiproton collisions with a center of mass energy of 1.96 TeV studied with the Collider Detector at Fermilab. Our strategy is to select collisions with two photons in the final state that have the properties of being the decays of very massive supersymmetric particles. This includes looking for large total energy from the decayed particles as well as for the presence of particles that leave the detector without interacting. We find no events using 2.6 fb{sup -1} of data collected during the 2004-2008 collider run of the Fermilab Tevatron which is consistent with the background estimate of 1.4 {+-} 0.4 events. Since there is no evidence of new particles we set cross section limits in a gauge-mediated supersymmetry model with {tilde {chi}}{sub 1}{sup 0} {yields} {gamma}{tilde G}, where the {tilde {chi}}{sub 1}{sup 0} and {tilde G} are the lightest neutralino and the gravitino (the lightest supersymmetric particle), respectively. We set limits on models as a function of the {tilde {chi}}{sub 1}{sup 0} mass and lifetime, producing the world's most sensitive search for {tilde {chi}}{sub 1}{sup 0} by excluding masses up to 149 GeV/c{sup 2} for {tilde {chi}}{sub 1}{sup 0} lifetimes much less than 1 ns.

  7. Search for a dijet resonance in events with jets and missing transverse energy in pp[over Ż] collisions at sqrt[s]=1.96??TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; et al.,

    2013-11-01

    We report on a search for a dijet resonance in events with only two or three jets and large imbalance in the total event transverse momentum. This search is sensitive to the possible production of a new particle in association with a W or Z boson, where the boson decays leptonically with one or more neutrinos in the final state. We use the full data set collected by the CDF II detector at the Tevatron collider at a proton-antiproton center-of-mass energy of 1.96 TeV. These data correspond to an integrated luminosity of 9.1 fb^{-1}. We study the invariant mass distribution of the two jets with highest transverse energy. We find good agreement between data and standard model background expectations and measure the combined cross section for WW, WZ, and ZZ production to be 13.8^{+3.0}_{-2.7} pb. No significant anomalies are observed in the mass spectrum and 95% credibility level upper limits are set on the production rates of a potential new particle in association with a W or Z boson.

  8. Search for Scalar Bottom Quarks from Gluino Decays in Proton - Anti-proton Collisions at a Center-of-Mass Energy of 1.96-TeV

    SciTech Connect (OSTI)

    Rott, Carsten

    2004-12-01

    The authors have performed a search for the scalar bottom quark ({tilde b}{sub 1}) from gluino ({tilde g}) decays in an R-parity conserving SUSY scenario with m{sub {tilde g}} > m{sub {tilde b}{sub 1}}, by investigating a final state of large missing transverse energy, with three or more jets, and some of them from the hadronization of b-quarks. A data sample of 156 pb{sup -1} collected by the Collider Detector at Fermilab at a center-of-mass energy of {radical}s = 1.96 TeV was used. For the final selection, jets containing secondary displaced vertices were required. This analysis has been performed ''blind'', in that the inspection of the signal region was only made after the Standard Model prediction was finalized. Comparing data with SUSY predictions, they can exclude masses of the gluino and sbottom of up to 280 and 240 GeV/c{sup 2} respectively.

  9. Energy dependence of the /sup 238/U thermal capture cross section. [25 to 450/sup 0/C

    SciTech Connect (OSTI)

    Baumann, N.P.; Owais, M.

    1980-01-01

    Integral activation measurements supported the thermal neutron energy dependence of /sup 238/U assumed in the ENDF/B-IV evaluation. The activation measurements were conducted in a thermally insulated graphite block at the side of the SP Reactor. The block was thermally heated to temperatures up to 450/sup 0/C. In addition to heating, gasolinium filters were used to tailor the neutron spectra incident on the foils. The metallic foils consisted of copper and depleted uranium. Copper served as the 1/v reference. Activation ratios of /sup 238/U to /sup 63/Cu in the tailored spectrum were compared with corresponding ratios in a well thermalized flux at room temperature. The difference in this ratio is strongly dependent on the energy dependence of the /sup 238/U cross section. 8 figures, 1 table.

  10. Impact of annealing on the chemical structure and morphology of the thin-film CdTe/ZnO interface

    SciTech Connect (OSTI)

    Horsley, K. Hanks, D. A.; Weir, M. G.; Beal, R. J.; Wilks, R. G.; Blum, M.; HĂ€ming, M.; Hofmann, T.; Weinhardt, L.; and others

    2014-07-14

    To enable an understanding and optimization of the optoelectronic behavior of CdTe-ZnO nanocomposites, the morphological and chemical properties of annealed CdTe/ZnO interface structures were studied. For that purpose, CdTe layers of varying thickness (4–24 nm) were sputter-deposited on 100 nm-thick ZnO films on surface-oxidized Si(100) substrates. The morphological and chemical effects of annealing at 525 °C were investigated using X-ray Photoelectron Spectroscopy (XPS), X-ray-excited Auger electron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy. We find a decrease of the Cd and Te surface concentration after annealing, parallel to an increase in Zn and O signals. While the as-deposited film surfaces show small grains (100 nm diameter) of CdTe on the ZnO surface, annealing induces a significant growth of these grains and separation into islands (with diameters as large as 1 Όm). The compositional change at the surface is more pronounced for Cd than for Te, as evidenced using component peak fitting of the Cd and Te 3d XPS peaks. The modified Auger parameters of Cd and Te are also calculated to further elucidate the local chemical environment before and after annealing. Together, these results suggest the formation of tellurium and cadmium oxide species at the CdTe/ZnO interface upon annealing, which can create a barrier for charge carrier transport, and might allow for a deliberate modification of interface properties with suitably chosen thermal treatment parameters.

  11. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    SciTech Connect (OSTI)

    Njegic, Bosiljka; Levin, Evgenii M.; Schmidt-Rohr, Klaus

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb1?xGexTe and Pb1?xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  12. From thermoelectric bulk to nanomaterials: Current progress for Bi 2 Te 3 and CoSb 3: From thermoelectric bulk to nanomaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peranio, N.; Eibl, O.; BĂ€ĂŸler, S.; Nielsch, K.; Klobes, B.; Hermann, R. P.; Daniel, M.; Albrecht, M.; Görlitz, H.; Pacheco, V.; et al

    2015-10-29

    We synthesized Bi2Te3 and CoSb3 based nanomaterials and their thermoelectric, structural, and vibrational properties analyzed to assess and reduce ZT-limiting mechanisms. The same preparation and/or characterization methods were applied in the different materials systems. Single-crystalline, ternary p-type Bi15Sb29Te56, and n-type Bi38Te55Se7 nanowires with power factors comparable to nanostructured bulkmaterialswere prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix. p-type Sb2Te3, n-type Bi2Te3, and n-type CoSb3 thin films were grown at room temperature using molecular beam epitaxy and were subsequently annealed at elevated temperatures. It yielded polycrystalline, single phase thin films with optimized charge carrier densities. In CoSb3 thin filmsmore » the speed of sound could be reduced by filling the cage structure with Yb and alloying with Fe yielded p-type material. Bi2(Te0.91Se0.09)3/SiC and (Bi0.26Sb0.74)2Te3/SiC nanocomposites with low thermal conductivities and ZT values larger than 1 were prepared by spark plasma sintering. Nanostructure, texture, chemical composition, as well as electronic and phononic excitations were investigated by X-ray diffraction, nuclear resonance scattering, inelastic neutron scattering, M ossbauer spectroscopy, and transmission electron microscopy. Furthermore, for Bi2Te3 materials, ab-initio calculations together with equilibrium and non-equilibrium molecular dynamics simulations for point defects yielded their formation energies and their effect on lattice thermal conductivity, respectively. Current advances in thermoelectric Bi2Te3 and CoSb3 based nanomaterials are summarized. Advanced synthesis and characterization methods and theoreticalmodelingwere combined to assess and reduce ZT-limiting mechanisms in these materials.« less

  13. Seawater test results of open-cycle ocean thermal energy conversion (OC-OTEC) components

    SciTech Connect (OSTI)

    Zangrando, F.; Bharathan, D.; Link, H. ); Panchal, C.B. )

    1994-01-01

    Key components of open-cycle ocean thermal energy conversion systems--the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages--have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 m[sup 3]/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  14. Open-cycle ocean thermal energy conversion surface-condenser design analysis and computer program

    SciTech Connect (OSTI)

    Panchal, C.B.; Rabas, T.J.

    1991-05-01

    This report documents a computer program for designing a surface condenser that condenses low-pressure steam in an ocean thermal energy conversion (OTEC) power plant. The primary emphasis is on the open-cycle (OC) OTEC power system, although the same condenser design can be used for conventional and hybrid cycles because of their highly similar operating conditions. In an OC-OTEC system, the pressure level is very low (deep vacuums), temperature differences are small, and the inlet noncondensable gas concentrations are high. Because current condenser designs, such as the shell-and-tube, are not adequate for such conditions, a plate-fin configuration is selected. This design can be implemented in aluminum, which makes it very cost-effective when compared with other state-of-the-art vacuum steam condenser designs. Support for selecting a plate-fin heat exchanger for OC-OTEC steam condensation can be found in the sizing (geometric details) and rating (heat transfer and pressure drop) calculations presented. These calculations are then used in a computer program to obtain all the necessary thermal performance details for developing design specifications for a plate-fin steam condenser. 20 refs., 5 figs., 5 tabs.

  15. Nucleation of diindenoperylene and pentacene at thermal and hyperthermal incident kinetic energies

    SciTech Connect (OSTI)

    Kish, Edward R.; Desai, Tushar V.; Greer, Douglas R.; Engstrom, James R.; Woll, Arthur R.

    2015-05-15

    The authors have examined the nucleation of diindenoperylene (DIP) on SiO{sub 2} employing primarily atomic force microscopy and focusing on the effect of incident kinetic energy employing both thermal and supersonic sources. For all incident kinetic energies examined (E{sub i} = 0.09–11.3 eV), the nucleation of DIP is homogeneous and the dependence of the maximum island density on the growth rate is described by a power law. A critical nucleus of approximately two molecules is implicated by our data. A re-examination of the nucleation of pentacene on SiO{sub 2} gives the same major result that the maximum island density is determined by the growth rate, and it is independent of the incident kinetic energy. These observations are readily understood by factoring in the size of the critical nucleus in each case, and the island density, which indicates that diffusive transport of molecules to the growing islands dominate the dynamics of growth in the submonolayer regime.

  16. Waterborne noise due to ocean thermal energy conversion plants. Technical memo

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1982-06-17

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  17. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect (OSTI)

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  18. Potential impact of ocean thermal energy conversion (OTEC) on fisheries. Technical report

    SciTech Connect (OSTI)

    Myers, E.P.; Hoss, D.E.; Matsumoto, W.M.; Peters, D.S.; Seki, M.P.

    1986-06-01

    The commercial development of ocean thermal energy conversion (OTEC) operations will involve some environmental perturbations for which there is no precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its subsequent discharge will result in the impingement, entrainment, and redistribution of biota. Additional stresses to biota will be caused by biocide usage and temperature depressions. However, the artificial upwelling of nutrients associated with the pumping of cold deep water, and the artificial reef created by an OTEC plant may have positive effects on the local environment. Although more detailed information is needed to assess the net effect of an OTEC operation on fisheries, certain assumptions and calculations are made, supporting the conclusion that the potential risk to fisheries is not signnificant enough to deter the early development of OTEC. It will be necessary to monitor a commercial-scale plant in order to remove many of the remaining uncertainties.

  19. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect (OSTI)

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  20. Seasonal thermal energy storage in unsaturated soils: Model development and field validation

    SciTech Connect (OSTI)

    Doughty, C.; Nir, Aharon, Tsang, Chin-Fu

    1991-06-01

    This report summarizes ten years of activity carried out at the Earth Sciences Division of the Lawrence Berkeley Laboratory (LBI) in the subject of seasonal storage of thermal energy in unsaturated soils. The objectives of the work were to make a conceptual study of this type of storage, to offer guidelines for planning and evaluation of the method, to produce models and simulation for an actual field experiment, to participate in an on-line data analysis of experimental results. and to evaluate the results in terms of the validation of the concept, models and the experimental techniques. The actual field experiments were performed in Beer-Sheva, Israel. Details of engineering and field operations are not included in this report.

  1. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance

    SciTech Connect (OSTI)

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with conventional'' HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  2. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance. Final report

    SciTech Connect (OSTI)

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with ``conventional`` HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  3. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    SciTech Connect (OSTI)

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

  4. The tin impurity in Bi0.5Sb1.5Te3 alloys | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Systems: Measurement of Reaction Rates at Elevated Temperatures | Department of Energy The Viability of Sustainable, Self-Propping Shear Zones in Ehanced Geothermal Systems: Measurement of Reaction Rates at Elevated Temperatures presentation at the April 2013 peer review meeting held in Denver, Colorado. carroll_shear_zones_peer2013.pdf (1.44 MB) More Documents & Publications Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon

  5. Search for single top quark production in pbar p collisions at sqrt{s}=1.96 TeV in the missing transverse energy plus jets topology

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; /Purdue U. /Waseda U.

    2010-01-01

    We report a search for single top quark production with the CDF II detector using 2.1 fb{sup -1} of integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV. The data selected consist of events characterized by large energy imbalance in the transverse plane and hadronic jets, and no identified electrons and muons, so the sample is enriched in W {yields} {tau}{nu} decays. In order to suppress backgrounds, additional kinematic and topological requirements are imposed through a neural network, and at least one of the jets must be identified as a b quark jet. We measure an excess of signal-like events in agreement with the standard model prediction, but inconsistent with a model without single top quark production by 2.1 standard deviations ({sigma}), with a median expected sensitivity of 1.4 {sigma}. Assuming a top quark mass of 175 GeV/c{sup 2} and ascribing the excess to single top quark production, the cross section is measured to be 4.9{sub -2.2}{sup +2.5} (stat+syst) pb, consistent with measurements performed in independent datasets and with the standard model prediction.

  6. Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy √s=7 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al

    2011-09-20

    Jets are identified and their properties studied in center-of-mass energy √s=7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-kt algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges inmore » rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. These comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.« less

  7. Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at $${\\sqrt{s} = 8}$$ s = 8 TeV using the ATLAS experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-03

    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data samplemore » corresponding to an integrated luminosity of \\(18.4\\) fb\\(^{-1}\\) of pp collisions at \\(\\sqrt{s} = 8\\) TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 \\(\\%\\) confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.« less

  8. Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at ${\\sqrt{s} = 8}$ s = 8 TeV using the ATLAS experiment

    SciTech Connect (OSTI)

    Aad, G.

    2015-09-03

    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of \\(18.4\\) fb\\(^{-1}\\) of pp collisions at \\(\\sqrt{s} = 8\\) TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 \\(\\%\\) confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.

  9. Synthesis, transport properties, and electronic structure of Cu{sub 2}CdSnTe{sub 4}

    SciTech Connect (OSTI)

    Dong, Yongkwan; Khabibullin, Artem R.; Wei, Kaya; Ge, Zhen-Hua; Woods, Lilia M. Nolas, George S.; Martin, Joshua; Salvador, James R.

    2014-06-23

    A new stannite phase was synthesized and its temperature dependent transport properties were investigated. Cu{sub 2}CdSnTe{sub 4} possesses strong p-type conduction, while the temperature dependence of the thermal conductivity exhibits typical dielectric behavior. Electronic structure calculations allowed for a description of the transport characteristics in terms the energy band structure, density of states, and Fermi surface. The potential for thermoelectric applications is also discussed.

  10. Search for diphoton events with large missing transverse energy in 6.3 fb$^{-1}$ of $\\mathbf{p\\bar{p}}$ collisions at $\\mathbf{\\sqrt{s}=1.96}$~TeV

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto

    2010-08-01

    We report a search for diphoton events with large missing transverse energy produced in p{bar p} collisions at {radical}s = 1.96 TeV. The data were collected with the D0 detector at the Fermilab Tevatron Collider, and correspond to 6.3 fb{sup -1} of integrated luminosity. The observed missing transverse energy distribution is well described by the standard model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the standard model. In a gauge mediated supersymmetry breaking scenario, the breaking scale {Lambda} is excluded for {Lambda} < 124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius R{sub c} is excluded for R{sub c}{sup -1} < 477 GeV.

  11. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  12. Innovative turbine concepts for open-cycle OTEC (ocean thermal energy conversion)

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This report summarizes the results of preliminary studies conducted to identify and evaluate three innovative concepts for an open-cycle ocean thermal energy conversion (OTEC) steam turbine that could significantly reduce the cost of OTEC electrical power plants. The three concepts are (1) a crossflow turbine, (2) a vertical-axis, axial-flow turbine, and (3) a double-flow, radial-inflow turbine with mixed-flow blading. In all cases, the innovation involves the use of lightweight, composite plastic blading and a physical geometry that facilitates efficient fluid flow to and from the other major system components and reduces the structural requirements for both the turbine or the system vacuum enclosure, or both. The performance, mechanical design, and cost of each of the concepts are developed to varying degrees but in sufficient detail to show that the potential exists for cost reductions to the goals established in the US Department of Energy's planning documents. Specifically, results showed that an axial turbine operating with 33% higher steam throughput and 7% lower efficiency than the most efficient configuration provides the most cost-effective open-cycle OTEC system. The vacuum enclosure can be significantly modified to reduce costs by establishing better interfaces with the system. 33 refs., 26 figs., 11 tabs.

  13. Guidelines for conceptual design and evaluation of aquifer thermal energy storage

    SciTech Connect (OSTI)

    Meyer, C.F.; Hauz, W.

    1980-10-01

    Guidelines are presented for use as a tool by those considering application of a new technology, aquifer thermal energy storage (ATES). The guidelines will assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES (industrial waste heat, cogeneration, solar heat, and winter chill, for space heating and air conditioning) are discussed. Storage and transport subsystems and their expected performance and cost are described. A 10-step methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution, with examples, and the methodology is applied to a hypothetical proposed ATES system, to illustrate its use.

  14. Thermal Storage R&D for CSP Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Thermal Storage R&D for CSP Systems Thermal Storage R&D for CSP Systems A distinguishing feature of concentrating solar power among other renewable ...

  15. Ocean Thermal Energy Conversion Project: OTEC support services. Monthly technical status report, October 1-31, 1980

    SciTech Connect (OSTI)

    1980-11-14

    The objective of this project is to provide technical engineering and management support services for the Ocean Thermal Energy Conversion (OTEC) program of the Division of Ocean Energy Systems, DOE. The principal contributions made are outlined for the following tasks: (1) Survey, analysis and recommendation concerning program performance; (2) Program technical monitoring; (3) Technical assessments; (4) OTEC system integration; (5) Environment and siting considerations; and (6) Transmission subsystem considerations.

  16. Thermoelectric and microstructural properties of Pb{sub 0.9-x}Sn{sub 0.1}Ge{sub x}Te compounds prepared by spinodal decomposition

    SciTech Connect (OSTI)

    Sondergaard, M.; Christensen, M.; Johnsen, S. [Center for Energy Materials, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C (Denmark); Stiewe, C.; Dasgupta, T.; Mueller, E. [German Aerospace Center (DLR), Linder Hoehe, DE-51147 Cologne (Germany); Iversen, B.B., E-mail: bo@chem.au.d [Center for Energy Materials, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C (Denmark)

    2011-05-15

    Three samples of Pb{sub 0.9-x}Sn{sub 0.1}Ge{sub x}Te with x=0.25, 0.35, 0.6 were prepared by heating the mixtures above the melting point of the constituent elements followed by quenching in water. The x=0.6 sample is close to the center of the immiscibility region, while the x=0.25 and 0.35 samples are in the Pb rich region inside the spinodal miscibility gap. Microstructural investigations using Powder X-ray Diffraction, Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy revealed both GeTe-rich and PbTe-rich phases. The samples were uniaxially hot pressed and the thermoelectric properties were characterized in the temperature range 2-400 K using a commercial apparatus and from 300 to 650 K with a custom designed setup. The best sample (x=0.6) reached zT{approx}0.6 at 650 K, while the x=0.25 and 0.35 samples showed thermal instability at elevated temperatures. -- Graphical abstract: Spinodal decomposition in the GeTe-SnTe-PbTe system demonstrated by SEM and EXS images. Display Omitted Highlights: {yields} Investigation of Pb-rich part of the spinodal miscibility gap in PbTe-SnTe-GeTe. {yields} zT=0.6 at 650 K reproduced for Pb{sub 0.3}Sn{sub 0.1}Ge{sub 0.6}Te. {yields} Pb-rich phases shown to be thermally instable. {yields} Thermoelectric property characterization at low and high temperature. {yields} Microstructural investigations using PXRD, SEM, EDX and PSM.

  17. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bennion, Kevin

    2015-06-09

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.

  18. Towards a predictive route for selection of doping elements for the thermoelectric compound PbTe from first-principles

    SciTech Connect (OSTI)

    Joseph, Elad; Amouyal, Yaron

    2015-05-07

    Striving for improvements of the thermoelectric (TE) properties of the technologically important lead telluride (PbTe) compound, we investigate the influence of different doping elements on the thermal conductivity, Seebeck coefficient, and electrical conductivity applying density functional theory calculations. Our approach combines total-energy calculations yielding lattice vibrational properties with the Boltzmann transport theory to obtain electronic transport properties. We find that doping with elements from the 1st and 3rd columns of the periodic table reduces the sound velocity and, consequently, the lattice thermal conductivity, while 2nd column dopants have no such influence. Furthermore, 1.6 at. % doping with 4th and 5th column elements provides the highest reduction of lattice thermal conductivity. Out of this group, Hf doping results in maximum reduction of the sound velocity from 2030 m s{sup −1} for pure PbTe to 1370 m s{sup −1}, which is equivalent to ca. 32% reduction of lattice thermal conductivity. The highest power factor values calculated for 1.6 at. % doping range between 40 and 56 ΌW cm{sup −1} K{sup −2}, and are obtained for substitution with dopants having the same valence as Pb or Te, such as those located at the 2nd, 14th, and 16th columns of the periodic table. We demonstrate how this method may be generalized for dopant-selection-oriented materials design aimed at improving TE performance of other compounds.

  19. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab

    SciTech Connect (OSTI)

    Chen, Yuxiang; Galal, Khaled; Athienitis, A.K.

    2010-11-15

    This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

  20. Energy distribution analysis in boosted HCCI-like / LTGC engines – Understanding the trade-offs to maximize the thermal efficiency

    SciTech Connect (OSTI)

    Dernotte, Jeremie; Dec, John E.; Ji, Chunsheng

    2015-04-14

    A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (?) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.

  1. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    SciTech Connect (OSTI)

    DeForest, Nicolas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2014-04-15

    This paper presents an investigation of the economic benefit of thermal energy storage (TES) for cooling, across a range of economic and climate conditions. Chilled water TES systems are simulated for a large office building in four distinct locations, Miami in the U.S.; Lisbon, Portugal; Shanghai, China; and Mumbai, India. Optimal system size and operating schedules are determined using the optimization model DER-CAM, such that total cost, including electricity and amortized capital costs are minimized. The economic impacts of each optimized TES system is then compared to systems sized using a simple heuristic method, which bases system size as fraction (50percent and 100percent) of total on-peak summer cooling loads. Results indicate that TES systems of all sizes can be effective in reducing annual electricity costs (5percent-15percent) and peak electricity consumption (13percent-33percent). The investigation also indentifies a number of criteria which drive TES investment, including low capital costs, electricity tariffs with high power demand charges and prolonged cooling seasons. In locations where these drivers clearly exist, the heuristically sized systems capture much of the value of optimally sized systems; between 60percent and 100percent in terms of net present value. However, in instances where these drivers are less pronounced, the heuristic tends to oversize systems, and optimization becomes crucial to ensure economically beneficial deployment of TES, increasing the net present value of heuristically sized systems by as much as 10 times in some instances.

  2. Ocean Thermal Energy Conversion moored pipe/mobile platform design study

    SciTech Connect (OSTI)

    Bullock, H.O.; McNatt, T.R.; Ross, J.M.; Stambaugh, K.A.; Watts, J.L.

    1982-07-30

    The Ocean Thermal Energy Conversion (OTEC) Moored Pipe/Mobile Platform (MP-Squared) Design Study was carried out to investigate an innovative approach to the moored floating OTEC plant. In the past, a number of concepts have been examined by NOAA for floating OTEC plants. These concepts have considered various configurations for platforms, cold water pipes and mooring systems. In most cases the cold water pipe (CWP) was permanently attached to the platform and the platform was permanently moored on station. Even though CWP concepts incorporating articulated joints or flexible pipes were used, the CWP stresses induced by platform motion were frequently excessive and beyond the design limits of the CWP. This was especially true in the survival (100-year storm) case. It may be feasible that the concept of a permanently moored CWP attached through a flexible transition CWP to the platform could reduce the degree of technical risk by de-coupling the CWP from the motions of the platform. In addition, if the platform is capable of disconnecting from the CWP during survival conditions, even less technical risk may be inherent in the OTEC system. The MP-Squared Design Study was an engineering evaluation of the concepts described above. The effort has been carried through to the conceptual design level, and culminated in model tests in an experimental wave basin.

  3. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion

    SciTech Connect (OSTI)

    Pesaran, A.A. )

    1992-11-01

    This paper presents the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions. Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving the predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7 percent to 60 percent of the dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 35 to 9 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20 percent to 60 percent. The data also indicated that at typical OC-OTEC evaporator pressures, when flash evaporation in the evaporator occurred, 75 percent to 95 percent of the dissolved oxygen was desorbed overall from the warm seawater. The results were used to find the impact of a single-stage predeaeration scheme on the power to remove noncondensable gases in an OC-OTEC plant.

  4. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect (OSTI)

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ? 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ? 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  5. Thermal Gradient Holes At Hot Pot Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Pot Area (DOE GTP) Exploration Activity Details...

  6. Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bliss Area (DOE GTP) Exploration Activity...

  7. Thermal Gradient Holes At Alum Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Alum Area (DOE GTP) Exploration Activity Details...

  8. Thermal Gradient Holes At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Silver Peak Area (DOE GTP) Exploration Activity Details Location...

  9. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  10. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  11. Simulation of a high temperature thermal energy storage system employing several families of phase-change storage material

    SciTech Connect (OSTI)

    Adebiyi, G.A.

    1989-03-01

    Previous work by the author entailed modeling of the Packed Bed Thermal Energy Storage System, utilizing Phase-Change Materials, and a performance evaluation of the system based on the Second Law of thermodynamics. A principal conclusion reached is that the use of a single family of phase-change storage material may not in fact produce a thermodynamically superior system relative to one utilizing sensible heat storage material. This prompted us to modify our model so that we could investigate whether or not a significantly improved performance may be achieved via the use of multiple families of phase-change materials instead. Other factors investigated in the present work include the effect on system performance due to the thermal mass of the containment vessel wall, varying temperature and mass flow rate of the flue gas entering the packed bed during the storage process, and thermal radiation which could be a significant factor at high temperature levels. The resulting model is intended to serve as an integral part of a real-time simulation of the application of a high temperature regenerator in a periodic brick plant. This paper describes the more comprehensive model of the high temperature thermal energy storage system and presents results indicating that improved system performance could be achieved via a judicious choice of multiple families of phase-change materials.

  12. Relic neutralino surface at a 100 TeV collider

    SciTech Connect (OSTI)

    Bramante, Joseph; Fox, Patrick J.; Martin, Adam; Ostdiek, Bryan; Plehn, Tilman; Schell, Torben; Takeuchi, Michihisa

    2015-03-11

    We map the parameter space for minimal supersymmetric Standard Model neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeV hadron collider, which can discover interneutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: in the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. As a result, we exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.

  13. Relic neutralino surface at a 100 TeV collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bramante, Joseph; Fox, Patrick J.; Martin, Adam; Ostdiek, Bryan; Plehn, Tilman; Schell, Torben; Takeuchi, Michihisa

    2015-03-11

    We map the parameter space for minimal supersymmetric Standard Model neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeVmore » hadron collider, which can discover interneutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: in the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. As a result, we exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.« less

  14. Benefits analysis for the production of fuels and chemicals using solar thermal energy. Final report

    SciTech Connect (OSTI)

    1982-05-01

    Numerous possibilities exist for using high temperature solar thermal energy in the production of various chemicals and fuels (Sun Fuels). Research and development activities have focused on the use of feedstocks such as coal and biomass to provide synthesis gas, hydrogen, and a variety of other end-products. A Decision Analysis technique geared to the analysis of Sun Fuels options was developed. Conventional scoring methods were combined with multi-attribute utility analysis in a new approach called the Multi-Attribute Preference Scoring (MAPS) system. MAPS calls for the designation of major categories of attributes which describe critical elements of concern for the processes being examined. The six major categories include: Process Demonstration; Full-Scale Process, Feedstock; End-Product Market; National/Social Considerations; and Economics. MAPS calls for each attribute to be weighted on a simple scale for all of the candidate processes. Next, a weight is assigned to each attribute, thus creating a multiplier to be used with each individual value to derive a comparative weighting. Last, each of the categories of attributes themselves are weighted, thus creating another multiplier, for use in developing an overall score. With sufficient information and industry input, each process can be ultimately compared using a single figure of merit. After careful examination of available information, it was decided that only six of the 20 candidate processes were adequately described to allow a complete MAPS analysis which would allow direct comparisons for illustrative purposes. These six processes include three synthesis gas processes, two hydrogen and one ammonia. The remaining fourteen processes were subjected to only a partial MAPS assessment.

  15. Fabrication and Spark plasma sintering of nanostructured bismuth telluride (Bi{sub 2}Te{sub 3})

    SciTech Connect (OSTI)

    Saleemi, Mohsin; Toprak, Muhammet S.; Li, Shanghua; Johnsson, Mats; Muhammed, Mamoun

    2012-06-26

    Thermoelectric (TE) devices can harvest residual low-grade waste heat energy. Bismuth telluride (Bi{sub 2}Te{sub 3}) and its alloys are mostly used TE materials in the bulk form for making TE modules. We report a simple, fast and very high yield synthetic process for the bulk Bi{sub 2}Te{sub 3} nanopowders with hexagonal plate like morphology. Spark plasma sintering (SPS) process has been optimized in order to preserve nanostructure while achieving a high compaction density of the pellets. Electron microscopy analysis was used to determine the effect of SPS parameters during compaction on the grain growth. Optimal conditions for the fabricated nanopowder was determined as 673 K, 70 MPa pressure with no holding time, which resulted in average lateral grain size in the range of 165-190 nm for a compact density of 98%. About 50% reduction of thermal conductivity was observed as compared to its bulk counterparts, revealing the feasibility of suggested route in the preservation of nanostructure and enhanced phonon scattering.

  16. Identification of types of businesses with potential interest in operating and/or exporting ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    This study describes the characteristics of three selected Ocean Thermal Energy Conversion (OTEC)-based lines of business, examines other lines of business and identifies those with similar characteristics, and indicates the types of businesses/corporations that could be expected to have potential interest in operating and/or exporting OTEC plants. An OTEC line of business model is developed to assist companies in making an internal corporate assessment as to whether OTEC should be in their business plan.

  17. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  18. OM300 -GeoThermal MWD Navigation Instrument | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OM300 -GeoThermal MWD Navigation Instrument OM300 -GeoThermal MWD Navigation Instrument Develop a 300°C capable directional drilling navigation tool using Micro Electro-Mechanical Systems (MEMS) accelerometers and flux-gate magnetometers. high_macgugan_om300.pdf (857.64 KB) More Documents & Publications 300ÂșC DDS + 300ÂșC MWD Development of a HT Seismic Tool track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review

  19. Review of the thermal energy standards for manufactured housing proposed by the Manufactured Housing Institute Consensus Committee

    SciTech Connect (OSTI)

    Conner, C.C.

    1992-02-01

    Congress passed legislation that requires the US Department of Housing and Urban Development (HUD) to revise the energy efficiency standards for manufactured housing contained in the Manufactured Home Construction and Safety Standards (MHCSS). The Manufactured Housing Institute's Consensus Committee (MHICC) proposed revised standards to HUD based on an analysis contained in a 1989 report by E. Levy. This document is primarily a review of the Levy report, including the methods and inputs to that analysis. The approach to be used in developing the revised standard was specified by Congress as a cost-benefit analysis in which the costs of energy efficiency measures (EEM) were balanced against the benefits of energy savings. The resulting optimum specified an overall level of energy efficiency in terms of a maximum allowable building shell U-value (overall thermal transmittance) that produced the lowest life-cycle cost to the owner of a manufactured home. In his 1989 analysis, this was the general approach used by Levy.

  20. Search for a heavy gauge boson $W$ ' in the final state with an electron and large missing transverse energy in $pp$ collisions at $\\sqrt{s}=7$ TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-03-01

    A search for a heavy gauge boson W' has been conducted by the CMS experiment at the LHC in the decay channel with an electron and large transverse energy imbalance, using proton-proton collision data corresponding to an integrated luminosity of 36 inverse picobarns. No excess above standard model expectations is seen in the transverse mass distribution of the electron-(missing E_T) system. Assuming standard-model-like couplings and decay branching fractions, a W' boson with a mass less than 1.36 TeV/c^2 is excluded at 95% confidence level.

  1. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang; Galbraith, Ross

    2013-01-23

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system

  2. Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at $$\\sqrt{s}$$ = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-05-22

    A search for new physics in proton-proton collisions having final states with an electron or muon and missing transverse energy is presented. The analysis uses data collected in 2012 with the CMS detector, at an LHC center-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of 19.7 fbmore » $$^{-1}$$. No significant deviation of the transverse mass distribution of the charged lepton-neutrino system from the standard model prediction is found. Mass exclusion limits of up to 3.28 TeV at a 95% confidence level for a W$$^{\\prime}$$ boson with the same couplings as that of the standard model W boson are determined. Results are also derived in the framework of split universal extra dimensions, and exclusion limits on Kaluza-Klein W$$^{(2)}_{{\\rm KK}}$$ states are found. The final state with large missing transverse energy also enables a search for dark matter production with a recoiling W boson, with limits set on the mass and the production cross section of potential candidates. Finally, limits are established for a model including interference between a left-handed W$$^{\\prime}$$ boson and the standard model W boson, and for a compositeness model.« less

  3. Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at $\\sqrt{s}$ = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-05-22

    A search for new physics in proton-proton collisions having final states with an electron or muon and missing transverse energy is presented. The analysis uses data collected in 2012 with the CMS detector, at an LHC center-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of 19.7 fb$^{-1}$. No significant deviation of the transverse mass distribution of the charged lepton-neutrino system from the standard model prediction is found. Mass exclusion limits of up to 3.28 TeV at a 95% confidence level for a W$^{\\prime}$ boson with the same couplings as that of the standard model W boson are determined. Results are also derived in the framework of split universal extra dimensions, and exclusion limits on Kaluza-Klein W$^{(2)}_{{\\rm KK}}$ states are found. The final state with large missing transverse energy also enables a search for dark matter production with a recoiling W boson, with limits set on the mass and the production cross section of potential candidates. Finally, limits are established for a model including interference between a left-handed W$^{\\prime}$ boson and the standard model W boson, and for a compositeness model.

  4. Thermal Use of Biomass in The United States | Open Energy Information

    Open Energy Info (EERE)

    from on-site waste products.3 Related Links Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Historical...

  5. Search for new phenomena with photon+jet events in proton-proton collisions at √s = 13 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; et al

    2016-03-08

    A search is performed for the production of high-mass resonances decaying into a photon and a jet in 3.2 fb-1 of proton-proton collisions at a centre-of-mass energy of √s =13 TeV collected by the ATLAS detector at the Large Hadron Collider. Selected events have an isolated photon and a jet, each with transverse momentum above 150 GeV. No significant deviation of the Îł+jet invariant mass distribution from the background-only hypothesis is found. Limits are set at 95% confidence level on the cross sections of generic Gaussian-shaped signals and of a few benchmark phenomena beyond the Standard Model: excited quarks withmore » vector-like couplings to the Standard Model particles, and non-thermal quantum black holes in two models of extra spatial dimensions. The minimum excluded visible cross sections for Gaussian-shaped resonances with width-to-mass ratios of 2% decrease from about 6 fb for a mass of 1.5 TeV to about 0.8 fb for a mass of 5 TeV. The minimum excluded visible cross sections for Gaussian-shaped resonances with width-to-mass ratios of 15% decrease from about 50 fb for a mass of 1.5 TeV to about 1.0 fb for a mass of 5 TeV. As a result, excited quarks are excluded below masses of 4.4 TeV, and non-thermal quantum black holes are excluded below masses of 3.8 (6.2) TeV for Randall-Sundrum (Arkani-Hamed-Dimopoulous-Dvali) models with one (six) extra dimensions.« less

  6. High performance Zintl phase TE materials with embedded nanoparticles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Performance of zintl phase thermoelectric materials with embedded particles are evaluated shakouri.pdf (2.3 MB) More Documents & Publications High performance Zintl phase TE materials with embedded nanoparticles High Performance Zintl Phase TE Materials with Embedded Particles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles

  7. Structural characterization and novel optical properties of defect chalcopyrite ZnGa{sub 2}Te{sub 4} thin films

    SciTech Connect (OSTI)

    Fouad, S.S.; Sakr, G.B.; Yahia, I.S.; Basset, D.M. Abdel

    2011-11-15

    Highlights: {yields} Preparation and characterization of ZnGa{sub 2}Te{sub 4} in powder and thin film forms. {yields} Structure properties such as XRD and EDX. {yields} Optical constant of the as-deposited ZnGa{sub 2}Te{sub 4} for the first time. {yields} Extraction of the optical parameters of the studied films. -- Abstract: Stoichiometric thin film samples of the ternary ZnGa{sub 2}Te{sub 4} defect chalcopyrite compound were prepared and characterized by X-ray diffraction technique. The elemental chemical composition of the prepared bulk material as well as of the as-deposited film was determined by energy-dispersive X-ray spectrometry. ZnGa{sub 2}Te{sub 4} thin films were deposited, by conventional thermal evaporation technique onto highly cleaned glass substrates. The X-ray and electron diffraction studies revealed that the as-deposited and the annealed ZnGa{sub 2}Te{sub 4} films at annealing temperature t{sub a} {<=} 548 K are amorphous, while those annealed at t{sub a} {>=} 573 K (for 1 h), are polycrystalline. The optical properties of the as-deposited films have been investigated for the first time at normal incidence in the spectral range from 500 to 2500 nm. The refractive index dispersion in the transmission and low absorption region is adequately described by the Wemple-DiDomenico single oscillator model, whereby, the values of the oscillator parameters have been calculated. The analysis of the optical absorption coefficient revealed an in-direct optical transition with energy of 1.33 eV for the as-deposited sample. This work suggested that ZnGa{sub 2}Te{sub 4} is a good candidate in solar cell devices as an absorbing layer.

  8. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  9. A measurement of the 2 neutrino double beta decay rate of Te-130 in the CUORICINO experiment

    SciTech Connect (OSTI)

    Kogler, Laura

    2011-11-03

    CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2{nu}{beta}{beta}). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO{sub 2} crystals arranged in a tower and operated at a temperature of #24;10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with {sup 130}Te and 2 with {sup 128}Te, in order to aid in the measurement of the 2{nu}{beta}{beta} rate. The enriched crystals contained a total of #24;350 g {sup 130}Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals. Residual backgrounds in the subtracted spectrum were fit using spectra generated by Monte-Carlo simulations of natural radioactive contaminants located in and on the crystals. The 2{nu}{beta}{beta} half-life was measured to be T{sup 2{nu}}{sub 1/2} = [9.81{+-} #6;0.96(stat){+-} 0.49(syst)]#2;x10{sup 20} y.

  10. Thermal response of a series- and parallel-connected solar energy storage to multi-day charge sequences

    SciTech Connect (OSTI)

    Cruickshank, Cynthia A.; Harrison, Stephen J.

    2011-01-15

    The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. (author)

  11. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-05-27

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of √s=7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8<|Y*|<10. These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of 4.51 fb11. Jets are identified using the anti-kt algorithm with two different jet radius parameters, R=0.4 and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.

  12. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the

  13. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  14. A review and critique of the socioeconomic impact assessment for the Kahe Point Ocean Thermal Energy Conversion (OTEC) facility

    SciTech Connect (OSTI)

    Bowen, R; Gopalakrishnan, C; Samples, K

    1988-01-01

    This report addresses the adequacy of Ocean Thermal Corporation's socioeconomic impact assessment of its 40-MWe closed-cycle ocean thermal energy conversion (OTEC) pilot plant proposed for Kahe Point, Oahu, Hawaii. The socioeconomic impacts identified as relevant to the plant were assessed in detail, including potential economic-demographic, public-service and fiscal, ocean-use, aesthetic, cultural, and energy impacts. The economic-demographic impact assessment does not estimate the full extent of population and income changes or second-order effects associated with the plant. There is no subjective assessment of perceptions on the part of local communities concerning probable changes in land values, housing, and population. Anticipated public-service and fiscal impacts are found to be relatively unimportant; however, the measurement of the impact of the plant on tax revenues needs improvement. The assessment does not sufficiently consider the objective and subjective assessment of ocean-use, aesthetic, and cultural impacts, which are of major significance to the local communities. The quantification of physical impacts, perceptions of impacts, and potential mitigation measures is inadequate. The energy impacts need to be updated to reflect the recent declines in oil prices and price projections. An assessment of low-probability, high-risk occurrences may be necessary. 12 refs., 3 tabs.

  15. How Do You Find Thermal Leaks in Your Home? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    discussed leaky ducks...err...ducts, and how and why you should make sure they are well-sealed. How do you ensure your ducts aren't leaky? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles This Month on Energy Savers: April 2011 How Would You Use a Smart Meter to Manage Your Energy Use? How Do You Reduce

  16. Permeability, geochemical, and water quality tests in support of an aquifer thermal energy storage site in Minnesota

    SciTech Connect (OSTI)

    Blair, S.C.; Deutsch, W.J.; Mitchell, P.J.

    1985-04-01

    This report describes the Underground Energy Storage Program's efforts to characterize physicochemical processes at DOE's ATES Field Test Facility (FTF) located on the University of Minnesota campus at St. Paul, Minnesota. Experimental efforts include: field tests at the St. Paul FTF to characterize fluid injectability and to evaluate the effectiveness of fluid-conditioning equipment, geochemical studies to investigate chemical reactions resulting from alterations to the aquifer's thermal regime, and laboratory tests on sandstone core from the site. Each experimental area is discussed and results obtained thus far are reported. 23 refs., 39 figs., 12 tabs.

  17. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect (OSTI)

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  18. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe{sub 2} base layers

    SciTech Connect (OSTI)

    Khrypunov, G. S. Sokol, E. I.; Yakimenko, Yu. I.; Meriuts, A. V.; Ivashuk, A. V.; Shelest, T. N.

    2014-12-15

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe{sub 2} base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 ÎŒm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe{sub 2}-based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected.

  19. Magnetic and thermal energy flow during disruptions in DIII-D

    SciTech Connect (OSTI)

    Hyatt, A.W.; Lee, R.L.; Humphreys, D.A.; Kellman, A.G.; Taylor, P.L.; Cuthbertson, J.W.; Lasnier, C.J.

    1996-07-01

    The authors present results from disruption experiments where they measure magnetic energy flow across a closed surface surrounding the plasma using a Poynting flux analysis to measure the electromagnetic power, bolometers to measure radiation power and IR scanners to measure radiation and particle heat conduction to the divertor. The initial and final stored energies within the volume are found using the full equilibrium reconstruction code EFIT. From this analysis they calculate an energy balance and find that they can account for all energy deposited on the first wall and the divertor to within about 10%.

  20. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Broader source: Energy.gov [DOE]

    Develop distributed HVAC components to supplement the central HVAC system to reduce the energy required by current compressed gas air conditioners by at least one-third.

  1. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses comfort model enhancement/validation, climate system efficiency parameters and system trade off, and powertrain mode operation changes to further vehicle energy saving while preserving occupant comfort.

  2. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines Task 2 Final Report T.L. Alleman and R.L. McCormick Milestone Report NREL/MP-540-38643 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Analysis of Coconut-

  3. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect (OSTI)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability

  4. Initial appraisal of solar thermal electric energy in Tibet and Xinjiang Provinces, People`s Republic of China

    SciTech Connect (OSTI)

    Li Junfeng; Zhu Li; Liu Zhan; Zhang Yuan; Washom, B.; Kolb, G.

    1998-07-01

    At the request of US sponsors Spencer Management Associates (SMA) and Sun{diamond}Lab, China`s Center for Renewable Energy Development and former Ministry of Electric Power conducted an initial appraisal of the issues involved with developing China`s first solar thermal electric power plant in the sunbelt regions of Tibet or Xinjiang provinces. The appraisal concerns development of a large-scale, grid-connected solar trough or tower project capable of producing 30 or more megawatts of electricity. Several of the findings suggest that Tibet could be a niche market for solar thermal power because a solar plant may be the low-cost option relative to other methods of generating electricity. China has studied the concept of a solar thermal power plant for quite some time. In 1992, it completed a pre-feasibility study for a SEGS-type parabolic trough plant with the aid of Israel`s United Development Limited. Because the findings were positive, both parties agreed to conduct a full-scale feasibility study. However, due to funding constraints, the study was postponed. Most recently, Sun{diamond}Lab and SMA asked China to broaden the analysis to include tower as well as trough concepts. The findings of this most recent investigation completed i November of 1997, are the subject of this paper. The main conclusions of all studies conducted to date suggest that a region in the proximity of Lhasa, Tibet, offers the best near-term opportunity within China. The opportunities for solar thermal power plants in other regions of China were also investigated.

  5. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    SciTech Connect (OSTI)

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  6. Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun’s not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MIT’s heat storage materials are designed to melt at high temperatures and conduct heat well—this makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MIT’s low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

  7. Search for anomalous quartic WWγγ couplings in dielectron and missing energy final states in pp̄ collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; et al

    2013-07-29

    We present a search for anomalous components of the quartic gauge boson coupling WWγγ in events with an electron, a positron and missing transverse energy. The analyzed data correspond to 9.7 fb⁻Âč of integrated luminosity collected by the D0 detector in pp̄ collisions at s√=1.96 TeV. The presence of anomalous quartic gauge couplings would manifest itself as an excess of boosted WW events. No such excess is found in the data, and we set the most stringent limits to date on the anomalous coupling parameters aW0 and aWC. When a form factor with Λcutoff=0.5 TeV is used, the observed uppermore » limits at 95% C.L. are |aW0/ΛÂČ|<0.0025 GeV⁻ÂČ and |aWC/ΛÂČ|<0.0092 GeV⁻ÂČ.« less

  8. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  9. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 Solar thermal collector shipments by type, quantity, revenue, and average price, 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  10. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  11. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  12. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shipments of solar thermal collectors ranked by origin and destination, 2009 Origin Top ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  13. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by source, 2000 - 2009 Imports Domestically ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  14. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by disposition, 2000 - 2009 (thousand square ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  15. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Percent of solar thermal collector shipments by the 10 largest companies, 2000 - 2009 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  16. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Import shipments of solar thermal collectors by country, 2008 and 2009 (square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  17. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Import shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  18. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect (OSTI)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  19. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  20. Review of the thermal energy standards for manufactured housing proposed by the Manufactured Housing Institute Consensus Committee

    SciTech Connect (OSTI)

    Conner, C.C.

    1992-02-01

    Congress passed legislation that requires the US Department of Housing and Urban Development (HUD) to revise the energy efficiency standards for manufactured housing contained in the Manufactured Home Construction and Safety Standards (MHCSS). The Manufactured Housing Institute`s Consensus Committee (MHICC) proposed revised standards to HUD based on an analysis contained in a 1989 report by E. Levy. This document is primarily a review of the Levy report, including the methods and inputs to that analysis. The approach to be used in developing the revised standard was specified by Congress as a cost-benefit analysis in which the costs of energy efficiency measures (EEM) were balanced against the benefits of energy savings. The resulting optimum specified an overall level of energy efficiency in terms of a maximum allowable building shell U-value (overall thermal transmittance) that produced the lowest life-cycle cost to the owner of a manufactured home. In his 1989 analysis, this was the general approach used by Levy.

  1. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  2. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  3. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    SciTech Connect (OSTI)

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N.

    2014-01-29

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

  4. Search for Higgs boson production in dilepton and missing energy final states with 5.4 fb-1 of p-pbar collisions at sqrt(s) =1.96 TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, Bannanje Sripath; Adams, M.; Adams, T.; Aguilo, E.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; /Northeastern U. /Rio de Janeiro, CBPF

    2010-01-01

    A search for the standard model Higgs boson is presented using events with two charged leptons and large missing transverse energy selected from 5.4 fb{sup -1} of integrated luminosity in p{bar p} collisions at {radical}s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. No significant excess of events above background predictions is found, and observed (expected) upper limits at 95% confidence level on the rate of Higgs boson production are derived that are a factor of 1.55 (1.36) above the predicted standard model cross section at m{sub H} = 165 GeV.

  5. Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-08-01

    A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.

  6. A Search for dark matter in events with one jet and missing transverse energy in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-03-01

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp collisions at {radical}s = 1.96 TeV corresponding to an integrated luminosity of 6.7 fb{sup -1} recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c{sup 2}, and on spin-dependent interactions up to masses of 200 GeV/c{sup 2}.

  7. Search for physics beyond the standard model in events with a Z boson, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, S.; et al.,

    2012-09-01

    A search is presented for physics beyond the standard model (BSM) in events with a Z boson, jets, and missing transverse energy (MET). This signature is motivated by BSM physics scenarios, including supersymmetry. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.98 inverse femtobarns. The contributions from the dominant standard model backgrounds are estimated from data using two complementary strategies, the jet-Z balance technique and a method based on modeling MET with data control samples. In the absence of evidence for BSM physics, we set limits on the non-standard-model contributions to event yields in the signal regions and interpret the results in the context of simplified model spectra. Additional information is provided to facilitate tests of other BSM physics models.

  8. From thermoelectric bulk to nanomaterials: Current progress for Bi 2 Te 3 and CoSb 3: From thermoelectric bulk to nanomaterials

    SciTech Connect (OSTI)

    Peranio, N.; Eibl, O.; BĂ€ĂŸler, S.; Nielsch, K.; Klobes, B.; Hermann, R. P.; Daniel, M.; Albrecht, M.; Görlitz, H.; Pacheco, V.; Bedoya-MartĂ­nez, N.; Hashibon, A.; ElsĂ€sser, C.

    2015-10-29

    We synthesized Bi2Te3 and CoSb3 based nanomaterials and their thermoelectric, structural, and vibrational properties analyzed to assess and reduce ZT-limiting mechanisms. The same preparation and/or characterization methods were applied in the different materials systems. Single-crystalline, ternary p-type Bi15Sb29Te56, and n-type Bi38Te55Se7 nanowires with power factors comparable to nanostructured bulkmaterialswere prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix. p-type Sb2Te3, n-type Bi2Te3, and n-type CoSb3 thin films were grown at room temperature using molecular beam epitaxy and were subsequently annealed at elevated temperatures. It yielded polycrystalline, single phase thin films with optimized charge carrier densities. In CoSb3 thin films the speed of sound could be reduced by filling the cage structure with Yb and alloying with Fe yielded p-type material. Bi2(Te0.91Se0.09)3/SiC and (Bi0.26Sb0.74)2Te3/SiC nanocomposites with low thermal conductivities and ZT values larger than 1 were prepared by spark plasma sintering. Nanostructure, texture, chemical composition, as well as electronic and phononic excitations were investigated by X-ray diffraction, nuclear resonance scattering, inelastic neutron scattering, M ossbauer spectroscopy, and transmission electron microscopy. Furthermore, for Bi2Te3 materials, ab-initio calculations together with equilibrium and non-equilibrium molecular dynamics simulations for point defects yielded their formation energies and their effect on lattice thermal conductivity, respectively. Current advances in thermoelectric Bi2Te3 and CoSb3 based nanomaterials are

  9. Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at $\\sqrt{s} = 8\\ \\mathrm{TeV}$

    SciTech Connect (OSTI)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; FrĂŒhwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; KnĂŒnz, V.; Krammer, M.; KrĂ€tschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-treberspurg, W.; Waltenberger, W.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D’Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; LĂ©onard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldå JĂșnior, W. L.; Carvalho, W.; Chinellato, J.; CustĂłdio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Kuotb Awad, A. M.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; MĂŒntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; HĂ€rkönen, J.; KarimĂ€ki, V.; Kinnunen, R.; Kortelainen, M. J.; LampĂ©n, T.; Lassila-Perini, K.; Lehti, S.; LindĂ©n, T.; Luukka, P.; MĂ€enpÀÀ, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; MinĂ©, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; GelĂ©, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; GĂŒth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; ThĂŒer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; FlĂŒgge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; KrĂ€mer, M.; KrĂŒcker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; SteinbrĂŒck, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; MĂŒller, Th.; Niegel, M.; NĂŒrnberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D’Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Biasini, M.; Bilei, G. M.; FanĂČ, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D’Agnolo, R. T.; Dell’Orso, R.; Fiori, F.; FoĂ , L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Grigelionis, I.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; MartĂ­nez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; GĂłrski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; DomĂ­nguez VĂĄzquez, D.; Fernandez Bedoya, C.; FernĂĄndez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; de TrocĂłniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; RodrĂ­guez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; d’Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y. -J.; Lourenço, C.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; PimiĂ€, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; SchĂ€fer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bachmair, F.; BĂ€ni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; DonegĂ , M.; DĂŒnser, M.; Eller, P.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; NĂ€geli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Amsler, C.; Chiochia, V.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Asavapibhop, B.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; GĂŒlmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; GĂŒnaydin, Y. O.; Vardarlı, F. I.; YĂŒcel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Lucas, C.; Meng, Z.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Caulfield, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; WĂŒrthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D’Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O’Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; O’Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny Iii, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; PirouĂ©, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; HervĂ©, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-09-01

    An inclusive search for supersymmetric processes that produce final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of 8 TeV. The data sample corresponds to an integrated luminosity of 11.7 fb-1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, α T, is used to discriminate between events with genuine and misreconstructed missing transverse energy. The search is based on an examination of the number of reconstructed jets per event, the scalar sum of transverse energies of these jets, and the number of these jets identified as originating from bottom quarks. No significant excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of simplified models, with a special emphasis on both compressed-spectrum scenarios and direct or gluino-induced production of third-generation squarks. For the case of gluino-mediated squark production, gluino masses up to 950–1125 GeV are excluded depending on the assumed model. Finally, for the direct pair-production of squarks, masses up to 450 GeV are excluded for a single light first- or second-generation squark, increasing to 600 GeV for bottom squarks.

  10. An improved absorption generator for solar-thermal powered heat pumps. Part 2: Energy and economics

    SciTech Connect (OSTI)

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been very expensive for their rating. To enhance collector thermal efficiency the liquid flowing within the collectors must be kept as cool as possible. However, there is also a need to operate the absorption reported earlier. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and more efficient. As noted in Part 1, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures. Therefore, a smaller, less expensive chiller is required. The reduced investment in solar arrays and absorption chillers is estimated along with a range of paybacks.

  11. Evidence for Radial Flow of Thermal Dileptons in High-Energy Nuclear Collisions

    SciTech Connect (OSTI)

    Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Banicz, K.; Damjanovic, S.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.; Falco, A. de; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.

    2008-01-18

    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158A GeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter T{sub eff} extracted from the spectra rises with dimuon mass up to the {rho}, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

  12. Analysis of Thermal and Chemical Effets on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

    SciTech Connect (OSTI)

    Ekoto, Dr Isaac; Peterson, Dr. Brian; Szybist, James P; Northrop, Dr. William

    2015-01-01

    A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate. Gas sampling at the end of the NVO period was performed via a custom dump-valve apparatus, with detailed sample speciation by in-house gas chromatography. The balance of NVO-period input and output energy flows was calculated in terms of fuel energy, work, heat loss, and change in sensible energy. Experiment results were complemented by detailed chemistry single-zone reactor simulations performed at relevant mixing and thermodynamic conditions, with results used to evaluate ignition behavior and expected energy recovery yields. For the intermediate bulk-gas temperatures present during the NVO period (900-1100 K), weak negative temperature coefficient behavior with iso-octane fueling significantly lengthened ignition delays relative to similar ethanol fueled conditions. Faster ethanol ignition chemistry led to lower recovered fuel intermediate yields relative to similar iso-octane fueled conditions due to more complete fuel oxidation. From the energy analysis it was found that increased NVO-period global equivalence ratio, either from lower NVOperiod oxygen

  13. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  14. Thermal Analysis of of Near-Isothermal Compressed Gas Energy Storage System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-07-25

    In this paper, alternative system configurations for a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system, which can store energy via input of electricity and heat and deliver dispatchable electricity, is presented. The proposed system is low-cost and hybridizes compressed air and pumped hydro storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. This study reveals that implementing direct-contact low grade heat exchange via sprayed falling droplets to cool the gas during charging (compression) and warm the gas during discharging (expansion) can be achieved through a secondary recirculating loop of liquid.more » This study shows that if the recirculating liquid loop is pre-conditioned with waste-heat prior to spraying during gas expansion and considering all the round trip conversion losses from standard 120 V 60 HZ electricity input and output with utilization of low grade heat at 90 C the alternative system design leads to a 16% boost in round trip efficiency of the electricity storage to elec = 82% with an energy density of ED = 3.59 MJ/m3.« less

  15. Investigating Broadband Variability of the TeV Blazar 1ES 1959+650

    SciTech Connect (OSTI)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Barnacka, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dumm, J.; Eisch, J. D.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Hanna, D.; Holder, J.; Hughes, G.; Hughes, Z.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Majumdar, P.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nelson, T.; Nieto, D.; O'Faolain de Bhroithe, A.; Ong, R. A.; Otte, A. N.; Park, N.; Perkins, J. S.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Rajotte, J.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sadun, A.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Sheidaei, F.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Theiling, M.; Tyler, J.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakeley, S. P.; Weekes, T. C.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; Boettcher, M.; Fumagalli, M.

    2014-12-03

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.

  16. Investigating broadband variability of the TeV blazar 1ES 1959+650

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Barnacka, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; et al

    2014-12-03

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  17. Investigating broadband variability of the TeV blazar 1ES 1959+650

    SciTech Connect (OSTI)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Barnacka, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dumm, J.; Eisch, J. D.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; HÄkansson, N.; Hanna, D.; Holder, J.; Hughes, G.; Hughes, Z.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Majumdar, P.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nelson, T.; Nieto, D.; de Bhróithe, A. O'Faolåin; Ong, R. A.; Otte, A. N.; Park, N.; Perkins, J. S.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Rajotte, J.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sadun, A.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Sheidaei, F.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Theiling, M.; Tyler, J.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, and B.; Böttcher, M.; Fumagalli, M.

    2014-12-03

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.

  18. Measurement of fenestration net energy performance: Considerations leading to development of a Mobile Window Thermal Test (MoWitt) facility

    SciTech Connect (OSTI)

    Klems, J.H.

    1988-08-01

    The authors present a detailed consideration of the energy flows entering a building space and the effect of random measurement errors on determining fenestration performance. Estimates of error magnitudes are made for a passive test cell; they show that a more accurate test facility is needed for reliable measurements on fenestration systems with thermal resistance 2-10 times that of single glazing or with shading coefficients less than 0.7. A test facility of this type, built at Lawrence Berkeley Laboratory, is described. The effect of random errors in this facility is discussed and computer calculations of its performance are presented. The discussion shows that, for any measurement facility, random errors are most serious in nighttime measurements, and systematic errors are most important in daytime measurements. It is concluded that, for this facility, errors from both sources should be small.

  19. Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Gonder, J.; Lopp, S.; Jehlik, F.

    2015-02-01

    It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.

  20. The Effect of Structural Vacancies on the Thermoelectric Properties of (Cu2Te)1-x(Ga2Te3)x

    SciTech Connect (OSTI)

    Ye, Zuxin; Cho, Jung Y; Tessema, Misle; Salvador, James R.; Waldo, Richard; Wang, Hsin; Cai, Wei

    2013-01-01

    We have studied the effects of structural vacancies on the thermoelectric properties of the ternary compounds (Cu2Te)1-x(Ga2Te3)x (x = 0.5, 0.55, 0.571, 0.6, 0.625, 0.667 and 0.75), which are solid solutions found in the pseudo-binary phase diagram for Cu2Te and Ga2Te3. This system possesses tunable structural vacancy concentrations. The x= 0.5 phase, CuGaTe2, is nominally devoid of structural vacancies, while the rest of the compounds contain varying amounts of these features, and the volume density of vacancies increases with Ga2Te3 content. The sample with x = 0.5, 0.55, 0.571, 0.6, 0.625 crystallize in the chalcopyrite structure while the x = 0.667 and 0.75 adopt the Ga2Te3 defect zinc blende structure. Strong scattering of heat carrying phonons by structural defects, leads to the reduction of thermal conductivity, which is beneficial to the thermoelectric performance of materials. On the other hand, these defects also scatter charge carriers and reduce the electrical conductivity. All the samples investigated are p-type semiconductors as inferred by the signs of their respective Hall (RH) and Seebeck (S) coefficients. The structural vacancies were found to scatter phonons strongly, while a combination of increased carrier concentration, and vacancies decreases the Hall mobility ( H), degrading the overall thermoelectric performance. The room temperature H drops from 90 cm2/V s for CuGaTe2 to 13 cm2/V s in Cu9Ga11Te21 and 4.6 cm2/V s in CuGa3Te5. The low temperature thermal conductivity decreases significantly with higher Ga2Te3 concentrations (higher vacancy concentration) due to increased point defect scattering which dominate thermal resistance terms. At high temperatures, the dependence of thermal conductivity on the Ga2Te3 content is less significant. The presence of strong Umklapp scattering leads to low thermal conductivity at high temperatures for all samples investigated. The highest ZT among the samples in this study was found for the defect-free CuGaTe