Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

and Electrical Cogeneration . 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

2

Solar thermal electric: Program overview fiscal years 1993--1994  

SciTech Connect (OSTI)

The Solar Thermal Electric Program Overview and Accomplishments for Fiscal Years 1993--1994 are documented.

NONE

1995-03-01T23:59:59.000Z

3

Solar thermal electric power information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

4

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

5

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

6

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

13 2.2.2. Solar Thermal Versus Photovoltaic ....doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

7

Solar thermal bowl concepts and economic comparisons for electricity generation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

1988-04-01T23:59:59.000Z

8

Clay Electric Cooperative, Inc- Solar Thermal Loans  

Broader source: Energy.gov [DOE]

Clay Electric Cooperative (CEC), a Touchstone Energy Cooperative, covers 14 counties in northern Florida, including Gainesville, Keystone Heights, Lake City, Orange Park, Palatka, and Salt Springs....

9

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

10

Solar Thermal Electric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,Home Aimeebailey's picture SubmittedSan

11

Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies  

E-Print Network [OSTI]

To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

12

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

THERMAL COGENERATION A solar tracker and concentrator was3.1.Tracking System The solar tracker is designed to supportSummary and Conclusion A solar tracker and concentrator was

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

13

A model library of solar thermal electric components for the computer code TRNSYS  

SciTech Connect (OSTI)

A new approach to modeling solar thermal electric plants using the TRNSYS simulation environment is discussed. The TRNSYS environment offers many advantages over currently used tools, including the option to more easily study the hybrid solar/fossil plant configurations that have been proposed to facilitate market penetration of solar thermal technologies. A component library developed for Rankine cycle, Brayton cycle, and solar system modeling is presented. A comparison between KPRO and TRNSYS results for a simple Rankine cycle show excellent correlation.

Pitz-Paal, R. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany). Solare Energietechnik; Jones, S. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

14

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

Since the ceramic wafers have a high thermal conductivity,easily altered ceramic blocks all had a thermal conductivityCeramics. Available Online: http://www.dynacer.com/thermal_

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

15

Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs  

SciTech Connect (OSTI)

This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

1980-02-01T23:59:59.000Z

16

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

the thermoelectric module, and the water cooling tubes. Tothermoelectric module, combined with the thermal power transferred by the water cooling

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

17

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

electricity, such as steam engines or gas turbines. Typicalsystems, a sterling engine or steam turbine is typicallysuch as a steam turbine or sterling engine connected to an

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

18

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofs

19

Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

1987-03-01T23:59:59.000Z

20

Outdoor testing of advanced optical materials for solar thermal electric applications  

SciTech Connect (OSTI)

The development of low-cost, durable advanced optical materials is an important element in making solar energy viable for electricity production. It is important to determine the expected lifetime of candidate reflector materials in real-world service conditions. The demonstration of the optical durability of such materials in outdoor environments is critical to the successful commercialization of solar thermal electric technologies. For many years optical performance data have been collected and analyzed by the National Renewable Energy Laboratory (NREL) for candidate reflector materials subjected to simulated outdoor exposure conditions. Much of this testing is accelerated in order to predict service durability. Some outdoor testing has occurred but not in a systematic manner. To date, simulated/accelerated testing has been limited correlation with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering methods. To obtain outdoor exposure data for realistic environments and to establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data, the development of an expanded outdoor testing program has recently been initiated by NREL. Several outdoor test sites will be selected based on the solar climate, potential for solar energy utilization by industry, and cost of installation. Test results are site dependent because exposure conditions vary with geographical location. The importance of this program to optical materials development is outlined, and the process used to determine and establish the outdoor test sites is described. Candidate material identification and selection is also discussed. 10 refs.

Wendelin, T.J.; Jorgensen, G.; Goggin, R.M.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The U.S. Department of Energy`s role in commercialization of solar thermal electric technology  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has supported the development of solar thermal electric (STE) technology since the early 1970s. From its inception, the program has held a long-term goal of nurturing STE technologies from the research and development (R&D) stage through technology development, ultimately leading to commercialization. Within the last few years, the focus of this work -has shifted from R&D to cost-shared cooperative projects with industry. These projects are targeted not just at component development, but at complete systems, marketing approaches, and commercialization plans. This changing emphasis has brought new industry into the program and is significantly accelerating solar thermal`s entry into the marketplace. Projects such as Solar Two in the power tower area, a number of dish/Stirling joint ventures in the modular power area, and operations and maintenance (O&M) cost reduction studies will be discussed as examples of this new focus.

Burch, G.D. [United States Dept. of Energy, Washington, DC (United States); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

22

An outdoor exposure testing program for optical materials used in solar thermal electric technologies  

SciTech Connect (OSTI)

Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.

Wendelin, T.; Jorgensen, G.

1994-01-01T23:59:59.000Z

23

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

materials (PCM) in solar thermal concentrating technologyeffective and efficient solar thermal electricity generatorbeen considered for solar thermal energy storages. These are

Roshandell, Melina

2013-01-01T23:59:59.000Z

24

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

25

Dynamic simulation of the thermal and electrical behavior of a thermionic converter coupled to a solar concentrator  

SciTech Connect (OSTI)

A mathematical simulation for the dynamic thermal and electrical behavior of a thermionic converter coupled to a solar concentrator, is presented. The thermionic device is a Cesium-filled thermionic diode operating in the ignited mode. The emitter of the device is made of polycrystalline Rhenium and the collector of the device of Molybdenum. The solar concentrator is a parabolic dish. The designed emitter and collector temperatures are 1,850 K and 928 K, respectively. However, due to changes in ambient conditions, the collector efficiency varies and so does the system efficiency. This fact makes it necessary to evaluate the design of the system not just for one hour with constant conditions but also for a whole operating day. The paper presents plots for the emitter and collector thermionic device temperatures and power and voltage for a constant resistance load as a function of time.

Perez, G. [CUAP-UAP, Puebla (Mexico). Centro de Investigaciones en Dispositivos Semiconductores; Estrada, C.A.; Cervantes, J.G. [UNAM, Temixco, Morelos (Mexico). Solar Energy Research Lab.

1995-12-31T23:59:59.000Z

26

7Name ________________________________ Solar Electricity.  

E-Print Network [OSTI]

be attached directly to the outer surface of a satellite, or can be found on `solar panels' that the satellite. If the satellite is not big enough, additional solar panels may be needed to supply the electricity) The solar cells produce 0.03 watts per square cm, so the power available is 39819 x 0.03 = 1194 watts

27

Solar Thermal Demonstration Project  

SciTech Connect (OSTI)

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with ??Kalwall?? building panels. An added feature of the ??Kalwall? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

28

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

29

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

30

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

31

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network [OSTI]

Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

32

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

33

Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report  

SciTech Connect (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

1980-08-01T23:59:59.000Z

34

Characterization of solar thermal concepts for electricity generation: Volume 2, Appendices  

SciTech Connect (OSTI)

Volume 1 of this report documented the analyses and evaluation of the concepts. This volume contains appendices which provided additional information on the approach used in the analysis, and further detail of the study results. Appendix A describes tradeoffs involved in the orientation of trough collector fields. The methodology used in the calculation of levelized energy costs is described in Appendix B. Additional detail on the annual energy output for each of the technologies is provided in Appendix C. Appendix D provides a discussion on the method and assumptions used in developing optical performance models for central receiver systems, and gives a detailed description of the results obtained. Plant cost data is shown in Appendix E, and a method for first-order sensitivity analyses using the data is described. The calculational approach used to estimate the manufacturing cost of distributed solar components is described in Appendix F.

Williams, T.A.; Dirks, J.A.; Brown, D.R.

1987-03-01T23:59:59.000Z

35

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

36

Solar thermal power system  

DOE Patents [OSTI]

A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

Bennett, Charles L.

2010-06-15T23:59:59.000Z

37

The solar electric power outlook  

SciTech Connect (OSTI)

The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

Kemp, J.W.

1995-12-31T23:59:59.000Z

38

Comparative ranking of 0. 1-10 MW/sub e/ solar thermal electric power systems. Volume II. Supporting data. Final report  

SciTech Connect (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1-10 MW/sub e/, operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW/sub e/, a range that is attractive to industrial and other nonutility applications. Volume I summarizes the results for the full range of capacities from 0.1 to 1.0 MW/sub e/. Volume II presents data on the performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kriz, T.A.

1980-07-01T23:59:59.000Z

39

THE POTENTIAL OF SOLAR ELECTRIC  

E-Print Network [OSTI]

.5 Energy and the Costs of Production.............................................................5 2 and Local Energy Benefits of PV.......................................15 5. CONCLUSIONS AND DISCUSSIONTHE POTENTIAL OF SOLAR ELECTRIC APPLICATIONS FOR DELAWARE'S POULTRY FARMS FINAL REPORT

Delaware, University of

40

City of Dubuque- Solar Thermal Licensing Requirement  

Broader source: Energy.gov [DOE]

The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The...

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov (indexed) [DOE]

is a rendering of a scattering solar concentrator. Light collected by a cylindrical Fresnel lens is focused within a curved glass "guide" sheet, where it is redirected into...

42

Solar mechanics thermal response capabilities.  

SciTech Connect (OSTI)

In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

Dobranich, Dean D.

2009-07-01T23:59:59.000Z

43

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network [OSTI]

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program COMMISSION May 2010 #12; The California Public

44

Solar Thermal Incentive Program  

Broader source: Energy.gov [DOE]

The New York State Energy Research and Development Authority (NYSERDA) offers incentives for the installation of solar water heating systems to residential and non-residential customers of the...

45

Passive Solar Building Design and Solar Thermal Space Heating Webinar  

Broader source: Energy.gov [DOE]

Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

46

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

47

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

48

Photoferroelectric solar to electrical conversion  

E-Print Network [OSTI]

We propose a charge pump which converts solar energy into DC electricity. It is based on cyclic changes in the spontaneous electric polarization of a photoferroelectric material, which allows a transfer of charge from a low to a high voltage. To estimate the power efficiency we use a photoferroelectric liquid crystal as the working substance. For a specific choice of material, an efficiency of $2\\%$ is obtained.

Milos Knezevic; Mark Warner

2013-01-30T23:59:59.000Z

49

Practical Solar Thermal Chilled Water  

E-Print Network [OSTI]

the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

Leavell, B.

2010-01-01T23:59:59.000Z

50

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network [OSTI]

2.3.1 Electrical transport . . . . . . . . . . . . . . . .3.5 Controlling electrical conductivity and opticalthe variation of electrical and thermal con- ductivity and

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

51

Solar Thermal Reactor Materials Characterization  

SciTech Connect (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

52

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

53

SOLAR ENERGY AND OUR ELECTRICITY FUTURE  

E-Print Network [OSTI]

SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

54

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

55

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

56

Sandia National Laboratories: solar thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facilitysolarsolar

57

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect (OSTI)

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuels photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MITs technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuelscalled Hybrisolcan also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

58

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

59

EWEB- Solar Electric Program (Performance-Based Incentive)  

Broader source: Energy.gov [DOE]

The Eugene Water and Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential and commercial customers who generate electricity using solar photovoltaic (PV)...

60

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lakeland Electric- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

62

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

63

Using RPS Policies to Grow the Solar Market in the United States  

E-Print Network [OSTI]

nine also allow solar- thermal electric to qualify, threestrong competition from solar-thermal electric facilities in

Wiser, Ryan H

2008-01-01T23:59:59.000Z

64

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS, Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,heat transfer in solar thermal power plants utilizing phase

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

65

Valley Electric Association- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

66

A solar array module fabrication process for HALE solar electric UAVs  

SciTech Connect (OSTI)

We describe a fabrication process to manufacture high power to weight ratio flexible solar array modules for use on high altitude long endurance (HALE) solar electric unmanned air vehicles (UAVs). A span-loaded flying wing vehicle, known as the RAPTOR Pathfinder, is being employed as a flying test bed to expand the envelope of solar powered flight to high altitudes. It requires multiple light weight flexible solar array modules able to endure adverse environmental conditions. At high altitudes the solar UV flux is significantly enhanced relative to sea level, and extreme thermal variations occur. Our process involves first electrically interconnecting solar cells into an array followed by laminating them between top and bottom laminated layers into a solar array module. After careful evaluation of candidate polymers, fluoropolymer materials have been selected as the array laminate layers because of their inherent abilities to withstand the hostile conditions imposed by the environment.

Carey, P.G.; Aceves, R.C.; Colella, N.J.; Thompson, J.B.; Williams, K.A.

1993-12-01T23:59:59.000Z

67

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

68

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

69

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

70

Solar thermal program summary: Volume 1, Overview, fiscal year 1988  

SciTech Connect (OSTI)

The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology,energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

Not Available

1989-02-01T23:59:59.000Z

71

Pv-Thermal Solar Power Assembly  

DOE Patents [OSTI]

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

72

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network [OSTI]

iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

73

High temperature solar thermal technology: The North Africa Market  

SciTech Connect (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

74

Solar thermal power systems. Annual technical progress report, FY 1979  

SciTech Connect (OSTI)

The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

Not Available

1980-06-01T23:59:59.000Z

75

Thermal Management of Solar Cells  

E-Print Network [OSTI]

Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,heat exchangers, and solar cells," Sci-Tech News, vol. 65,in crystalline silicon solar cells," Renewable Energy, vol.

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

76

Thermal Management of Solar Cells  

E-Print Network [OSTI]

ratio of the solar cell output power to the incident lightpower to operate the fan. Natural cooling is preferred for solar

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

77

Sandia National Laboratories: National Solar Thermal Test Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilityNational Solar Thermal Test Facility Interest Survey National Solar Thermal Test Facility Interest Survey Company Name * Contact Name * Email * Phone Number * Nature of...

78

Sandia National Laboratories: Sandia-AREVA Commission Solar Thermal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECResearch & CapabilitiesCapabilitiesSandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration Sandia-AREVA Commission Solar ThermalMolten Salt...

79

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The teams design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

80

Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)  

SciTech Connect (OSTI)

This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

Rugh, J. P.; Pesaran, A.; Smith, K.

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal Management of Solar Cells  

E-Print Network [OSTI]

cells by cooling and concentration techniques," inheat. Different techniques of cooling solar cells have been

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

82

California Solar Initiative- Solar Thermal Program  

Broader source: Energy.gov [DOE]

'''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to...

83

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...  

Broader source: Energy.gov (indexed) [DOE]

6: Ivanpah Solar Electric Generating System in San Bernardino County, CA EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino County, CA Documents Available for...

84

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California,The Market Value and Cost of Solar Photovoltaic ElectricityThe Market Value and Cost of Solar Photovoltaic Electricity

Borenstein, Severin

2008-01-01T23:59:59.000Z

85

2013MIT SOLAR ELECTRIC VEHICLE TEAM The MIT Solar Electric Vehicle Team (SEVT)  

E-Print Network [OSTI]

Challenge in Australia, and the North American Solar Challenge. The vehicles drive during the day and stop2013MIT SOLAR ELECTRIC VEHICLE TEAM #12;The MIT Solar Electric Vehicle Team (SEVT) is a student organization dedicated to demonstrating the viability of alternative energy-based transportation. The team

Williams, Brian C.

86

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, Solar Thermal Collectors and Applications,86] Schnatbaum L. , 2009, Solar Thermal Power Plants, Thefor Storage of Solar Thermal Energy, Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

87

Thermal Management of Solar Cells  

E-Print Network [OSTI]

is the ratio of the solar cell output power to the incidentmaximum power output at: The fill factor of a solar cell FFsolar cell temperature by about 15C, which increases the output power

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

88

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

89

Tampa Electric- Solar Rebate Program  

Broader source: Energy.gov [DOE]

'''''Note: Of the $1.5 million budgeted for this program annually, $500,000 is reserved for solar water heating, and $1 million is reserved for PV systems. All funds have been committed for Solar...

90

Solar Electric & Heat System Training  

Broader source: Energy.gov [DOE]

GRID Alternatives is holding a solar training in partnership with Trees, Water & People and Lakota Solar Enterprises. This 9-day training will include both classroom education and hands-on...

91

Photon management in thermal and solar photovoltaics  

E-Print Network [OSTI]

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

92

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents [OSTI]

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

93

PV/thermal solar power assembly  

DOE Patents [OSTI]

A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

2004-01-13T23:59:59.000Z

94

Property Tax Abatement for Solar Electric Systems  

Broader source: Energy.gov [DOE]

In August 2008, North Carolina enacted legislation that exempts 80% of the appraised value of a "solar energy electric system" (also known as a photovoltaic, or PV, system) from property tax. For...

95

Chicopee Electric Light- Residential Solar Rebate Program  

Broader source: Energy.gov [DOE]

Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

96

Thermal metastabilities in the solar core  

E-Print Network [OSTI]

Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

Attila Grandpierre; Gabor Agoston

2002-01-18T23:59:59.000Z

97

Thermal Management of Solar Cells  

E-Print Network [OSTI]

D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andSolar Cell A photovoltaic cell is a semiconductor that

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

98

Thermal Management of Solar Cells.  

E-Print Network [OSTI]

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in one (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

99

Denton Municipal Electric- GreenSense Solar Rebate Program  

Broader source: Energy.gov [DOE]

Denton Municipal Electric offers rebates to its electric customers for the installation of solar PV and solar water heating systems. The solar rebates are designed for residential and small...

100

Optimal operation and design of solar-thermal energy storage systems  

E-Print Network [OSTI]

The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

Lizarraga-Garca, Enrique

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

102

Electrical and thermal conductivities in dense plasmas  

SciTech Connect (OSTI)

Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

2014-09-15T23:59:59.000Z

103

Assessment of generic solar thermal systems for large power applications: analysis of electric power generating costs for systems larger than 10 MWe  

SciTech Connect (OSTI)

Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces); (2) one-axis tracking (with single-curvature reflecting surfaces); and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors were analyzed with Brayton-cycle engines, and one was analyzed with a Stirling-cycle engine. With these engine options, and the consideration of both thermal and electrical storage for the Brayton-cycle central receiver, 11 systems were formulated for analysis. Conceptual designs developed for the 11 systems were based on common assumptions of available technology in the 1990 to 2000 time frame. No attempt was made to perform a detailed optimization of each conceptual design. Rather, designs best suited for a comparative evaluation of the concepts were formulated. Costs were estimated on the basis of identical assumptions, ground rules, methodologies, and unit costs of materials and labor applied uniformly to all of the concepts. The computer code SOLSTEP was used to analyze the thermodynamic performance characteristics and energy costs of the 11 concepts. Year-long simulations were performed using meteorological and insolation data for Barstow, California. Results for each concept include levelized energy costs and capacity factors for various combinations of storage capacity and collector field size.

Apley, W.J.; Bird, S.P.; Brown, D.R.; Drost, M.K.; Fort, J.A.; Garrett-Price, B.A.; Patton, W.P.; Williams, T.A.

1980-11-01T23:59:59.000Z

104

A solar module fabrication process for HALE solar electric UAVs  

SciTech Connect (OSTI)

We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A. [Lawrence Livermore National Lab., CA (United States); Sinton, R.A. [Private Consultant, San Jose, CA (United States); Glenn, G.S. [Spectrolab, Inc., Sylmar, CA (United States)

1994-12-12T23:59:59.000Z

105

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA RIVERSIDE Phase Change Materials for Thermal Energy Storage in Concentrated Solar

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

106

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

107

Electrical and Thermal Transport Optimization of High Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on...

108

Thermal and electrical performance of a concentrating PV/Thermal collector: results from the ANU CHAPS collector  

E-Print Network [OSTI]

Thermal and electrical performance of a concentrating PV/Thermal collector: results from the ANU CHAPS collector J.S. Coventry, E. Franklin and A. Blakers Centre for Sustainable Energy Systems 0506 E-mail: joe@faceng.anu.edu.au Abstract The combined heat and power solar (CHAPS) collector under

109

Homeowners Guide to Leasing a Solar Electric System (Brochure)  

SciTech Connect (OSTI)

This updated fact sheet provides an introduction to solar leases for homeowners who are considering installing a solar electric system on their home.

Not Available

2014-07-01T23:59:59.000Z

110

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

2004) Advances in solar thermal electricity technology.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

111

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

112

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

electrode surfaces, and electric energy is stored as surfacetemperature end and electric energy is generated, thermalbeing the generated electric energy and the consumed thermal

Lim, Hyuck

2011-01-01T23:59:59.000Z

113

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

photovoltaics and solar thermal collectors; electricalfor application of solar thermal and recovered heat to end-absorption chiller solar thermal photovoltaics Results

Stadler, Michael

2008-01-01T23:59:59.000Z

114

Unique Solar Thermal Laboratory Gets an Upgrade | Department...  

Broader source: Energy.gov (indexed) [DOE]

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This power tower is part of the...

115

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

116

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy  

E-Print Network [OSTI]

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

California at Berkeley, University of

117

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Radiation  

E-Print Network [OSTI]

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Radiation Solar Radiation: Effects of atmosphere, angular dependence of radiation, variation of solar radiation ­ Calculation of Solar Radiation: · Estimate of intensity of solar radiation · Angular Dependence ­ Solar Noon

Honsberg, Christiana

118

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

solar radiation, and the geothermal energy. [16] Fig. 1.1.thermal energy, geothermal energy, wasted heat from athermal energy, geothermal energy, ocean thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

119

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

biological thermal energy, geothermal energy, wasted heatpower plants, solar thermal energy, geothermal energy, oceansolar radiation, and the geothermal energy. [16] Fig. 1.1.

Lim, Hyuck

2011-01-01T23:59:59.000Z

120

Flexible thermal cycle test equipment for concentrator solar cells  

DOE Patents [OSTI]

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SUBMITTED TO GRL 1 Thermal Anisotropies in the Solar Wind  

E-Print Network [OSTI]

SUBMITTED TO GRL 1 E Thermal Anisotropies in the Solar Wind: vidence of Heating by Interstellar cyclotron instabilit s generated by newly created pickup ions and heats the thermal solar wind protons TO GRL 2 T Introduction he thermal anisotropy of the solar wind is the ratio between the temperatures p

Richardson, John

122

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks  

E-Print Network [OSTI]

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks Pascal Richter1 introduce our tool for the optimisation of parameterised solar thermal power plants, and report the applicability of our approach. Keywords: Optimization, Solar thermal power plants, Neural networks, Genetic

Ábrahám, Erika

123

EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

124

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell Operation  

E-Print Network [OSTI]

is lost as heat. energy Eg 2 31 Absorption process #12;ELEG620: Solar Electric Systems UniversityELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell and shunt resistance). #12;ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C

Honsberg, Christiana

125

El Paso Electric Company- Solar PV Pilot Program  

Broader source: Energy.gov [DOE]

'''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00 pm MST on February 1, 2013.'''''

126

Electric Motor Thermal Management for Electric Traction Drives (Presentation)  

SciTech Connect (OSTI)

Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

Bennion, K.; Cousineau, J.; Moreno, G.

2014-09-01T23:59:59.000Z

127

Cogenerating Photovoltaic and Thermal Solar Collector  

E-Print Network [OSTI]

cell, 25% max ­ Steam power plant, 50% max · Data Centers in the U.S. ­ Demand increases as internet.2% of the nations electricity consumption · Load equivalent to 5 1000 MW power plants · Over 2.2 billion dollars applications #12;First Prototype Spring 2008 #12;#12;Experimental Results · Thermal power generated ­ 1.4 KW

Su, Xiao

128

Value of solar thermal industrial process heat  

SciTech Connect (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

129

Sandia National Laboratories: solar thermal energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facilitysolarsolarenergy

130

Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States  

SciTech Connect (OSTI)

The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

None

1980-07-01T23:59:59.000Z

131

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network [OSTI]

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems. (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

132

Solar and Wind Contractor Licensing  

Broader source: Energy.gov [DOE]

The Connecticut Department of Consumer Protection (DCP) is authorized to issue licenses for solar-thermal work, solar-electric work and wind-electric work. "Solar thermal work" is defined as "the...

133

Potential for supplying solar thermal energy to industrial unit operations  

SciTech Connect (OSTI)

Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

May, E.K.

1980-04-01T23:59:59.000Z

134

Performance of solar electric generating systems on the utility grid  

SciTech Connect (OSTI)

The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

Roland, J.R.

1986-01-01T23:59:59.000Z

135

Implementation of optimum solar electricity generating system  

SciTech Connect (OSTI)

Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

2014-10-24T23:59:59.000Z

136

Fifth parabolic dish solar thermal power program annual review: proceedings  

SciTech Connect (OSTI)

The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

None

1984-03-01T23:59:59.000Z

137

A solar concentrating photovoltaic / thermal collector J.S. Coventry  

E-Print Network [OSTI]

A solar concentrating photovoltaic / thermal collector J.S. Coventry Centre for Sustainable Energy.Coventry@anu.edu.au Abstract Australia is a good location for solar concentrator applications. Current activities in Australia OF THE SOLAR RESOURCE IN AUSTRALIA Australia has relatively high solar insolation, as shown in figure 1

138

Electrical overstress failure in silicon solar cells  

SciTech Connect (OSTI)

A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient EMP field surrounding a lightning stroke has been identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 ..mu..s and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 ..cap omega..cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

Pease, R.L.; Barnum, J.R.; van Lint, V.A.J.; Vulliet, W.V.; Wrobel, T.F.

1982-11-01T23:59:59.000Z

139

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Storage of Solar Thermal Energy, Solar Energy, 18 (3), pp.Power Plants, Journal of Solar Energy Engineering, 124 (2),Cycle Storage of Solar Energy, Energy & Environmental

Coso, Dusan

2013-01-01T23:59:59.000Z

140

Review Article Solar-Thermal Powered Desalination: Its Significant  

E-Print Network [OSTI]

@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy review the technologies for solar energy systems used for capturing and concentrating heat energy- desalination systems that (i) first transform solar energy into electrical energy and then (ii) employed

Reif, John H.

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sandia National Laboratories: solar thermal storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Testthermal storage Sandia

142

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

143

Regional Per Capita Solar Electric Footprint for the United States  

SciTech Connect (OSTI)

In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

Denholm, P.; Margolis, R.

2007-12-01T23:59:59.000Z

144

High-Performance Home Technologies: Solar Thermal & Photovoltaic...  

Broader source: Energy.gov (indexed) [DOE]

in each of the volumes. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems More Documents & Publications Building America Whole-House Solutions for...

145

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

the premium value of solar PV power to 0%-20% again. Whilepower to that location. While few dispute that the direct cost of electricity from the currently available solar

Borenstein, Severin

2008-01-01T23:59:59.000Z

146

Havasu Solar Electric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowaHaskell County isHavasu Solar Electric

147

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

148

Solar Electric Generating System II finite element analysis  

SciTech Connect (OSTI)

On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

Dohner, J.L.; Anderson, J.R.

1994-04-01T23:59:59.000Z

149

High-Performance with Solar Electric Reduced Peak Demand: Premier...  

Energy Savers [EERE]

energy systems with high-performance homes and showing how they align with utility peak-demand reduction interests. In addition to substantial energy savings, solar electric home...

150

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

151

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind  

E-Print Network [OSTI]

upstream of the Earth?s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measureSolar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately

California at Berkeley, University of

152

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

153

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

154

Renewable Energies III Photovoltaics, Solar & Geo-Thermal  

E-Print Network [OSTI]

Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 on the principles of solar energy conversion. Theoretical knowledge will be complemented with practical workshops of solar energy conversion. Theoretical knowledge will be comple- mented with practical workshops

155

Thermal electric vapor trap arrangement and method  

DOE Patents [OSTI]

A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

Alger, T.

1988-03-15T23:59:59.000Z

156

Solar-thermal fluid-wall reaction processing  

DOE Patents [OSTI]

The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

2006-04-25T23:59:59.000Z

157

Solar-Thermal Fluid-Wall Reaction Processing  

DOE Patents [OSTI]

The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

2006-04-25T23:59:59.000Z

158

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Photovoltaic Systems  

E-Print Network [OSTI]

1 ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Photovoltaic Systems · Central issues in photovoltaic systems · Characteristics of energy systems & performance, these parameters determine the minimum effective system size. · Thermal-based systems are · PV systems are both

Honsberg, Christiana

159

Implementations of electric vehicle system based on solar energy in Singapore : assessment of solar photovoltaic systems  

E-Print Network [OSTI]

To evaluate the feasibility of solar energy based Electric Vehicle Transportation System in Singapore, the state of the art Photovoltaic Systems have been reviewed in this report with a focus on solar cell technologies. ...

Sun, Li

2009-01-01T23:59:59.000Z

160

Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop  

SciTech Connect (OSTI)

Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Department of Electrical Engineering Spring 2011 Glass Block Solar Collector  

E-Print Network [OSTI]

to the sponsor. The collector incorporated a solar panel that charged a battery unit. The battery poweredPENNSTATE Department of Electrical Engineering Spring 2011 Glass Block Solar Collector Overview Pittsburgh Corning, a leading manufacturer of architectural glass blocks, wanted to incorporate a solar

Demirel, Melik C.

162

17th Sede Boqer Symposium on Solar Electricity Production  

E-Print Network [OSTI]

to solar panel parameter extraction based on the manufacturer's datasheet Moshe Averbukh1 , S. Lineykin2 17th Sede Boqer Symposium on Solar Electricity Production October 24-26, 2011 George Evens Family efficiency solar cells Ronen Gurtman1,3 , Anna Osherov2,3 Yuval Golan2,3 and Iris Visoly-Fisher1,3 1 Dept

Prigozhin, Leonid

163

November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays  

E-Print Network [OSTI]

rating of a photovoltaic module is typically quoted as the power output of the module when the incidentNovember 21, 2000 PV Lesson Plan 2 Solar Electric Arrays Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola University of Oregon Solar Radiation Monitoring Lab John Hocken

Oregon, University of

164

The Economics of Solar Electricity Erin Baker,  

E-Print Network [OSTI]

-effectiveness of incremental increases in solar capacity, holding the rest of the power system fixed. Solar's variability adds. Medium-run analyses con- sider the implications of non-incremental changes in solar capacity. The cost with solar power generation are close to zero. Second, increasing the level of grid-connected solar capacity

Fowlie, Meredith

165

Solar Works! In Seattle: Introduction to Solar Electric (PV)  

Broader source: Energy.gov [DOE]

Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

166

Sandia National Laboratories: solar thermal electric technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystemsquantumSunShotMoltensolar

167

Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab  

SciTech Connect (OSTI)

The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

2010-12-15T23:59:59.000Z

168

Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems  

E-Print Network [OSTI]

Greenhouse gas analysis of solar-thermal electricity gen-CdTe Concentrator PV Solar Thermal Wind Coal CC Gas Turbinefor the assessment of thermal solar systems, Proceedings of

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

169

Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)  

Office of Energy Efficiency and Renewable Energy (EERE)

A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

170

Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)  

SciTech Connect (OSTI)

A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

Not Available

2009-01-01T23:59:59.000Z

171

Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise  

SciTech Connect (OSTI)

This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

Not Available

2008-10-01T23:59:59.000Z

172

Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

Not Available

2010-03-01T23:59:59.000Z

173

Author's personal copy Solar modulation in surface atmospheric electricity  

E-Print Network [OSTI]

Author's personal copy Solar modulation in surface atmospheric electricity R. Giles Harrison a is the major source of air's electrical conductivity over the oceans and well above the continents atmospheric electrical circuit, including the local vertical current density and the related surface potential

Usoskin, Ilya G.

174

Constitution of the MIT Solar Electric Vehicle Team We, the workers of the Solar Electric Vehicle Team, in order to form a more  

E-Print Network [OSTI]

Constitution of the MIT Solar Electric Vehicle Team 1 PURPOSE We, the workers of the Solar Electric the blessings of fast Solar Cars to ourselves and our Posterity, do ordain and establish this Constitution for the Solar Electric Vehicle Team of the Massachusetts Institute of Technology (henceforth "TFP"). 2

Williams, Brian C.

175

Minnesota Power- Solar-Thermal Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; ...

176

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

177

Thermal storage module for solar dynamic receivers  

DOE Patents [OSTI]

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

178

Modeling of solar thermal selective surfaces and thermoelectric generators  

E-Print Network [OSTI]

A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

McEnaney, Kenneth

2010-01-01T23:59:59.000Z

179

PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR  

E-Print Network [OSTI]

increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612

180

Camera-based reflectivity measurement for solar thermal applications  

E-Print Network [OSTI]

of the solar-weighted reflectivity of the receiver component in CSP systems. Such reflectivity measurement Tubular receivers for solar thermal power plants, specifically tower plants, are in common use, in plants to be able to do conveniently in the field, possibly at intervals throughout the life of the plant

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Silicon Valley Power- Solar Electric Buy Down Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as...

182

Wind and Solar-Electric (PV) Systems Exemption  

Broader source: Energy.gov [DOE]

Minnesota excludes the value added by solar-electric (PV) systems installed after January 1, 1992 from real property taxation. In addition all real and personal property of wind-energy systems is...

183

New Hampshire Electric Co-Op- Solar Hot Water  

Broader source: Energy.gov [DOE]

New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum...

184

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

185

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

outstanding technical challenges focused on applicability to heat pipes to Concentrated Solar Power production. These include * Counter gravity physics * Counter gravity...

186

Thermally Induced Vibrations of a Solar Wing with Bowed STEM  

E-Print Network [OSTI]

undergo thermal excitations due to a thermal gradient through the cross-section when entering and exiting solar eclipse. These vibrations can greatly reduce pointing accuracy and lead to mission failure. Boeing obtained a patent in 2006 for the High Power...

Hagler, Shawn 1983-

2010-11-30T23:59:59.000Z

187

Gulf Power- Solar Thermal Water Heating Program  

Broader source: Energy.gov [DOE]

'''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating...

188

Design of a solar thermal collector simulator.  

E-Print Network [OSTI]

??The recent increased interest in renewable energy has created a need for research in the area of solar technology. This has brought about many new (more)

Bolton, Kirk G.

2009-01-01T23:59:59.000Z

189

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

FERC) and the National Electrical Regulatory Corporation (Of Solar PV and CPV Onto The Electrical Grid By Steven Craig24 Electrical,Controls&

Hill, Steven Craig

2013-01-01T23:59:59.000Z

190

Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

Narumanchi, S.

2014-09-01T23:59:59.000Z

191

Moreno Valley Electric Utility- Solar Electric Incentive Program  

Broader source: Energy.gov [DOE]

Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

192

Sandia National Laboratories: Solar Electric Propulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

193

Modeling and Simulation of Solar Chimney Power Plant with and without the Effect of Thermal Energy Storage Systems.  

E-Print Network [OSTI]

??A solar updraft tower power plant sometimes also called 'solar chimney' or just solar tower is a solar thermal power plant utilizing a (more)

Daba, Robera

2011-01-01T23:59:59.000Z

194

Salem Electric- Solar Water Heater Rebate  

Broader source: Energy.gov [DOE]

Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

195

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

196

Conversion system overview assessment. Volume III. Solar thermal/coal or biomass derived fuels  

SciTech Connect (OSTI)

The three volumes of this report cover three distinct areas of solar energy research: solar thermoelectrics, solar-wind hybrid systems, and synthetic fuels derived with solar thermal energy. Volume III deals with the conversion of synthetic fuels with solar thermal heat. The method is a hybrid combination of solar energy with either coal or biomass. A preliminary assessment of this technology is made by calculating the cost of fuel produced as a function of the cost of coal and biomass. It is shown that within the projected ranges of coal, biomass, and solar thermal costs, there are conditions when solar synthetic fuels with solar thermal heat will become cost-competitive.

Copeland, R. J.

1980-02-01T23:59:59.000Z

197

Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.  

SciTech Connect (OSTI)

The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

Ehrhart, Brian David; Gill, David Dennis

2013-07-01T23:59:59.000Z

198

Tehachapi solar thermal system first annual report  

SciTech Connect (OSTI)

The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

1993-05-01T23:59:59.000Z

199

Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations  

E-Print Network [OSTI]

by the University of Wisconsin, which is used to select and analyze solar thermal systems. The program provides monthly- average performance for selected system, including: domestic water heating systems, space heating systems, pool heating systems and others... savings from photovoltaic systems using the PV F-CHART program, and a second procedure that uses the F-CHART program to calculate the thermal savings. The solar systems are simulated as specified for the user, no optimization or modification...

Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

200

Electric District No. 3- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Electric District No. 3 of Pinal County (ED3) provides incentives for their residential and business customers to invest in photovoltaics (PV). Residential and commercial customers installing PV...

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power  

SciTech Connect (OSTI)

The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

2009-08-15T23:59:59.000Z

202

Value of Concentrating Solar Power and Thermal Energy Storage  

SciTech Connect (OSTI)

This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

Sioshansi, R.; Denholm, P.

2010-02-01T23:59:59.000Z

203

Electrical, Frequency and Thermal Measurement and Modelling of Supercapacitor Performance  

E-Print Network [OSTI]

Electrical, Frequency and Thermal Measurement and Modelling of Supercapacitor Performance Yasser--This paper presents an evaluation of commercial supercapacitors performance (ESR, C, self-discharge, Pmax, Emax, coulumbic efficiency, etc), under different conditions. Characterization of supercapacitor

Paris-Sud XI, Université de

204

Independent Manipulation of Electric and Thermal Fields with Bilayer Structure  

E-Print Network [OSTI]

Recently, increasing attention has been focused on the employment of transformation and metamaterial for manipulation of various physical fields, which requires complicated configuration and usually limits in single field. Here, for the first time, we propose and experimentally demonstrated bilayer structure to achieve simultaneously independent manipulation of multi-physics field (dc electric fields and thermal) by directly solving the dc electric/ thermal field equations. This structure is composed of two layers: the outer layer is made of isotropic and homogeneous material, while the inner layer is fan-shape layer. Since it is not based on TO, it can be readily experimentally fabricated with naturally occurring materials. Experimentally, we has designed, fabricated and characterized two structures simultaneously behaving as dc electric cloak/ thermal concentrator and dc electric concentrator/ thermal cloak, respectively. The simulation results agree well with the experiment ones, thus confirming the feasib...

Lan, Chuwen; Wu, Lingling; Li, Bo; Zhou, Ji

2015-01-01T23:59:59.000Z

205

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network [OSTI]

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

206

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network [OSTI]

. Solar One used water as a working fluid to generate the steam required to drive a conven- tional turbine steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled with the U.S. Department of Energy (DOE). Technical Achievement Solar Two represents a major technical

Laughlin, Robert B.

207

Use of Linear Predictive Control for a Solar Electric Generating System  

E-Print Network [OSTI]

1 Use of Linear Predictive Control for a Solar Electric Generating System Thorsten Stuetzle, Nathan Engineering Drive Madison, WI, 53706, USA ABSTRACT In a Solar Electric Generating System (SEGS A solar electric generating system (SEGS), shown in Figure 1, refers to a class of solar energy systems

Wisconsin at Madison, University of

208

Solar Thermal Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolarSolarSuccess Stories

209

Solar Thermal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolarSolarSuccess

210

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets  

E-Print Network [OSTI]

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

Chester, David A.

211

Off-peak summer performance enhancement for rows of fixed solar thermal collectors using reflective surfaces.  

E-Print Network [OSTI]

??The possibility of increasing the efficiency of fixed solar thermal collectors without greatly adding to the cost or complexity of the overall solar collection system (more)

Armenta, Casiano

2011-01-01T23:59:59.000Z

212

Solar thermal energy contract list, fiscal year 1990  

SciTech Connect (OSTI)

The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

Not Available

1991-09-01T23:59:59.000Z

213

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1985-06-18T23:59:59.000Z

214

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1986-04-08T23:59:59.000Z

215

Thermal characteristics of a classical solar telescope primary mirror  

E-Print Network [OSTI]

We present a detailed thermal and structural analysis of a 2m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide -best known for excellent heat conductivity and Zerodur -preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.

Banyal, Ravinder K

2011-01-01T23:59:59.000Z

216

Solar Thermal Group Research School of Engineering  

E-Print Network [OSTI]

DEVELOPMENT OF COMPLEX OXIDE-BASED MATERIALS FOR HYBRID SOLAR THERMOELECTRIC GENERATOR Speaker: Dr Ruoming- and n- type thermoelectric materials. A number of strategies for enhancing the material efficiency were interests are in the development of oxide-based thermoelectric materials via ad- vanced synthesis

217

Estimating electric current densities in solar active regions  

E-Print Network [OSTI]

Electric currents in solar active regions are thought to provide the energy released via magnetic reconnection in solar flares. Vertical electric current densities $J_z$ at the photosphere may be estimated from vector magnetogram data, subject to substantial uncertainties. The values provide boundary conditions for nonlinear force- free modelling of active region magnetic fields. A method is presented for estimating values of $J_z$ taking into account uncertainties in vector magnetogram field values, and minimizing $J_z^2$ across the active region. The method is demonstrated using the boundary values of the field for a force-free twisted bipole, with the addition of noise at randomly chosen locations.

Wheatland, M S

2015-01-01T23:59:59.000Z

218

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report  

SciTech Connect (OSTI)

We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

2012-03-30T23:59:59.000Z

219

E-Print Network 3.0 - advanced solar thermal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

..) - residential and commercial. (A. Athienitis) 2. Solar thermal systems for heating and cooling (DHW... and optimization tool. THEME 1 Integration THEME 2 Thermal THEME...

220

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network [OSTI]

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect (OSTI)

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

222

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

Mammoli, Andrea

2014-01-01T23:59:59.000Z

223

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

solar-thermal- assisted hvac system. Energy and Buildings, [of a Solar-Assisted HVAC System with Thermal Storage A.of a solar-assisted HVAC system with thermal storage. Energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

224

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

2007-06-01T23:59:59.000Z

225

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Energy Frontier Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal...

226

Transient-heat-transfer and stress analysis of a thermal-storage solar cooker module  

E-Print Network [OSTI]

This paper details the analysis carried out in Solidworks to determine the best material and configuration of a thermal-storage solar cooker module.The thermal-storage solar cooker utilizes the high-latent-heat lithium ...

Zengeni, Hazel C

2014-01-01T23:59:59.000Z

227

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the...

228

First Solar Electric LLC formerly DT Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy InformationInformationElectric LLC formerly DT

229

Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)  

SciTech Connect (OSTI)

The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

Glatzmaier, G.; Mehos, M.; Mancini, T.

2008-04-01T23:59:59.000Z

230

E-Print Network 3.0 - all-electric solar house Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

go to www.ncsc.ncsu.edu Solar... Thermal Solar thermal technologies use the sun's power to heat air or water. We use hot water in our homes... for bathing and cooking. During the...

231

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to: navigation,Solar

232

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network [OSTI]

collectors on the south tilted roofs, south walls, balconies or awnings. Experiences on solar thermal utilization are mainly introduced in this paper, which include solar hot water systems with different design methods in residential buildings and solar-powered...

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

233

Where solar thermal meets photovoltaic for high-efficiency power conversion  

E-Print Network [OSTI]

To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

Bierman, David M. (David Matthew)

2014-01-01T23:59:59.000Z

234

A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS  

E-Print Network [OSTI]

PV PLANNER A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS Updated User Manual May 2011 University of Delaware #12;Mailing Address: John Byrne Director Center for Energy and Environmental Policy) 831-3098 Website: http://ceep.udel.edu The Center for Energy and Environmental Policy conducts

Delaware, University of

235

Minnesota Power- Solar-Electric (PV) Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

236

Solar Electric Light Fund | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolution JumpJumpLight

237

Small Solar Electric Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher, Assistant7/2013technicalSmall Particles, BigSolar

238

Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove  

E-Print Network [OSTI]

. In the first step, pyrolysis, volatile components of the biomass are vaporised at elevated temperatures from. #12;Biomass gasification using solar thermal energy Munzinger Figure 1 Pyrolysis pathways (Milne et alBiomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove Solar Thermal Group

239

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors  

E-Print Network [OSTI]

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

Mayer, Alexandre

240

Thermal, Electrical and Mechanical Response to a Quench in Nb3Sn Superconducting Coils  

E-Print Network [OSTI]

53129 4A-a07 Thermal, Electrical and Mechanical Response tofocuses on thermal, electrical and mechanical conditions inevaluated by the thermo-electrical model is transferred to a

Ferracin, P.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial...  

Energy Savers [EERE]

to Solar PV in New York City? Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New York City? The goal of this study is to evaluate the...

242

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

Fisher, Frank

243

Enhanced regeneration of degraded polymer solar cells by thermal annealing  

SciTech Connect (OSTI)

The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ?50% performance restoration over several degradation/regeneration cycles.

Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

2014-05-12T23:59:59.000Z

244

Electric Motor Thermal Management R&D (Presentation)  

SciTech Connect (OSTI)

Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

Bennion, K.

2014-11-01T23:59:59.000Z

245

Electrical and thermal properties of graphite/polyaniline composites  

SciTech Connect (OSTI)

A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

Bourdo, Shawn E., E-mail: sxbourdo@ualr.edu [Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Warford, Brock A.; Viswanathan, Tito [Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States)] [Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States)

2012-12-15T23:59:59.000Z

246

American Solar Electric Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy SystemsAmerican Energy SystemsElectric Inc Jump to:

247

Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy  

E-Print Network [OSTI]

Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

Delaware, University of

248

Midtemperature solar systems test facility predictions for thermal performance of the Acurex solar collector with FEK 244 reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions are presented for the Acurex solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-01-01T23:59:59.000Z

249

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network [OSTI]

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

250

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

251

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Solar thermal energy is used to drive the overall process and required electricity is generated internally from waste heat.

Luc, Wesley Wai

252

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

253

Sandia National Laboratories: solar thermal power plant components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test

254

Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)  

Broader source: Energy.gov [DOE]

This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

255

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network [OSTI]

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

256

Title COMBINATION OF THERMAL SOLAR COLLECTORS, HEAT PUMP AND THERMAL ENERGY STORAGE FOR DWELLINGS IN BELGIUM.  

E-Print Network [OSTI]

The amount of available solar energy in Belgium is more than sufficient to meet local heat demand for space heating and domestic hot water in a dwelling. However, the timing of both the availability of solar energy and the need for thermal energy, match only to a limited extent. Therefore, compact storage of the surplus of thermal energy is a critical issue. Depending on the temperature at which this energy is available, directly from the sun or indirectly through the storage, different combinations with a heat pump can be considered. By combining solar energy with a heat pump one may benefit on both sides since the fraction of solar energy increases as well as the performance of the heat pump. The aim of this thesis is to select the best out of three configurations that combine thermal solar collectors, heat pump and thermal energy storage for heating purposes in dwellings in Belgium, based on model simulations. Energetic, exergetic and economic criteria are used to evaluate the different configurations, while thermal comfort and domestic hot water tap profiles should be met. One (or more) performance index (indices) is (are) defined enabling an objective comparison between different systems. Today several systems are already commercially available on the international market [4]. Since these systems consist of different components, the system design is a crucial issue. Therefore, special attention should be paid to the sizing of the individual components, the interaction of the components within the global system, and the strategy for operational control. To study the interaction with the building, three types of buildings (already defined in a previous project) are considered.

Contact Raf; De Herdt; Roel De Coninck; Filip Van Den Schoor; Lieve Helsen

257

Midtemperature Solar Systems Test Facility predictions for thermal performance of the Solar Kinetics T-700 solar collector with FEK 244 reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions are presented for the Solar Kinetics T-700 solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1980-11-01T23:59:59.000Z

258

CO sub 2 emissions from coal-fired and solar electric power plants  

SciTech Connect (OSTI)

This report presents estimates of the lifetime carbon dioxide emissions from coal-fired, photovoltaic, and solar thermal electric power plants in the United States. These CO{sub 2} estimates are based on a net energy analysis derived from both operational systems and detailed design studies. It appears that energy conservation measures and shifting from fossil to renewable energy sources have significant long-term potential to reduce carbon dioxide production caused by energy generation and thus mitigate global warming. The implications of these results for a national energy policy are discussed. 40 refs., 8 figs., 23 tabs.

Keith, F.; Norton, P.; Brown, D.

1990-05-01T23:59:59.000Z

259

Northeast regional assessment study for solar electric options in the period 1980-2000  

SciTech Connect (OSTI)

Opportunities for demonstration and large scale deployment of solar electric facilities are identified and assessed. Technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation are defined. The following topics are covered: a description of the Northeast Region and its solar resources, central station applications, a dispersed user analysis, user viewpoints and institutional factors, and market potential for dispersed solar electric systems. (MHR)

None

1981-04-01T23:59:59.000Z

260

Design and global optimization of high-efficiency solar thermal systems  

E-Print Network [OSTI]

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets David, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPV by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class

Soljaèiæ, Marin

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind  

E-Print Network [OSTI]

Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind S to the well--known thermal expansion of the solar corona [Parker, 1958, 1963, 1991]. In particular Alfv'en waves in the solar atmosphere and wind, taking into account relevant physical effects

262

EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.  

SciTech Connect (OSTI)

The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

ANDREWS,J.W.

1981-06-01T23:59:59.000Z

263

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

Borenstein, Severin

2008-01-01T23:59:59.000Z

264

Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing  

SciTech Connect (OSTI)

In this work, the thermal diffusivity of single submicron ({approx}800 nm) polyacrylonitrile (PAN) fibers is characterized using the recently developed optical heating and electrical thermal sensing technique. In the experiment, a thin Au film (approximately in the nanometer range) is coated on the surface of nonconductive PAN fibers. A periodically modulated laser beam is used to irradiate suspended individual fibers to achieve noncontact periodical heating. The periodical temperature response of the sample is monitored by measuring the electrical resistance variation of the thin Au coating. The experimental results for three different synthesized PAN fibers with varying Au coating thickness are presented and discussed.

Hou Jinbo; Wang Xinwei; Zhang Lijun [Department of Mechanical Engineering, N104 Walter Scott Engineering Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656 (United States)

2006-10-09T23:59:59.000Z

265

Front contact solar cell with formed electrically conducting layers on the front side and backside  

DOE Patents [OSTI]

A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.

Cousins, Peter John

2012-06-26T23:59:59.000Z

266

Electrical and Thermal Experimental Characterization and Modeling of Carbon Nanotube/Epoxy Composites  

E-Print Network [OSTI]

The present work investigates the effect of carbon nanotube (CNT) inclusions on the electrical and thermal conductivity of a thermoset epoxy resin. The characterization of electrical and thermal conductivity of CNT/epoxy composites is presented...

Gardea, Frank

2012-10-19T23:59:59.000Z

267

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

268

An overview: Component development for solar thermal systems  

SciTech Connect (OSTI)

In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

Mancini, T.R.

1994-10-01T23:59:59.000Z

269

Solar-thermal-energy collection/storage-pond system  

DOE Patents [OSTI]

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

270

An Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application  

E-Print Network [OSTI]

during transient and instantaneous peak power demands of an electric vehicle (EV) and to recover energyAn Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application F. Khoucha, A and lower device stress than conventional designs, for solar electric vehicle (SEV) applications

Boyer, Edmond

271

2010MIT SOLAR ELECTRIC VEHICLE TEAM A MESSAGE FROM THE PRESIDENT  

E-Print Network [OSTI]

2010MIT SOLAR ELECTRIC VEHICLE TEAM #12;A MESSAGE FROM THE PRESIDENT President Hockfield poses with SEVT members at an outreach event ONE #12;The MIT Solar Electric Vehicle Team (SEVT) is a student electric vehicles through international participation and competition. Give our sponsors publicity through

272

S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings  

SciTech Connect (OSTI)

These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

Not Available

1991-12-31T23:59:59.000Z

273

Solar energy for heat and electricity: the potential for mitigating climate change  

E-Print Network [OSTI]

Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. Eki that powers the Earth's climate and ecosystem. Harnessing this energy for hot water and electrical power could electricity. solar hot water systems could be used to supply up to 70% of household hot water in the UK

274

Modeling of concentrating solar thermoelectric generators  

E-Print Network [OSTI]

The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable ...

Ren, Zhifeng

275

Global Energetics of Solar Flares: II. Thermal Energies  

E-Print Network [OSTI]

We present the second part of a project on the global energetics of solar flares and CMEs that includes about 400 M- and X-class flares observed with AIA/SDO during the first 3.5 years of its mission. In this Paper II we compute the differential emission measure (DEM) distribution functions and associated multi-thermal energies, using a spatially-synthesized Gaussian DEM forward-fitting method. The multi-thermal DEM function yields a significantly higher (by an average factor of $\\approx 14$), but more comprehensive (multi-)thermal energy than an isothermal energy estimate from the same AIA data. We find a statistical energy ratio of $E_{th}/E_{diss} \\approx 2\\%-40\\%$ between the multi-thermal energy $E_{th}$ and the magnetically dissipated energy $E_{diss}$, which is an order of magnitude higher than the estimates of Emslie et al.~2012. For the analyzed set of M and X-class flares we find the following physical parameter ranges: $L=10^{8.2}-10^{9.7}$ cm for the length scale of the flare areas, $T_p=10^{5.7}-...

Aschwanden, M J; Ryan, D; Caspi, A; McTiernan, J M; Warren, H P

2015-01-01T23:59:59.000Z

276

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

the DC electric energy from the solar panels or modules intosolar energy available is subject to change with irradiance, temperature, and aging of PV panelsrooftop solar panels. While the renewable energy PV

Hill, Steven Craig

2013-01-01T23:59:59.000Z

277

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

The Market Value and Cost ofSolar Photovoltaic ElectricityCosts Capacities, Global Perspectives through 2012, Bernreuter Research, Photovoltaicto the cost of solar power. 5 European Photovoltaic Industry

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

278

Tunable Electrical and Thermal Transport in Ice-Templated MultiLayer Graphene Nanocomposites  

E-Print Network [OSTI]

to electrical energy storage,1­3 thermal energy storage,4­13 and composite materials.14­21 Ice applications in thermal and electrical energy storage. Phase change thermal storage seeks to reduce building offsets in energy supply and demand.6 Thermal energy storage is also an appealing way to cool power

Maruyama, Shigeo

279

Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems  

E-Print Network [OSTI]

Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal the confidence in solar thermal energy. The so called Input/Output-Procedure is controlling the solar heat systems. The simulation model was validated with measured data and a lot of failures in 11 solar thermal

280

Ris Energy Report 5 Solar thermal 41 by the end of 2004 about 110 million m2  

E-Print Network [OSTI]

Risø Energy Report 5 Solar thermal 41 6.3.2 by the end of 2004 about 110 million m2 of solar ther be within the competence of the existing solar thermal industry. Solar thermal PETER AHM, PA ENERgy LTD- mal collectors were installed worldwide. Figure 24 il- lustrates the energy contribution from

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface  

SciTech Connect (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

282

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Shannon Moynahan, The California Solar Initiative TriumphRates Undermine Californias Solar Photovoltaic Subsidies? to the fact that solar PV in California has not been focused

Borenstein, Severin

2008-01-01T23:59:59.000Z

283

Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure)  

SciTech Connect (OSTI)

This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

Not Available

2010-10-01T23:59:59.000Z

284

Getting More Electricity out of Solar Cells | U.S. DOE Office...  

Office of Science (SC) Website

Getting More Electricity out of Solar Cells Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News Stories of Discovery &...

285

Solar-Assisted Electric Vehicle Charging Station Interim Report  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

2011-09-01T23:59:59.000Z

286

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

total energy received by todays solar panels and is beings best solar panels can convert only ~16% of solar energy to

Lim, Hyuck

2011-01-01T23:59:59.000Z

287

Coupled Thermal and Electrical Analysis of Obstructed RTGs  

SciTech Connect (OSTI)

A Radioisotope Thermoelectric Generator (RTG) with an unsymmetrically obstructed heat rejection path can have significant axial and circumferential variations in the temperatures, currents, and voltages of its thermoelectric couple network. The present paper describes a methodology for analyzing the thermal and electrical performance of such an RTG, and the development of a computer code for implementing that emthodology. The code derives coupled solutions of the RTG's thermal, thermoelectric, and electrical equations. It accounts for the Peltier effect, Ohmic heating, and the Thomson effect, and treats the electrical power produced in each couple as an effective heat sink. It satisfies the condition that all parallel couples produce the same voltage, and that all series-connected couple groups produce the same current. Finally, the paper illustrates the use of the code by applying it to the detailed analysis of the RTGs for the CRAF and Cassini missions. In each of these, there are two adjacent RTGs which are obstructed by each other and by the nearby spacecraft. The results of the analysis will be used by the spacecraft designers in selecting the location, orientation, and spacing of the two RTGs. There are two copies in the file.

Schock, Alfred; Noravian, Heros; Or, Chuen T.

1990-01-01T23:59:59.000Z

288

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network [OSTI]

N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

DeForest, Nicholas

2014-01-01T23:59:59.000Z

289

Numerical power balance and free energy loss analysis for solar cells including optical, thermodynamic, and electrical aspects  

SciTech Connect (OSTI)

A method for analyzing the power losses of solar cells is presented, supplying a complete balance of the incident power, the optical, thermodynamic, and electrical power losses and the electrical output power. The involved quantities have the dimension of a power density (units: W/m{sup 2}), which permits their direct comparison. In order to avoid the over-representation of losses arising from the ultraviolet part of the solar spectrum, a method for the analysis of the electrical free energy losses is extended to include optical losses. This extended analysis does not focus on the incident solar power of, e.g., 1000?W/m{sup 2} and does not explicitly include the thermalization losses and losses due to the generation of entropy. Instead, the usable power, i.e., the free energy or electro-chemical potential of the electron-hole pairs is set as reference value, thereby, overcoming the ambiguities of the power balance. Both methods, the power balance and the free energy loss analysis, are carried out exemplarily for a monocrystalline p-type silicon metal wrap through solar cell with passivated emitter and rear (MWT-PERC) based on optical and electrical measurements and numerical modeling. The methods give interesting insights in photovoltaic (PV) energy conversion, provide quantitative analyses of all loss mechanisms, and supply the basis for the systematic technological improvement of the device.

Greulich, Johannes, E-mail: johannes.greulich@ise.fraunhofer.de; Hffler, Hannes; Wrfel, Uli; Rein, Stefan [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-79110 Freiburg (Germany)

2013-11-28T23:59:59.000Z

290

Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor  

E-Print Network [OSTI]

/or hydrogen powered fuel cell vehicles could help to mitigate the energy supply and environmental problems black production. For solar-thermal processing, where carbon black is sold, fossil energy usageRapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor Jaimee Dahl a , Karen

291

The Thermal Control of the New Solar Telescope at Big Bear Observatory  

E-Print Network [OSTI]

The Thermal Control of the New Solar Telescope at Big Bear Observatory Angelo P. Verdonia and Carsten Denkera aNew Jersey Institute of Technology, Center for Solar-Terrestrial Research, 323 Martin Luther King Blvd, Newark, NJ 07102, US ABSTRACT We present the basic design of the THermal Control System

292

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

geo-thermal energy, ocean thermal energy, wasted heat ingeothermal energy, ocean thermal energy, wasted heat inthermal energy, geo/ocean-thermal energy, wasted heat in

Lim, Hyuck

2011-01-01T23:59:59.000Z

293

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network [OSTI]

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor

Mi, Chunting "Chris"

294

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

295

Optical device with low electrical and thermal resistance bragg reflectors  

DOE Patents [OSTI]

A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

Lear, Kevin L. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

296

Pressure drops for direct steam generation in line-focus solar thermal systems  

E-Print Network [OSTI]

Early direct steam generation prototypes include two central tower projects: a solar-powered enhanced oil recovery project called STEOR in the early 1980s (Romero 2002), and a solar tower projectPressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham

297

STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994  

SciTech Connect (OSTI)

The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

NONE

1994-12-31T23:59:59.000Z

298

Solar electricity for Africa: The case of Kenya  

SciTech Connect (OSTI)

This paper presents results of two recent World Bank efforts made in Kenya, Niger, and Cameroon to study the impact of two different renewable projects, one a Micro-Lights program involving about 500 lanterns and the second a survey of 410 households using solar electricity systems. The Micro-Lights program showed that users have distinct preferences in the style of the lamps, that they are willing to spend cash, and that they demand good quality. They may be initially satisfied, but rapidly want more from their purchases. The photoelectric system survey touched less than 1% of such households, and looked at user education, system size, satisfaction, expectations, age of system, appliances, and expectations.

Plas, R.J. van der

1997-12-01T23:59:59.000Z

299

An Evolutionary Path for Concentrating Thermal Solar Power Technologies: A New Approach for Modeling CSP Power Costs and Potential  

SciTech Connect (OSTI)

Concentrating thermal solar power (CSP) technology is a potentially competitive power generation option, particularly in arid regions where direct sunlight is abundant. We examine the potential role of CSP power plants and their contribution to carbon emissions reduction. The answers to these questions depend on the cost of electricity generated by CSP plants. Although a few studies have projected future CSP costs based on assumptions for technology advancement and the effect of economies of scale and learning curves, few studies have considered the combined effects of intermittency, solar irradiance changes by season, and diurnal and seasonal system load changes. Because the generation of a solar plant varies over a day and by season, the interactions between CSP generators and other generators in the electric system can play an important role in determining costs. In effect, CSP electricity generation cost will depend on the CSP market penetration. This paper examines this relationship and explores possible evolutionary paths for CSP technologies with and without thermal storage.

Zhang, Yabei; Smith, Steven J.

2008-05-08T23:59:59.000Z

300

Solar Storm Risks for Maine and the New England Electric Grid,  

E-Print Network [OSTI]

Solar Storm Risks for Maine and the New England Electric Grid, and Potential Protective Measures.resilientsocieties.org #12;1 EXECUTIVE SUMMARY A severe solar storm--a historical example being the Carrington Event of 1859 of the eastern United States. Severe solar storms--of the intensity of the 1921 New York Central Storm

Schrijver, Karel

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA  

E-Print Network [OSTI]

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA T, the proper configuration of a PV system depends on the knowledge of solar resource, which, although generally service. The PV-GIS approach makes it possible to enhance the spatial resolution of the solar radiation

Paris-Sud XI, Université de

302

Particle acceleration and radiation by direct electric fields in flaring complex solar active regions  

E-Print Network [OSTI]

to connect the energy re- lease process with the acceleration of electrons in solar flares, using a CA modelParticle acceleration and radiation by direct electric fields in flaring complex solar active-Meudon, 92195 Meudon Cedex, FRANCE Abstract The acceleration and radiation of solar energetic particles

Anastasiadis, Anastasios

303

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid  

E-Print Network [OSTI]

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid March 2011 voltages are nominally 4.5kv and 13 2kv The solar system must maintain voltageand 13.2kv. The solar system) or multiple sites (multiple leases, interconnect points, construction forces) Ground based, roof top (weight

Homes, Christopher C.

304

Department of Electrical Engineering Spring 2011 Automated Solar Tracking Photovoltaic Array  

E-Print Network [OSTI]

system to align a solar panel toward the sun throughout the day while capable of charging USB devices to manufacture a portable, lightweight solar panel which will maximize efficiency for outdoor enthusiastsPENNSTATE Department of Electrical Engineering Spring 2011 Automated Solar Tracking Photovoltaic

Demirel, Melik C.

305

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

306

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

solar PV power recognizing that it produces a disproportionate amount of its outputsolar power, because spatially distributed solar PV resources are not likely to have a high second-to-second correlation in output,Power from Solar PVs As with the solar PV production data, there are two conceptual approaches to valuing solar output

Borenstein, Severin

2008-01-01T23:59:59.000Z

307

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

308

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

309

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

310

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

311

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

312

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

that by turning the solar panels more towards the west,peak production from the solar panels can be more closelyproduction from these solar panels over the two- year period

Borenstein, Severin

2008-01-01T23:59:59.000Z

313

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

16.500 KW and Larger. General Electric Company Reprint GER-communication with General Electric Company. Power Genera-New York, (1960). General Electric Company, Steam Turbine-

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

314

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

SciTech Connect (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

315

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Renew- ables, The Electricity Journal, Volume 14 (2001),from Real-Time Retail Electricity Pricing: Bill VolatilityReal- Time Retail Electricity Pricing, Energy Journal,28(

Borenstein, Severin

2008-01-01T23:59:59.000Z

316

An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization  

SciTech Connect (OSTI)

This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

Burch, J.; Thomas, K.E.

1998-01-01T23:59:59.000Z

317

Reversible temperature regulation of electrical and thermal conductivity using liquidsolid phase transitions  

E-Print Network [OSTI]

Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce ...

Zheng, Ruiting

318

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

density, making direct thermal energy storage methods, e.g.reduced. Conventional thermal energy harvesting and storageharvesting, storage, and utilization of thermal energy has

Lim, Hyuck

2011-01-01T23:59:59.000Z

319

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Thermally-Chargeable Supercapacitor Fluctuating Low-GradeThermally-Chargeable Supercapacitor for Fluctuating Low-Thermally-Chargeable Supercapacitor for Fluctuating Low-

Lim, Hyuck

2011-01-01T23:59:59.000Z

320

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

the portion of thermal energy that can be converted toof high-performance thermal energy harvesting systems, butreferred to as the thermal energy from low- temperature heat

Lim, Hyuck

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

which, when used as a topping cycle in concentrated solar thermal electricity generation, can enable system efficiencies in excess of 50%. Innovation: Through the novel...

322

Solar Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

323

Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore  

E-Print Network [OSTI]

Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

Andrepont, J. S.

2014-01-01T23:59:59.000Z

324

Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites  

Broader source: Energy.gov [DOE]

Work on optimizing electrical and thermal transport properties of n-type skutterudites via a multiple-element-void-filling approach is presented.

325

The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993  

SciTech Connect (OSTI)

The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

Menicucci, D.F.

1994-03-01T23:59:59.000Z

326

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

327

Collisional Thermalization of Hydrogen and Helium in Solar Wind Plasma  

E-Print Network [OSTI]

In situ observations of the solar wind frequently show the temperature of $\\alpha$-particles (fully ionized helium), $T_\\alpha$, to significantly differ from that of protons (ionized hydrogen), $T_p$. Many heating processes in the plasma act preferentially on $\\alpha$-particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the $\\textit{Wind}$ spacecraft's Faraday cups reveal that, at $r=1.0\\ \\textrm{AU}$ from the Sun, the observed values of the $\\alpha$-proton temperature ratio, $\\theta_{\\alpha p} \\equiv T_\\alpha\\,/\\,T_p$ has a complex, bimodal distribution. This study applied a simple model for the radial evolution of $\\theta_{\\alpha p}$ to these data to compute expected values of $\\theta_{\\alpha p}$ at $r=0.1\\ \\textrm{AU}$. These inferred $\\theta_{\\alpha p}$-values have no trace of the bimodality seen in the $\\theta_{\\alpha p}$-values measured at $r=1.0\\ \\textrm{AU}$ but are instead consistent with the actions of the known mechanisms for $\\alpha$-particle p...

Maruca, Bennett A; Sorriso-Valvo, Luca; Kasper, Justin C; Stevens, Michael L

2013-01-01T23:59:59.000Z

328

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect (OSTI)

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

329

Waverly Light and Power- Residential Solar Thermal Rebates  

Broader source: Energy.gov [DOE]

Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

330

25 kWe solar thermal stirling hydraulic engine system: Final conceptual design report  

SciTech Connect (OSTI)

This report documents the conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to the 11-meter Test Bed Concentrator at Sandia National Laboratories. A manufacturing cost assessment for 10,000 units per year was made by Pioneer Engineering and Manufacturing. The design meets all program objectives including a 60,000-hr design life, dynamic balancing, fully automated control, >33.3% overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs of $300/kW. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high-pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk. The engine design is based on a highly refined Stirling hydraulic engine developed over 20 years as a fully implantable artificial heart power source. 4 refs., 19 figs., 3 tabs.

Not Available

1988-01-01T23:59:59.000Z

331

Monitoring solar-thermal systems: An outline of methods and procedures  

SciTech Connect (OSTI)

This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1994-04-01T23:59:59.000Z

332

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications  

E-Print Network [OSTI]

The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid...

Shin, Donghyun

2012-10-19T23:59:59.000Z

333

Modeling the solar thermal receiver for the CSPonD Project  

E-Print Network [OSTI]

The objective was to create an accurate steady state thermal model of a molten salt receiver prototype with a horizontal divider plate in the molten salt for Concentrated Solar Power on Demand (CSPonD). The purpose of the ...

Rees, Jennifer A. (Jennifer Anne)

2011-01-01T23:59:59.000Z

334

Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting  

E-Print Network [OSTI]

In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. ...

Noone, Corey J. (Corey James)

2011-01-01T23:59:59.000Z

335

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network [OSTI]

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

336

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

high cost of power from solar photovoltaic (PV) panels hassolar panels can be more closely synchronized with system demand, but at a costcost of the solar PV installation is equivalent to purchasing each MWh over the life of the panels

Borenstein, Severin

2008-01-01T23:59:59.000Z

337

Oncor Electric Delivery- Solar Photovoltaic Standard Offer Program  

Broader source: Energy.gov [DOE]

The 2013 Oncor Solar Photovoltaic Standard Offer Program Guidelines are now [https://www.oncoreepm.com/SolarPV.aspx available]. The application period for both the residential and non-residential...

338

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Solar Photovoltaic Cells, Center for the Study of Energy Markets Working Paper WP-142, UniversitySolar Photovoltaic Subsidies? Center for the Study of Energy Markets Working Paper #172, Universitysolar PV today positive. Director, University of California Energy

Borenstein, Severin

2008-01-01T23:59:59.000Z

339

Recent National Solar Thermal Test Facility activities, in partnership with industry  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

340

S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1  

SciTech Connect (OSTI)

Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

Not Available

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

US energy flow trends for 2009. performed in 2002, energy usageU.S. Census Bureau has observed an average growth of 3 million people per year), energy usage

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

342

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

756 13. Richmond, P. E. The Peltier effect. 1966 Phys. Educ.5 2.1.2. Peltier Effect . 6 2.1.3.the Seebeck Effect, Peltier Effect, and Thomson Effect,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

343

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

a heat engine, such as a steam turbine or sterling enginethese concentrations, a steam turbine achieves roughly 25%ratio can run a steam turbine at 35-50% efficiency, with

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

344

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids  

E-Print Network [OSTI]

solar thermal, stationary batteries, thermal storage, andThe model allows the EV batteries to transfer electricity toPV, and stationary batteries as options, e) an everything

Stadler, Michael

2010-01-01T23:59:59.000Z

345

Electrical Conductivity, Near-Infrared Absorption, and Thermal Lens Spectroscopic Studies of Percolation of Microemulsions  

E-Print Network [OSTI]

Electrical Conductivity, Near-Infrared Absorption, and Thermal Lens Spectroscopic Studies studied below and above the percolation thresholds by electrical conductivity, near-infrared absorption. In this work the structure of microemulsions was investigated by using the near-IR absorption and thermal lens

Reid, Scott A.

346

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

347

Modelling the convective flow in solar thermal receivers K.C. Yeh; G. Hughes & K. Lovegrove  

E-Print Network [OSTI]

value energy conversions such as heat engine cycles or chemical process to be carried outModelling the convective flow in solar thermal receivers K.C. Yeh; G. Hughes & K. Lovegrove, Canberra AUSTRALIA E-mail: u3370739@anu.edu.au The natural convective flow inside a concentrating solar

348

The development of a solar thermal water purification, heating, and power generation system: A case study.  

E-Print Network [OSTI]

The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

Wu, Mingshen

349

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network [OSTI]

Quality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch different solar systems. The simulation model was validated with measured data. The deviation between meas * Tel. +49 (0)5151-999503, Fax: +49 (0)5151-999500, Email: paerisch@isfh.de Abstract Input/Output

350

Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County  

SciTech Connect (OSTI)

The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

Kuver, Walt

2009-11-10T23:59:59.000Z

351

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents [OSTI]

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

1997-12-02T23:59:59.000Z

352

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents [OSTI]

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

Christensen, Craig B. (Boulder, CO); Kutscher, Charles F. (Golden, CO); Gawlik, Keith M. (Boulder, CO)

1997-01-01T23:59:59.000Z

353

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network [OSTI]

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

354

Sales and Use Tax Exemption for Residential Solar and Wind Electricity Sales (Maryland)  

Broader source: Energy.gov [DOE]

In May 2011 Maryland enacted legislation providing a sales and use tax exemption for sales of electricity from qualifying solar energy and residential wind energy equipment to residential customers...

355

Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect  

E-Print Network [OSTI]

Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field, University of California, Berkeley, California 94720, United States Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States § Department of Applied Physics

Javey, Ali

356

Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling  

E-Print Network [OSTI]

Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling Michael G of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Atwater, Harry

357

Clay Electric Cooperative, Inc- Energy Smart Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per...

358

High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes  

SciTech Connect (OSTI)

This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

Morris, J. F.

1985-03-19T23:59:59.000Z

359

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Chargeable Double-Layer Supercapacitors to be submitted toon Thermally-Chargeable Double- Layer Supercapacitors 2.1.of Thermally-Chargeable Supercapacitors in Various Solvents

Lim, Hyuck

2011-01-01T23:59:59.000Z

360

Midtemperature Solar Systems Test Facility predictions for thermal performance of the Suntec solar collector with heat-formed glass reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions are presented for the Suntec solar collector, with heat-formed glass reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array  

E-Print Network [OSTI]

Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire, and will aid in the design and optimization of nanowire-based systems for solar energy-conversion applications, and the photoelectrochemical energy-conversion properties of GaAs nanowire arrays were evaluated in contact with one

Zhou, Chongwu

362

Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells  

E-Print Network [OSTI]

, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active for electron holography of a thin film solar cell using conventional lift-out specimen preparation and a homeFocused ion beam specimen preparation for electron holography of electrically biased thin film

Dunin-Borkowski, Rafal E.

363

Thermal control system and method for a passive solar storage wall  

DOE Patents [OSTI]

The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, Joseph K. E. (Westminister, CO)

1984-01-01T23:59:59.000Z

364

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network [OSTI]

to achieve further energy consumption reductions. To accomplish this, the F- Chart program was used for the solar thermal system analysis and the PV F-Chart program for the solar photovoltaic (PV) system analysis. Authors show how DOE-2.1e simulation... Time series plots of space heating and service hot water loads from SYSTEMS and PLANT simulation runs Due to the fact that the solar thermal systems analysis program, F-Chart, takes into account the system efficiencies in its loads calculation...

Cho, S.; Haberl, J.

365

Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos  

E-Print Network [OSTI]

The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

1998-11-24T23:59:59.000Z

366

Thermodynamic Analysis And Simulation Of A Solar Thermal Power System.  

E-Print Network [OSTI]

??Solar energy is a virtually inexhaustible energy resource, and thus, has great potential in helping meet many of our future energy requirements. Current technology used (more)

Harith, Akila

2012-01-01T23:59:59.000Z

367

Wind Issues in Solar Thermal Performance Ratings: Preprint  

SciTech Connect (OSTI)

We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

Burch, J.; Casey, R.

2009-04-01T23:59:59.000Z

368

Electrical-Thermal Co-analysis for Power Delivery Networks in 3D System Integration  

E-Print Network [OSTI]

Electrical-Thermal Co-analysis for Power Delivery Networks in 3D System Integration Jianyong Xie1 Rubin3 1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 2 IBM Package Design, Development, and Electrical Services Group, Poughkeepsie, N.Y. 12601 3 IBM T

Swaminathan, Madhavan

369

Midtemperature solar systems test facility predictions for thermal performance based on test data: Sun-Heet nontracking solar collector  

SciTech Connect (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Sun-Heet nontracking, line-focusing parabolic trough collector at five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

370

Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar  

E-Print Network [OSTI]

and moist air for thermal storage of solar energy: global performance Benoit Michela, *, Nathalie Mazeta-gas reaction, hydration, thermal storage, seasonal storage, solar energy * Corresponding author: E-mail: mazet Der energy density of the reactor, Jm -3 thermal conductivity, Wm -1 .K -1 G reactive gas

Paris-Sud XI, Universit de

371

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules  

E-Print Network [OSTI]

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves are accounted for in their ef fects on the mass, momentum and energy fluxes. Also, besides thermal exchange

Connolly Jr, Harold C.

372

New Ulm Public Utilities- Solar Electric Rebate Program  

Broader source: Energy.gov [DOE]

New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

373

Redding Electric- Earth Advantage Rebate Program  

Broader source: Energy.gov [DOE]

The Earth Advantage Rebate Program was designed to offer rebates to residential and business customers of Redding Electric Utility (REU) for solar PV, solar thermal, and geothermal heat pump...

374

A.W. Blakers, 'Solar and Wind Electricity in Australia', Australian Journal of Environmental Management, Vol 7, pp 223-236, 2000 SOLAR AND WIND ELECTRICITY IN AUSTRALIA  

E-Print Network [OSTI]

environmental impact associated with the construction of what amounts to a coastal hydro scheme. Solar energy.blakers@anu.edu.au Abstract This paper examines the renewable generation of electricity in Australia from photovoltaics (PV environmental impacts even when deployed on very large scales. They are the only fully sustainable technologies

375

Solar thermal powered desalination: membrane versus distillation technologies  

E-Print Network [OSTI]

, in terms of the volume of water produced for the energy consumed. The two most commonly encountered. The daily desalinated water output per square metre of solar collector area is estimated for a number in remediation of dryland salinity, a critical review of the literature on medium to large scale solar driven (or

376

Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)  

SciTech Connect (OSTI)

Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

Not Available

2014-11-01T23:59:59.000Z

377

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Introduction  

E-Print Network [OSTI]

of Delaware, ECE Spring 2008 C. Honsberg Sources of energy Geothermal: Location of resource Wind: Site issues · Importance of energy issue · Impact of photovoltaic power · Electricity generation overview · Why use solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Importance of the energy problem

Honsberg, Christiana

378

ELEG620: Solar Electric Systems University of Delaware Spring 2008 1 University of Delaware  

E-Print Network [OSTI]

Department of Electrical and Computer Engineering ELEG620: Solar Electric Systems Photovoltaic System Design-alone photovoltaic system. Working in groups, you will: · Decide on a load and design goal for your system; · Write system is to determine the type and size of the system. You are given substantial latitude in choosing

Honsberg, Christiana

379

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect (OSTI)

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

380

Effect of internal electric field on InAs/GaAs quantum dot solar cells  

SciTech Connect (OSTI)

We studied time-resolved carrier recombination in InAs/GaAs quantum dot (QD) solar cells. The electric field in a p-i-n diode structure spatially separates photoexcited carriers in QDs, strongly affecting the conversion efficiency of intermediate-band solar cells. The radiative decay lifetime is dramatically reduced in a strong electric field (193?kV/cm) by efficient recombination due to strong carrier localization in each QD and significant tunneling-assisted electron escape. Conversely, an electric field of the order of 10?kV/cm maintains electronic coupling in the stacked QDs and diminishes tunneling-assisted electron escape.

Kasamatsu, Naofumi; Kada, Tomoyuki; Hasegawa, Aiko; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

2014-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of an Approach to Compare the `Value' of Electrical and Thermal Output from a Domestic PV/Thermal System  

E-Print Network [OSTI]

"Mandatory Renewable Energy Target" in Australia allows a unit of energy as solar hot water to be counted PV/Thermal System J.S. Coventry and K. Lovegrove Centre for Sustainable Energy Systems Australian National University Canberra 0200 ACT Australia E-mail: joe@faceng.anu.edu.au Abstract When considering

382

Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)  

SciTech Connect (OSTI)

Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

Not Available

2014-09-01T23:59:59.000Z

383

Solar thermal collector system modeling and testing for novel solar cooker  

E-Print Network [OSTI]

Solar cookers are aimed at reducing pollution and desertification in the developing world. However, they are often disregarded as they do not give users the ability to cook after daylight hours. The Wilson solar cooker is ...

Foley, Brian, S.B. (Brian M.). Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

384

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

385

Adsorption at the nanoparticle interface for increased thermal capacity in solar thermal systems  

E-Print Network [OSTI]

In concentrated solar power (CSP) systems, high temperature heat transfer fluids (HTFs) are responsible for collecting energy from the sun at the solar receiver and transporting it to the turbine where steam is produced ...

Thoms, Matthew W

2012-01-01T23:59:59.000Z

386

Solar-thermal hybridization of Advanced Zero Emissions Power Plants  

E-Print Network [OSTI]

Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

El Khaja, Ragheb Mohamad Fawaz

2012-01-01T23:59:59.000Z

387

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

388

Green Energy Ohio- GEO Solar Thermal Rebate Program  

Broader source: Energy.gov [DOE]

With funding from The Sierra Club, Green Energy Ohio (GEO) is offering rebates on residential properties in Ohio for solar water heating systems purchased after April 1, 2009. The rebates are...

389

NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

Not Available

2014-06-01T23:59:59.000Z

390

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network [OSTI]

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

391

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

the Performance of Steam Turbine Generators 16.500 KWPeriod, hours Steam Turbine Beat Rate, Discharging, !! WGeneral Electric Company, Steam Turbine-Generator Products

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

392

Electrically-gated near-field radiative thermal transistor  

E-Print Network [OSTI]

In this work, we propose a near-field radiative thermal transistor made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. Thick SiC plates serve as the thermal "source" and "drain", while graphene sheets function as the "gate" to modulate the near-field photon tunneling by tuning chemical potential with applied voltage biases symmetrically or asymmetrically. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials, which can tune the coupling between graphene plasmon across the vacuum gap. Thermal modulation, switching, and amplification, which are the key features required for a thermal transistor, are theoretically realized and analyzed. This work will pave the way to active thermal management, thermal circuits, and thermal computing.

Yang, Yue

2015-01-01T23:59:59.000Z

393

Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store  

SciTech Connect (OSTI)

A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

Agyenim, Francis; Knight, Ian; Rhodes, Michael [The Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff University, Cardiff, CF10 3NB Wales (United Kingdom)

2010-05-15T23:59:59.000Z

394

Gainesville Regional Utilities- Solar-Electric (PV) System Rebate Program  

Broader source: Energy.gov [DOE]

'''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of...

395

How Three Retail Buyers Source Large-Scale Solar Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

396

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

397

Community Development Using Solar Energy to Produce Electricity for Ohioans  

E-Print Network [OSTI]

Because it is a virtually unlimited, clean, and renewable resource, the sun has the potential to provide an important source of energy to help power our way of life. Interest in solar energy is growing among

Eric Romich

398

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

intervention. The huge subsidies that fossil fuel companiessubsidies or recognition of environmental externalities from fossil fuels)subsidies targeted speci?cally at installation of solar PV. The fact that fossil fuel

Borenstein, Severin

2008-01-01T23:59:59.000Z

399

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

SciTech Connect (OSTI)

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

400

Energy Partitions and Evolution in a Purely Thermal Solar Flare  

E-Print Network [OSTI]

This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

Fleishman, Gregory D; Gary, Dale E

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Linn County Rural Electric Cooperative- Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial,...

402

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect (OSTI)

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

403

Thermodynamics -2 A cogeneration plant (plant which provides both electricity and thermal energy) executes a cycle  

E-Print Network [OSTI]

Thermodynamics - 2 A cogeneration plant (plant which provides both electricity and thermal energy] Determine the rate of heat addition in the steam generator. Now consider an ideal, reversible cogeneration 1 2 3 45 6 Cogeneration Plant Boundary #12;

Virginia Tech

404

Mixed ionic and electronic conducting electrode studies for an alkali metal thermal to electric converter  

E-Print Network [OSTI]

This research focuses on preparation, kinetics, and performance studies of mixed ionic and electronic conducting electrodes (MIEE) applied in an alkali metal thermal to electric converter (AMTEC). Two types of MIEE, metal/sodium titanate and metal...

Guo, Yuyan

2009-05-15T23:59:59.000Z

405

Thermal and electrical conduction in the compaction direction of exfoliated graphite  

E-Print Network [OSTI]

Thermal and electrical conduction in the compaction direction of exfoliated graphite in the compaction direction of graphite-flake-based exfoliated graphite have been decoupled. The compact Exfoliated graphite is elongated graphite particles obtained by the exfoliation (typically involving rapid

Chung, Deborah D.L.

406

Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma  

E-Print Network [OSTI]

In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [Verma et al., 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electrons thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of Braginskii. In this paper we have also estimated the eddy turbulent viscosity. 1 1

Mahendra K. Verma

2008-01-01T23:59:59.000Z

407

Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma  

E-Print Network [OSTI]

In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.

Mahendra K. Verma

1995-09-05T23:59:59.000Z

408

SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists  

SciTech Connect (OSTI)

The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

Not Available

1980-05-01T23:59:59.000Z

409

Electrical and thermal conductivity of low temperature CVD graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and thermal conductivity of low temperature CVD graphene: the effect of disorder This article has been downloaded from IOPscience. Please scroll down to see the full text article....

410

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofsIncentives Jump to:

411

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network [OSTI]

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

412

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

as Organic Rankine Cycle (ORC) mahines, Sterling engines,Organic Rankine Cycle (ORC) system or Sterling Engine (SE)an organic Rankine cycle (ORC) system generates electricity

Lim, Hyuck

2011-01-01T23:59:59.000Z

413

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

414

Method for transferring thermal energy and electrical current in thin-film electrochemical cells  

DOE Patents [OSTI]

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2003-05-27T23:59:59.000Z

415

Solar cooking : the development of a thermal battery  

E-Print Network [OSTI]

There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to cook food. However most people around the world like to cook large meals at night, when the ...

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

416

Electrical and Thermal Conductivity of Ge/Si Quantum Dot Superlattices  

E-Print Network [OSTI]

. Good carrier mobility and electric con- ductivity are important for thermoelectric materials where-Riverside, Riverside, California 92521, USA Recently proposed thermoelectric applications of quantum dot superlattices made of different material systems depend crucially on the values of the electrical and thermal

417

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Exhaust (CO 2 ) Grid electricity Cogen Heat Natural gas Airutility grid, 2) re-use of thermal energy waste heat forGrid electricity Exhaust (CO 2 ) Recycled Reformate Natural gas Air Water H2 Purifier Source: Weinert, 2005 Cogen Heat

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

418

Thermal conductivity, electrical resistivity, and permeability of saturated soils at various porosities  

E-Print Network [OSTI]

of Ottawa Sand . 4. Thermal Conductivity Data Analysis 5. Thermal Conductivity of Reference Materials 6. DC Resistivity Data with Plate Electrode System for Kaolinite at Porosity of 49% PAGE 48 52 54 66 71 AC Resistivity Data for Kaolinite... THERMAL CONDUCTIVITY, ELECTRICAL RESISTIVITY, AND PERMEABILITY OF SATURATED SOILS AT VARIOUS POROSITIES A Thesis by JAMES KEITH ENDERBY Submitted to the Graduate College of Texas ARM University in Partial fulfillment of the requirement...

Enderby, James Keith

2012-06-07T23:59:59.000Z

419

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

the produc- tion of solar PV panels at hourly prices is muchsolar PV installation is equivalent to purchasing each MWh over the life of the panels at a constant real pricesolar panels over the two- year period are worth an average of $61.11/MWh when valued at the hourly systemwide price

Borenstein, Severin

2008-01-01T23:59:59.000Z

420

OLADE-Solar Thermal World Portal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |AgnyFostering

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation

422

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents [OSTI]

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

423

Jay Apt, Paulina Jaramillo, and Stephen Rose Carnegie Mellon Electricity Industry Center (CEIC)'s RenewElec Project  

E-Print Network [OSTI]

electric generators. 9 · Solar: ­ Photovoltaic (solar panels) ­ Solar thermal (concentrated solar power at 15-20 cents per kWh. · If installed prices fall 40%, PV can match the current price of wind) supporting wind projects and the investment tax credits (ITC) supporting solar projects. Electric Generation

McGaughey, Alan

424

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

425

Solar Thermal Policy in the U.S.: A Review of Best Practices  

E-Print Network [OSTI]

Solar Thermal Policy in the U.S.: A Review of Best Practices in Leading States Renewable Energy Applications for Delaware Yearly (READY) Center for Energy and Environmental Policy University of Delaware Byrne, Director, CEEP Center for Energy and Environmental Policy University of Delaware Newark, DE 19716

Delaware, University of

426

Thermal stability of nano-structured selective emitters for thermophotovoltaic systems  

E-Print Network [OSTI]

A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of materials and devices at high operational temperatures. This study focuses on the thermal stability of tungsten selective ...

Lee, Heon Ju, 1977-

2012-01-01T23:59:59.000Z

427

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

solar insolation and the solar panel characteristics. Theinsolation on the assigned solar panel for a clear sky wassolar insolation on the solar panel varies with the change

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

428

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWindInternationalbyNRELPresentedNational

429

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in CSP Images &

430

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in CSP Images

431

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in CSP

432

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in CSPParabolic

433

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, in

434

Sandia National Laboratories: National Solar Thermal Testing Facility Beam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012, inProfiling

435

Clean Energy State Program Guide: Mainstreaming Solar Electricity Strategies for States to Build Local Markets  

Broader source: Energy.gov [DOE]

A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms, map outputs, and development costs for each map.

436

Effects of Highly Non-uniform Illumination Distribution on Electrical Performance of Solar Cells  

E-Print Network [OSTI]

Effects of Highly Non-uniform Illumination Distribution on Electrical Performance of Solar Cells E.T.Franklin, J.S Coventry Centre for Sustainable Energy Systems Australian National University Canberra ACT 0200 AUSTRALIA Telephone: +61 02 6125 3976 Facsimile: +61 02 6125 0506 E-mail: evan@faceng.anu.edu.au Abstract

437

Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space  

SciTech Connect (OSTI)

Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated.

Noble, R.J.

1998-08-01T23:59:59.000Z

438

Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-06-01T23:59:59.000Z

439

Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-05-01T23:59:59.000Z

440

Thermal-to-electric energy conversion using ferroelectric film capacitors  

SciTech Connect (OSTI)

The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5??m) Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100?K to 350?K under different electric fields up to 80?V/?m, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of 15?K around room temperature and electric field about 40?V/?m, the harvested energy was estimated as 30 mJ/cm{sup 3}. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I. [Saint-Petersburg State Electrotechnical University, 5 Professor Popov Street, St-Petersburg 197376 (Russian Federation)

2014-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar Thermal Technologies Available for Licensing - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmartPortal Thermal Site

442

Midtemperature solar systems test facility predictions for thermal performance based on test data: AAI solar collector with pressure-formed glass reflector surface  

SciTech Connect (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhance oil recovery applications. The thermal performance predictions for the AAI solar line-focusing slat-type collector for five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

443

Simultaneous Manipulation of Electric and Thermal Fields via Combination of Passive and Active Schemes  

E-Print Network [OSTI]

Increasing attention has been focused on the invisibility cloak due to its novel concept for manipulation of physical field. However, it is usually realized by single scheme (namely passive or active scheme) and limited in a single field. Here, we proposed a general method to achieve simultaneous manipulation of multi-physics field via combination of passive and active schemes. Experimentally, this method was demonstrated by simultaneous manipulation of electric field and thermal field. Firstly, a device was designed to simultaneously behave as electric and thermal invisibility cloak. Secondly, another device was demonstrated to simultaneously behave as electric invisibility cloak and thermal concentrator. The experimental results agree well with the simulated ones, thus confirming the feasibility of our method. Our method can also be extended to the other multi-physics fields, which would create much more freedom to design of new system and might enable new potential application in broad areas.

Lan, Chuwen; Zhou, Ji

2015-01-01T23:59:59.000Z

444

Thermal performance simulation of a solar cavity receiver under windy conditions  

SciTech Connect (OSTI)

Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle {alpha} = 90 ). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind. (author)

Fang, J.B.; Wei, J.J.; Dong, X.W.; Wang, Y.S. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

2011-01-15T23:59:59.000Z

445

Solar Power: Using Photovoltaics to Preserve California's Electricity Capacity Reserves  

SciTech Connect (OSTI)

The California Power Authority (CPA) is committed to increasing the use of renewable energy supplies--such as photovoltaics and wind--as a hedge against price fluctuations of electricity and natural gas. The CPA wants to own and operate an adequate supply of reserve generation that: - Can be deployed quickly in response to severe summer peak loads, unexpected loss of base and intermediate generation units, and failure of critical transmission facilities; - Will minimize the reliance on spot market purchases during periods when the State is most vulnerable to price gouging from private generators.

Herig, C..

2001-09-01T23:59:59.000Z

446

Multi-scale electrical and thermal properties of aligned multi-walled carbon nanotubes and their composites  

E-Print Network [OSTI]

Carbon nanotubes (CNTs) are a potential new component to be incorporated into existing aerospace structural composites for multi-functional (mechanical, electrical, thermal, etc.) property enhancement and tailoring. ...

Yamamoto, Namiko

2011-01-01T23:59:59.000Z

447

SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY  

E-Print Network [OSTI]

SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY Sustainable Energy Opportunities, Options are being developed including biomass, geothermal, hydropower, ocean thermal energy conversion, solar electric, solar thermal, and wind. However, such aspects as low energy density, siting, and temporal

448

Hybrid Photovoltaic/Thermal Systems with a Solar-Assisted Heat Pump  

SciTech Connect (OSTI)

An outline of possibilities for effective use of PV/T collectors with a Solar Assisted Heat Pump is given. A quantitative analysis of the performance and cost of the various configurations as a function of regional climates, using up-to-date results from solar heat pump and PV/T collector studies, will be required for more definitive assessment; and it is recommended that these be undertaken in the PV/T Program. Particular attention should be paid to development of high performance PV/T collectors, matching of heat pump electrical system to PV array and power conditioning characteristics, and optimization of storage options for cost effectiveness and utility impact.

Kush, E.A.

1980-01-01T23:59:59.000Z

449

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222C) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500C, rather than the current 400C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank direct system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank indirect system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

Reddy, Ramana G. [The University of Alabama] [The University of Alabama

2013-10-23T23:59:59.000Z

450

Parametric studies and optimisation of pumped thermal electricity storage  

E-Print Network [OSTI]

(T2 and T4) are fixed, 38 instead of fixing T1 and T3, then variation of the pressure ratio gives trends similar to those observed for gas 39 turbine cycles for which there are optimum pressure ratios, as shown in Fig. 4(b). The optimum pressure 40... t , where 28 Dh is the cylinder mean hydraulic diameter and ?t is the mean thermal diffusivity of the gas. Based on the 29 dimensions and conditions listed in Tables 2 and 3, the Peclet number for the hot cylinder is 34 000, 30 suggesting an efficiency loss...

McTigue, Joshua; White, Alexander; Markides, Christos N.

2014-09-11T23:59:59.000Z

451

Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage  

SciTech Connect (OSTI)

At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

Denholm, P.; Mehos, M.

2011-11-01T23:59:59.000Z

452

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network [OSTI]

et al. , April 1975. 4. Solar Thermal Conversion Missionof.Several Central Reveiver Solar Thermal Power Plant Designterm solar energy are: Included solar thermal conversion to

Davidson, M.

2010-01-01T23:59:59.000Z

453

A review of test results on parabolic dish solar thermal power modules with dish-mounted rankine engines and for production of process steam  

SciTech Connect (OSTI)

This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

Jaffe, L.D.

1988-11-01T23:59:59.000Z

454

Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares  

E-Print Network [OSTI]

The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

2007-01-12T23:59:59.000Z

455

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

456

Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint  

SciTech Connect (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

2011-08-01T23:59:59.000Z

457

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network [OSTI]

-flexible with respect to the source of thermal energy and unprocessed waste heat can be harvested for CHP purposes for residential solar generation or on a small commercial building scale. The Stirling engine is a key component

Sanders, Seth

458

Magnetic, electric and thermal properties of cobalt ferrite nanoparticles , N. Mlikia  

E-Print Network [OSTI]

1 Magnetic, electric and thermal properties of cobalt ferrite nanoparticles L.Ajroudia , N. Mlikia to occupy tetrahedral sites, contrary to what occurs in bulk ferrites. The nanopowders display a semi constant is significantly higher for these nanoparticles than for bulk ferrites. Co1.8Fe1.2O4 hal-01053683

Paris-Sud XI, Université de

459

ANALYTIC CRITERIA FOR THE MECHANICAL AND THERMAL STABILITY OF MAGNETIC STARS WITH FINITE ELECTRICAL CONDUCTIVITY  

E-Print Network [OSTI]

ANALYTIC CRITERIA FOR THE MECHANICAL AND THERMAL STABILITY OF MAGNETIC STARS WITH FINITE ELECTRICAL in the envelope. This physical complication also affects the interpretation of the RR Lyrae stars and other cool stars, the destabilized envelope is mostly radiative and convection probably plays only a small role

460

HeatProbe: A Thermal-based Power Meter for Accounting Disaggregated Electricity Usage  

E-Print Network [OSTI]

HeatProbe: A Thermal-based Power Meter for Accounting Disaggregated Electricity Usage Bo-Jhang Ho1 Technology Innovation, Academia Sinica 128, Sec. 2, Academia Rd., Taipei 115, Taiwan {cwyou, mschen}@citi.sinica.edu.tw ABSTRACT To promote energy-saving behavior, disaggregating elec- tricity usage is critical for increasing

Ouhyoung, Ming

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

IMPACT OF THERMAL EFFLUENT FROM A STEAM-ELECTRIC STATION ON A MARSHLAND  

E-Print Network [OSTI]

IMPACT OF THERMAL EFFLUENT FROM A STEAM-ELECTRIC STATION ON A MARSHLAND NURSERY AREA DURING THE HOT the hot season from three similar marshland creeks situated at various distances from a steam for condenser cooling by power plants in le. V. Whitney Marine Laboratory ofUniversity ofFlorida at Marineland

462

Thermal and electrical properties of porphyrin derivatives and their relevance for molecule interferometry  

E-Print Network [OSTI]

of thermal and electrical properties for two porphyrin derivatives. They determine their sublimation enthalpy in physics and chemistry.1 They are of interest because of their numerous potential applications from of the molecules at 650 K. II. MOLECULAR SUBLIMATION ENTHALPIES In order to determine the sublimation properties

463

Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint  

SciTech Connect (OSTI)

Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

2010-12-01T23:59:59.000Z

464

ENERGY-SPECIFIC SOLAR RADIATION DATA FROM MSG: CURRENT STATUS OF THE HELIOSAT-3 PROJECT  

E-Print Network [OSTI]

ENERGY-SPECIFIC SOLAR RADIATION DATA FROM MSG: CURRENT STATUS OF THE HELIOSAT-3 PROJECT Marion Solar energy technologies such as photovoltaics, solar thermal power plants, passive solar heating and operating of solar energy systems and as basis data set for electricity load forecasting. Both long term

Heinemann, Detlev

465

The Thermal Environment of the Fiber Glass Dome for the New Solar Telescope at Big Bear Solar Observatory  

E-Print Network [OSTI]

The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5 degree Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

A. P. Verdoni; C. Denker; J. R. Varsik; S. Shumko; J. Nenow; R. Coulter

2007-08-04T23:59:59.000Z

466

AET Solar formerly solar division of GGAM Electrical Services | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Logo:UseAEE SolarAES

467

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

SciTech Connect (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

468

SunShot Vision Study: A Comprehensive Analysis of the Potential for U.S. Solar Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

The SunShot Vision Study provides the most comprehensive assessment to date of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades.

Not Available

2012-06-01T23:59:59.000Z

469

3/5/2014 TinyMicro Wind Turbines Generate Electricity| New Energyand Fuel http://newenergyandfuel.com/http:/newenergyandfuel/com/2014/01/16/tiny-micro-wind-turbines-generate-electricity/ 1/12  

E-Print Network [OSTI]

Off Topic Plans Politics Power Units Fuel Cells Hybrid Electric Piezoelectrics Solar Artificial Photosynthesis Solar Panels Space Based Solar Thermal Solar Wind Power Storage Batteries Super Capacitors Thermal.W. Styles Energy Outlook Green Biz Green Car Congress Maria Energia Marketing Green MIT's Technology Review

Chiao, Jung-Chih

470

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing  

E-Print Network [OSTI]

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function light to pass through to the cell's active layers. Until recently, TCOs were seen as a necessary

471

Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells  

E-Print Network [OSTI]

Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells A a b s t r a c ta r t i c l e i n f o Available online xxxx Keywords: Solar cells CdCl2 CdTe Thin absorbers Due to its high scalability and low production cost, CdTe solar cells have shown a very strong

Romeo, Alessandro

472

Spin-dependent thermal and electrical transport in a spin-valve system Zheng-Chuan Wang,1  

E-Print Network [OSTI]

Spin-dependent thermal and electrical transport in a spin-valve system Zheng-Chuan Wang,1 Gang Su,1 governed by thermal processes at high temperature. The so-called spin-valve phenomenon is clearly uncovered, the quantum size effect on the thermal conduc- tance and the Peltier coefficient,2 the diffusive thermopower

Gao, Song

473

Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation  

SciTech Connect (OSTI)

This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

Qui, Songgang [Temple University] [Temple University; Galbraith, Ross [Infinia] [Infinia

2013-01-23T23:59:59.000Z

474

Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power  

E-Print Network [OSTI]

Electric power may, in principle, be generated in a highly efficient manner from heat created by focused solar irradiation, chemical combustion, or nuclear decay by means of thermionic energy conversion. As the conversion efficiency of the thermionic process tends to be degraded by electron space charges, the efficiencies of thermionic generators have amounted to only a fraction of those fundamentally possible. We show that this space-charge problem can be resolved by shaping the electric potential distribution of the converter such that the static electron space-charge clouds are transformed into an output current. Although the technical development of practical generators will require further substantial efforts, we conclude that a highly efficient transformation of heat to electric power may well be achieved.

Meir, S; Geballe, T H; Mannhart, J

2013-01-01T23:59:59.000Z

475

Structural, Optical and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines  

SciTech Connect (OSTI)

We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at {approx}200 C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films.

Law, M.; Luther, J. M.; Song, Q.; Hughes, B. K.; Perkins, C. L.; Nozik, A. J.

2008-01-01T23:59:59.000Z

476

Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and their Isotopes  

E-Print Network [OSTI]

A solar photospheric "thermal profiling" analysis is presented, exploiting the infrared rovibrational bands of carbon monoxide (CO) as observed with the McMath-Pierce Fourier transform spectrometer (FTS) at Kitt Peak, and from above the Earth's atmosphere by the Shuttle-borne ATMOS experiment. Visible continuum intensities and center-limb behavior constrained the temperature profile of the deep photosphere, while CO center-limb behavior defined the thermal structure at higher altitudes. The oxygen abundance was self consistently determined from weak CO absorptions. Our analysis was meant to complement recent studies based on 3-D convection models which, among other things, have revised the historical solar oxygen (and carbon) abundance downward by a factor of nearly two; although in fact our conclusions do not support such a revision. Based on various considerations, an oxygen abundance of 700+/-100 ppm (parts per million relative to hydrogen) is recommended; the large uncertainty reflects the model sensitivity of CO. New solar isotopic ratios also are reported for 13C, 17O, and 18O.

Thomas R. Ayres; Claude Plymate; Christoph U. Keller

2006-06-07T23:59:59.000Z

477

Frank Vignola Solar Radiation Monitoring Laboratory  

E-Print Network [OSTI]

thermal electric systems in the 5- to 30-MegaWatt (MW) size were built; however, over the next 20 years there was a hiatus in building large solar thermal electric facilities. Ten years ago, photovoltaic (PV) systems the size in which an installation must obtain a Large Generation Intercon- nection Agreement and complete

Oregon, University of

478

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

479

Concentrating Solar Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale,...

480

New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion  

SciTech Connect (OSTI)

Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL; ,

2010-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "thermal electric solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from the PJM regional transmission  

E-Print Network [OSTI]

Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from through 30 April 2004. During this time period PJM coordinated the movement of wholesale electricity of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive

Schrijver, Karel

482

Millimeter radiation from a 3D model of the solar atmosphere I. Diagnosing chromospheric thermal structure  

E-Print Network [OSTI]

Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the thermal structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearin...

Loukitcheva, Maria; Carlsson, Mats; White, Stephen

2015-01-01T23:59:59.000Z

483

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

484

Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model  

SciTech Connect (OSTI)

Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

Denholm, P.; Hummon, M.

2012-11-01T23:59:59.000Z

485

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants  

SciTech Connect (OSTI)

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

Bowyer, J.M.

1984-04-15T23:59:59.000Z

486

1Electricity from Sunlight: The Van Allen Probes Solar Panels NASA's twin Van Allen Probes spacecraft will be launched in 2012. The  

E-Print Network [OSTI]

1Electricity from Sunlight: The Van Allen Probes Solar Panels NASA's twin Van Allen Probes of the surrounding four solar panel `wings' that provide power to the spacecraft instruments. The small blue rectangles within each of the four solar panels show the location of the solar cells used to power

487

Opto-thermal analysis of a lightweighted mirror for solar telescope  

E-Print Network [OSTI]

In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in gro...

Banyal, Ravinder K; Chatterjee, S

2013-01-01T23:59:59.000Z

488

Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop  

E-Print Network [OSTI]

We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.

T. Minoshima; T. Yokoyama

2008-06-24T23:59:59.000Z

489

Comparison of domestic olivine and European magnesite for electrically charged thermal energy storage  

SciTech Connect (OSTI)

Electrically charged thermal energy storage (TES) heaters employing high heat capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these devices, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored energy from the core by forced air circulation. The recent increase in use of off-peak TES units in the U.S. has led to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but underutilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper the suitability of North Carolina olivine for heat storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two commercially available room-size TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons are made and conclusions are drawn.

Laster, W.R.; Gay, B.M.; Palmour, H.; Schoenhals, R.J.

1982-01-01T23:59:59.000Z

490

1 MWt bench model solar receiver test program J. Gintz, D. Bartlett and R. Zentner  

E-Print Network [OSTI]

a scale model of a Brayton cycle solar electric plant receiver. The program span from initiation of design and transients; and demonstrations of solar load following. Design thermal efficiency predictions were achieved in high temperature, gas cooled, solar central receiver concepts under direction of the Electric Power

Boyer, Edmond

491

Chaotic mean wind in turbulent thermal convection and long-term correlations in solar activity  

E-Print Network [OSTI]

It is shown that correlation function of the mean wind velocity in a turbulent thermal convection (Rayleigh number $Ra \\sim 10^{11}$) exhibits exponential decay with a very long correlation time, while corresponding largest Lyapunov exponent is certainly positive. These results together with the reconstructed phase portrait indicate presence of a chaotic component in the examined mean wind. Telegraph approximation is also used to study relative contribution of the chaotic and stochastic components to the mean wind fluctuations and an equilibrium between these components has been studied. Since solar activity is based on the thermal convection processes, it is reasoned that the observed solar activity long-term correlations can be an imprint of the mean wind chaotic properties. In particular, correlation function of the daily sunspots number exhibits exponential decay with a very long correlation time and corresponding largest Lyapunov exponent is certainly positive, also relative contribution of the chaotic and stochastic components follows the same pattern as for the convection mean wind.

A. Bershadskii

2009-12-25T23:59:59.000Z

492

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Organometallic Frames for Solar Energy Storage, Berkeley. [and Photovoltaic Solar Energy Converters, American ChemicalNocera D. G. , 2010, Solar Energy Supply and Storage for

Coso, Dusan

2013-01-01T23:59:59.000Z

493

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

494

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

been heated at solar collection tower, at the temperatureIn the receiver tower, the collected solar radiation heatsfocus and send solar radiation to a receiver tower.

Roshandell, Melina

2013-01-01T23:59:59.000Z

495

E-Print Network 3.0 - active solar thermal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. ACTIVE SOLAR SYSTEMS Solar collectors are designed to take advan- tage of the greenhouse effect. The flat... " solar system (Figure 2). It is called active because it requires...

496

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Nocera D. G. , 2010, Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,Power Plants, Journal of Solar Energy Engineering, 124 (2),

Coso, Dusan

2013-01-01T23:59:59.000Z

497

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

and Photovoltaic Solar Energy Converters, American ChemicalNocera D. G. , 2010, Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,

Coso, Dusan

2013-01-01T23:59:59.000Z

498

The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations  

SciTech Connect (OSTI)

This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States)] [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States)] [MOS, Inc., Melville, NY (United States)

1994-01-01T23:59:59.000Z

499

Solel och solvrme ur LCC-perspektiv fr ett passiv-flerbostadshus; PV and solar thermal for a multiple dwelling passive house under a LCC-perspective.  

E-Print Network [OSTI]

?? This masters degree project concerns the combination of a multi dwelling passive house with solar energy for the generation of electricity and domestic hot (more)

Bhme Florn, Simon

2008-01-01T23:59:59.000Z

500

Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint  

SciTech Connect (OSTI)

Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

2013-10-01T23:59:59.000Z