Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Direction of Technological Change on Renewable or Non-Renewable Resource  

E-Print Network [OSTI]

The Direction of Technological Change on Renewable or Non-Renewable Resource Exploitation and normative analysis of endogenous R&D investment on two types of resources: renewable and non-renewable asymptotically towards zero. Third, the finiteness of efficiency improvements together with that of the non-renewable

Paris-Sud XI, Université de

2

Single Machine Scheduling with a Non-renewable Financial Resource  

E-Print Network [OSTI]

Single Machine Scheduling with a Non-renewable Financial Resource Evgeny R. Gafarov a , Alexander A with a non-renewable resource. For example, money or fuel provide natural examples of such a non-renewable resource. Such problems with a non-renewable resource are also referred to as financial scheduling problems

Magdeburg, Universität

3

Insulation products promote thermal efficiency  

SciTech Connect (OSTI)

The judicious use of thermal insulation products in non-residential buildings can provide a number of advantages including increased energy efficiency, lower first costs (by avoiding overside HVAC systems), improved fire safety and better acoustics. Thermal insulation products are those products which retard the flow of heat energy. Materials include glass, plastics, and organic materials such as wood fibers, vermiculite and perlite. Forms range from the familiar batts and blankets of glass fibers to foamed plastic, rigid boards, losse fill and systems combining two or more products, such as polystyrene boards covered with insulating plaster. The R values of selected insulation materials with a cost/sq. ft. of each material at R 10 are given. Costs cover both the material and installation and may vary depending on local conditions.

Chalmers, R.

1985-04-01T23:59:59.000Z

4

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

5

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

Solar thermal energy collection is an exciting technology for the replacement of non-renewable energy production.

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

6

Nonrenewable energy cost of corn-ethanol in China  

Science Journals Connector (OSTI)

Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning.

Q. Yang; G.Q. Chen

2012-01-01T23:59:59.000Z

7

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740MW coal-fired power plant project located at latitude 28S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 2537MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

8

Thermally efficient compact fluorescent fixture systems  

SciTech Connect (OSTI)

Compact fluorescent lamps that can be inserted into conventional light fixtures are rapidly gaining acceptance as both a viable retrofit and new design approach to reducing lighting loads. Ideally, the compact fluorescent lamp should have the same light output as the incandescent lamp it replaces, but overheating inside typically small enclosed fixtures can reduce lumen output and hence lighting fixture efficiency by 15 to 20 percent. Fortunately, simple fixture modifications can erase this efficiency penalty, so that the full efficiency benefit of replacing incandescent lamps with fluorescent lamps can be realized. The paper describes such modifications and presents experimental data documenting the potential efficiency enhancement associated with thermal control systems. 4 refs., 7 figs.

Siminovitch, M.J.; Rubinstein, F.M.; Packer, M.

1991-04-01T23:59:59.000Z

9

Application Level Optimizations for Energy Efficiency and Thermal Stability  

E-Print Network [OSTI]

, a method optimizing energy efficiency by clustering the work- load in a few resources, temporally can help achieve higher energy efficiency and better thermal behavior. 2. METHODS A fundamentalApplication Level Optimizations for Energy Efficiency and Thermal Stability Md. Ashfaquzzaman Khan

Coskun, Ayse

10

Efficient Lithium-Ion Battery Pack Electro-Thermal Simulation  

Science Journals Connector (OSTI)

A methodology to derive a computational efficient electro-thermal battery pack model is showed. It is taken ... up of three orders of magnitude for the thermal part. The electrical battery model is implemented an...

L. Kostetzer

2014-01-01T23:59:59.000Z

11

The Role of Advanced Combustion in Improving Thermal Efficiency  

Broader source: Energy.gov [DOE]

Combustion plays an important role in enabling high thermal efficiencies. Technologies that deliver short combustion duration and low soot emissions are needed.

12

Project Profile: High-Efficiency Thermal Energy Storage System...  

Office of Environmental Management (EM)

the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system...

13

Thermal Efficiency Improvement While Meeting Emissions of 2007...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Efficiency Reaching 50% at 2010 Emissions Time Optimized Combustion; Increased FIS Flexibility; Premium EGR System; Turbocharger Matching; Diesel Particulate Filter NOx:...

14

Impact of Ageing on Thermal Efficiency of Solar Thermal Collectors  

Science Journals Connector (OSTI)

Today it is common practice to calculate the performance of solar thermal systems or solar collectors based on the results of a thermal performance test carried out with a new solar collector. However, for an int...

Elke Streicher; Stephan Fischer

2009-01-01T23:59:59.000Z

15

Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries  

Science Journals Connector (OSTI)

Abstract This study explores the effect of renewable and non-renewable electricity consumption on economic growth in 18 Latin American countries. To achieve the goal of this study a panel Gross Domestic Product (GDP) model was constructed taking the period 19802010 into account. From the Pedroni cointegration test results it was found that renewable electricity consumption, non-renewable electricity consumption, labor, gross fixed capital formation, and total trade are cointegrated. Moreover, the panel Dynamic Ordinary Least Squares (DOLS) test results revealed that all above the mentioned variables have a long run positive effect on GDP growth in the investigated countries. The Vector Error-Correction (VEC) Granger causality model results revealed the existence of feedback causality between the variables. The results of the study indicated that renewable electricity consumption is more significant than non-renewable electricity consumption in promoting economic growth in the investigated countries in the long run and the short run. Based on the results of this study, it is recommended that the investigated countries should increase their investment on renewable energy projects to increase the role of electricity consumption from renewable sources. In addition, it is essential that these countries should reduce their non-renewable electricity consumption by increasing their energy efficiency and implementing energy saving projects. By applying these recommendations, these countries would be able to mitigate global warming and reduce their dependency on fossil fuel to increase their energy security.

Usama Al-mulali; Hassan Gholipour Fereidouni; Janice Y.M. Lee

2014-01-01T23:59:59.000Z

16

Efficient Thermal Energy Distribution in Commercial Final Report  

E-Print Network [OSTI]

energy distribution. These include, but not limited to, 1) reducing thermal losses induced by air leakage through system components (i.e., duct, equipment), 2) decreasing thermal losses induced by heat conductionLBNL-41365 Efficient Thermal Energy Distribution in Commercial Buildings Final Report to California

17

NON-RENEWABLE RESOURCE BOOMS AND THE POOR Graham A. Davis1  

E-Print Network [OSTI]

1 NON-RENEWABLE RESOURCE BOOMS AND THE POOR Graham A. Davis1 Division of Economics and Business the level of non-renewable resource extraction and changes in the level of extraction affects the poor. Our," and "make pro-poor forms of growth more difficult" (Ross 2001, p. 16).3 It is well understood that non-renewable

18

Capital accumulation and non-renewable energy resources: a special functions case  

E-Print Network [OSTI]

out that the usage of non-renewable energy resources im- plies a limit to the economic growth the negative effect of non-renewable energy re- sources on economic growth, even without technical progress2007/9 Capital accumulation and non-renewable energy resources: a special functions case Agustin

Nesterov, Yurii

19

Thermal efficiency of single-pass solar air collector  

SciTech Connect (OSTI)

Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

20

Thermal management concepts for higher efficiency heavy vehicles.  

SciTech Connect (OSTI)

Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

Wambsganss, M. W.

1999-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

22

Comparative Environmental Impact Evaluation of Hydrogen Production Methods from Renewable and Nonrenewable Sources  

Science Journals Connector (OSTI)

In this chapter, a comparative environmental impact study of possible hydrogen production methods from renewable and nonrenewable sources is undertaken ... potential, GWP and acidification potential, AP), production

Canan Acar; Ibrahim Dincer

2013-01-01T23:59:59.000Z

23

Efficient thermal field computation in phase-field models  

Science Journals Connector (OSTI)

We solve the phase-field equations in two dimensions to simulate crystal growth in the low undercooling regime. The novelty is the use of a fast solver for the free space heat equation to compute the thermal field. This solver is based on the efficient ... Keywords: Crystal growth, Dendritic solidification, Diffusion equation, Fast solvers, Integral representation, Phase-field, Unbounded domain

Jing-Rebecca Li; Donna Calhoun; Lucien Brush

2009-12-01T23:59:59.000Z

24

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Efficiency Thermal Energy High-Efficiency Thermal Energy Storage System for CSP to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Facebook Tweet about SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Twitter Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Google Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Delicious Rank SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Digg Find More places to share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act

25

Thermal Efficiency of Solar Collector Made from Thermoplastics  

Science Journals Connector (OSTI)

Abstract Thermoplastics solar collectors have been used to replace a typical metal collector because their mechanical and physical properties make the volume production of lightweight, low cost and corrosion resistance. Effect of thermal conductivity and collector area was observed for four type of themoplastics based i.e PVC-B (PVC: Polyvinyl Chloride-Blue), PB (PB: Polybutene), PP-R (PP-R: Polypropylene Random Copolymer) and PVC-CB: (Polyvinyl Chloride-Carbon Black). The collector area of 2 m2 were prepared as for solar collector. The position of collector panel to south orientation and angle of 140 to the horizontal, which was the collector slope obtaining highest annual efficiency in Thailand, were implemented. Data was collected by data logger from 9.00-16.00 am throughout the day in which temperature reached a sufficient level according to standard test method of ASHRAE 93 77. The mass flow rate of water in collector was 0.02 (kg.s-1). The results of the differing thermal conductivity materials have indicated that there is no different of the materials on collector thermal efficiency. The collector efficiency was depends on the areas of the panel. This suggestion that one material should not only be chosen over another in term of its ability to transfer heat to the liquid within the panel but also collector area.

Warunee Ariyawiriyanan; Tawatchai Meekaew; Manop Yamphang; Pongpitch Tuenpusa; Jakrawan Boonwan; Nukul Euaphantasate; Pongphisanu Muangchareon; Supachat Chungpaibulpatana

2013-01-01T23:59:59.000Z

26

Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials  

E-Print Network [OSTI]

resistance at the graphene-matrix interface. KEYWORDS: Graphene, thermal interface materials, nanocompositesGraphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials Khan M suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms

27

Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia) | Department  

Broader source: Energy.gov (indexed) [DOE]

Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia) Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia) Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia) < Back Eligibility Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Green Power Purchasing Mandatory Utility Green Power Option Provider Georgia Power Company The Renewable and Non-Renewable Resource tariff is authorized by the Georgia Public Service Commission (PSC), which requires that the investor owned utility, Georgia Power Company, purchase renewable energy cumulative

28

Cost of non-renewable energy in production of wood pellets in China  

Science Journals Connector (OSTI)

Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and ...

Changbo Wang; Lixiao Zhang; Jie Liu

2013-06-01T23:59:59.000Z

29

Comparative assessment of hydrogen production methods from renewable and non-renewable sources  

Science Journals Connector (OSTI)

Abstract In this study, we present a comparative environmental impact assessment of possible hydrogen production methods from renewable and non-renewable sources with a special emphasis on their application in Turkey. It is aimed to study and compare the performances of hydrogen production methods and assess their economic, social and environmental impacts, The methods considered in this study are natural gas steam reforming, coal gasification, water electrolysis via wind and solar energies, biomass gasification, thermochemical water splitting with a CuCl and SI cycles, and high temperature electrolysis. Environmental impacts (global warming potential, GWP and acidification potential, AP), production costs, energy and exergy efficiencies of these eight methods are compared. Furthermore, the relationship between plant capacity and hydrogen production capital cost is studied. The social cost of carbon concept is used to present the relations between environmental impacts and economic factors. The results indicate that thermochemical water splitting with the CuCl and SI cycles become more environmentally benign than the other traditional methods in terms of emissions. The options with wind, solar and high temperature electrolysis also provide environmentally attractive results. Electrolysis methods are found to be least attractive when production costs are considered. Therefore, increasing the efficiencies and hence decreasing the costs of hydrogen production from solar and wind electrolysis bring them forefront as potential options. The energy and exergy efficiency comparison study indicates the advantages of biomass gasification over other methods. Overall rankings show that thermochemical CuCl and SI cycles are primarily promising candidates to produce hydrogen in an environmentally benign and cost-effective way.

Canan Acar; Ibrahim Dincer

2014-01-01T23:59:59.000Z

30

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Thermal Efficiency and Maximizing Thermal Efficiency and Optimizing Energy Management Scientists at this living laboratory develop optimal solutions for managing energy flows within buildings and transportation systems. The built environment is stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more effective energy management and development of efficiency technologies. Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing this opportunity. Through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems,

31

Glass-like thermal conductivity in high efficiency thermoelectric materials  

Broader source: Energy.gov [DOE]

Discusses strategies to design thermoelectric materials with extremely low lattice thermal conductivity through modifications of the phonon band structure and phonon relaxation time.

32

Thermal Strategies for High Efficiency Thermoelectric Power Generation  

Broader source: Energy.gov [DOE]

Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency

33

Making Steel Framing as Thermally Efficient as Wood  

E-Print Network [OSTI]

the steel web with a less conductive material, and 4) placing foam insulation in locations where the thermal shorts are most critical. Researchers at Oak Ridge National Laboratory (ORNL) have utilized both hot box testing and computer simulations in aim...

Kosny, J.; Childs, P.

2002-01-01T23:59:59.000Z

34

ENERGY EFFICIENT BUILDING DESIGN AND THERMAL ENERGY STORAGE  

Science Journals Connector (OSTI)

This chapter discusses the potential for cost-effectively reducing the energy intensity of office buildings by applying proven technologies, especially the use of ground source systems with thermal energy stor...

Edward Morofsky

2007-01-01T23:59:59.000Z

35

Efficient Thermally Variable Cooling System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-07fulton.pdf More Documents & Publications CX-003867:...

36

Energy efficient HVAC system features thermal storage and heat recovery  

SciTech Connect (OSTI)

This article describes a HVAC system designed to efficiently condition a medical center. The topics of the article include energy efficient design of the HVAC system, incentive rebate program by the local utility, indoor air quality, innovative design features, operations and maintenance, payback and life cycle cost analysis results, and energy consumption.

Bard, E.M. (Bard, Rao + Athanas Consulting Engineering Inc., Boston, MA (United States))

1994-03-01T23:59:59.000Z

37

Analyzing the efficiency of a photovoltaic-thermal solar collector based on heat pipes  

Science Journals Connector (OSTI)

The structure of a photovoltaic/thermal solar collector based on aluminum heat pipes and ... , along with the results from analyzing its efficiency. Its optimum mode of operation is shown...

S. M. Khairnasov

2014-01-01T23:59:59.000Z

38

Project Profile: High-Efficiency Thermal Storage System for Solar Plants  

Broader source: Energy.gov [DOE]

SENER, under the Baseload CSP FOA, aims to develop a highly efficient, low-maintenance and economical thermal energy storage (TES) system using solid graphite modular blocks for CSP plants.

39

Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock  

E-Print Network [OSTI]

1 Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock-0210 Phone: (937) 229-2852 Fax: (937) 229-4766 Email: Kelly.Kissock@notes.udayton.edu ABSTRACT Open tanks

Kissock, Kelly

40

Field Analysis of Thermal Comfort in Two Energy Efficient Office Buildings in Malaysia  

E-Print Network [OSTI]

the effectiveness of tropical passive solar control components in integrating thermal comfort with energy efficiency in office building. Field measurements are carried out in selected workspace of two office buildings that have been practiced the passive solar...

Qahtan, A. T.; Keumala, N.; Rao, S. P.; Samad, Z. A.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Flashlamp radiation recycling for enhanced pumping efficiency and reduced thermal load  

DOE Patents [OSTI]

A method for recycling laser flashlamp radiation in selected wavelength ranges to decrease thermal loading of the solid state laser matrix while substantially maintaining the pumping efficiency of the flashlamp.

Jancaitis, Kenneth S. (Pleasant Hill, CA); Powell, Howard T. (Livermore, CA)

1989-01-01T23:59:59.000Z

42

Diamond/aluminium nitride composites for efficient thermal management applications  

SciTech Connect (OSTI)

Synthetic diamond/AlN composite materials have been fabricated by a combination of microwave plasma-assisted chemical vapor deposition and molecular beam epitaxy. These wide band gap semiconductor heterojunctions show promises for many applications, including thermal management, deep ultraviolet light emitting devices, and high power and high temperature electronics. Here, we report results of an interface study of polycrystalline diamond layers grown on single crystal AlN(0001). High resolution transmission microscopy revealed atomically sharp interfaces between diamond and AlN. Temperature dependent Raman spectroscopy measurements showed reduced thermal resistance on diamond-coated AlN substrates compared to uncoated AlN at temperatures above 330 K.

Cervenka, J.; Dontschuk, N.; Prawer, S. [School of Physics, University of Melbourne, VIC (Australia); Ladouceur, F. [School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW (Australia); Duvall, S. G. [Silanna Semiconductor Pty Ltd., Sydney, NSW (Australia)

2012-07-30T23:59:59.000Z

43

Design and global optimization of high-efficiency solar thermal systems  

E-Print Network [OSTI]

, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPVDesign and global optimization of high-efficiency solar thermal systems with tungsten cermets DavidDepartment of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts

Soljaèiæ, Marin

44

Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices  

Science Journals Connector (OSTI)

Maximum efficiencies and potential temperature gradients are estimated using a number of basic assumptions on desired storage lifetimes and energy losses. ... Snaith, H. J.Estimating the maximum attainable efficiency in dye-sensitized solar cells Adv. ... and optical losses in the dye-sensitized system are reviewed, and the main losses in potential from the conversion of an absorbed photon at the optical bandgap of the sensitizer to the open-circuit voltage generated by the solar cell are specifically highlighted. ...

Karl Brjesson; Anders Lennartson; Kasper Moth-Poulsen

2013-04-12T23:59:59.000Z

45

High-Efficiency Thermal Energy Storage System for CSP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 15. 2013 | Singh April 15. 2013 | Singh * Thermal modeling will be conducted to establish the benefits of using a high thermal conducting graphite foams in conjunction with PCM and to develop a design for a laboratory scale prototype. * Variety of characterizations will be carried out to qualify the materials (PCMs, alloys, coatings) for the prototype construction. * Process to infiltrate selected PCM into the foam will be developed. * Using the appropriate brazing/joining techniques, prototype will be assembled. * Performance testing of the TES system prototype to ensure a full- scale system will meet the SunShot goals. * Complete cost analysis of the proposed TES system * Complete laboratory scale prototype design * Develop SiC coating using polycarbosilanes for graphite

46

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network [OSTI]

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two. The performance of energy conversion processes can be evaluated using several types of efficiencies.2 Nowadays Gross,*, Ad Verkooijen, and Signe Kjelstrup, Department of Process & Energy, Delft Uni

Kjelstrup, Signe

47

Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review  

Science Journals Connector (OSTI)

Abstract The rapid growth in population and economy activities in the tropical countries has led to an increase in energy consumption which hastens the depletion of available energy resources. The building sector is one of the major end users of energy. On the other hand, the air conditioning system is viewed as an important tool to sustain and improve thermal comfort of occupants, but this system is often the biggest energy consumer in buildings. This has raised concerns on efficient use of the air conditioning system for reduction in energy cost. In order to identify the thermal comfort perception of occupants as well as energy conservation potentials in tropical buildings, various thermal comfort assessments were conducted which included field surveys and chamber studies. This paper provides a comprehensive review of the energy efficiency improvement potentials in air-conditioned tropical buildings by considering thermal comfort of occupants. Some of the studies conducted in the institutes of learning, offices and residential were reviewed and focus was placed on the thermal comfort studies that emphasis on balance between energy efficiency and thermal comfort. It was estimated that a reduction of 2150GWh of energy demand annually in Malaysia can be achieved if the thermostat set-point is set higher by 2C, together with a reduction of 3נ109lbs (1.36נ109kg) of greenhouse gases. Besides, the use of computational simulation tools for prediction of thermal comfort and adaptive behaviour of people in the tropics towards their immediate thermal environment are also highlighted.

Qi Jie Kwong; Nor Mariah Adam; B.B. Sahari

2014-01-01T23:59:59.000Z

48

An efficient thermal actuator design for the thermal flying height control slider  

Science Journals Connector (OSTI)

Thermal flying height control (TFC) has recently been implemented in magnetic recording disk drives to reduce the flying height at the read/write element for...2000; Suk et al. 2005; Kurita et al. 2005; Song et a...

Hui Li; Shengnan Shen

2014-08-01T23:59:59.000Z

49

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Efficiency Thermal Energy Storage System for CSP High-Efficiency Thermal Energy Storage System for CSP ANL logo Photo of a black and white porous material magnified 50 times by a microscope. Microstructure of the highly thermal conductive foam that will be used for the prototype TES system. Image from ANL Argonne National Laboratory and project partner Ohio Aerospace Institute, under the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system with rapid charging and discharging times. By increasing the efficiency of TES systems, this project aims to lower the capital costs of concentrating solar power (CSP) systems. Approach The research team is developing and evaluating a novel approach for TES at temperatures greater than 700˚C for CSP systems. The approach uses high thermal conductivity and high-porosity graphite foams infiltrated with a phase change material (PCM) to provide TES in the form of latent heat.

50

Efficient finite-time measurements under thermal regimes  

E-Print Network [OSTI]

Contrary to conventional quantum mechanics, which treats measurement as instantaneous, here we explore a model for finite-time measurement. The main two-level system interacts with the measurement apparatus in a Markovian way described by the Lindblad equation, and with an environment, which does not include the measuring apparatus. To analyse the environmental effects on the final density operator, we use the Redfield approach, allowing us to consider a non-Markovian noise. In the present hybrid theory, to trace out the environmental degrees of freedom, we use a previously-developed analytic method based on superoperator algebra and Nakajima-Zwanzig superoperators. Here, we analyse two types of system-environment interaction, phase and amplitude damping, which allows us to conclude that, in general, a finite-time quantum measurement performed during a certain period is more efficient than an instantaneous measurement performed at the end of it, because the rate of change of the populations is attenuated by the system-measurement apparatus interaction.

Carlos Alexandre Brasil; Leonardo Andreta de Castro; Reginaldo de Jesus Napolitano

2014-07-11T23:59:59.000Z

51

Regenerative thermal oxidizers for VOC and NO{sub x} -- efficiency and cost  

SciTech Connect (OSTI)

Regenerative fume incinerators or thermal oxidizers have a combustion chamber at about 1,600 F. Heat recovery is provided by switching regenerator beds filled with ceramic. Volatile organic compounds, VOC`s, are about 99% removed along with a thermal efficiency of 90 to 95%. Improvements are discussed which reduce fuel costs, reduce investment cost and give better VOC removal. A method of preventing NO{sub x} formation is presented as well as a possible method for removing NO{sub x} from incoming feed gas. Regenerative fume incinerators or regenerative thermal oxidizers have 3 possible improvements. (1) Add the required fuel to the incoming gas to nearly eliminate NO{sub x} generation while improving thermal efficiency. (2) Remove NO{sub x} from the incoming gas by a new modification of the Exxon Thermal DeNO{sub x} process. (3) Use a new 4-way valve for 1 or 2-bed regenerators to cut investment and improve destruction efficiency.

Houston, R. [Houston Consulting, Hendersonville, NC (United States)

1995-12-31T23:59:59.000Z

52

Yankee hood performance studies; The effect of air balance on thermal efficiency  

SciTech Connect (OSTI)

With today's ever-increasing production rates on tissue-grade machines, many mills experience a need to increase the contribution of Yankee hoods to drying. Until the cylinder is replaced, its contribution to drying is fixed at its maximum drying rate. Consequently, the hoods should be checked routinely to ensure that they run optimally. Most air systems are not gas-or oil-fired, in contrast to the original steam-heated designs. As a result, Yankee air systems are energy intensive. A proper hood balance ensures minimum thermal consumption, or optimum thermal efficiency. Thermal efficiency is defined as the Btu's consumed by the burner per pound of water evaporated by hood. A simple engineering survey, or system examination, allows the papermaker to verify hood performance and balance the air system. In this paper typical data from a such a survey are shown. These surveys can often lead to considerably savings in burner fuel.

Schukov, V. (Yankee Air Systems (US)); Wozny, J. (Enerquin Air Inc., Montreal, Quebec (CA))

1991-04-01T23:59:59.000Z

53

The carbon footprint and non-renewable energy demand of algae-derived biodiesel  

Science Journals Connector (OSTI)

Abstract We determine the environmental impact of different biodiesel production strategies from algae feedstock in terms of greenhouse gas (GHG) emissions and non-renewable energy consumption, we then benchmark the results against those of conventional and synthetic diesel obtained from fossil resources. The algae cultivation in open pond raceways and the transesterification process for the conversion of algae oil into biodiesel constitute the common elements among all considered scenarios. Anaerobic digestion and hydrothermal gasification are considered for the conversion of the residues from the wet oil extraction route; while integrated gasificationheat and power generation and gasificationFischerTropsch processes are considered for the conversion of the residues from the dry oil extraction route. The GHG emissions per unit energy of the biodiesel are calculated as follows: 41g e-CO2/MJb for hydrothermal gasification, 86g e-CO2/MJb for anaerobic digestion, 109g e-CO2/MJb for gasificationpower generation, and 124g e-CO2/MJb for gasificationFischerTropsch. As expected, non-renewable energy consumptions are closely correlated to the GHG values. Also, using the High Dimensional Model Representation (HDMR) method, a global sensitivity analysis over the entire space of input parameters is performed to rank them with respect to their influence on key sustainability metrics. Considering reasonable ranges over which each parameter can vary, the most influential input parameters for the wet extraction route include extractor energy demand and methane yield generated from anaerobic digestion or hydrothermal gasification of the oil extracted-algae. The dominant process input parameters for the dry extraction route include algae oil content, dryer energy demand, and algae annual productivity. The results imply that algal biodiesel production from a dried feedstock may only prove sustainable if a low carbon solution such as solar drying is implemented to help reducing the water content of the feedstock.

Pooya Azadi; George Brownbridge; Sebastian Mosbach; Andrew Smallbone; Amit Bhave; Oliver Inderwildi; Markus Kraft

2014-01-01T23:59:59.000Z

54

Applicability of thermal imaging for assessment of energy efficiency in buildings  

Science Journals Connector (OSTI)

The article discusses applicability of thermal imaging for measuring energy efficiency of building. To determine energy efficiency of a building the value of heat flux is an objective. To obtain this value it is possible to determine it by measuring the energy input required for heating or by measuring the heat flux through the thermal envelope of a building. The first method is time consuming and requires accurate measurement of energy input. The main problem is how to measure internal and solar heat gains. If only the supplied energy is taken into account the calculated heat flux in a low energy or a passive house could differ from the actual value for 25 % to 75 %. The second method is not very accurate because of practical drawbacks in the use of heat flux sensors (accuracy setting the system to the thermal envelope time consuming method). It seems that the use of thermal imaging has a promising future but the value of a heat flux could only be calculated under certain conditions. The most important is accurate measurement of a surface temperature and known structure of the thermal envelope in terms of dimensions and materials.

I. Punik

2013-01-01T23:59:59.000Z

55

Procedures Governing Appeals of Nonrenewal Decisions (approved by the Committee on Faculty Rights and Responsibilities, May 1998)  

E-Print Network [OSTI]

Procedures Governing Appeals of Nonrenewal Decisions (approved by the Committee on Faculty Rights and procedures adopted by the Board of Regents and appear in sections UWS 3.07 and 3.08 of the Wisconsin. Sections 7.07, 7.08, 7.09 and 7.10 of the UW-Madison Faculty Policies and Procedures [FPP] implement at UW

Sheridan, Jennifer

56

On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection  

Science Journals Connector (OSTI)

Abstract The scintillation efficiency in response to thermal neutrons was studied by loading different concentrations of carborane (08.5wt%) and naphthalene (0 and 100g/L) in five liquid organic scintillators. The sample was characterized in Pb and Cd shields under the irradiation of the thermal neutrons from a 252Cf source. A method was developed to extract the net neutron response from the pulse-height spectra. It was found that the order of scintillation efficiencies for both ?-rays and thermal neutrons is as follows: diisopropylnaphthalene>toluene (concentrated solutes)>toluene~pseudocumene~m-xylene. The quench constants, obtained by fitting the SternVolmer model to the plots of light output versus carborane concentration, are in the range of 0.351.4M?1 for all the scintillators. The Birks factors, estimated using the specific energy loss profiles of the incident particles, are in the range of 9.314mgcm?2MeV?1 for all the samples. The light outputs are in the range of 6386keV electron equivalents (keVee) in response to thermal neutrons. Loading naphthalene generally promotes the scintillation efficiency of the scintillator with a benzene derivative solvent. Among all the scintillators tested, the diisopropylnaphthalene-based scintillator shows the highest scintillation efficiency, lowest Birks factor, and smallest quench constants. These properties are primarily attributed to the double fused benzene-ring structure of the solvent, which is more efficient to populate to the excited singlet state under ionizing radiation and to transfer the excitation energy to the fluorescent solutes.

Zheng Chang; Nkemakonam C. Okoye; Matthew J. Urffer; Alexander D. Green; Kyle E. Childs; Laurence F. Miller

2015-01-01T23:59:59.000Z

57

Practical Solar Thermal Chilled Water  

E-Print Network [OSTI]

the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

Leavell, B.

2010-01-01T23:59:59.000Z

58

Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector Efficiency and Gamma Discrimination  

SciTech Connect (OSTI)

This work reports numerical simulations of a novel three-dimensionally integrated, {sup 10}boron ({sup 10}B) and silicon p+, intrinsic, n+ (PIN) diode micropillar array for thermal neutron detection. The inter-digitated device structure has a high probability of interaction between the Si PIN pillars and the charged particles (alpha and {sup 7}Li) created from the neutron - {sup 10}B reaction. In this work, the effect of both the 3-D geometry (including pillar diameter, separation and height) and energy loss mechanisms are investigated via simulations to predict the neutron detection efficiency and gamma discrimination of this structure. The simulation results are demonstrated to compare well with the measurement results. This indicates that upon scaling the pillar height, a high efficiency thermal neutron detector is possible.

Conway, A; Wang, T; Deo, N; Cheung, C; Nikolic, R

2008-06-24T23:59:59.000Z

59

Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stability  

Science Journals Connector (OSTI)

Abstract Thermal stability is of major importance in polymer extrusion, where product quality is dependent upon the level of melt homogeneity achieved by the extruder screw. Extrusion is an energy intensive process and optimisation of process energy usage while maintaining melt stability is necessary in order to produce good quality product at low unit cost. Optimisation of process energy usage is timely as world energy prices have increased rapidly over the last few years. In the first part of this study, a general discussion was made on the efficiency of an extruder. Then, an attempt was made to explore correlations between melt thermal stability and energy demand in polymer extrusion under different process settings and screw geometries. A commodity grade of polystyrene was extruded using a highly instrumented single screw extruder, equipped with energy consumption and melt temperature field measurement. Moreover, the melt viscosity of the experimental material was observed by using an off-line rheometer. Results showed that specific energy demand of the extruder (i.e. energy for processing of unit mass of polymer) decreased with increasing throughput whilst fluctuation in energy demand also reduced. However, the relationship between melt temperature and extruder throughput was found to be complex, with temperature varying with radial position across the melt flow. Moreover, the melt thermal stability deteriorated as throughput was increased, meaning that a greater efficiency was achieved at the detriment of melt consistency. Extruder screw design also had a significant effect on the relationship between energy consumption and melt consistency. Overall, the relationship between the process energy demand and thermal stability seemed to be negatively correlated and also it was shown to be highly complex in nature. Moreover, the level of process understanding achieved here can help to inform selection of equipment and setting of operating conditions to optimise both energy and thermal efficiencies in parallel.

Chamil Abeykoon; Adrian L. Kelly; Javier Vera-Sorroche; Elaine C. Brown; Phil D. Coates; Jing Deng; Kang Li; Eileen Harkin-Jones; Mark Price

2014-01-01T23:59:59.000Z

60

8-22E The thermal efficiency and the second-law efficiency of a heat engine are given. The source temperature is to be determined.  

E-Print Network [OSTI]

8 8-22E The thermal efficiency and the second-law efficiency of a heat engine are given. The source, for the maximum work, the turbine must be adiabatic. #12;8-62 Steam is throttled from a specified state to a specified pressure. The decrease in the exergy of the steam during this throttling process

Kostic, Milivoje M.

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Renewable energy, non-renewable energy and economic growth in Brazil  

Science Journals Connector (OSTI)

Abstract This study employs Brazils yearly statistics from 1980 to 2010 to explore the causal relationships between the real GDP and four types of energy consumption: non-hydroelectric renewable energy consumption (NHREC), total renewable energy consumption (TREC), non-renewable energy consumption (NREC), and the total primary energy consumption (TEC). The cointegration test reveals a long-run equilibrium among Brazils real GDP, labour, capital, and each of the four types of consumption. The development of the Brazilian economy has close ties with capital formation and labour force. The influence of NHREC/TREC on real output is positive and significant, while the impacts by NREC/TEC are insignificant. The results from the vector error correction models reveal a unidirectional causality from NHREC to economic growth, a bidirectional causality between economic growth and TREC, and a unidirectional causality from economic growth to NREC or TEC without feedback in the long-run. These findings suggest that Brazil is an energy-independent economy and that economic growth is crucial in providing the necessary resources for sustainable development. Expanding renewable energy would not only enhance Brazils economic growth and curb the deterioration of the environment but also create an opportunity for a leadership role in the international system and improve Brazils competition with more developed countries.

Hsiao-Tien Pao; Hsin-Chia Fu

2013-01-01T23:59:59.000Z

62

Energy efficient control of HVAC systems with ice cold thermal energy storage  

Science Journals Connector (OSTI)

Abstract In heating, ventilation and air conditioning (HVAC) systems of medium/high cooling capacity, energy demands can be matched with the help of thermal energy storage (TES) systems. If properly designed, TES systems can reduce energy costs and consumption, equipment size and pollutant emissions. In order to design efficient control strategies for TES systems, we present a model-based approach with the aim of increasing the performance of HVAC systems with ice cold thermal energy storage (CTES). A simulation environment based on Matlab/Simulink is developed, where thermal behaviour of the plant is analysed by a lumped formulation of the conservation equations. In particular, the ice CTES is modelled as a hybrid system, where the water phase transitions (solidmeltingliquid and liquidfreezingsolid) are described by combining continuous and discrete dynamics, thus considering both latent and sensible heat. Standard control strategies are compared with a non-linear model predictive control (NLMPC) approach. In the simulation examples model predictive control proves to be the best control solution for the efficient management of ice CTES systems.

Alessandro Beghi; Luca Cecchinato; Mirco Rampazzo; Francesco Simmini

2014-01-01T23:59:59.000Z

63

Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries  

Science Journals Connector (OSTI)

The aim of this study is to investigate the long-run and causal relationships between renewable and non-renewable energy consumption and economic growth by using classical and augmented production functions, and making a comparison between renewable and non-renewable energy sources in order to determine which type of energy consumption is more important for economic growth in G7 countries for 19802009 period. Autoregressive Distributed Lag approach to cointegration was employed for this purpose. Also, causality among energy consumption and economic growth was investigated by employing a recently developed causality test by Hatemi-J (2012). The long-run estimates showed that either renewable or non-renewable energy consumption matters for economic growth and augmented production function is more effective on explaining the considered relationship. On the other hand, although bidirectional causality is found for all countries in case of classical production function, mixed results are found for each country when the production function is augmented.

Can Tansel Tugcu; Ilhan Ozturk; Alper Aslan

2012-01-01T23:59:59.000Z

64

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

65

Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components  

SciTech Connect (OSTI)

The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

2006-03-02T23:59:59.000Z

66

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network [OSTI]

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

67

Energy Recovery Efficiency and Cost Analysis of VOC Thermal Oxidation Pollution Control Technology  

Science Journals Connector (OSTI)

Respective cost models were derived for recuperative thermal oxidizer (TO) and regenerative thermal oxidizer (RTO). ... In a thermal oxidation process, VOC-laden air is thermally treated (oxidized/decomposed) at temperatures about 730?850 C. ... Choi and Yi(4) worked on the simulation and optimization of regenerative thermal oxidizers. ...

Aruna S. K. Warahena; Yew Khoy Chuah

2009-06-24T23:59:59.000Z

68

Skid-mounted rotating thermal separator efficiently recovers NGL from associated gas  

SciTech Connect (OSTI)

A significant portion of the LPG fraction of the associated gas from a small field can be economically recovered even in remote locations. An example is the Breme field, for which Elf Gabon is the operator. Situated 50 miles from Port Gentil, the field is located on a narrow strip of land between the sea and a lagoon, with access only by plane or boat. A prefabricated, skid-mounted, turnkey plant is now efficiently recovering gas condensate from the field flare. At the full rated 14 MMscfd gas flow (55 psia), the recovered LPG can add as much as 650 b/d to the 12,000 b/d crude oil production rate, 6 vol %. The plant includes a compact plate heat exchanger and a rotating thermal separator (RTS) that requires little maintenance, minimal control, and no outside energy.

Marchal, P.; Malek, S.; Viltard, J.C.

1984-12-03T23:59:59.000Z

69

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

Ho, Tony

2012-01-01T23:59:59.000Z

70

Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.  

SciTech Connect (OSTI)

The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

Ehrhart, Brian David; Gill, David Dennis

2013-07-01T23:59:59.000Z

71

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Solar Thermal Energy Research," in Sandia National Laboratory Science and Engineering Exposition 2011, Albuquerque, New Mexico,

Ho, Tony

2012-01-01T23:59:59.000Z

72

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor  

Science Journals Connector (OSTI)

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor ... The first design uses optimal control theory to obtain a more uniform distribution of the entropy production. ... This optimized design is found to perform the best, but it requires significant changes in the heating equipment in order to approximately realize the optimal temperature profiles. ...

Leen V. van der Ham; Joachim Gross; Ad Verkooijen; Signe Kjelstrup

2009-08-06T23:59:59.000Z

73

Department of Mechanical Engineering Spring 2013 Improving the Efficiency of a Non-Pressurized Thermal Storage Tank  

E-Print Network [OSTI]

-Pressurized Thermal Storage Tank Overview Hydroflex had provided the team with a tank and the heat exchanger coil that was to be used to heat the tank. While attempting to improve the tank's efficiency, the team was required to keep certain parameters of the tank the same, such as it insulation and the type of coil that was used

Demirel, Melik C.

74

Energy Efficient Integration of Heat Pumps into Solar District Heating Systems with Seasonal Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Solar district heating (SDH) with seasonal thermal energy storage (STES) is a technology to provide heat for space heating and domestic hot water preparation with a high fraction of renewable energy. In order to improve the efficiency of such systems heat pumps can be integrated. By preliminary studies it was discovered, that the integration of a heat pump does not always lead to improvements from an overall energy perspective, although the operation of the heat pump increases the efficiency of other components of the system e. g. the STES or the solar collectors. Thus the integration of heat pumps in SDH systems was investigated in detail. Usually, the heat pumps are integrated in such a way, that the STES is used as low temperature heat source. No other heat sources from the ambience are used and only that amount of energy consumed by the heat pump is additionally fed into the system. In the case of an electric driven heat pump, this is highly questionable concerning economic and CO2-emission aspects. Despite that fact the operation of the heat pump influences positively the performance of other components in the system e. g. the STES and makes them more efficient. If the primary energy consumption of the heat pump is lower than the energetic benefits of all other components, the integration makes sense from an energetic point of view. A detailed assessment has been carried out to evaluate the most promising system configurations for the integration of a heat pump. Based on this approach a system concept was developed in which the integration of the heat pump is energetically further improved compared to realised systems. By means of transient system simulations this concept was optimised with regard to the primary energy consumption. A parameter study of this new concept has been performed to identify the most sensitive parameters of the system. The main result and conclusion are that higher solar fractions and also higher primary energy savings can be achieved by SDH systems using heat pumps compared systems without heat pumps.

Roman Marx; Dan Bauer; Harald Drueck

2014-01-01T23:59:59.000Z

75

Outdoor and Indoor Testing to Increase the Efficiency and Durability of Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

This paper presents the test performed on the solar thermal flat plate collector and the effect of saline aerosol on the solar thermal conversion; an assembly of testing rigs developed ... presented; the rigs all...

Daniela Ciobanu; Ion Visa; Anca Duta

2014-01-01T23:59:59.000Z

76

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

for ORC turbine and pump efficiencies as a function of the100kW) the steam turbine isentropic efficiencies ranges 50%known that turbine isentropic efficiency decreases linearly

Ho, Tony

2012-01-01T23:59:59.000Z

77

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become an

Ho, Tony

2012-01-01T23:59:59.000Z

78

NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

Not Available

2014-06-01T23:59:59.000Z

79

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

temperature energy resources such as solar thermal,low temperature energy resources such as solar ponds (70 orenewable energy resources such as non-concentrated solar

Ho, Tony

2012-01-01T23:59:59.000Z

80

Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites  

Broader source: Energy.gov [DOE]

Work on optimizing electrical and thermal transport properties of n-type skutterudites via a multiple-element-void-filling approach is presented.

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

Ho, Tony

2012-01-01T23:59:59.000Z

82

Evaluation of Annual Efficiencies of High Temperature Central Receiver Concentrated Solar Power Plants with Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL3 and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case, which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. The optical designs for all four cases were done using the DELSOL3 computer code; the results were then passed to the SOLERGY computer code, which uses historical typical meteorological year (TMY) data to estimate the plant performance over the course of one year of operation. Each of the four cases was sized to produce 100 \\{MWe\\} of gross electric power, have sensible liquid thermal storage capacity to generate electric power at full rated production level for 6hours, and have a solar multiple of 1.8. There is a fairly dramatic difference between the design point and annual average performance. The largest differences are in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Another notable finding in the current study is the relatively small difference in annual average efficiencies between the Base and High Temperature cases. For both the Surround Field and North Field cases, the increase in annual solar to electric efficiency is <2%, despite an increase in thermal to electric conversion efficiency of over 8%. The reasons for this include the increased thermal losses due to higher temperature operation and operational losses due to start-up and shut-down of plant sub-systems. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

B. Ehrhart; D. Gill

2014-01-01T23:59:59.000Z

83

Efficiency of a volumetric receiver using aqueous suspensions of multi-walled carbon nanotubes for absorbing solar thermal energy  

Science Journals Connector (OSTI)

Abstract This paper analytically investigates the efficiency of a nanofluid volumetric receiver (NVR) for absorbing solar thermal energy considering the experimentally measured extinction coefficient of aqueous suspensions of multi-walled carbon nanotubes (MWCNT) according to the wavelength from 200 to 2000nm. For this purpose, considering the spectral behavior of nanofluids, we obtained analytical solutions of temperature fields as well as the efficiency of the NVR based on the condition of fully developed flow between the two plates. The aqueous MWCNT nanofluids were prepared using the two-step method, and their extinction coefficients were experimentally measured by the UV/Vis/NIR spectrophotometer according to the wavelength. With the analytical equations, we identified those key engineering parameters that affect the efficiency of an NVR: the Nusselt number of heat loss, the concentration of nanoparticles, the Peclet number, and aspect ratio. Also, we systematically observed the effects of key engineering parameters on the temperature fields and on the efficiency of the NVR. The current results clearly show that the efficiency calculated under the assumption of plug-flow through an NVR reported by previous researchers is overestimated in the case of high heat loss. Moreover, the present results show that NVR efficiency is proportional to the Peclet number as well as to the concentration of nanoparticles, while it is inversely proportional to the Nusselt number of heat loss and aspect ratio. The results of this study may be helpful to design and predict the efficiency of an NVR.

Seung-Hyun Lee; Seok Pil Jang

2015-01-01T23:59:59.000Z

84

Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the suns not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MITs heat storage materials are designed to melt at high temperatures and conduct heat wellthis makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MITs low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

None

2011-11-21T23:59:59.000Z

85

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems.  

E-Print Network [OSTI]

??The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially increase power generation and improve the utilization efficiency of renewable (more)

Ho, Tony

2012-01-01T23:59:59.000Z

86

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

clean and efficient energy conversion in power systems," inSteam Power Plant," in Energy conversion, YG Goswami and Fazeotropic mixture energy conversion," Energy Conversion and

Ho, Tony

2012-01-01T23:59:59.000Z

87

Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

88

Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

89

Determination of the recombination efficiency of thermal control coatings for hypersonic vehicles  

SciTech Connect (OSTI)

A method is presented for determining the recombination efficiency of coatings for hypersonic vehicle applications. The approach uses experimental results from arc-jet tests with an analysis to determine the efficiency for the recombination of atomic species present in the boundary layer. The analysis employs analytical solutions to the laminar boundary-layer heat-transfer equations with experimental heating-rate, temperature, and pressure measurements. The authors discuss experimental difficulties in achieving reliable materials-performance data. The utility of the method is that it provides a rapid and efficient tool for use in qualitative screening and development of materials. The effects of second-order heat-transfer terms may be as high as 50% for low-catalysis surfaces. With the second-order terms included, the maximum uncertainty in recombination-efficiency data for low-catalysis surfaces is 45%. The discussions are based on experimental data and calculations for arc-jet tests of the titanium alloy Ti-14Al-21Nb with a borosilicate-like glass coating that has a recombination efficiency of about 0.006 to 0.01. 20 refs.

Clark, R.K.; Cunnington, G.R. Jr.; Wiedemann, K.E. [National Aeronautics and Space Administration, Langley Research Center, Hampton, VA (United States)

1995-01-01T23:59:59.000Z

90

CFD modelling of thermal distribution in industrial server centres for configuration optimisation and energy efficiency  

Science Journals Connector (OSTI)

The use of servers for computational and communication control tasks is becoming more and more frequent in industries and institutions. Ever increasing computational power and data storage combined with reduction in chipsets size resulted in the increased heat density and need for proper configurations of the server racks to enhance cooling and energy efficiency. While different methods can be used to model and design new server centres and optimise their configuration, there is no clear guideline in the literature on the best way to design them and how to increase energy efficiency of existing server centres. This paper presents a simplified yet reliable computational fluid dynamics (CFD) model used to qualitatively evaluate different cooling solutions of a data centre and proposes guidelines to improve its energy efficiency. The influence of different parameters and configurations on the cooling load of the server room is then analysed.

Pierre-Luc Paradis; Drishtysingh Ramdenee; Adrian Ilinca; Hussein Ibrahim

2014-01-01T23:59:59.000Z

91

Contribution of nano-scale effects to the total efficiency of converters of thermal neutrons on the basis of gadolinium foils  

E-Print Network [OSTI]

We study the influence of nano-scale layers of converters made from natural gadolinium and its 157 isotope into the total efficiency of registration of thermal neutrons. Our estimations show that contribution of low-energy Auger electrons with the runs about nanometers in gadolinium, to the total efficiency of neutron converters in this case is essential and results in growth of the total efficiency of converters. The received results are in good consent to the experimental data.

D. A. Abdushukurov; D. V. Bondarenko; Kh. Kh. Muminov; D. Yu. Chistyakov

2008-02-04T23:59:59.000Z

92

Beryllium Impregnation of Uranium Fuel: Thermal Modeling of Cylindrical Objects for Efficiency Evaluation  

E-Print Network [OSTI]

, the graphs created need to be compared as shown below in figure 3.2. The goal of the new additive is to have a better heat conductivity throughout the fuel pellet in a reactor core leading to more power output from the fuel and better burnup. To see... conductivity. This leads to the temperature of the fuel to increase in order to produce the same power output as a higher thermal conductivity material. The Beryllium Oxide(BeO) that is to be used in this experiment is such a material that can raise...

Lynn, Nicholas

2011-08-04T23:59:59.000Z

93

Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting  

E-Print Network [OSTI]

In this work, a metamaterial selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 90% in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 20%. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350{\\deg}C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78%...

Wang, Hao; Mitchell, Arnan; Rosengarten, Gary; Phelan, Patrick; Wang, Liping

2014-01-01T23:59:59.000Z

94

Rapid Thermal Processing of High Efficiency n-Type Silicon Solar Cells with Al Back Junction  

SciTech Connect (OSTI)

In this paper we report on the design, fabrication and modeling of 49 cm{sup 2}, 200-{micro}m thick, 1-5 {Omega}-cm, n- and p-type <111> and <100> screen-printed silicon solar cells. A simple process involving RTP front surface phosphorus diffusion, low frequency PECVD silicon nitride deposition, screen-printing of Al metal and Ag front grid followed by co-firing of front and back contacts produced cell efficiencies of 15.4% on n-type <111> Si, 15.1% on n-type <100> Si, 15.8% on p-type <111> Si and 16.1% on p-type <100> Si. Open circuit voltage was comparable for n and p type cells and was also independent of wafer orientation. High fill factor values (0.771-0.783) for all the devices ruled out appreciable shunting which has been a problem for the development of co-fired n-type <100> silicon solar cells with Al back junction. Model calculations were performed using PC1D to support the experimental results and provide guidelines for achieving >17% n-type silicon solar cells by rapid firing of Al back junction.

Ebong, A.; Upadhyaya, V.; Rounsaville, B.; Kim, D. S.; Meemongkolkiat, V.; Rohatgi, A.; Al-Jassim, M. M.; Jones, K. M.; To, B.

2006-01-01T23:59:59.000Z

95

Renewable Energy Prediction for Improved Utilization and Efficiency in Datacenters and  

E-Print Network [OSTI]

Renewable Energy Prediction for Improved Utilization and Efficiency in Datacenters and Backbone requirements prevent easy integration with highly variable renewable energy sources. Short-term green energy of 11%. Their energy needs are supplied mainly by non-renewable, or brown energy sources, which

Simunic, Tajana

96

Besides these questions regarding the efficiency of condensation or thermal conduction in the inner flow, we note that there are other important questions regarding EC theory and implementation, including  

E-Print Network [OSTI]

Besides these questions regarding the efficiency of condensation or thermal conduction in the inner,12], but irradiation efficiency ~uncertain EC evaporation/condensation [13,14,15,16] between thermally-coupled disk setting to study accretion ­ a high mass supply rate (via Roche- lobe overflow [1,2]) avoids onset

California at Santa Cruz, University of

97

Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce  

Science Journals Connector (OSTI)

Abstract Fresh fruits and vegetables, destined to be eaten raw or minimally processed only, harbor the risk of conveying pathogenic microorganisms. Factors such as weather conditions, which favor survival or growth of microorganisms, and improper handling during cultivation or in the postharvest chain, can contribute to outbreaks of food-borne illness. Application of chemical sanitizers or physical treatments often shows a limited efficiency or does not meet consumer acceptance. Availability of gentle and effective techniques for disinfection of fresh produce, therefore, is highly desirable. Non-thermal gas plasma (NTP) treatment is a promising novel technique to reduce the microbial load on fresh fruits and vegetables. However, knowledge on practical applicability of NTP for fresh fruits and vegetables is very limited. In this study, chlorophyll fluorescence imaging (CFI) was used to elucidate suitable process parameters for application of an atmospheric pressure plasma-jet (kINPen 09, INP Greifswald, Germany) on corn salad, a perishable leafy green. Keeping a distance of 17mm to the plasma-jet, corn salad leaves could be treated for up to 60s at a fixed power (8W) and 5Lmin?1 of argon mixed with 0.1% oxygen. Surface temperature on leaves did never exceed 35.2C. Antibacterial tests were performed on corn salad, cucumber, apple, and tomato and achieved an inactivation of artificially inoculated Escherichia coli DSM 1116 of 4.11.2, 4.70.4, 4.70, and 3.30.9logunits, respectively, after 60s treatment time. Additional tests with a dielectric barrier discharge plasma and indirect plasma treatment within a remote exposure reactor, fed by a microwave induced plasma torch, did not result in equivalent levels of quality retention as observed using the plasma-jet. Industrial relevance Development of gentle non-thermal disinfection methods aims to provide the industry with new tools to actively improve the microbial status of fresh produce beyond the preventive benefits of good hygiene practices and the limited efficacy of post-harvest washing. The presented study shows how cold plasma can be applied to heat-sensitive lettuce leaves without detrimental effects to product quality. The additional microbiological tests offer insights into the antibacterial capacity of cold plasma on different produce surfaces. The results contribute to prompt the development of appropriate large-scale plasma sources to establish a new plasma-based sanitation technique for fresh fruits and vegetables, which should also be implementable into running process lines.

Matthias Baier; Mandy Grgen; Jrg Ehlbeck; Dietrich Knorr; Werner B. Herppich; Oliver Schlter

2014-01-01T23:59:59.000Z

98

3D Thermal-structural Analysis of an Absorber Tube of a Parabolic Trough Collector and the Effect of Tube Deflection on Optical Efficiency  

Science Journals Connector (OSTI)

Abstract In this paper deformation rate of an absorber tube of a parabolic trough collector due to a 3D solar flux density distribution is studied theoretically. Three dimensional temperature distribution and tube thermal expansion due to non-uniform solar flux over the tube are determined numerically. The local concentration ratio for the parabolic trough collectors, which is a key boundary condition in the thermal analysis is computed by Monte Carlo Ray Tracing method for different conditions. The governing equations of thermo-elastic constitutive are solved in three dimensions for steady state thermal and static structural analysis with appropriate boundary condition using Finite Volume and Finite Element numerical codes. Thermal stresses and strain are determined for two types of collectors; first one is a constructed collector and second one is under construction at Shiraz (Iran) solar thermal power plant. Results of the local concentration ratio, flux density, temperature distribution and thermal expansions are determined for the designed conditions. Appropriate flow rate and convection coefficient for each season are found in order to decrease tube bending, prevent optical efficiency drop of collectors, keep high factor of safety, and reduce cyclic daily amplitude motion which lead to longer life time of absorber tube.

S.M. Akbarimoosavi; M. Yaghoubi

2014-01-01T23:59:59.000Z

99

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network [OSTI]

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

100

MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON  

SciTech Connect (OSTI)

The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network [OSTI]

demand with solar thermal energy. With the codification ofconserved energy for efficiency technology and solar thermal

Levine, Mark

2014-01-01T23:59:59.000Z

102

Thermal Imaging Technique for Measuring Mixing of Fluids - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Thermal Solar Thermal Energy Analysis Energy Analysis Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Thermal Imaging Technique for...

103

7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant  

E-Print Network [OSTI]

calculated above. 7-123 A Carnot heat engine cycle is executed in a closed system with a fixed mass of steam can have is to be determined. Analysis The highest thermal efficiency a heat engine operating between transfer. Therefore, the maximum efficiency of the actual heat engine will be lower than the value

Bahrami, Majid

104

Investigations to convert CO2, NaCl and H2O into Na2CO3 and \\{HCl\\} by thermal solar energy with high solar efficiency  

Science Journals Connector (OSTI)

Abstract Exhaust CO2, NaCl and H2O can be converted to Na2CO3 and \\{HCl\\} by the MgCl2/MgO modified ammonia soda process at a maximum temperature of 525C. Such a temperature is easily reached by solar troughs. Subsequently this process stores thermal solar energy as chemical energy and concomitantly CO2 can be removed from the environment. The process has been investigated theoretically and experimentally to further enhance its solar efficiency. It is shown theoretically that Mg-compounds are unique for this process and that the MgCl2/MgO modification is optimal. Experiments demonstrate that by splitting the main reaction of this process into two steps the solar efficiency can be enhanced to 21.5% and very highly concentrated \\{HClaq\\} can be obtained. The yield of the main chemical reaction exceeds 95% at 525C. Suggestions are given for an improved thermal solar trough system to perform the main chemical reaction.

Martin Forster

2014-01-01T23:59:59.000Z

105

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

106

Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area  

E-Print Network [OSTI]

The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due...

Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

2006-01-01T23:59:59.000Z

107

Analysis and Research on the Thermal Properties of Energy-efficient Building Glass: A Case Study in PVB Laminated Glass  

E-Print Network [OSTI]

A new kind of PVB-laminated glass is introduced as an energy-efficient building glass. Based on tests and calculations of the shading coefficients of flat glass, LOW-E coated glass and PVB-laminated glass with different thickness, their effects...

Chen, Z.; Meng, Q.

2006-01-01T23:59:59.000Z

108

Control of CO2 emission through enhancing energy efficiency of auxiliary power equipment in thermal power plant  

Science Journals Connector (OSTI)

Abstract This paper describes the results of energy efficiency enhancement in 23 numbers of 210MW coal fired power plants spread over India. Energy efficiency improvement of major auxiliary equipment with different plant load factors are summarized here with improved performance. The effect of plant load factor on all major auxiliary equipment and improvement in performance of auxiliary equipment are discussed in this paper. Operation of the plant at improved plant load factor reduced the specific auxiliary power from 11.23% at 70% PLF to 8.74% at 100% PLF that reduced the net auxiliary power by 9.1MU/year that is an equivalent reduction of CO2 emission by 9500t/year. Optimizing the excess air, controlling the furnace ingress, enhanced energy efficiency of individual equipment by proper maintenance, etc., improves the plant capacity and reduces the overall auxiliary power by about 1.52.1% of gross energy generation i.e., equivalent CO2 reduction of 23,00032,400t/year and release an additional power of about 3.5MW (for a typical one 210MW power plant) into grid.

Rajashekar P. Mandi; Udaykumar R. Yaragatti

2014-01-01T23:59:59.000Z

109

Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases  

Science Journals Connector (OSTI)

We have developed a gas-turbine cogeneration system that makes effective use of the calorific value of the volatile organic compound (VOC) gases exhausted during production processes at a manufacturing plant. The system utilizes the high-temperature exhaust-gas from the regenerative thermal oxidizer (RTO) which is used for incinerating VOC gases. The high-temperature exhaust gas is employed to resuperheat the steam injected into the gasturbine. The steam-injection temperature raised in this way increases the heat input, resulting in the improved efficiency of the gas-turbine. Based on the actual operation of the system, we obtained the following results: Operation with the steam-injection temperature at 300C (45C resuperheated from 255C) increased the efficiency of the gasturbine by 0.7%. The system can enhance the efficiency by 1.3% when the steam-injection temperature is elevated to 340C (85C resuperheated). In this case, up to 6.6 million yen of the total energy cost and 400 tons of carbon dioxide (CO2) emissions can be reduced annually. A gas-turbine cogeneration and RTO system can reduce energy consumption by 23% and CO2 emission by 30.1% at the plant.

Masaaki Bannai; Akira Houkabe; Masahiko Furukawa; Takao Kashiwagi; Atsushi Akisawa; Takuya Yoshida; Hiroyuki Yamada

2006-01-01T23:59:59.000Z

110

Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency  

Science Journals Connector (OSTI)

Abstract Two single-layer, waterborne cool white coatings for building envelopes were recently developed for use in improving building energy efficiency. After the coatings were manufactured, their optical properties over the solar spectrum and their indoor temperature reduction effect were systematically investigated using appropriate tools, and the advantages/disadvantages of single layer cool white coatings over multilayer ones were discussed in detail. The preparation process enables these two coatings to integrate multiple cooling principles and thereby exhibit high solar heat reflectance and good indoor temperature reduction. The predicted industrial limit of solar heat reflectance for practical reflective cool white coatings is 0.91. Use of cool white coatings significantly reduces radiant heat flux. The temperature reduction effects evaluated by a self-developed device cannot describe adequately the indoor cooling performance of cool coatings.

Zhongnan Song; Weidong Zhang; Yunxing Shi; Jianrong Song; Jian Qu; Jie Qin; Tao Zhang; Yanwen Li; Hongqiang Zhang; Rongpu Zhang

2013-01-01T23:59:59.000Z

111

Energy Saving Alignment Strategy: Achieving energy efficiency in urban buildings by matching occupant temperature preferences with a buildings indoor thermal environment  

Science Journals Connector (OSTI)

Abstract Existing strategies for residential energy savings through physical renovation or motivating occupant energy conservation behavior can be costly and/or have transitory effects. Focusing on multi-family dwellings, an important subset of the urban residential sector, we propose an Energy Saving Alignment Strategy (ESAS) that has advantageous cost-effectiveness and a long-lasting influence. By aligning the distribution of residents thermostat preferences with the indoor temperature, ESAS aims to maximize thermal comfort and, accordingly, energy savings in multi-family buildings where indoor temperatures vary between apartments as a function of apartment orientation and floor level. Using a case study of a 1084-apartment public housing complex in New York, we classify both occupants thermostat preferences and apartments operative temperatures into five groups, and optimize energy efficiency by assigning each group of occupants to the group of apartments that best aligns with their thermostat preference. We test ESAS in eight cities representing all four U.S. census regions and six climate zones. Simulation results reveal 2.142.0% in energy savings compared to random apartment assignments depending on geographic location, with the highest energy reductions occurring in cities with mild climates, where the range of occupant thermostat preferences coincides with the natural indoor temperature range. We conclude by providing suggested guidelines on how ESAS might work in practice, and recommendations for extending ESAS research.

Xiaoqi Xu; Patricia J. Culligan; John E. Taylor

2014-01-01T23:59:59.000Z

112

NREL: Energy Systems Integration Facility - Thermal Distribution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal distribution bus consists of a thermal water loop connected to a research boiler and chiller that provide precise and efficient control of the water temperature...

113

Thermal Regenerator Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Regenerator Testing Thermal Regenerator Testing Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

114

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

115

Development of procedure for and results from calculated study of thermal state of turbine first-stage nozzle vanes and efficiency of their convective-film air cooling  

Science Journals Connector (OSTI)

Information on the development of a comprehensive procedure for calculating a nozzle vane with convective-film cooling and on its hydraulic, thermal, and strength characteristics is presented.

K. D. Andreev; A. V. Lipin; V. G. Polishchuk; N. P. Sokolov

2009-07-01T23:59:59.000Z

116

Czech Republic-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Czech Republic-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Czech Republic-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation

117

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

118

Ethiopia-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Ethiopia-Joint Programme on Resource Efficient and Cleaner Production Ethiopia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Ethiopia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

119

Guatemala-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Guatemala-Joint Programme on Resource Efficient and Cleaner Production Guatemala-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Guatemala-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

120

Honduras-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Honduras-Joint Programme on Resource Efficient and Cleaner Production Honduras-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Honduras-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Zimbabwe-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Zimbabwe-Joint Programme on Resource Efficient and Cleaner Production Zimbabwe-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Zimbabwe-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

122

Mozambique-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Mozambique-Joint Programme on Resource Efficient and Cleaner Production Mozambique-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Mozambique-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

123

Joint Programme on Resource Efficient and Cleaner Production (RECP) in  

Open Energy Info (EERE)

Programme on Resource Efficient and Cleaner Production (RECP) in Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

124

Bulgaria-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Bulgaria-Joint Programme on Resource Efficient and Cleaner Production Bulgaria-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Bulgaria-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

125

Cambodia-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Cambodia-Joint Programme on Resource Efficient and Cleaner Production Cambodia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Cambodia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

126

Slovakia-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Slovakia-Joint Programme on Resource Efficient and Cleaner Production Slovakia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Slovakia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

127

Colombia-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Colombia-Joint Programme on Resource Efficient and Cleaner Production Colombia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Colombia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

128

Tanzania-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Tanzania-Joint Programme on Resource Efficient and Cleaner Production Tanzania-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Tanzania-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

129

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

130

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

SciTech Connect (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

131

The Application and Verification of ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) to DOE-2-1e Simulation Program  

E-Print Network [OSTI]

ESL-TR-08-06-01 THE APPLICATION AND VERIFICATION OF ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) TO DOE-2.1e SIMULATION PROGRAM Jeff S... Systems Laboratory, Texas A&M University System 1 EXECUTIVE SUMMARY This report describes the application and verification of duct model on DOE 2.1e version 119 using ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal...

Kim, S.; Haberl, J. S.

132

Comparison and Design of High Efficiency Microinverters for Photovoltaic Applications.  

E-Print Network [OSTI]

??With the decrease in availability of non-renewable energy sources coupled with the increase in the amount of energy required for the operation of personal electronic (more)

Dominic, Jason

2015-01-01T23:59:59.000Z

133

Efficient Algorithms for Renewable Energy Allocation to Delay Tolerant Consumers  

E-Print Network [OSTI]

We investigate the problem of allocating energy from renewable sources to flexible consumers in electricity markets. We assume there is a renewable energy supplier that provides energy according to a time-varying (and possibly unpredictable) supply process. The plant must serve consumers within a specified delay window, and incurs a cost of drawing energy from other (possibly non-renewable) sources if its own supply is not sufficient to meet the deadlines. We formulate two stochastic optimization problems: The first seeks to minimize the time average cost of using the other sources (and hence strives for the most efficient utilization of the renewable source). The second allows the renewable source to dynamically set a price for its service, and seeks to maximize the resulting time average profit. These problems are solved via the Lyapunov optimization technique. Our resulting algorithms do not require knowledge of the statistics of the time-varying supply and demand processes and are robust to arbitrary samp...

Neely, Michael J; Dimakis, Alexandros G

2010-01-01T23:59:59.000Z

134

First Diode for Thermal Management of Micro and Macro Devices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search First Diode for Thermal Management of Micro and...

135

High efficiency incandescent lighting  

DOE Patents [OSTI]

Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

2014-09-02T23:59:59.000Z

136

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

blending marginally improved thermal efficiency due to high pressure rise rate and heat transfer loss. Gasoline blending achieves better efficiency at lower smoke...

137

Morocco-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Morocco-Joint Programme on Resource Efficient and Cleaner Production (RECP) Morocco-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Morocco-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

138

Ecuador-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Ecuador-Joint Programme on Resource Efficient and Cleaner Production (RECP) Ecuador-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Ecuador-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

139

Kenya-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Kenya-Joint Programme on Resource Efficient and Cleaner Production (RECP) Kenya-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Kenya-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

140

South Korea-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

South Korea-Joint Programme on Resource Efficient and Cleaner Production South Korea-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name South Korea-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Russia-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Russia-Joint Programme on Resource Efficient and Cleaner Production (RECP) Russia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Russia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

142

Croatia-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Croatia-Joint Programme on Resource Efficient and Cleaner Production (RECP) Croatia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Croatia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

143

Sri Lanka-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

Sri Lanka-Joint Programme on Resource Efficient and Cleaner Production Sri Lanka-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Sri Lanka-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

144

Vietnam-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Vietnam-Joint Programme on Resource Efficient and Cleaner Production (RECP) Vietnam-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Vietnam-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

145

Brazil-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Brazil-Joint Programme on Resource Efficient and Cleaner Production (RECP) Brazil-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Brazil-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

146

Republic of Macedonia-Joint Programme on Resource Efficient and Cleaner  

Open Energy Info (EERE)

Republic of Macedonia-Joint Programme on Resource Efficient and Cleaner Republic of Macedonia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Republic of Macedonia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

147

India-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

India-Joint Programme on Resource Efficient and Cleaner Production (RECP) India-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name India-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

148

Tunisia-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Tunisia-Joint Programme on Resource Efficient and Cleaner Production (RECP) Tunisia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Tunisia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

149

Hungary-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Hungary-Joint Programme on Resource Efficient and Cleaner Production (RECP) Hungary-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Hungary-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

150

South Africa-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

South Africa-Joint Programme on Resource Efficient and Cleaner Production South Africa-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name South Africa-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

151

Egypt-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Egypt-Joint Programme on Resource Efficient and Cleaner Production (RECP) Egypt-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Egypt-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

152

Uganda-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Uganda-Joint Programme on Resource Efficient and Cleaner Production (RECP) Uganda-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Uganda-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

153

Serbia-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Serbia-Joint Programme on Resource Efficient and Cleaner Production (RECP) Serbia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Serbia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

154

Armenia-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Armenia-Joint Programme on Resource Efficient and Cleaner Production (RECP) Armenia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Armenia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, - Industrial Processes, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

155

Laos-Joint Programme on Resource Efficient and Cleaner Production (RECP) in  

Open Energy Info (EERE)

Laos-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Laos-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Laos-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

156

El Salvador-Joint Programme on Resource Efficient and Cleaner Production  

Open Energy Info (EERE)

El Salvador-Joint Programme on Resource Efficient and Cleaner Production El Salvador-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name El Salvador-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

157

Mexico-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Mexico-Joint Programme on Resource Efficient and Cleaner Production (RECP) Mexico-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Mexico-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

158

Bolivia-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Bolivia-Joint Programme on Resource Efficient and Cleaner Production (RECP) Bolivia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Bolivia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

159

Lebanon-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Lebanon-Joint Programme on Resource Efficient and Cleaner Production (RECP) Lebanon-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Lebanon-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

160

Romania-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Romania-Joint Programme on Resource Efficient and Cleaner Production (RECP) Romania-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Romania-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Distillation: The Efficient Workhorse  

E-Print Network [OSTI]

DISTILLATION: THE EFFICIENT WORKHORSE Dan Steinmeyer Monsanto Company St. Louis, Missouri Distillation is inherently highly efficient: phase separation is clean it is relatively easy to build a mUltistage countercurrent device equilibrium... of separation to the work pmbedded in the reboiler and condenser thermal flows. The right application is one where the streams ? separated both exceed la' of the feed, relative volatility exceeds 1.2, and separation is complete - i.e. pure products...

Steinmeyer, D.

162

Thermal management of nanoelectronics  

E-Print Network [OSTI]

-state thermoelectric on- spot cooling, requiring efficient thermoelectric materials that can be integrated with the IC are further complicated by the fact that the material's ability to conduct heat deteriorates when at the packaging level but also at the nanoscale materials and device levels. THERMAL CHALLENGES AT NANOSCALE One

163

Cuba-Joint Programme on Resource Efficient and Cleaner Production (RECP) in  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Cuba-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Cuba-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation

164

Maximizing Thermal Efficiency and Optimizing Energy Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more...

165

STAFF PAPER THERMAL EFFICIENCY OF GASFIRED  

E-Print Network [OSTI]

of more than 17 percent. The successful development of new combined cycle plants since 2001 is the primary reason for the decline in California's systemwide heat rate. Keywords: Combined cycle in generation from newer combined cycle plants and a reduced dependence on generation from aging power plants

166

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

167

Characterization of the Thermal Transport Through a Temporally-Varying Ash Layer.  

E-Print Network [OSTI]

??Ash deposits in commercial coal-fired boilers frequently pose serious maintenance challenges and decrease thermal efficiency. A better understanding of fundamental thermal transport properties in ash (more)

Cundick,Darron Palmer 1979-

2008-01-01T23:59:59.000Z

168

Thermal plasmonic interconnects in graphene  

Science Journals Connector (OSTI)

As one emerging plasmonic material, graphene can support surface plasmons at infrared and terahertz frequencies with unprecedented properties due to the strong interactions between graphene and low-frequency photons. Since graphene surface plasmons exist in the infrared and terahertz regime, they can be thermally pumped (excited) by the infrared evanescent waves emitted from an object. Here we show that thermal graphene plasmons can be efficiently excited and have monochromatic and tunable spectra, thus paving a way to harness thermal energy for graphene plasmonic devices. We further demonstrate that thermal information communication via graphene surface plasmons can be potentially realized by effectively harnessing thermal energy from various heat sources, e.g., the waste heat dissipated from nanoelectronic devices. These findings open up an avenue of thermal plasmonics based on graphene for different applications ranging from infrared emission control, to information processing and communication, to energy harvesting.

Baoan Liu; Yongmin Liu; Sheng Shen

2014-11-10T23:59:59.000Z

169

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

170

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

171

Engine Combustion & Efficiency - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

172

Thermal treatment  

Science Journals Connector (OSTI)

Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

Dr. P. White; Dr. M. Franke; P. Hindle

1995-01-01T23:59:59.000Z

173

Thermal Processes  

Broader source: Energy.gov [DOE]

Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

174

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications  

E-Print Network [OSTI]

thermal efficiency from 54 percent to 63 percent. However, very few thermal storage materials are compatible for these high temperatures. Molten salts are thermally stable up to 600 degrees C and beyond. Using the molten salts as the TES materials...

Shin, Donghyun

2012-10-19T23:59:59.000Z

175

Efficiency of Exterior Exposed Ductwork  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Efficiency of Exterior Exposed Ductwork Most of California's commercial buildings have thermal distribution systems, the majority (63%) of which are air-based and distribute air through ductworks. Thermal distribution ductwork systems in small commercial buildings are similar to those in residential construction [Winter 1995, p.8] and have the same leakage and conduction-loss problems. The extent of these duct-related thermal losses depends on the location of the ductwork-the largest thermal losses occur when the ducts are entirely outside the building envelope. Leakage, conduction losses, direct solar radiation effects and solar reflection all affect the magnitude of thermal loss. Differences in the lengths of exterior ducts also affect a distribution system's energy

176

Mobile Window Thermal Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

177

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

for efficient energy production. Solar thermal plants, suchenergy production. It would require a substantial amount of land usage to install enough solar

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

178

Development of non-premixed porous inserted regenerative thermal oxidizer  

Science Journals Connector (OSTI)

In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a... x emissions and high radiant efficiency. Zirconium dioxide (ZrO2...) ceramic ...

Jun-chun Zhang; Le-ming Cheng; Cheng-hang Zheng

2013-09-01T23:59:59.000Z

179

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance Heat dissipation in Atomic-Scale Junctions A General Strategy to...

180

Collector/Receiver Characterization (Fact Sheet), Thermal Systems...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coolant, at near-ambient temperature and low pressure, is pumped to the receiver. Because heat loss is extremely low, optical efficiency can be determined independent of thermal...

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL: Vehicles and Fuels Research - Light-Duty Vehicle Thermal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and passenger thermal comfort. Analogous to crash-test dummies, these manikins measure heat loss and skin temperature through numerous sensors, making it possible to efficiently...

182

Riverland Energy Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Riverland Energy Cooperative offers a number of rebates for the purchase and installation of efficient lighting fixtures, air conditioners, heat pumps, water heaters, central electric thermal...

183

Variable emissivity laser thermal control system  

DOE Patents [OSTI]

A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

Milner, Joseph R. (Livermore, CA)

1994-01-01T23:59:59.000Z

184

Laser perforation of screen vacuum thermal insulation  

Science Journals Connector (OSTI)

This paper presents the results of the process of laser perforation of screen vacuum thermal insulation and shows that it has high efficiency. The use of various types of IR lasers...

Sysoev, V K; Vyatlev, P A; Zakharchenko, A V

2007-01-01T23:59:59.000Z

185

Urban solarium : thermal performance in Boston  

E-Print Network [OSTI]

This thesis addresses the issue of energy efficiency through the lens of thermal performance in the context of urban housing in the city of Boston. Located in the historic brick row house neighborhood of the South End, the ...

Hsu, Juliet Chia-Wen

2012-01-01T23:59:59.000Z

186

Thermal Energy Storage for Vacuum Precoolers  

E-Print Network [OSTI]

radically creating high peak demands and low load factors. An ice bank thermal energy storage (TES) and ice water vapor condenser were installed. The existing equipment and TES system were computer monitored to determine energy consumption and potential... efficiency at night. The ice bank thermal energy storage system has a 4.4 year simple payback. While building ice, the refrigeration system operated at a 6.26 Coefficient of Performance (COP). The refrigeration system operated more efficiently at night...

Nugent, D. M.

187

Efficiency of combined solar photothermal plants  

Science Journals Connector (OSTI)

The efficiency of a combined solar photothermal plant for electric and thermal energy ... evaluated with account for the daily variation of solar radiation and atmospheric temperature. It is shown ... utilize add...

M. N. Tursunov; A. Komilov; Sh. I. Klychev; S. M. Mukhammadiyev

2008-09-01T23:59:59.000Z

188

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

189

Europium-doped Pyrochlores for Use as Thermographic Phosphors in Thermal Barrier Coatings  

E-Print Network [OSTI]

temperatures and better efficiency · Two primary characteristics for coating: low thermal conductivity and high conductivities and high thermal expansion coefficients making them attractive as materials in thermal barrier · Selected compounds have low thermal conductivity, high melting points, and adequate thermal expansion

Walker, D. Greg

190

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

191

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

192

(Energy Efficiency)  

Broader source: Energy.gov (indexed) [DOE]

DECLARATION DECLARATION INTERNATIONAL PARTNERSHIP FOR ENERGY EFFICIENCY COOPERATION [IPEEC] Considering: Declarations of the Gleneagles, St. Petersburg and Heiligendamm Summits, which emphasize the need for global cooperation in the field of energy efficiency. Recognizing: 1. that improving energy saving and energy efficiency is one of the quickest, greenest, and most cost-effective way to address energy security, climate change, and ensuring economic growth; 2. that a comprehensive process has been launched to enable the full, effective and sustained implementation of the UNFCCC through long-term cooperative action, now, up to and beyond 2012, in order to reach an agreed outcome and adopt a decision at the COP 15. 3. that all countries, both developed and developing, share common interests for improving their

193

Thermal treatment for VOC control  

SciTech Connect (OSTI)

Catalytic and thermal oxidation are well-established technologies for controlling volatile organic compounds (VOCs). Oxidation destroys pollutants, rather than capturing them. Oxidation units can destroy nearly 100% of VOC and toxic emissions targeted by the Clean Air Act Amendments of 1990--some systems attain destruction efficiencies over 99.99%. To assist in the design of these systems, an engineer will often look a/t the heat of combustion of the gas stream, along with the type of pollutant, to best determine the correct type of oxidation device to use. The paper discusses catalytic and thermal oxidation, energy recovery, and equipment for these processes.

Cloud, R.A. [Huntington Environmental Systems, Schaumburg, IL (United States)

1998-07-01T23:59:59.000Z

194

The Energy-Efficient Fixtures Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 The Energy-Efficient Fixtures Laboratory Replacing the incandescent bulb with a more efficient light source is only the first step in developing an energy-efficient lighting system. Improved fixtures can raise the system's efficiency even further. At LBL's Energy-Efficient Fixtures Laboratory, researchers in the Lighting Systems Group study the optical and thermal efficiency of luminaires, and work closely with fixture manufacturers to develop more efficient products. "Fifty to seventy percent efficiencies are now typical of fixtures," says senior research associate Chin Zhang, "and we're trying to improve them to eighty to ninety percent." Oliver Morse adjusts a centralized light guide system consisting of a 250-watt metal halide lamp, a high-efficiency beam splitter and four hollow

195

Chapter 12 - Assessment of Thermal Energy Storage Systems  

Science Journals Connector (OSTI)

Abstract The foremost challenges of energy supply in meeting the energy demand apply to the development of energy efficient technologies to achieve energy security and environmental emissions. In the spectrum of energy-efficient technologies, thermal energy storage systems offer huge potential to bridge the mismatch between energy supply and energy demand. The overall operational performance of thermal storage systems depends on the quality of energy content and the energy degradation effects exhibited during the cyclic charging and discharging processes. The assessment pertaining to the exergy efficiency in addition to energy efficiency can have a pivotal role to enable thermal storage systems to outperform on a long-term basis.

S. Kalaiselvam; R. Parameshwaran

2014-01-01T23:59:59.000Z

196

ACADEMIC EFFICIENCY  

Science Journals Connector (OSTI)

...efficiency expert begins his operations in a factory his first...of learning, it is safe to say that an appalling...10) Standardized operations. (11) Written standard...what extent they are in operation. Suppose that the Carnegie...involv-ing " a gross and fundamental error. " But it would...

William Kent

1912-12-20T23:59:59.000Z

197

Generating random thermal momenta  

E-Print Network [OSTI]

Generation of random thermal particle momenta is a basic task in many problems, such as microscopic studies of equilibrium and transport properties of systems, or the conversion of a fluid to particles. In heavy-ion physics, the (in)efficiency of the algorithm matters particularly in hybrid hydrodynamics + hadronic transport calculations. With popular software packages, such as UrQMD 3.3p1 or THERMINATOR, it can still take ten hours to generate particles for a single Pb+Pb "event" at the LHC from fluid dynamics output. Below I describe reasonably efficient simple algorithms using the MPC package, which should help speed momentum generation up by at least one order of magnitude. It is likely that this wheel has been reinvented many times instead of reuse, so there may very well exist older and/or better algorithms that I am not aware of (MPC has been around only since 2000). The main goal here is to encourage practitioners to use available efficient routines, and offer a few practical solutions.

Denes Molnar

2012-12-09T23:59:59.000Z

198

12 - Life cycle assessment (LCA) of building thermal insulation materials  

Science Journals Connector (OSTI)

Abstract: In this chapter thermal insulation materials and types of plaster and their properties are described. The impact of the selected thermal insulation materials and plaster on the environment is assessed using LCA analysis. A method of assessing the ecological and economic benefits resulting from thermal insulation of the external walls of buildings is proposed. On this basis, ecological and economic payback periods for thermal insulation are defined as well as the ecological efficiency of thermal insulation. The conducted analyses conclude that thermal insulation of the external walls of buildings is environmentally favourable.

R. Dylewski; J. Adamczyk

2014-01-01T23:59:59.000Z

199

Smart Thermal Skins for Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Smart Thermal Skins for Vehicles With a modest effort, many of the energy-efficient technologies developed for buildings can be transferred to the transportation sector. The goal of vehicle thermal management research at LBL is to save the energy equivalent of one to two billion gallons of gasoline per year, and improve the marketability of next-generation vehicles using advanced solar control glazings and insulating shell components to reduce accessory loads. Spectrally selective and electrochromic window glass and lightweight insulating materials improve the fuel efficiency of conventional and hybrid vehicles and extend the range of electric vehicles by reducing the need for air conditioning and heating, and by allowing the downsizing of equipment.

200

Nanoscale thermal transport. II. 20032012  

SciTech Connect (OSTI)

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivitythermal conductivity below the conventionally predicted minimum thermal conductivityhas been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

202

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network [OSTI]

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

203

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

204

Optimization of multi-pressure himidification-dehumidification desalination using thermal vapor compression and hybridization  

E-Print Network [OSTI]

Humidification-dehumidification (HD or HDH) desalination, and specifically HD driven by a thermal vapor compressor (TVC), is a thermal desalination method that has the potential to produce potable water efficiently in order ...

Mistry, Karan Hemant

205

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module  

Broader source: Energy.gov [DOE]

Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it.

206

Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

207

Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

208

FUTURE DIRECTIONS FOR THERMAL DISTRIBUTION STANDARDS  

SciTech Connect (OSTI)

This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

209

Quantum thermal machines with single nonequilibrium environments  

E-Print Network [OSTI]

We propose a scheme for a quantum thermal machine made by atoms interacting with a single non-equilibrium electromagnetic field. The field is produced by a simple configuration of macroscopic objects held at thermal equilibrium at different temperatures. We show that these machines can deliver all thermodynamic tasks (cooling, heating and population inversion), and this by establishing quantum coherence with the body on which they act. Remarkably, this system allows to reach efficiencies at maximum power very close to the Carnot limit, much more than in existing models. Our findings offer a new paradigm for efficient quantum energy flux management, and can be relevant for both experimental and technological purposes.

Bruno Leggio; Bruno Bellomo; Mauro Antezza

2015-01-08T23:59:59.000Z

210

Lattice Boltzmann model for thermal transpiration  

Science Journals Connector (OSTI)

The conventional Navier-Stokes-Fourier equations with no-slip boundary conditions are unable to capture the phenomenon of gas thermal transpiration. While kinetic approaches such as the direct simulation Monte Carlo method and direct solution of the Boltzmann equation can predict thermal transpiration, these methods are often beyond the reach of current computer technology, especially for complex three-dimensional flows. We present a computationally efficient nonequilibrium thermal lattice Boltzmann model for simulating temperature-gradient-induced flows. The good agreement between our model and kinetic approaches demonstrates the capabilities of the proposed lattice Boltzmann method.

G. H. Tang; Y. H. Zhang; X. J. Gu; R. W. Barber; D. R. Emerson

2009-02-12T23:59:59.000Z

211

Nuclear Power and the Environment - Energy Explained, Your Guide To  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From

212

Enhancing Thermal Conductivity and Reducing Friction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory currently has several projects underway to develop advanced fluids, films, coatings, and Laboratory currently has several projects underway to develop advanced fluids, films, coatings, and processes to improve thermal conductivity and reduce friction. These measures are helping to increase energy efficiency for next-generation transportation applications. Superhard and Slick Coating (SSC) Opportunity: Friction, wear, and lubrication strongly affect the energy efficiency, durability, and environmental compatibility of

213

Thermal distribution systems in commercial buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal distribution systems in commercial buildings Thermal distribution systems in commercial buildings Title Thermal distribution systems in commercial buildings Publication Type Journal Article LBNL Report Number LBNL-51860 Year of Publication 2003 Authors Diamond, Richard C., Craig P. Wray, Darryl J. Dickerhoff, Nance Matson, and Duo Wang Start Page Chapter Abstract Previous research suggests that HVAC thermal distribution systems in commercial buildings suffer from thermal losses, such as those caused by duct air leakage and poor duct location. Due to a lack of metrics and data showing the potentially large energy savings from reducing these losses, the California building industry has mostly overlooked energy efficiency improvements in this area. The purpose of this project is to obtain the technical knowledge needed to properly measure and understand the energy efficiency of these systems. This project has three specific objectives: to develop metrics and diagnostics for determining system efficiencies, to develop design and retrofit information that the building industry can use to improve these systems, and to determine the energy impacts associated with duct leakage airflows in an existing large commercial building. The primary outcome of this project is the confirmation that duct leakage airflows can significantly impact energy use in large commercial buildings: our measurements indicate that adding 15% duct leakage at operating conditions leads to an increase in fan power of about 25 to 35%. This finding is consistent with impacts of increased duct leakage airflows on fan power that have been predicted by previous simulations. Other project outcomes include the definition of a new metric for distribution system efficiency, the demonstration of a reliable test for determining duct leakage airflows, and the development of new techniques for duct sealing. We expect that the project outcomes will lead to new requirements for commercial thermal distribution system efficiency in future revisions of California's Title 24.

214

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

215

Energy efficient data centers  

E-Print Network [OSTI]

wit h energy efficiency Improving Best Practices Linkwit h energy efficiency Improving Best Practices Linkwit h energy efficiency Improving Best Practices Link

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

216

High Temperature InGaN Topping Cells for Hybrid Photovoltaic/Concentrating Solar Thermal Systems  

Science Journals Connector (OSTI)

Hybrid PV/CSP systems offer the potential of higher solar to grid efficiency, with the benefits of dispatchable electricity from thermal storage. Here we present an implementation...

Honsberg, Christiana; Gleckman, Philip; Doolittle, William A; Ponce, Fernando; Arena, Chantal; Vasileska, Dragica; Goodnick, Stephen M

217

Off-peak summer performance enhancement for rows of fixed solar thermal collectors using reflective surfaces.  

E-Print Network [OSTI]

??The possibility of increasing the efficiency of fixed solar thermal collectors without greatly adding to the cost or complexity of the overall solar collection system (more)

Armenta, Casiano

2011-01-01T23:59:59.000Z

218

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System.  

E-Print Network [OSTI]

??This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly (more)

Zizzo, Ryan

2010-01-01T23:59:59.000Z

219

Multiple Rankine topping cycles offer high efficiency  

SciTech Connect (OSTI)

The efficiency of a Rankine cycle is primarily determined by the temperatures of heat addition and heat rejection. However, no working fluid has been identified that will operate in a Rankine cycle over an extremely wide temperature range. Multiple Rankine topping cycles offer a technique for achieving high thermal efficiencies in power plants by allowing the use of several working fluids to span larger temperature ranges.

McWhirter, J.D. [Idaho State Univ., Pocatello, ID (United States)

1997-10-01T23:59:59.000Z

220

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners  

Broader source: Energy.gov [DOE]

Presents recent advances in thermoelectric device fabrication and the design of novel cooling/heating engines exploiting thermal storage for efficient air-conditioners in automobiles

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

Science Journals Connector (OSTI)

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was...2 con...

F. Ouni; A. Khacef; J. M. Cormier

2009-04-01T23:59:59.000Z

222

Thermal Management of High-Performance Lithium-Ion Batteries  

Science Journals Connector (OSTI)

The battery power and lifetime depend to a large...cool...) is usually reduced using a high volumetric flow rate. Lathin technology from Behr ensures efficient temperature homogenisation (locally adapted thermal ...

Dr.-Ing. Matthias Stripf; Dr.-Ing. Manuel Wehowski

2012-01-01T23:59:59.000Z

223

Thermal Management Fundamentals and Design Guides in Electronic Packaging  

Science Journals Connector (OSTI)

The objective of thermal management in electronic packaging is to efficiently remove heat from ... paths requires a thorough understanding of heat transfer fundamentals as well as knowledge of available interface...

Xingcun Colin Tong

2011-01-01T23:59:59.000Z

224

Energy Efficiency Governance Energy Efficiency  

E-Print Network [OSTI]

countries through collective response to physical disruptions in oil supply and to advise member countries on sound energy policy. The IEA carries out a comprehensive programme of energy co-operation among 28 advanced economies, each of which is obliged to hold oil stocks equivalent to 90 days of its net imports. The Agency aims to: n Secure member countries access to reliable and ample supplies of all forms of energy; in particular, through maintaining effective emergency response capabilities in case of oil supply disruptions. n Promote sustainable energy policies that spur economic growth and environmental protection in a global context particularly in terms of reducing greenhouse-gas emissions that contribute to climate change. n Improve transparency of international markets through collection and analysis of energy data. n Support global collaboration on energy technology to secure future energy supplies and mitigate their environmental impact, including through improved energy efficiency and development and deployment of low-carbon technologies. OECD/IEA, 2010 International Energy Agency 9 rue de la Fdration

unknown authors

225

Permanent magnet thermal energy system  

SciTech Connect (OSTI)

An improved rotary magnet thermal generator system of the type having an array of magnets in alternating disposition coaxially disposed about and parallel with the shaft of a motor driving the rotary array and having a copper heat absorber and a ferro-magnetic plate fixed on a face of the heat absorber, includes as efficiency improver a plurality of heat sink plates extending beyond the ferro-magnet plate into a plenum through a respective plurality of close-fitting apertures. In a further embodimetn the heat sink plates are in thermal contact with sinusoidally convoluted tubing that both increases surface area and provides for optional heating of gases and/or fluids at the same time.

Gerard, F.

1985-04-16T23:59:59.000Z

226

PDSF Job Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization Running Jobs Efficiently Running Jobs Efficiently Job Efficiency A job's efficiency is the ratio of its CPU time to the actual time it took to run, i.e., cputime ...

227

SEPTEMBER 2009 ENERGY EFFICIENCY &  

E-Print Network [OSTI]

SEPTEMBER 2009 GUIDE TO ENERGY EFFICIENCY & RENEWABLE ENERGY FINANCING DISTRICTS FOR LOCAL Assessment Districts) DEER Database for Energy Efficient Resources DSIRE Database of State Incentives for Renewables & Efficiency EECBG Energy Efficiency and Conservation Block Grants EIM Energy Improvement Mortgage

Kammen, Daniel M.

228

Solar and Energy Efficiency Justice | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Energy Efficiency Justice and Energy Efficiency Justice Solar and Energy Efficiency Justice June 24, 2010 - 3:00pm Addthis The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo courtesy of Blount County, Tenn. The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo courtesy of Blount County, Tenn. A solar thermal water-heating system at the justice center in Maryville, Tenn., is helping to reduce energy consumption and cut costs for Blount County. Funded by $300,000 of the $501,600 Energy Efficiency and Conservation Block Grant (EECBG) awarded to Blount County through the Recovery Act, the solar thermal water-heating system will retrofit the detention facility's

229

Design and global optimization of high-efficiency thermophotovoltaic systems  

E-Print Network [OSTI]

Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of ...

Bermel, Peter A.

230

High Efficiency Full Expansion (FEx) Engine for Automotive Applications  

Broader source: Energy.gov [DOE]

Large increases in engine thermal efficiency result from a new method of large reductions in both heat energy normally lost to the cooling medium and in heat energy in the exhaust system.

231

Duo-action electro thermal micro gripper  

Science Journals Connector (OSTI)

A thermally actuated micro gripper with two integrated micro actuators for open/close action was designed and fabricated from single crystal silicon. A total gripping range of 13@mm was observed for driving voltages below 5V. The actuation efficiency ... Keywords: Micro actuator, Micro assembly, Micro gripper, Micro manipulation

B. E. Volland; K. Ivanova; Tzv. Ivanov; Y. Sarov; E. Guliyev; A. Persaud; J. -P. Zllner; S. Klett; I. Kostic; I. W. Rangelow

2007-05-01T23:59:59.000Z

232

Video digitisation and thermal analysis of a PCB  

Science Journals Connector (OSTI)

A thermal analysis of a naturally-cooled printed-circuit-board (PCB) has been performed under prescribed conditions. A fast-action camera with image digitisation and pre-processing capabilities was employed to input the PCB image to a thermal-analysis template. Isotherms and isometric colour projections were predicted. This technique can solve thermal problems of electronic and electrical packages faster and more efficiently than other conventional methods.

H.E. George; R.F Babus'Haq; P.W. O'Callaghan

1993-01-01T23:59:59.000Z

233

Thermal diffusivity measurement system applied to polymers  

Science Journals Connector (OSTI)

In the search for cleaner energy sources the improvement of the efficiency of the actual ones appears as a primary objective. In this way thermoelectric materials which are able to convert wasted heat into electricity are reveal as an interesting way to improve efficiency of car engines for example. Cost-effective energy harvesting from thermoelectric devices requires materials with high electrical conductivities and Seebeck coefficient but low thermal conductivity. Conductive polymers can fulfil these conditions if they are doped appropriately. One of the most promising polymers is Polyaniline. In this work the thermal conductivity of the polyaniline and mixtures of polyaniline with nanoclays has been studied using a new experimental set-up developed in the lab. The novel system is based on the steady-state method and it is used to obtain the thermal diffusivity of the polymers and the nanocomposites.

2012-01-01T23:59:59.000Z

234

An electrochemical system for efficiently harvesting low-grade heat energy  

E-Print Network [OSTI]

Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low ...

Lee, Seok Woo

235

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

236

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stricker, Stefan

2014-01-01T23:59:59.000Z

237

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network [OSTI]

automotive industry optics biomedical technology environmental technology Plasma Technology Quote from: Pla-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer

Greifswald, Ernst-Moritz-Arndt-Universität

238

Graphene optical-to-thermal converter  

E-Print Network [OSTI]

Infrared plasmons in doped graphene nanostructures produce large optical absorption that can be used for narrow-band thermal light emission at tunable frequencies that strongly depend on the doping charge. By virtue of Kirchhoff's law, thermal light emission is proportional to the absorption, thus resulting in narrow emission lines associated with the electrically controlled plasmons of heated graphene. Here we show that realistic designs of graphene plasmonic structures can release over 90% of the emission through individual infrared lines with 1% bandwidth. We examine anisotropic graphene structures in which efficient heating can be produced upon optical pumping tuned to a plasmonic absorption resonance situated in the blue region relative to the thermal emission. An incoherent thermal light converter is thus achieved. Our results open a radically different approach for designing tunable nanoscale infrared light sources.

Manjavacas, Alejandro; Greffet, Jean-Jacques; de Abajo, F Javier Garca

2014-01-01T23:59:59.000Z

239

Power Electronics and Thermal Management Breakout Sessions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POWER ELECTRONICS AND THERMAL POWER ELECTRONICS AND THERMAL MANAGEMENT EV Everywhere Workshop July 24, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Performance: Is achievable with these assumptions * Production Cost: $8/KW is achievable for PHEV40 and BEV300, $14/KW is okay for BEV100 * Production Efficiency: 95% system efficiency might be achievable * It is easier to achieve performance than cost targets * Integration of the different functionalities can help with achieving the targets * What is efficiency worth? What price do we place on it? Barriers Interfering with Reaching the Targets * Capacitors and magnetics (materials, performance, temperature, size, frequency, packaging) * Material cost, capacitors and magnetics are the priority

240

Flameless thermal oxidation. Innovative technology summary report  

SciTech Connect (OSTI)

The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (PICs).

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermal contact resistance  

E-Print Network [OSTI]

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

242

Solar Thermal Processes  

Science Journals Connector (OSTI)

The use of solar energy for desalination purposes was one of ... The process is based on the use of solar thermal energy to evaporate water, thus separating pure ... brine. In this chapter an overview of solar thermal

M.T. Chaibi; Ali M. El-Nashar

2009-01-01T23:59:59.000Z

243

Thermal Neutron Scattering  

Science Journals Connector (OSTI)

... of its title. It is not for the nuclear physicist, nor even for the neutron physicist, but for the student of solids and liquids. "Thermal ... physicist, but for the student of solids and liquids. "Thermal neutron ...

G. E. BACON

1968-11-09T23:59:59.000Z

244

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: ? Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). ? Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). ? Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). ? Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

245

Almond production in Iran: An analysis of energy use efficiency (20082011)  

Science Journals Connector (OSTI)

Abstract The objective of this study was to analyse inputoutput energy in almond production in Chahrmahal-Va-Bakhtiari province, Iran. Almond production data were collected from producers using the direct questionnaire method. The results reveal that electricity accounted for a large part of the input energy (50%), followed by chemical fertilizers. The average contributions of human labour, chemicals, farmyard manure, diesel fuel and machinery were 6.89%, 6.77%, 4.70%, 4.66% and 3.59% of the total energy input, respectively. The average values of total energy output, net energy gain and energy efficiency were 140.2GJha?1, 77.7GJha?1 and 2.24, respectively. In addition, the average values for energy productivity and specific energy were 19kgGJ?1 and 0.06GJkg?1, respectively. The average values for direct, indirect, renewable and non-renewable forms of energy were 41.6GJha?1 (66.63%), 20.9GJha?1 (33.36%), 18.3GJha?1 (29.21%) and 44.2GJha?1 (70.79%), respectively.

Mehdi Torki-Harchegani; Rahim Ebrahimi; Mahmood Mahmoodi-Eshkaftaki

2015-01-01T23:59:59.000Z

246

Thermal neutron detection system  

DOE Patents [OSTI]

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

247

Thermal Performance Benchmarking (Presentation)  

SciTech Connect (OSTI)

This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

Moreno, G.

2014-11-01T23:59:59.000Z

248

Multiwavelength Thermal Emission  

E-Print Network [OSTI]

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

249

Refines Efficiency Improvement  

SciTech Connect (OSTI)

Refinery processes that convert heavy oils to lighter distillate fuels require heating for distillation, hydrogen addition or carbon rejection (coking). Efficiency is limited by the formation of insoluble carbon-rich coke deposits. Heat exchangers and other refinery units must be shut down for mechanical coke removal, resulting in a significant loss of output and revenue. When a residuum is heated above the temperature at which pyrolysis occurs (340 C, 650 F), there is typically an induction period before coke formation begins (Magaril and Aksenova 1968, Wiehe 1993). To avoid fouling, refiners often stop heating a residuum before coke formation begins, using arbitrary criteria. In many cases, this heating is stopped sooner than need be, resulting in less than maximum product yield. Western Research Institute (WRI) has developed innovative Coking Index concepts (patent pending) which can be used for process control by refiners to heat residua to the threshold, but not beyond the point at which coke formation begins when petroleum residua materials are heated at pyrolysis temperatures (Schabron et al. 2001). The development of this universal predictor solves a long standing problem in petroleum refining. These Coking Indexes have great potential value in improving the efficiency of distillation processes. The Coking Indexes were found to apply to residua in a universal manner, and the theoretical basis for the indexes has been established (Schabron et al. 2001a, 2001b, 2001c). For the first time, a few simple measurements indicates how close undesired coke formation is on the coke formation induction time line. The Coking Indexes can lead to new process controls that can improve refinery distillation efficiency by several percentage points. Petroleum residua consist of an ordered continuum of solvated polar materials usually referred to as asphaltenes dispersed in a lower polarity solvent phase held together by intermediate polarity materials usually referred to as resins. The Coking Indexes focus on the amount of these intermediate polarity species since coke formation begins when these are depleted. Currently the Coking Indexes are determined by either titration or solubility measurements which must be performed in a laboratory. In the current work, various spectral, microscopic, and thermal techniques possibly leading to on-line analysis were explored for measuring the Coking Indexes.

WRI

2002-05-15T23:59:59.000Z

250

NREL: Fleet Test and Evaluation - Truck Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

251

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

252

Thermal barrier coatings application in diesel engines  

SciTech Connect (OSTI)

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

Fairbanks, J.W.

1995-03-01T23:59:59.000Z

253

Daimler's SuperTruck Program; 50% Brake Thermal Efficiency  

Broader source: Energy.gov [DOE]

Presents highlights of engine and vehicle advances made, and progress towards achieving aggressive goals

254

Supertruck technologies for 55% thermal efficiency and 68% freight...  

Broader source: Energy.gov (indexed) [DOE]

of Seasons (Summer, Winter, etc.) 5 Engine Losses Urban: 58-60% Interstate: 58-59% Aerodynamic Losses Urban: 4-10% Interstate: 15-22% Inertia Braking Urban: 15-20% Interstate:...

255

Energy Efficient Proactive Thermal Management in Memory Subsystem  

E-Print Network [OSTI]

improves energy savings by 43% and reduces performance overhead by 85% with respect to the state of the art itself is a power hungry module which consumes a big portion of the total system energy [9]. The cost relationship between fan power and its speed [13]. Recent studies show a growing concern for energy problems

Simunic, Tajana

256

NOTES AND DISCUSSIONS Note on thermal heating efficiency  

E-Print Network [OSTI]

. This is the conversion problem faced in every home, where one has heat from a gas, oil, wood, or coal flame but wants, Washington University, St. Louis, Missouri 63130 Received 25 April 2002; accepted for publication 26 July

Rodriguez, Carlos

257

High Thermal Efficiency and Low Emissions with Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost. p-16zoldak.pdf More Documents & Publications Transonic Combustion - Injection...

258

Emerging Data Center Thermal Management and Energy Efficiency Technologies  

Science Journals Connector (OSTI)

The Facebook Prineville facility uses a full air-side economizer system. The air distribution scheme is illustrated...13.2.... The outside air enters through double louvers and proceeds into the outside air intak...

Yogendra Joshi; Pramod Kumar

2012-01-01T23:59:59.000Z

259

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents [OSTI]

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

260

Thermal Efficiency Improvement While Meeting Emissions of 2007...  

Broader source: Energy.gov (indexed) [DOE]

Transient Calibration Optimization for Next Generation Diesel Engines Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations...

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Future Diesel Engine Thermal Efficiency Improvement andn Emissions...  

Broader source: Energy.gov (indexed) [DOE]

2005deerpuetz.pdf More Documents & Publications Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Model-Based Transient...

262

Thermally efficient melting and fuel reforming for glass making  

DOE Patents [OSTI]

An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

Chen, Michael S. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary S. (Trexlertown, PA); Winchester, David C. (Allentown, PA)

1991-01-01T23:59:59.000Z

263

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network [OSTI]

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma

Paris-Sud XI, Université de

264

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors  

E-Print Network [OSTI]

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

Mayer, Alexandre

265

System-level, Unified In-band and Out-of-band Dynamic Thermal Control  

E-Print Network [OSTI]

and improve the reliability of systems. Our thermal control framework unifies temperature control mechanisms supply, etc.) to operate less efficiently. Third, high temperatures can trigger thermal emergenciesSystem-level, Unified In-band and Out-of-band Dynamic Thermal Control Dong Li* , Rong Ge** , Kirk

266

Power Station Efficiency Control: a Treatise for the Power Station Engineer on Boiler-Room Efficiency, Turbine-Room Efficiency, Heat Balance Control, Methods of Recording and Tabulating Operating Results and Keeping a Day to Day Check on Operating Efficiency  

Science Journals Connector (OSTI)

... improvements have been made in recent years, with a consequent increase in the over-all efficiency of generation. All the coal used is now weighed with high accuracy. The temperature ... , thanks to scientific investigations, there are power stations in various places with a thermal efficiency of more than 18 per cent. Most of the improvement is due to increased ...

1924-10-18T23:59:59.000Z

267

Energy Aware Grid: Global Workload Placement based on Energy Efficiency  

E-Print Network [OSTI]

Energy Aware Grid: Global Workload Placement based on Energy Efficiency Chandrakant Patel, Ratnesh.graupner}@hp.com Grid Computing, energy- efficiency, workload placement, cooling, data center, utility computing in data centers has created thermal and energy management issues that inhibit sustainability

Simunic, Tajana

268

OPTIONS for ENERGY EFFICIENCY  

E-Print Network [OSTI]

OPTIONS for ENERGY EFFICIENCY in EXISTING BUILDINGS December 2005 CEC-400-2005-039-CMF;OPTIONS FOR ENERGY EFFICIENCY in EXISTING BUILDINGS COMMISSION REPORT TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................iii California's Successful Energy Efficiency Programs

269

Energy Efficient Radio Resource  

E-Print Network [OSTI]

Energy Efficient Radio Resource Management in a Coordinated Multi-Cell Distributed Antenna System Omer HALILOGLU Introduction System Model Performance Evaluation Conclusion References Energy Efficient Hacettepe University 5 September 2014 Omer HALILOGLU (Hacettepe University) Energy Efficient Radio Resource

Yanikomeroglu, Halim

270

Holographic technology could increase solar efficiency | Department of  

Broader source: Energy.gov (indexed) [DOE]

Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency October 12, 2010 - 1:00pm Addthis Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Lorelei Laird Writer, Energy Empowers Co-generation technology could combine photovoltaics and solar thermal Luminit's technology bends and redirects sunlight to produce energy Research funded by Small Business Innovation Research grant There are two major technologies in solar energy: photovoltaics and solar thermal. Most people are more familiar with photovoltaics (PV) - the flat solar

271

Transportation Efficiency Resources  

Broader source: Energy.gov [DOE]

Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and...

272

SM Energy-Efficient  

E-Print Network [OSTI]

SM 111 Energy Energy-Efficient Ventilation for Apartment Buildings #12. These Guides provide clear and practical information on issues related to energy-efficient building retrofits

Diamond, Richard

273

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles  

Broader source: Energy.gov [DOE]

This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines have the potential to increase conversion efficiency to more than 50%. This high conversion efficiency drives down the cost of the supporting solar field, tower, and thermal storage systems, which could significantly reduce the lifetime costs of a CSP system to achieve the SunShot goal.

274

Thermal comfort during surgery  

E-Print Network [OSTI]

THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Industrial... Engineering THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Approved as to style and content by: airman of C it ee Head of Department Member Me er December 1978 ABSTRACT Thermal Comfort During Surgery (December 1978) David Harold...

Manning, David Harold

1978-01-01T23:59:59.000Z

275

Maryland Efficiency Program Options  

Broader source: Energy.gov [DOE]

Maryland Efficiency Program Options, from the Tool Kit Framework: Small Town University Energy Program (STEP).

276

Energy Efficient Buildings Hub  

Broader source: Energy.gov [DOE]

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

277

Industrial Energy Efficiency Assessments  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

278

Empirical Methodologies for Improving HVAC Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Empirical Methodologies for Improving HVAC Efficiency Empirical Methodologies for Improving HVAC Efficiency Speaker(s): Anil Aswani Date: September 21, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter This talk describes the use of empirical methodologies that we have developed for the purpose of improving heating, ventilation, and air-conditioning (HVAC) efficiency through better control algorithms and configuration. We show that semiparametric regression can both identify simplified models of thermal HVAC dynamics while also estimating time-varying heating loads using only real-time temperature measurements from thermostats. These models can be used with our learning-based model predictive control (LBMPC) method in order to improve the energy-efficiency of HVAC. Experiments on testbeds with different types of HVAC show the

279

Variable pressure thermal insulating jacket  

DOE Patents [OSTI]

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

280

Amulaire Thermal Technology | Open Energy Information  

Open Energy Info (EERE)

Amulaire Thermal Technology Amulaire Thermal Technology Jump to: navigation, search Name Amulaire Thermal Technology Address 11555 Sorrento Valley Road Place San Diego, California Zip 92121 Sector Efficiency Product Makes heat-dissipation products used in liquid cooling systems Website http://www.amulaire.com/ Coordinates 32.912393°, -117.231201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.912393,"lon":-117.231201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NANO REVIEW Open Access Thermal conductivity and thermal boundary  

E-Print Network [OSTI]

NANO REVIEW Open Access Thermal conductivity and thermal boundary resistance of nanostructures and the thermal transport prop- erties is a key point to design materials with preferred thermal properties with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity

Boyer, Edmond

282

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

283

Mechanical Engineering & Thermal Group  

E-Print Network [OSTI]

Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

Mojzsis, Stephen J.

284

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

285

Tunable thermal link  

DOE Patents [OSTI]

Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

2014-07-15T23:59:59.000Z

286

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

287

Research Article Building Thermal, Lighting,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Article Building Thermal, Lighting, and Acoustics Modeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Dandan Zhu 1 , Tianzhen Hong 2 , Da Yan 1 (), Chuang Wang 1 1. Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China 2. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results

288

Department of Energy Lauds Highly Efficient Industrial Technology |  

Broader source: Energy.gov (indexed) [DOE]

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

289

Department of Energy Lauds Highly Efficient Industrial Technology |  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

290

Westinghouse thermal barrier coatings development  

SciTech Connect (OSTI)

Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

291

Advanced Energy Efficient Roof System  

SciTech Connect (OSTI)

Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

Jane Davidson

2008-09-30T23:59:59.000Z

292

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

293

Fabrication of Pillar-Structured Thermal Neutron Detectors  

SciTech Connect (OSTI)

Pillar detector is an innovative solid state device structure that leverages advanced semiconductor fabrication technology to produce a device for thermal neutron detection. State-of-the-art thermal neutron detectors have shortcomings in achieving simultaneously high efficiency, low operating voltage while maintaining adequate fieldability performance. By using a 3-dimensional silicon PIN diode pillar array filled with isotopic boron 10, ({sup 10}B) a high efficiency device is theoretically possible. The fabricated pillar structures reported in this work are composed of 2 {micro}m diameter silicon pillars with a 4 {micro}m pitch and pillar heights of 6 and 12 {micro}m. The pillar detector with a 12 {micro}m height achieved a thermal neutron detection efficiency of 7.3% at 2V.

Nikolic, R J; Conway, A M; Reinhardt, C E; Graff, R T; Wang, T F; Deo, N; Cheung, C L

2007-11-19T23:59:59.000Z

294

Building Energy Efficient Schools  

E-Print Network [OSTI]

Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

McClure, J. D.; Estes, J. M.

1985-01-01T23:59:59.000Z

295

Energy efficient data centers  

E-Print Network [OSTI]

Center 6.2 utilized fan coil units, rather than computerEfficiency kW/ton Fan Coil Unit Design Efficiency CFM/kWCenter 6.2 utilized fan coil units, rather than computer

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

296

Development of Non?Tracking Solar Thermal Technology  

Science Journals Connector (OSTI)

The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non?imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200??C and can be readily manufactured at a cost between $15 and $18 per square foot.

2011-01-01T23:59:59.000Z

297

Energy Efficiency Financing  

Office of Energy Efficiency and Renewable Energy (EERE)

Information and examples of state financing for energy efficiency programs, with descriptions on implementation methods and concerns.

298

Energy Efficiency Program Overview  

E-Print Network [OSTI]

Energy Efficiency Program Overview Clean Air Through Energy Efficiency CATEE Conference November 18-20, 2014 Dallas, TX ESL-KT-14-11-02 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 General Overview State of Texas... enacted legislation requiring Transmission and Distribution utilities (TDUs) achieve annual goals for energy efficiency Public Utility Commission of Texas (PUCT) implemented rules and guidelines for consistency among the TDU programs Texas TDUs...

Mutiso,S.

2014-01-01T23:59:59.000Z

299

Energy Efficient Motors  

E-Print Network [OSTI]

.. " ENERGY EFFICIENT MOTORS W. R. Hoffmeyer General Electric Company Fort Wayne, Indiana ABSTRACT Efficiency is only one aspect of motor per formance. This paper discusses how efficiency is influenced by such factors as horsepower rating... and in cost~ saVings, especially if the power company imposes a penalty for low power factor. Increasing efficiency has a direct effect on operating cost. Increasing power factor has only an indirect and less profound effect. This was recognized by ASHRAE...

Hoffmeyer, W.

1982-01-01T23:59:59.000Z

300

Transportation Efficiency Strategies  

Gasoline and Diesel Fuel Update (EIA)

fuel efficiency through conventional engine hybrid and other technologies Reducing air pollution with conventional engine technology Hybrid and internal...

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction  

Broader source: Energy.gov [DOE]

Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of R&D program helped avoid further efficiency drop in 2007; EPA2010 will lead to simultaneous improvements in emissions and fuel efficiency for most manufacturers

302

ENTRY LOBBY ENERGY EFFICIENCY  

E-Print Network [OSTI]

ENTRY LOBBY ENERGY EFFICIENCY Clerestory windows provide natural day-lighting.· Exterior roof SUSTAINABILITY FEATURES #12;ADMINISTRATION ENERGY EFFICIENCY High performance window glazing· minimizes heat gain ENERGY EFFICIENCY High performance window glazing· minimizes heat gain. Light-colored roofing reflects

Escher, Christine

303

Managing Energy Efficiency Improvement  

E-Print Network [OSTI]

efficiency opportunities as well as promote the use of energy efficient methodologies and technologies. If, as program results suggest, 15% to 20% of the gas that is now consumed at by plant operations can be saved through efficiencies, it would save $500...

Almaguer, J.

2006-01-01T23:59:59.000Z

304

Definition of Energy Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Users Energy Efficiency Page Energy Efficiency Definition Energy Users Energy Efficiency Page Energy Efficiency Definition Energy Efficiency: Definition Stairs) "Take the Stairs--Be More Energy Efficient" Person A interprets the sign as the "true" definition of energy efficiency. To Person A, the elevator is not being used. He is still getting to where he wants to go and using less energy in doing so. Person B considers the fact that she is not getting to where she is going with the same ease. She does not believe that she is being energy efficient, but instead she believes that she is "conserving energy" at a reduced level of service-she has to walk instead of ride. When it comes to trying to define "to be energy efficient" or "energy efficiency", there does not seem to be a single commonly-accepted definition of energy efficiency. Along the lines of Person B's thinking, it is generally thought that an increase in energy efficiency is when either energy inputs are reduced for a given level of service, or there are increased or enhanced services for a given amount of energy inputs.

305

Renewable Energy Across the 50 United States and Related Factors.  

E-Print Network [OSTI]

??Renewable energy production replaces diminishing non-renewable energy sources including fossil fuels. Major sources of renewable energy include biofuels, geothermal, hydroelectric, solar thermal and photovoltaic, wind, (more)

Christenson, Cynthia Brit

2013-01-01T23:59:59.000Z

306

Otter Tail Power Company - Energy Efficiency Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Rebate Program Energy Efficiency Rebate Program Otter Tail Power Company - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Commercial Water Heaters: $5,000 Program Info State North Dakota Program Type Utility Rebate Program Rebate Amount Residential Demand Control: $300/unit Water Heaters: $150 - $300 Commercial Water Heaters: $20/kW RDC Thermal Storage Units: $20/kW, up to 100 kW Deferred-load Thermal Storage Units: $20/kw, up to 200 kW, plus $10/kW for up to 1,000 additional kW Fixed-time-of-delivery Thermal Storage Units: $40/kw, up to 200 kW, plus $20/kW for up to 1,000 additional kW AC Controls: $7/month seasonally

307

Theory of delayed thermal fluorescence  

Science Journals Connector (OSTI)

A theory of nonradiative thermal activation involved in delayed thermal fluorescence has been developed from the viewpoint of the breakdown of the Born-Oppenheimer adiabatic approximation.

S. H. Lin

1971-01-01T23:59:59.000Z

308

Thermal insulations using vacuum panels  

DOE Patents [OSTI]

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

309

Energy Efficiency in Log Homes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency in Log Homes Energy Efficiency in Log Homes Energy Efficiency in Log Homes April 13, 2012 - 11:29am Addthis Consider energy efficiency when designing or purchasing a log home. | Photo courtesy of ©iStockphoto.com/tinabelle Consider energy efficiency when designing or purchasing a log home. | Photo courtesy of ©iStockphoto.com/tinabelle What does this mean for me? Before designing or purchasing a log home, you should consider several factors related to energy efficiency. Log homes may be site-built or pre-cut in a factory for delivery to the site. Some log home manufacturers can also customize their designs. Before designing or purchasing a manufactured log home, you should consider several factors related to energy efficiency. The R-Value of Wood A material's thermal resistance or resistance to heat flow is measured by

310

Energy Efficiency in Log Homes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency in Log Homes Energy Efficiency in Log Homes Energy Efficiency in Log Homes April 13, 2012 - 11:29am Addthis Consider energy efficiency when designing or purchasing a log home. | Photo courtesy of ©iStockphoto.com/tinabelle Consider energy efficiency when designing or purchasing a log home. | Photo courtesy of ©iStockphoto.com/tinabelle What does this mean for me? Before designing or purchasing a log home, you should consider several factors related to energy efficiency. Log homes may be site-built or pre-cut in a factory for delivery to the site. Some log home manufacturers can also customize their designs. Before designing or purchasing a manufactured log home, you should consider several factors related to energy efficiency. The R-Value of Wood A material's thermal resistance or resistance to heat flow is measured by

311

Thermally driven circulation  

E-Print Network [OSTI]

Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

Nelken, Haim

1987-01-01T23:59:59.000Z

312

Manipulation of Thermal Phonons  

E-Print Network [OSTI]

to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials phononic crystals might make manipulation of thermal phonons possible. In many...

Hsu, Chung-Hao

2013-03-28T23:59:59.000Z

313

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Payko; S. Kaka

1987-01-01T23:59:59.000Z

314

Contact thermal lithography  

E-Print Network [OSTI]

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

315

Neutron stars - thermal emitters  

E-Print Network [OSTI]

Confronting theoretical models with observations of thermal radiation emitted by neutron stars is one of the most important ways to understand the properties of both, superdense matter in the interiors of the neutron stars and dense magnetized plasmas in their outer layers. Here we review the theory of thermal emission from the surface layers of strongly magnetized neutron stars, and the main properties of the observational data. In particular, we focus on the nearby sources for which a clear thermal component has been detected, without being contaminated by other emission processes (magnetosphere, accretion, nebulae). We also discuss the applications of the modern theoretical models of the formation of spectra of strongly magnetized neutron stars to the observed thermally emitting objects.

Potekhin, A Y; Pons, J A

2014-01-01T23:59:59.000Z

316

Equivalent circuits and efficiencies of fuel cells  

Science Journals Connector (OSTI)

By introducing an equivalent thermal potential fixed in terms of the heat of reaction, a thermodynamic equivalent circuit is determined for a fuel cell which yields the correct current-potential curve of the cell for low current by formal application of Ohm's law. The thermodynamic power balance and the thermodynamic efficiency also are given correctly. A linear electrical equivalent circuit is constructed which represents closely the electrical performance of the cell over a wide range of current (not approaching zero). The effect of polarization processes on the electrical power and efficiency is taken into account through a single constant parameter. Introduction of the equivalent thermal potential into the circuit yields a thermodynamic equivalent circuit whose output computed by formal use of Ohm's law coincides exactly with that given by the electrical equivalent circuit. The correct electrical properties, thermodynamic power balance, and thermodynamic efficiency follow directly from the circuit. A general theorem is formulated, independently of the validity of an equivalent circuit, connecting the thermodynamic and electrical efficiencies of a fuel cell. Confirmatory experimental results based on hydrogenoxygen cells are presented, which underline the large reduction in available power brought about by polarization processes and entropy changes in a fuel cell.

J.J. Gilvarry; J.I. Slaughtert

1963-01-01T23:59:59.000Z

317

Extended forms of the mechanical efficiency theorem  

SciTech Connect (OSTI)

This paper describes several new extensions of the author's Mechanical Efficiency Theorem. Prior work by the author established this basic theorem which relates the mechanical efficiency of an engine to its thermodynamic cycle, its external pressure, and the effectiveness of its mechanism. Up to now, this fundamental result and its many consequences applied only to reciprocating engines with a single workspace. This paper establishes similar formulas which extend the analysis of mechanical efficiency to many other types of thermal machines. Engine types covered will include multi-piston engines, the alpha-type Stirling engine being the prime example. Also covered will be engines with double-acting pistons, that is with a thermodynamic cycle acting on each face of the piston but differing in phase, as in the Siemens type Stirling engine. The mechanical efficiency results will also be extended to cover the coefficient of performance of heat pumps and refrigerators. A special form will also be described which generally applies to turbine based thermal machines as well. Proofs of a mathematical nature will be given in the paper to exhibit the rigor and universality of the results described.

Senft, J.R.

1998-07-01T23:59:59.000Z

318

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

319

Texas Thermal Comfort Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal comfort thermal comfort Too often, the systems in our houses are both physically and intellectually inaccessible. In the SNAP House, HVAC components are integrated into the overall structure, and act as an experiential threshold between public and private spaces. They are located in a central, structural chase that supports the clerestory and gives the systems a functional presence within the interior. Each individual component is contained within a single chase

320

Photovoltaic-thermal collectors  

DOE Patents [OSTI]

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma  

Science Journals Connector (OSTI)

Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

Sun Yanpeng (???); Nie Yong (??); Wu Angshan (???); Ji Dengxiang (???); Yu Fengwen (???); Ji Jianbing (???)

2012-01-01T23:59:59.000Z

322

Dynamic modelling for thermal micro-actuators using thermal networks  

E-Print Network [OSTI]

Dynamic modelling for thermal micro-actuators using thermal networks Beatriz L´opez-Wallea,1 and analytical calculations. Key words: Micro-actuators, Thermal modelling, Electrical analogy, Thermal network 1 and MicroMechatronic Systems Department (AS2M), 24 rue Alain Savary, 25000 Besan¸con, France Abstract

Paris-Sud XI, Université de

323

The Thermal Test and Analysis of Envelope in Existing Buildings  

E-Print Network [OSTI]

). The thickness of polystyrene slab is in Tab .3. ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 The temperature and the heat flux distributing of wall are shown in Fig.2 and Fig.3. Tab. 2... The temperature distributing of wall ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 Fig3. The heat flux distributing of wall 5 CONCLUSIONS Through the thermal testing, calculation...

Liu, X.; Li, X.; Sun, J.; Wang, Z.

2006-01-01T23:59:59.000Z

324

Morgan County REA - Efficiency Credit/Rebate Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Morgan County REA - Efficiency Credit/Rebate Programs Morgan County REA - Efficiency Credit/Rebate Programs Morgan County REA - Efficiency Credit/Rebate Programs < Back Eligibility Commercial General Public/Consumer Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Heat Pumps: $85 - $300/unit, varies by efficiency and configuration Geothermal Heat Pumps: $100 - $150 Room AC (Split Systems): $100 - $150 (Tri-State) Electric Thermal Storage: $24/kW Thermal Slab Units: $18/kW Electric Motors: $16/HP Wiring Assistance: $3/HP LEDs: $10 (Tri-State)

325

What's Energy Efficiency?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is energy efficiency? What is energy efficiency? Energy efficiency is "using less energy to provide the same service". There are other definitions, but this is a good operational one. The best way to understand this idea is through examples: When you replace a single pane window in your house with an energy-efficient one, the new window prevents heat from escaping in the winter, so you save energy by using your furnace or electric heater less while still staying comfortable. In the summer, efficient windows keep the heat out, so the air conditioner does not run as often and you save electricity. When you replace an appliance, such as a refrigerator or clothes washer, or office equipment, such as a computer or printer, with a more energy-efficient model, the new equipment provides the same service, but

326

Efficiency of Fish Propulsion  

E-Print Network [OSTI]

It is shown that the system efficiency of a self-propelled flexible body is ill-defined unless one considers the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it needs for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is the only rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms. Using two-dimensional viscous simulations and the concept of quasi-propulsive efficiency, we discuss the efficiency two-dimensional undulating foils. We show that low efficiencies, due to adverse body-propulsor hydrodynamic interactions, cannot be accounted for by the increase in friction drag.

Maertens, A P; Yue, D K P

2014-01-01T23:59:59.000Z

327

Sandia National Laboratories: Energy Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateRenewable SystemsEnergy Efficiency Energy Efficiency Solid-State Lighting Overview Progress in SSL Energy Efficiency Solid-State Lighting Technology Challenges SSL EFRC...

328

bpa.gov - Energy Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPA Energy Efficiency Plan BPA Post 2011 EE Role Low Income Efficiency Smart Grid Demand Response Energy Efficiency Emerging Technologies Behavior Based EE Programs News & Events...

329

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

330

Energy Efficiency: A Priority  

E-Print Network [OSTI]

Energy Efficiency: A Priority October 9th 2013 2 Energy efficiency: a priority NBC profile (April 30th, 2013) 1st financial institution in Quebec 19 920 employees 451 branches in Canada 2,4 million individual clients 3 Energy efficiency: a... priority Energenia?s profile Consulting firm specializing exclusively in energy efficency Founded by Robert Patenaude in 2003 National Bank?s main partner for the development, implementation and supervision of the energy efficiciency program since...

Patenaude, R.

2013-01-01T23:59:59.000Z

331

Application of Infrared Thermography in Building Energy Efficiency  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-3 Application of Infrared Thermography in Building Energy Efficiency Yongzheng Shi Hongbing Chen Qi Xu Deying Li Zhonghua Wang Xiumu Fang...]. Infrared Technology,2002,01:34-37.(In Chinese) [6] Yangyang Wang. Research on surface temperature of building envelope measured by thermal infrared imager [J]. Hv & Ac, 2006, 02:84-88.(In Chinese) ...

Shi, Y.; Chen, H.; Xu, Q.; I, D.; Wang, Z.; Fang, X.

2006-01-01T23:59:59.000Z

332

Bearwall Energy Efficient Solutions  

E-Print Network [OSTI]

CATEE Conference November 20, 2014 ENERGY EFFICIENT SOLUTIONS ESL-KT-14-11-06 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Brief History of Bearwall Who We Are: ? Manuel Sovero ? Luis Osorio Energy Conservation... Experience: ESL-KT-14-11-06 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Energy Programs ESL-KT-14-11-06 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Bearwall Methodology Introduction...

Sovero,M.

2014-01-01T23:59:59.000Z

333

Consortium for Energy Efficiency  

Broader source: Energy.gov [DOE]

Presentation covers the Consortium for Energy Efficiency at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

334

Energy Efficient Digital Networks  

E-Print Network [OSTI]

introduced to the market, saving energy in California, thesupport EEE to save energy, so broad market adoption shouldaccelerate market transformation of energy efficient digital

Lanzisera, Steven

2014-01-01T23:59:59.000Z

335

Energy Efficiency Calendar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy-Efficiency-Calendar Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

336

Energy Efficient Data Centers  

Broader source: Energy.gov [DOE]

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingcovers energy efficiency improvement opportunities for data centers, including data center design.

337

BPA Energy Efficiency Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPA Energy Efficiency Plan Pages default Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE...

338

Defining engine efficiency limits  

Broader source: Energy.gov (indexed) [DOE]

assess opportunities for efficiency gains * Gain better understanding of loss mechanisms (heat loss, combustion irreversibility, etc) and how they interact and compete with one...

339

Stirling Engine Cycle Efficiency.  

E-Print Network [OSTI]

??ABSTRACT This study strives to provide a clear explanation of the Stirling engine and its efficiency using new automation technology and the Lab View software. (more)

Naddaf, Nasrollah

2012-01-01T23:59:59.000Z

340

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermal mass performance in residential construction : an energy analysis using a cube model  

E-Print Network [OSTI]

Given the pervasiveness of energy efficiency concerns in the built environment, this research aims to answer key questions regarding the performance of thermal mass construction. The work presents the Cube Model, a simplified ...

Ledwith, Alison C. (Alison Catherine)

2012-01-01T23:59:59.000Z

342

Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Building America Innovations profile describes Building America research supporting Thermal Bypass Air Barrier requirements. Since these were adopted in the 2009 IECC, close to one million homes have been mandated to include this vitally important energy efficiency measure.

343

Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems  

Science Journals Connector (OSTI)

A major aspect for safe and efficient operation of battery electric vehicles (BEV) is the thermal management of their battery systems. As temperature uniformity and level highly ... performance and the lifetime, ...

Ch. Huber; A. Jossen; R. Kuhn

2014-01-01T23:59:59.000Z

344

Studies of the thermal circuit of an advanced integrated gasification combined-cycle power plant  

Science Journals Connector (OSTI)

The results obtained from a study of the thermal circuit of a combined-cycle plant with coal gasification are presented, and ... of producer gas and calculated values of the combined-cycle power plant efficiency ...

D. G. Grigoruk; A. V. Turkin

2010-02-01T23:59:59.000Z

345

Molten Oxide Glass Materials for Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Halotechnics, Inc. is developing an energy storage system utilizing a low melting point molten glass as the heat transfer and thermal storage material. This work is supported under a grant from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E). Advanced oxide glasses promise a potential breakthrough as a low cost, earth abundant, and stable thermal storage material. The system and new glass material will enable grid scale electricity storage at a fraction of the cost of batteries by integrating the thermal storage with a large heat pump device. Halotechnics is combining its proven expertise in combinatorial chemistry with advanced techniques for handling molten glass to design and build a two-tank thermal energy storage system. This system, operating at a high temperature of 1200C and a low temperature of 400C, will demonstrate sensible heat thermal energy storage using a uniquely formulated oxide glass. Our molten glass thermal storage material has the potential to significantly reduce thermal storage costs once developed and deployed at commercial scale. Thermal storage at the target temperature can be integrated with existing high temperature gas turbines that significantly increase efficiencies over today's steam turbine technology. This paper describes the development and selection of Halotechnics molten glass heat transfer fluids with some additional systems considerations.

B. Elkin; L. Finkelstein; T. Dyer; J. Raade

2014-01-01T23:59:59.000Z

346

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

347

Thermal ignition combustion system  

SciTech Connect (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

348

Thermal ignition combustion system  

SciTech Connect (OSTI)

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

349

Thermal test options  

SciTech Connect (OSTI)

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

350

Low thermal expansion seal ring support  

DOE Patents [OSTI]

Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.

Dewis, David W. (San Diego, CA); Glezer, Boris (Del Mar, CA)

2000-01-01T23:59:59.000Z

351

Energy-efficient comfort with a heated/cooled chair: Results from human subject tests  

E-Print Network [OSTI]

for thermal comfort. Energy and Buildings 2002;34:593-9.IEA. Technology Roadmap. Energy-efficient Buildings: HeatingH, Arens E, Webster T. Energy Savings from Extended Air

Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

2015-01-01T23:59:59.000Z

352

Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial...  

Buildings Energy Data Book [EERE]

Thermal Efficiency (1) Gas-fired, with capacity 225,000 Btuhr Not less than 80% Oil-fired, with capacity 225,000 Btuhr Not less than 81% Note(s): Source(s): 1)...

353

ENERGY EFFICIENT INTERNET INFRASTRUCTURE  

E-Print Network [OSTI]

. D R A F T October 27, 2010, 11:34pm D R A F T #12;2 ENERGY EFFICIENT INTERNET INFRASTRUCTURE FigureCHAPTER 1 ENERGY EFFICIENT INTERNET INFRASTRUCTURE Weirong Jiang, Ph.D.1 , and Viktor K. Prasanna]. In other words, an IP address may match multiple prefixes, but only the longest D R A F T October 27, 2010

Prasanna, Viktor K.

354

Landscaping for energy efficiency  

SciTech Connect (OSTI)

This publication by the National Renewable Energy Laboratory addresses the use of landscaping for energy efficiency. The topics of the publication include minimizing energy expenses; landscaping for a cleaner environment; climate, site, and design considerations; planning landscape; and selecting and planting trees and shrubs. A source list for more information on landscaping for energy efficiency and a reading list are included.

NONE

1995-04-01T23:59:59.000Z

355

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200Chundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

356

Energy Efficiency Resource Standards Resources  

Broader source: Energy.gov [DOE]

Energy efficiency resource standards mandate a quantified energy efficiency goal for an energy provider or jurisdiction within a predetermined timeframe.

357

Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section  

E-Print Network [OSTI]

) thermography inspection indicated a high-temperature area (500~560F) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal... within the natural gas industry, the Venice plant is seeking various means to reduce cost. As part of the project to improve the energy efficiency of the plant and thus reduce energy costs, Dynegy contracted the Energy Conversion & Conservation...

Li, X.; Wang, T.; Day, B.

2006-01-01T23:59:59.000Z

358

Energy Efficient Data Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficient Data Centers Energy Efficient Data Centers Title Energy Efficient Data Centers Publication Type Report LBNL Report Number LBNL-54163 Year of Publication 2004 Authors Tschudi, William F., Tengfang T. Xu, Dale A. Sartor, Jonathan G. Koomey, Bruce Nordman, and Osman Sezgen Call Number LBNL-54163 Abstract Data Center facilities, prevalent in many industries and institutions are essential to Californias economy. Energy intensive data centers are crucial to Californias industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commissions PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research roadmap defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency.

359

Appliance Efficiency Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Appliance Efficiency Standards Part 2 of 2: Policy process and consumer gains Part 1 of this article (CBS News, Spring 1995) discussed LBNL's role in setting federal appliance efficiency standards and presented an overview of the net national benefits of standards. Here, we examine the broader policy context for appliance standards and consumer benefits. Policy Context Appliance efficiency standards provide a minimum requirement for energy efficiency at the point of manufacture (or import). These standards seek to overcome market failures-including price distortions and transaction costs-that have historically given rise to a gap between observed and attainable product efficiencies. In this way, appliance standards complement information programs, utility DSM and other incentive programs,

360

The Efficient Window Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 The Efficient Window Collaborative http://www.efficientwindows.org Energy-efficient windows make up only about 35% of the U.S. residential window market, even though they are cost-effective in approximately 80% or more of all applications. To ensure that efficient windows reach their optimum potential in homes throughout the U.S., the Department of Energy and key players in the U.S. window industry have formed the Efficient Window Collaborative (EWC). The EWC's goal is doubling the market share of efficient windows by 2005. With 31 charter members from the window and glass industries, the EWC is managed jointly by the Washington, D.C.-based Alliance to Save Energy and the Center for Building Science's Windows and Daylighting Group. The EWC serves as a focal point for voluntary

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Efficient Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficient Technologies Energy Efficient Technologies Energy efficient technologies are available now! Many of the vehicles currently on display in dealer showrooms boast new performance-enhancing, fuel-saving technologies that can save you money. Engine Technologies Transmission Technologies All Engine Technology Average Efficiency Increase Variable Valve Timing & Lift improve engine efficiency by optimizing the flow of fuel & air into the engine for various engine speeds. 5% Cylinder Deactivation saves fuel by deactivating cylinders when they are not needed. 7.5% Turbochargers & Superchargers increase engine power, allowing manufacturers to downsize engines without sacrificing performance or to increase performance without lowering fuel economy. 7.5% Integrated Starter/Generator (ISG) Systems automatically turn the engine on/off when the vehicle is stopped to reduce fuel consumed during idling. 8%

362

efficiency | OpenEI  

Open Energy Info (EERE)

efficiency efficiency Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

363

efficient | OpenEI  

Open Energy Info (EERE)

efficient efficient Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

364

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

365

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

366

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

367

Thermal and Power Challenges in High Performance Computing Systems  

Science Journals Connector (OSTI)

This paper provides an overview of the thermal and power challenges in emerging high performance computing platforms. The advent of new sophisticated applications in highly diverse areas such as health, education, finance, entertainment, etc. is driving the platform and device requirements for future systems. The key ingredients of future platforms are vertically integrated (3D) die-stacked devices which provide the required performance characteristics with the associated form factor advantages. Two of the major challenges to the design of through silicon via (TSV) based 3D stacked technologies are (i) effective thermal management and (ii) efficient power delivery mechanisms. Some of the key challenges that are articulated in this paper include hot-spot superposition and intensification in a 3D stack, design/optimization of thermal through silicon vias (TTSVs), non-uniform power loading of multi-die stacks, efficient on-chip power delivery, minimization of electrical hotspots etc.

Venkat Natarajan; Anand Deshpande; Sudarshan Solanki; Arun Chandrasekhar

2009-01-01T23:59:59.000Z

368

Thermal management and overall performance of a high concentration PV  

Science Journals Connector (OSTI)

An advanced thermal management approach for HCPV systems is demonstrated in this manuscript proposing the concept of efficient heat recovery at ultra high concentration ratios by collecting the heat on a high temperature level. With the availability of this low grade heat the efficiency of the HCPV system is increased further as the 'waste' heat is supplied to different thermal consumers engaging in thermal desalination or adsorption cooling processes. To asses the value of the concept we have estimated the economic value of heat with regard to its consumer and observed that this differs from its thermodynamic value. This valuable input is was used to determine the overall generated value of a dual output system as a function of the operation temperature where we have actively demonstrated a superior performance of the HCPVT.

Werner Escher; Stephan Paredes; Severin Zimmermann; Chin Lee Ong

2012-01-01T23:59:59.000Z

369

Thermal barrier coating  

DOE Patents [OSTI]

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

370

Thermal Reactor Safety  

SciTech Connect (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

371

Improving efficiency of thermoelectric energy conversion devices is a major  

E-Print Network [OSTI]

Abstract · Improving efficiency of thermoelectric energy conversion devices is a major challenge Interdisciplinary Program in Material Science Thermal Physics Lab Vanderbilt University, Nashville, TN 2 S T ZT dominates over increase in Seebeck coefficient leading to poor device performance. Thermoelectric figure

Walker, D. Greg

372

Design and global optimization of high-efficiency thermophotovoltaic  

E-Print Network [OSTI]

). © 2010 Optical Society of America OCIS codes: (230.5298) Photonic crystals; (350.6050) Solar energy, PhC-based designs present a set of non-convex optimization problems requiring efficient objective micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold

373

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

374

Energy Efficiency Program Administration Powerpoint Presentation...  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Program Administration Powerpoint Presentation Energy Efficiency Program Administration Powerpoint Presentation Energy Efficiency Program Administration Powerpoint...

375

Quantitative Effectiveness Analysis of Solar Photovoltaic Policies, Introduction of Socio-Feed-in Tariff Mechanism (SocioFIT) and its Implementation in Turkey.  

E-Print Network [OSTI]

??Some of the main energy issues in developing countries are high dependence on non-renewable energy sources, low energy efficiency levels and as a result of (more)

Mustafaoglu, Mustafa Sinan

2013-01-01T23:59:59.000Z

376

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

377

Redding Electric - Residential and Commercial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Residential and Commercial Energy Efficiency Residential and Commercial Energy Efficiency Rebate Program Redding Electric - Residential and Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Windows: $250 - Residential; $750 (Commercial) Insulation: up to $500 - Residential; pre-approval required - Commercial Water Heater Blanket: $20 per unit Radiant/Thermal Barrier Material: $500 - Residential; pre-approval required - Commercial Duct Repair/Replacement: $500

378

Thermal barrier coatings application in diesel engines  

SciTech Connect (OSTI)

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

Fairbanks, J.W.

1995-10-01T23:59:59.000Z

379

Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial HVAC  

Buildings Energy Data Book [EERE]

2 2 Efficiency Standards for Commercial Packaged Boilers Effective for products manufactured between January 1, 1994 and March 1, 2012 Combustion Efficiency (1) Gas-fired, with capacity ≥ 300,000 Btu/hr Not less than 80% Oil-fired, with capacity ≥ 300,000 Btu/hr Not less than 83% Effective for products manufactured on or after March 2, 2012 Size (Btu/hr) Efficiency Level (1) Gas-fired, hot water ≥300,000 and ≤2,500,000 80% thermal efficiency Gas-fired, hot water >2,500,000 82% combustion efficiency Oil-fired, hot water ≥300,000 and ≤2,500,000 82% thermal efficiency Oil-fired, hot water >2,500,000 84% combustion efficiency

380

Thermal Energy Storage (TES): Past, Present and Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Storage (TES): Past, Present and Future Thermal Energy Storage (TES): Past, Present and Future Speaker(s): Klaus Schiess Date: June 10, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote Thermal Energy Storage (TES) is a technology that stores "cooling" energy in a thermal storage mass. In the eighties and early nineties the utilities in California incentivised this technology to shift electrical on-peak power to off-peak. Thereafter, for various reasons TES became the most neglected permanent load shifting opportunity. It is only now with the challenges that the renewables provide that TES may have a come- back because it is basically the best and most economical AC battery available with a round trip efficiency of 100% or even better. This presentation gives some background to this development and shows the interdependence of

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal characteristics of a classical solar telescope primary mirror  

E-Print Network [OSTI]

We present a detailed thermal and structural analysis of a 2m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide -best known for excellent heat conductivity and Zerodur -preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.

Banyal, Ravinder K

2011-01-01T23:59:59.000Z

382

Land-Use Efficiency of Big Solar  

Science Journals Connector (OSTI)

(8) When realized generation data are available, some studies have reported generation-based LUE (e.g., m2 GWh1), which is a function of a plants location (e.g., climatic conditions and solar resources), technological efficiency, and thermal energy storage, the latter enabling the instantaneous capacity to exceed the nameplate (turbine) capacity. ... For example, in the western United States, oil and gas energy systems have impacted approximately 2 orders of magnitude more land (?21 million ha) than solar (?100?000 ha), but given the regions vast solar resources, solar energy development could impact up to 18.6 million hectares of land. ...

Rebecca R. Hernandez; Madison K. Hoffacker; Christopher B. Field

2013-12-18T23:59:59.000Z

383

A dynamic model for air-based photovoltaic thermal systems working under real operating conditions  

Science Journals Connector (OSTI)

Abstract In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300l/s. Both the thermal and the 1st law efficiencies decreased while the electrical efficiency and the second law efficiency increased with the increase of the solar irradiation. The efficiencies found to be very sensitive for low level of solar irradiations. At about 400Wm?2 irradiation efficiencies became less sensitive.

M. Imroz Sohel; Zhenjun Ma; Paul Cooper; Jamie Adams; Robert Scott

2014-01-01T23:59:59.000Z

384

Efficiency Maine Multifamily Efficiency Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Maine Multifamily Efficiency Program Efficiency Maine Multifamily Efficiency Program Efficiency Maine Multifamily Efficiency Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Maine Program Type State Rebate Program Rebate Amount Upon approval of Energy Reduction Plan: $100 prescriptive path per apartment unit; $200 modeling path per apartment unit Upon approval of installations: $1400 all paths or 50% of installed cost (whichever is less) Efficiency Maine's Multifamily Efficiency Program offers incentives to multifamily residency building owners for improving energy efficiency. Residencies must have 5 to 20 apartment units to qualify for this rebate.

385

Consortium for Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

ti ti M k t o p p y Accelerating Markets for Super Efficient for Super Efficient Products and Services Federal Utility Partnership W rking Gro 2009 Fall Working Group 2009 Fall Meeting Ed Wisniewski Deputy Director November 19, 2009 Ontario, CA Who We Are Who We Are Created in 1991 by y administrators of ratepayer-funded EE programs and non- profits As their organization to: * Leverag ge efficiency y resources ( (US & Canada) ) to address structural market barrier & capture greater total savings * Sh Share "b "best" t" practi tices * Identify common needs to enhance savings impacts impacts 3 Who We Are Who We Are Nonprofit Governed and funded by members and sponsors 118 members from states and provinces with ratepayer-funded efficiency programs

386

Cost-Efficiency  

Science Journals Connector (OSTI)

Cost?efficiency is agoal that has been integrated by policy makers into all modern health care systems to control the expansion of costs over time. It relates to maximizing the quality of acomparable unit ...

2008-01-01T23:59:59.000Z

387

Water Application Efficiency  

Science Journals Connector (OSTI)

The net amount of water added to the root zone as a ... the root zone, thus reducing the application efficiency. Sprinkling irrigation may involve losses due to ... , offer the potential for relatively high appli...

2014-08-01T23:59:59.000Z

388

Low Income Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to serve as a starting point. Mission: The Northwest Public Power Regional Low-income Energy Efficiency Work Group aims to share information and develop best practices in order...

389

Buildings Energy Efficiency Policy  

E-Print Network [OSTI]

Efficiency Wind Biomass Natural Gas Combined Cycle Nuclear Coal IGCC Photovoltaics Rangeof · Emphasized lighting · Insulation, HVAC, motors, windows also significant · Savings typically 1-10% per

Oak Ridge National Laboratory

390

Energy Efficiency Resource Standard  

Broader source: Energy.gov [DOE]

The California Legislature emphasized the importance of energy efficiency and established broad goals with the enactment of [http://docs.cpuc.ca.gov/word_pdf/FINAL_DECISION/85995.pdf Assembly Bill...

391

Efficient distributed quantum computing  

E-Print Network [OSTI]

We provide algorithms for efficiently moving and addressing quantum memory in parallel. These imply that the standard circuit model can be simulated with a low overhead by a more realistic model of a distributed quantum ...

Beals, Robert

392

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

393

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation ape030bennion2011o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management...

394

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management...

395

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

396

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

397

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

398

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

399

Efficiency of silicon solar cells containing chromium  

DOE Patents [OSTI]

Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

Frosch, Robert A. Administrator of the National Aeronautics and Space (New Port Beach, CA); Salama, Amal M. (New Port Beach, CA)

1982-01-01T23:59:59.000Z

400

Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint  

SciTech Connect (OSTI)

With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 ?m bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Broader source: Energy.gov (indexed) [DOE]

5, 2010 5, 2010 CX-000919: Categorical Exclusion Determination Packwood Lake Hydroelectric Project CX(s) Applied: B5.1 Date: 02/25/2010 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 25, 2010 CX-000917: Categorical Exclusion Determination Ocean Thermal Energy Converter Life Cycle Cost Analysis Date: 02/25/2010 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 25, 2010 CX-000916: Categorical Exclusion Determination Ocean Thermal Extractable Energy Visualization CX(s) Applied: A9 Date: 02/25/2010 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 25, 2010 CX-000862: Categorical Exclusion Determination Mount Laurel Energy Audit Implementation Project

402

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

403

LSPE Interim Stowage Thermal Constraints  

E-Print Network [OSTI]

-arm and thermal battery timers require operating temperatures at or above +40°F for reliable starting when·, ' LSPE Interim Stowage Thermal Constraints· Nl,;. ATM1080 PAGE 1 OF 13 DATE 15 December l97l constraints required for thermal integrity are defined. Prepared by:.:Z4·:..=..-~31!::..--.::..·~-:·::....-c

Rathbun, Julie A.

404

Reactor Thermal-Hydraulics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

405

Thermalization through parton transport  

E-Print Network [OSTI]

A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate alpha_s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.

Bin Zhang

2009-09-03T23:59:59.000Z

406

SPL RF Coupler Cooling Efficiency  

E-Print Network [OSTI]

Energy saving is an important challenge in accelerator design. In this framework, reduction of heat loads in a cryomodule is of fundamental importance due to the small thermodynamic efficiency of cooling at low temperatures. In particular, care must be taken during the design of its critical components (e.g. RF couplers, coldwarm transitions). In this framework, the main RF coupler of the Superconducting Proton Linac (SPL) cryomodule at CERN will not only be used for RF powering but also as the main mechanical support of the superconducting cavities. These two functions have to be accomplished while ensuring the lowest heat in-leak to the helium bath at 2 K. In the SPL design, the RF coupler outer conductor is composed of two walls and cooled by forced convection with helium gas at 4.5 K. Analytical, semi-analytical and numerical analyses are presented in order to defend the choice of gas cooling. Temperature profiles and thermal performance have been evaluated for different operating conditions; a sensitivit...

Bonomi, R; Montesinos, E; Parma, V; Vande Craen, A

2014-01-01T23:59:59.000Z

407

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

408

Cylindrical thermal contact conductance  

E-Print Network [OSTI]

of the Mahr-Federal, Inc. respectively facilitated and provided the necessary surface metrology data of the test pieces. Mr. Claude Davis of Corning, Inc. obtained the thermophysical properties of the Ultra Low Expansion Titanium Silicate glass used... as thermal expansion standard. The engineers at National Instruments provided some much-needed advice and software for programming the data acquisition system. The TAMU Physics Machine Shop provided design advice and a couple of last...

Ayers, George Harold

2004-09-30T23:59:59.000Z

409

Thermally actuated thermionic switch  

DOE Patents [OSTI]

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

410

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

Learning Control for Thermal Energy Storage Systems. In:Predictive Control of Thermal Energy Storage in Buildingmaking use of building thermal energy storage, and this work

Ma, Yudong

2012-01-01T23:59:59.000Z

411

Determination of Thermoelectric Module Efficiency A Survey  

SciTech Connect (OSTI)

The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

2014-01-01T23:59:59.000Z

412

TMX-U thermal-barrier experiments  

SciTech Connect (OSTI)

This review of thermal-barrier experiments in the Tandem Mirror Experiment Upgrade (TMX-U) describes our progress at Lawrence Livermore National Laboratory in plasma confinement and central-cell heating. Thermal barriers in TMX-U improved axial confinement by two orders of magnitude over a limited range of densities, compared with confinement in single-cell mirrors at the same ion temperature. Our study shows that central-cell radial nonambipolar confinement scales as neoclassical theory and can be eliminated by floating the end walls. Radial ambipolar losses can also be measured and reduced. The electron energy balance is improved in tandem mirrors to near classical, resulting in T/sub e/ up to 0.28 keV. Electron cyclotron heating (ECH) efficiencies up to 42 percent, with low levels of electron microinstability, were achieved when hot electrons in the thermal barrier were heated to average betas as large as 15 percent. The hot-electron distribution is measured from X rays and is modeled by a Fokker-Planck code that includes heating from cavity radio-frequency (RF) fields. Neutral-beam injection in the central cell created average ion betas up to 5 percent with radial profiles of hot ions that are modeled accurately by a radial Fokker-Planck code. Gas fueling between two fundamental ion cyclotron heating (ICH) resonances resulted in symmetrical heating of passing ions toward both ends.

Simonen, T.C.; Allen, S.L.; Barter, J.D.; Casper, T.A.; Correll, D.L.; Carter, M.R.; Clauser, J.F.; Dimonte, G.; Foote, J.H.; Futch, A.H.

1988-02-01T23:59:59.000Z

413

The influence of condenser cooling seawater fouling on the thermal performance of a nuclear power plant  

Science Journals Connector (OSTI)

Abstract This study performs a thermodynamic analysis and energy balance to study the effect of fouling change on the thermal performance of the condenser and the thermal efficiency of a proposed nuclear power plant. The study is carried out on a pressurized water reactor nuclear power plant. The results of the study show that the increasing of fouling factor decreases the power output and the thermal efficiency of the nuclear power plant. The main results of this study is that the impact of an increase in the condenser cooling seawater fouling factor in the range 0.000150.00035m2K/W is led to a decrease in the plant output power and thermal efficiency of 1.36% and 0.448%, respectively. The present paper researches into a real practical factor that has significant negative effect on the thermal efficiency of the nuclear power plants, which is fouling of condenser cooling seawater. This is abundantly important since one of the top goals of new power stations are to increase their thermal efficiency, and to prevent or minimize the reasons that lead to loss of output power.

Said M.A. Ibrahim; Sami I. Attia

2015-01-01T23:59:59.000Z

414

Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code  

Science Journals Connector (OSTI)

Abstract In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 55cm2 configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

M. Jamil; J.T. Rhee; H.G. Kim; Farzana Ahmad; Y.J. Jeon

2015-01-01T23:59:59.000Z

415

Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications  

Science Journals Connector (OSTI)

...translucent thermal insulations for solar thermal applications Thomas Stegmaier...Denkendorf73770 Denkendorf, Germany Solar thermal collectors used at present consist...transparent thermal insulation|solar thermal collector| 1. Introduction...

2009-01-01T23:59:59.000Z

416

Energy Efficiency -- Home Page  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. If you are having trouble, call 202-586-8800 for help. Home >Energy Users EEnergy Efficiency Page Energy-Efficiency Measurement MEASUREMENT DISCUSSION: Measures and Policy Issues Energy Intensity as a Common Surrogate for Energy Efficiency Indices as a Measure of Relative Changes Market-Basket Comprehensive Factorial Decomposition Divisia Index OTHER MEASUREMENT APPROACHES: Best Practice MEASUREMENT ISSUES : Site Energy Versus Primary Energy Physical Versus Economic Units picture of line graph on stand Energy Efficiency Measurement Discussion The development of energy-efficiency indictors, for any country, is limited by the availability of data. Data are limited for several reasons. As the amount of data collected increases so do the costs of collecting, processing, and analyzing the data. The configuration of certain technologies and processes can also limit the possibility of obtaining microdata. As an example, in the manufacturing sector, some motors are encased in such a way that it is impossible to collect data on the motor unless records have been maintained for the motor. This leads to another reason data are limited--respondent burden. Care has to be taken so that surveys are not so long that participation is discouraged or inaccurate answers are given due to the difficulty and time it takes to obtain the data.

417

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network [OSTI]

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program ..........................................................................3 2.1 Participants in the CSI-Thermal Program

418

Thermomechanical measurements on thermal microactuators.  

SciTech Connect (OSTI)

Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements for thermal microactuators were not available for a single microactuator design, a comprehensive suite of thermal and mechanical experimental data was taken and compiled for model validation purposes. Three thermal microactuator designs were selected and fabricated using the SUMMiT V{sup TM} process at Sandia National Laboratories. Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal microactuators are reported, including displacement, overall actuator electrical resistance, force, temperature profiles along microactuator legs in standard laboratory air pressures and reduced pressures down to 50 mTorr, resonant frequency, out-of-plane displacement, and dynamic displacement response to applied voltages.

Baker, Michael Sean; Epp, David S.; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

2009-01-01T23:59:59.000Z

419

The Effects of Residential Energy Efficiency on Electric Demand Response Programs  

Science Journals Connector (OSTI)

Design and efficiency of houses can affect the amount of peak load reduction available from a residential demand response program. Twenty-four houses were simulated with varying thermal integrity and air conditioner size during the summer cooling season ... Keywords: demand response, efficiency, residential, hvac, conservation

Ward Jewell

2014-01-01T23:59:59.000Z

420

Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power  

E-Print Network [OSTI]

Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power By Merrian C. Fuller of the Inter- governmental Panel on Climate Change (IPCC). Thus far much of the effort has been focused, such as improving energy efficiency and add- ing solar photovoltaics (PV) and solar thermal systems to buildings

Kammen, Daniel M.

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficiency Indicators Methodology Booklet  

E-Print Network [OSTI]

2000 NRCAN, 2006. Energy Efficiency Trends in Canada 1990 toResources Canadas Office of Energy Efficiency, Ottawa.NRCAN, 2009. Energy Efficiency Trends in Canada 1990 to

Sathaye, Jayant

2010-01-01T23:59:59.000Z

422

Water Efficiency Program Prioritization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Program Efficiency Program Prioritization Federal Energy Management Program Office of Energy Efficiency and Renewable Energy January 2009 Will Lintner (william.lintner@ee.doe.gov) Federal Energy Management The Goal - EO 13423 Beginning in 2008, Federal agencies must reduce water consumption intensity through life- effective measures, relative to the baseline of the agency's water consumption in fiscal year 2007 by 2 percent annually through the end of FY 2015 or 16 percent by the end of FY 2015. 2 Water Use Intensit ty (gal/sqft) Federal Sector Glide-Path to Meeting WUI Reduction Goal 55 50 45 40 35 30 25 20 FY 07 FY 08 FY 09 FY 10 FY 11 FY 12 FY 13 FY 14 FY 15 Total Federal sector FY07 WUI Glide-Path for meeting WUI reduction goal (16%) 3 Next Steps * Compile Water Data FY 2008. The baseline for water

423

Efficient Data Transfer Protocols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Efficient Data Transfer Protocols for Big Data Brian Tierney ∗ , Ezra Kissel † , Martin Swany † , Eric Pouyoul ∗ ∗ Lawrence Berkeley National Laboratory, Berkeley, CA 94270 † School of Informatics and Computing, Indiana University, Bloomington, IN 47405 Abstract-Data set sizes are growing exponentially, so it is important to use data movement protocols that are the most efficient available. Most data movement tools today rely on TCP over sockets, which limits flows to around 20Gbps on today's hardware. RDMA over Converged Ethernet (RoCE) is a promising new technology for high-performance network data movement with minimal CPU impact over circuit-based infrastructures. We compare the performance of TCP, UDP, UDT, and RoCE over high latency 10Gbps and 40Gbps network paths, and show that RoCE-based data transfers can fill a 40Gbps path using much less CPU than other protocols.

424

EIA Energy Efficiency-  

U.S. Energy Information Administration (EIA) Indexed Site

- Energy Efficiency, energy consumption - Energy Efficiency, energy consumption savings households, buildings, industry & vehicles Energy Savings Links Home > Households, Buildings & Industry > Energy Efficiency > Energy Savings Energy Savings saving energy in all sectors Last Page Modified: August 2010 All Sectors, Home, Commercial Building , Automobile Transportation, Manufacturing, Federal Government Program, Nonprofit and Other Organizations These links are provided solely as a service to our customers, and therefore should not be construed as advocating or reflecting any position of the Energy Information Administration (EIA). In addition, EIA does not guarantee the content or accuracy of any information presented in linked sites. If you have an "Energy Savings" web site that may be an appropriate link for this site, please contact us if you wish to be listed on this page.

425

Perspectives on Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

2 2 nd U.S.-China Energy Efficiency Forum Dr. Arun Majumdar Director Advanced Research Projects Agency- Energy U.S. Department of Energy May 6, 2011 Berkeley, California Perspectives on Energy Efficiency 2 | U.S. Department of Energy energy.gov Policy Framework R&D - Advance innovative technologies for appliances, equipment, and products - Integrated buildings approaches Market Priming - Pull new products, practices and services into market faster at scale - Technical support to ENERGY STAR / new higher tier Codes & Standards - Leverage market priming and advanced technologies - Broaden coverage and update frequently to capture savings opportunities Increasing Energy Efficiency (Metrics) Number of Unit Sales At least $23B net benefits Over 3.5 quads saved annually Over 2

426

Energy Efficient Commercial Technologies  

Broader source: Energy.gov (indexed) [DOE]

Commercial Technologies April 11th, 2012 Presented by: Warren Willits Energy Solutions Center (202) 824-7150 www.ESCenter.org Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA Todays Energy Efficient Technologies  Water Heating  Heating  Air Conditioning  Humidity Control  CHP / Cogeneration Atmospheric Direct Vent High Efficiency .7 EF Atmospheric water heaters now available 97 % efficient tank water heaters now available Traditional Tank Style Water Heating  Tankless Water Heaters  EF = .82 Standard Unit  EF = .97 Condensing  Solar Water Heaters  With H.E. gas back up systems Newer Water Heaters Water Heater Life Cycle Cost Life Cycle Costs Electric Tank Water Heater Gas Water Heater

427

Integrated Vehicle Thermal Management Systems (VTMS) Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

428

Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide...

429

Report on workshop on thermal property measurements  

SciTech Connect (OSTI)

Results of thermogravimetric analysis of basalt is discussed. Heat capacity, thermal conductivity and thermal expansion are specifically addressed. (CBS)

Robertson, E.C.

1987-01-01T23:59:59.000Z

430

Energy Efficiency Project Development  

SciTech Connect (OSTI)

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

431

6:1 aspect ratio silicon pillar based thermal neutron detector filled with B 10  

Science Journals Connector (OSTI)

Current helium-3 tube based thermal neutrondetectors have shortcomings in achieving simultaneously high efficiency and low voltage while maintaining adequate fieldability performance. By using a three-dimensional silicon p - i - n diode pillar array filled with boron-10 these constraints can be overcome. The fabricated pillar structured detector reported here is composed of 2 ? m diameter silicon pillars with a 4 ? m pitch and height of 12 ? m . A thermal neutrondetection efficiency of 7.3 + ? ? 0.6 % and a neutron-to-gamma discrimination of 10 5 at 2 V reverse bias were measured for this detector. When scaled to larger aspect ratio a high efficiency device is possible.

R. J. Nikoli?; A. M. Conway; C. E. Reinhardt; R. T. Graff; T. F. Wang; N. Deo; C. L. Cheung

2008-01-01T23:59:59.000Z

432

Energy Efficiency Links  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Efficiency Organizations Energy Efficiency Organizations Release Date: October 1999 Last Updated: Septembert 2009 EIA Links Disclaimer: These pages contain hypertext links to information created and maintained by other public and private organizations. These links provide additional information that may be useful or interesting and are being provided consistent with the intended purpose of the EIA website. EIA does not control or guarantee the accuracy, relevance, timeliness, or completeness of this outside information. EIA does not endorse the organizations sponsoring linked websites, the views they express, or the products and services they offer. U.S. Federal Government / Regional / U.S. Nonprofit / International U.S. Federal Government and Related Agencies

433

Energy Efficient Buildings Hub  

Broader source: Energy.gov (indexed) [DOE]

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

434

Oncor Energy Efficiency Programs  

E-Print Network [OSTI]

Internal Use Only 2 ESL-KT-14-11-04 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 2012 2015 Energy Efficiency Goals Year Demand Goal MW Energy Goal MWh Basis 2012 53.1 93,031 25% of Average Load Growth 2013 54.6 95...,659 30% of Average Load Growth 2014 68.1 119,311 30% of Average Load Growth 2015* 87.0 152,424 30% of Average Load Growth The Demand Goal is based on a five year rolling average of actual demand growth, provided by Oncor Revenue Forecasting Goal...

Betts, C.

2014-01-01T23:59:59.000Z

435

Energy Efficiency Indicators Methodology Booklet  

E-Print Network [OSTI]

Best Practice Indicates technical potential Actual energy efficiencyenergy efficiency over time. Building on past OECD experience and best practices,best practices. Figure 4. Plant Benchmarking Energy Efficiency

Sathaye, Jayant

2010-01-01T23:59:59.000Z

436

Behavior Based Energy Efficiency (BBEE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Behavior Based Energy Efficiency Program Profiles 2011 Introduction Behavior based energy efficiency (BBEE) programs focus on energy savings resulting from changes in individual or...

437

Water Efficiency | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Efficiency Water Efficiency Water is one of our most precious natural resources, and although the United States has an abundant supply, it is not evenly distributed...

438

Center for Energy Efficient Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plastic Solar Solid State Lighting High-Efficiency Solar Cells Thermoelectrics Undergraduate Internship Program Overview The Center for Energy Efficient Materials (CEEM) is an...

439

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

440

Thermal and Mechanical Design Aspects of the LIFE Engine  

SciTech Connect (OSTI)

The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

2008-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Univariate Polynomial Equation Providing Models of Thermal Lattice Boltzmann Theory  

E-Print Network [OSTI]

A univariate polynomial equation is presented. It provides models of the thermal lattice Boltzmann equation. The models can be accurate up to any required level and can be applied to regular lattices, which allow efficient and accurate approximate solutions of the Boltzmann equation. We derive models satisfying the complete Galilean invariant and providing accuracy of the 4th-order moment and beyond. We simulate thermal shock tube problems to illustrate the accuracy of our models and to show the remarkably enhanced stability obtained by our models and our discretized equilibrium distributions.

Jae Wan Shim

2011-03-27T23:59:59.000Z

442

Continuous Commissioning(SM) of a Thermal Storage System  

E-Print Network [OSTI]

shows that commissioning of the thermal storage system is not limited to the storage tank itself, but is closely related to successful commissioning of building air handling units (AHUs) and chilled water loops. The full benefit of a thermal storage... than a dozen major buildings. The storage system was installed after a campus-wide energy efficiency retrofit. It is designed to store 42?F chilled water with a return water temperature of 56?F. Total storage capacity is 7000 ton-hours. The tank...

Turner, W. D.; Liu, M.

2001-01-01T23:59:59.000Z

443

"Optimization of efficiency of internal combustion engines via using  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization of efficiency of internal combustion engines via using Optimization of efficiency of internal combustion engines via using spinning gas and non-spectroscopic method of determining gas constituents through rotation ..--.. Inventors Nathaniel Fisch, Vasily Geyko An important use of the disclosed approach is the improvement efficiency of thermal cycles and as result efficiency of engines. Different cycles and different ways of compression of spinning gas may be used to maximize possible efficiency gain. In conventional internal combustion engines, gas spinning is either not used at all or used only with the purpose of increasing turbulence and better mixing. In the disclosed method, gas rotation is used for energy storage, hence it allows an improvement in thermal cycle efficiency. To achieve significant effect related to

444

Thermally switchable dielectrics  

DOE Patents [OSTI]

Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

Dirk, Shawn M.; Johnson, Ross S.

2013-04-30T23:59:59.000Z

445

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

446

In-situ thermal testing program strategy  

SciTech Connect (OSTI)

In the past year the Yucca Mountain Site Characterization Project has implemented a new Program Approach to the licensing process. The Program Approach suggests a step-wise approach to licensing in which the early phases will require less site information than previously planned and necessitate a lesser degree of confidence in the longer-term performance of the repository. Under the Program Approach, the thermal test program is divided into two principal phases: (1) short-term in situ tests (in the 1996 to 2000 time period) and laboratory thermal tests to obtain preclosure information, parameters, and data along with bounding information for postclosure performance; and (2) longer-term in situ tests to obtain additional data regarding postclosure performance. This effort necessitates a rethinking of the testing program because the amount of information needed for the initial licensing phase is less than previously planned. This document proposes a revised and consolidated in situ thermal test program (including supporting laboratory tests) that is structured to meet the needs of the Program Approach. A customer-supplier model is used to define the Project data needs. These data needs, along with other requirements, were then used to define a set of conceptual experiments that will provide the required data within the constraints of the Program Approach schedule. The conceptual thermal tests presented in this document represent a consolidation and update of previously defined tests that should result in a more efficient use of Project resources. This document focuses on defining the requirements and tests needed to satisfy the goal of a successful license application in 2001, should the site be found suitable.

NONE

1995-06-01T23:59:59.000Z

447

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

Ma, Yudong

2012-01-01T23:59:59.000Z

448

Energy Efficiency of Future Networks Energy Efficient Transmission in  

E-Print Network [OSTI]

Energy Efficiency of Future Networks Part 1: Energy Efficient Transmission in Classical Wireless #12;Goals Energy Efficiency: What it meant last decade; what it means today From a communication network design perspective what should we care about for energy efficient design of cellular

Ulukus, Sennur

449

Energy Efficiency Revitalization  

E-Print Network [OSTI]

To set the tone for my remarks I will start by saying- today, energy efficiency is a tough sell. In General Motors, our plant engineering people, faced with headcount deductions, budget cuts, and capital spending constraints are up to their you...

Kelly, R. L.

450

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

efficiency · Double renewable energy · One million plug-in hybrid cars generation by 2012Presidentialon sustainable biofuels and infrastructure · Increase fuel economy standards Environmental · Implement an economy infrastructure · creating high-skilled jobs in emerging technical fields Th k bj ti i t k f l ll titi ithThe key

451

Thermistor mount efficiency calibration  

SciTech Connect (OSTI)

Thermistor mount efficiency calibration is accomplished by use of the power equation concept and by complex signal-ratio measurements. A comparison of thermistor mounts at microwave frequencies is made by mixing the reference and the reflected signals to produce a frequency at which the amplitude and phase difference may be readily measured.

Cable, J.W.

1980-05-01T23:59:59.000Z

452

International Conference Water Efficiency  

E-Print Network [OSTI]

International Conference Water Efficiency in Urban Areas Concepts, Technologies, Socio Economics for PostersRegistration via Fax: +49 941 29688-17 Yes, I will participate International Conference Water of the invoice. Payment must be received no later than 14 days before the conference begins (it has to be sett

Wehrli, Bernhard

453

ENERGY EFFICIENCY RESEARCH POWERS  

E-Print Network [OSTI]

1 ENERGY EFFICIENCY RESEARCH POWERS THE FUTUREPIER CONTRIBUTES TO JOB GROWTH AND PRIVATE INVESTMENT.Partofthecreditforthese achievementsgoestoCalifornia'suniquePublicInterest EnergyResearch(PIER)Program. Overthepast40years,Californiansincreasedthesizeof their homes and added scores of new energy-using de- vices,fromlargerefrigerators,dishwashers,audioequip- ment

454

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector Share of Energy Consumed byEnergy Efficiency & Renewable Energy 2010 Fuel Cell Project Kick-off Dr. Dimitrios Papageorgopoulos Fuel Cells Team Leader U.S. Department of Energy gy Fuel Cell Technologies Program September 28

455

Energy Efficiency Technologies  

Broader source: Energy.gov [DOE]

State, local, and tribal governments can work with building and facility owners, homeowners, industry, and city energy managers to implement cost-effective energy efficiency technologies that provide the same energy requirements and services as current technologiesbut with less energy demand.

456

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same m...

Saint-Hilaire, P; Saint-Hilaire, Pascal; Benz, Arnold O.

2005-01-01T23:59:59.000Z

457

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

458

Optimizing Asset Utilization and Operating Efficiency Efficiently, June  

Broader source: Energy.gov (indexed) [DOE]

Optimizing Asset Utilization and Operating Efficiency Efficiently, Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Smart Grid Implementation Workshop Breakout Group Report, a discussion of metrics for smart grid implementation. The following major caveats and findings were identified: Optimizing asset utilization and operating efficiently depends on proper integration of technologies with business processes and associated IT Build metrics, by definition, need to be updated regularly to reflect new technology Build metrics should not be technology prescriptive or result innarrowing technology options for Smart Grid (should be as "technology agnostic"as possible) Build metrics need to differentiate between statistics

459

Optimizing Asset Utilization and Operating Efficiency Efficiently, June  

Broader source: Energy.gov (indexed) [DOE]

Optimizing Asset Utilization and Operating Efficiency Efficiently, Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Smart Grid Implementation Workshop Breakout Group Report, a discussion of metrics for smart grid implementation. The following major caveats and findings were identified: Optimizing asset utilization and operating efficiently depends on proper integration of technologies with business processes and associated IT Build metrics, by definition, need to be updated regularly to reflect new technology Build metrics should not be technology prescriptive or result innarrowing technology options for Smart Grid (should be as "technology agnostic"as possible) Build metrics need to differentiate between statistics

460

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Personal Comfort Systems: Cooling/Heating Local Body Parts Efficient Ways  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Personal Comfort Systems: Cooling/Heating Local Body Parts Efficient Ways Personal Comfort Systems: Cooling/Heating Local Body Parts Efficient Ways to Provide Comfort Indoors Speaker(s): Hui Zhang Date: October 9, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Rongxin Yin This presentation describes energy efficient approaches to provide comfort in offices by creating non-uniform and transient thermal environments. The presentation will describe 1) distributions and characteristics of thermoreceptors of human body, 2) comfort responses of people exposed to complex thermal environments, 3) concept of "alliesthesia", 4) personal comfort systems developed by CBE, 5) their energy efficiency and demand response potential, and 6) the CBE advanced thermal comfort model. A recording of this seminar is available at: https://vimeo.com/51536661

462

Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production  

Broader source: Energy.gov [DOE]

The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipebased technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

463

Reduction of carbon monoxide emissions with regenerative thermal oxidizers  

SciTech Connect (OSTI)

Regenerative thermal oxidizers (RTOs) have been extensively used for the control of volatile organic compound (VOC) emissions from various sources. However, very little information is available on the ability of RTOs to control carbon monoxide (CO) emissions. This paper presents the results of extensive tests conducted on two RTOs to determine their VOC and CO control efficiencies. The inlet gas stream to the RTOs includes VOC and CO concentrations as high as 2,000 ppm and 3,600 ppm, respectfully. The testing demonstrated that both RTOs were capable of controlling greater than 98% of both inlet VOCs and CO. While the destruction efficiencies within the combustion chambers exceeded 99.9%, direct leakage past valves accounted for the lower control efficiencies. The tests indicated that the overall VOC and CO control efficiencies of the RTOs may be limited by valve leakage. The design and permitting of a RTO should include conservative control estimates which account for possible valve leakage.

Firmin, S.M.; Lipke, S.; Baturay, A.

1996-09-01T23:59:59.000Z

464

Thermal Decomposition Mechanism of Disilane  

Science Journals Connector (OSTI)

Thermal Decomposition Mechanism of Disilane ... Thermal decomposition of disilane was investigated using time-of-flight (TOF) mass spectrometry coupled with vacuum ultraviolet single-photon ionization (VUV-SPI) at a temperature range of 675?740 K and total pressure of 20?40 Torr. ... Concentrations of disilane and trisilane during thermal decomposition of disilane were quantitatively measured using the VUV-SPI method. ...

Kazumasa Yoshida; Keiji Matsumoto; Tatsuo Oguchi; Kenichi Tonokura; Mitsuo Koshi

2006-03-18T23:59:59.000Z

465

Thermal desorption for passive dosimeter  

E-Print Network [OSTI]

~ ~ ~ \\ ~ ~ ~ ~ Flare Tubes for Thermal Desorber . . . . . ~. . . . . . ~ ~ . 27 4. 5 ~ Thermal Desorber Manufactured by Century System Sample Flow from Thermal Desorber to Gas Chromatograph 29 6. Direct Injection Port for Therma1 Desorber . . . . . $2... the gas badges and. providing additional guidance in conducting the study. DEDICATZOil This thesis is cedicated to my parents and my wife, Unice, for their support during the last t', o years AHSTHACT ACKI;ODL DG~~. 'ITS D' DICATICI'. LIST OF TABL...

Liu, Wen-Chen

1981-01-01T23:59:59.000Z

466

How Do You Find Thermal Leaks in Your Home? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Do You Find Thermal Leaks in Your Home? How Do You Find Thermal Leaks in Your Home? How Do You Find Thermal Leaks in Your Home? March 31, 2011 - 7:30am Addthis On Monday, John told you about the thermal leak detector he purchased to help him find and seal leaks in his home. A thermal leak detector can be a great tool to help you find leaks in your own home, but it's not your only option. In addition to tools like this, you can also use some of our tips on do-it-yourself energy assessments, or you could get a professional energy assessment. How do you find thermal leaks in your home? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov.

467

Actively driven thermal radiation shield  

DOE Patents [OSTI]

A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

2002-01-01T23:59:59.000Z

468

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect (OSTI)

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

469

Application of thermal treatment procedure for concrete with the help of solar energy to construction engineering practice  

Science Journals Connector (OSTI)

The experience of solar energy usage for concreting with the help of different solar radiation devices in Russian regions and in ... reported. Information about the cost efficiency of solar energy usage for thermal

N. I. Podgornov; D. D. Koroteev

2007-10-01T23:59:59.000Z

470

ABSTRACT Establishing an Energy Efficiency Recommendation for Commercial Boilers  

E-Print Network [OSTI]

To assist the federal government in meeting its energy reduction goals, President Clintons Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25 ~ percentile of efficiency. Under the direction of DOEs Federal Energy Management Program (FEMP), the Procurement Challenges goal is to create efficiency recommendations for all energy-using products (e.g. commercial boilers, chillers, motors) that could substantially impact the governments energy reduction goals. When establishing efficiency recommendations, FEMP looks at standardized performance ratings for products sold in the U.S. marketplace. Currently, the commercial boiler industry uses combustion efficiency and, sometimes, thermal efficiency as metrics when specifying boiler performance. For many years, the industry has used both metrics interchangeably, causing confusion in the market place about boiler performance. This paper discusses the method used to establish FEMPs efficiency recommendation for commercial boilers in lieu of the various, and somewhat confusing, efficiency ratings currently available. The paper also discusses potential energy cost savings for federal agencies that improve the efficiency of boilers specified and purchased.

Michelle J. Ware

471

Industrial Energy Efficiency Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

472

Energy Efficiency Market Sustainable Business Planning | Department...  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Market Sustainable Business Planning Energy Efficiency Market Sustainable Business Planning Energy Efficiency Market Sustainable Business Planning, a presentation...

473

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

474

Water Efficiency Improvements at Various Environmental Protection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Efficiency Improvements at Various Environmental Protection Agency Sites Water Efficiency Improvements at Various Environmental Protection Agency Sites Water Efficiency...

475

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Broader source: Energy.gov (indexed) [DOE]

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

476

Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |  

Office of Science (SC) Website

Design of Bulk Nanocomposites as High Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals with the same orientation and structure as the host material breaks thermoelectric efficiency records by blocking thermal, but not electrical, conductivity. Significance and Impact A new strategy to design inexpensive materials that more efficiently convert heat to electricity. Research Details Thermoelectric materials directly generate electrical power from heat, but

477

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Broader source: Energy.gov (indexed) [DOE]

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

478

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Broader source: Energy.gov (indexed) [DOE]

3, 2011 3, 2011 CX-005011: Categorical Exclusion Determination Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters CX(s) Applied: A9, A11 Date: 01/13/2011 Location(s): West Oahu, Hawaii Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 13, 2011 CX-005007: Categorical Exclusion Determination State of Florida Energy Efficiency and Conservation Block Grant - Sunset Avenue Street Lighting Safety and Efficiency Project CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Mascotte, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 13, 2011 CX-004990: Categorical Exclusion Determination City of Cerritos, Photovoltaic System at the Cerritos Corporate Yard

479

Inter-County Energy Efficiency Program (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Inter-County Energy Efficiency Program (Kentucky) Inter-County Energy Efficiency Program (Kentucky) Inter-County Energy Efficiency Program (Kentucky) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pump Retrofit: $500-$1,000 Weatherization: $520-$1,370 Electric Thermal Storage: 40% discounted rate on energy usage of installed ETS heater Provider Inter-County Energy Cooperative Inter-County Energy Cooperative offers several energy efficiency and demand-side management programs for residential customers. Incentives are available for heat pumps (including geothermal, air source, and mini-split

480

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Broader source: Energy.gov (indexed) [DOE]

April 1, 2010 April 1, 2010 CX-001478: Categorical Exclusion Determination Commercial Renewable Energy Systems - McDowell County Schools Solar Thermal CX(s) Applied: B5.1 Date: 04/01/2010 Location(s): Marion, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001476: Categorical Exclusion Determination Commercial Renewable Energy Systems - FLS Robersonville Food Lion Solar CX(s) Applied: A9, B5.1 Date: 04/01/2010 Location(s): Robersonville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001406: Categorical Exclusion Determination Sherman Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04/01/2010 Location(s): Sherman, Texas Office(s): Energy Efficiency and Renewable Energy

Note: This page contains sample records for the topic "thermal efficiency nonrenewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Taylor County RECC - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Taylor County RECC - Residential Energy Efficiency Rebate Program Taylor County RECC - Residential Energy Efficiency Rebate Program Taylor County RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation Upgrade: $400 per home Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Insulation Upgrade: $20 for every 1,000 Btu saved by adding insulation Air-source Heat Pumps: $200 Electrical Thermal Storage: Reduced electrical rate Provider Taylor County RECC Taylor County RECC offers rebates to residential customers for upgrading to energy efficient insulation and heat pumps. Under the Button-Up insulation upgrade program, a utility representative will conduct an energy audit of

482

Implementation of Energy Efficiency Measures and Continuous Commissioning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Implementation of Energy Efficiency Measures and Continuous Commissioning Implementation of Energy Efficiency Measures and Continuous Commissioning in Two High-tech Buildings in Silicon Valley Speaker(s): Yaolin Lin Date: September 7, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mark Levine Continuous commissioning on existing buildings aims at resolving building mechanical system operation problems, improving system reliability, improving occupants' thermal comfort, increasing building energy efficiency, minimizing retrofit cost, and achieving energy savings at the same time. Dr. Lin will present the implementation of energy efficiency measures on two high-tech buildings in Silicon Valley, California. A total saving of 16,000,000kWh/yr in electricity was achieved and confirmed by measurements from 23 power meters throughout the two buildings. Saving of

483

Sustainability: Energy Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability: Energy Efficiency Sustainability: Energy Efficiency (Green Consulting Unit) Overview Walks students through the process of building a model home while considering 11 parameters that influence energy use, such as building orientation, room configuration, building envelope, and energy systems (heating, cooling, lighting, etc.). Objectives The students will be able to: Use models to learn how to maximize the comfort-conditioning of a home. Observe, gather, and analyze data from the model simulations. Draw conclusions from the data. Time Week 1 Period 1 (M) Introduction Period 2 (W) Activities 1, 2 Period 3 (F) Activities 3, 4 Week 2 Period 4 (M) Activities 5, 6, 7 Period 5 (W) Activities 8, 9, 10, 11 Period 6 (F) Activities Presentations and conclusion

484

Process for Efficient CO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient CO Efficient CO 2 Capture Using a Regenerable Sorbent Opportunity Research is active on the technologies titled "Process for CO 2 Capture Using a Regenerable Magnesium Hydroxide Sorbent" and "Process for Minimization of Steam Requirements and Enhancement of WGS with Warm Gas Temperature CO 2 Sorbent." These two related technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview Fossil fuels will be used to provide clean, affordable energy well into the 21st century, but there are concerns about impacts of greenhouse gases (GHGs), particularly carbon dioxide (CO 2 ) from fossil fuels. Capture of carbon from fossil fuel plants can produce CO

485

Energy-Efficient Networks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Architecting and Operating Architecting and Operating Energy-Efficient Networks Inder Monga (ESnet) With input from Dan Kilper, Thierry Klein (Bell Labs) Vijay Sivaraman (UNSW, Australia) Jaafar Elmirghani (University of Leeds, UK) § Global research consortium representing industry, government and academic organizations § Launched in May 2010 § Focus on sustainability and growth § Holistic and ambitious: Goal of 1000x § 57 member organizations § 300+ leading scientists § Recognized by the World Economic Forum as an industry-led best practice toward sustainability DELIVER ARCHITECTURE, SPECIFICATIONS AND SOLUTIONS AND DEMONSTRATE KEY TECHNOLOGIES TO INCREASE NETWORK ENERGY EFFICIENCY BY A FACTOR 1000 COMPARED TO 2010 GREENTOUCH(tm) (www.greentouch.org)

486

Energy Efficiency Financing  

Broader source: Energy.gov (indexed) [DOE]

Financing Financing Cisco DeVries | May 6, 2011 The Second U.S-China Energy Efficiency Forum Goals for Financing Program Supports highly leveraged private capital Serves residential and commercial markets Supports reactive and proactive projects Private Capital Sources Reactive & Proactive Residential & Commercial Property Assessed Clean Energy (PACE) Property owner repays bond through property tax bill (up to 20 years) Proceeds from revenue bond or other financing provided to property owner to pay for energy project Property owners voluntarily sign-up for financing and install energy projects City or county creates type of land-secured financing district or similar legal mechanism The Second U.S-China Energy Efficiency Forum Commercial PACE Benefits * No or Low Upfront Costs. Removes high first cost

487

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

488

From energy efficiency  

Broader source: Energy.gov (indexed) [DOE]

energy efficiency energy efficiency upgrades to light-rail projects, clean energy and clean transportation continue to create jobs and drive economic growth. By tracking job announcements from companies, elected officials, the media, and elsewhere, Environmental Entrepreneurs' (E2's) jobs reports show how and where clean energy works in the United States. For more details, including state-by-state breakdowns and more clean energy jobs stories, visit www.cleanenergyworksforus.org. For more information, please contact Bob Keefe, communications director, Environmental Entrepreneurs (E2) at bkeefe@e2.org or 202.289.2373. The Independent Business Voice for the Environment CLEAN ENERGY WORKS FOR US: 2013 Second Quarter Clean Energy/ Clean Transportation Jobs Report 2013 SECOND-QUARTER SNAPSHOT

489

Energy Efficiency Policy Recommendations  

Broader source: Energy.gov (indexed) [DOE]

Policy Recommendations Policy Recommendations for the New Administration and Congress American Council for an Energy-Efficient Economy February, 2001 There are a variety of energy challenges confronting the United States at this time: First, electricity reliability problems and price s-uges have become a major crisis in California and are threatening to reach the crisis level in other regions of the country. Second, natural gas prices have increased by 100%/ or more in many parts of the country, causing skyrocketing home energy bills this winter. And high natural gas prices are expected to continue due to tight supplies and growing demand. Third, our reliance on imported oil -hasgrownduerto a-combination-ofdecciningdomesticoil- ply and growingdemand ed to the lack of fuel efficiency improvement in motor vehicles.

490

Product Efficiency Cases  

Broader source: Energy.gov (indexed) [DOE]

product-efficiency-cases Office of Hearings and product-efficiency-cases Office of Hearings and Appeals 1000 Independence Ave., SW Washington, DC, 20585 202-287-1566 en EXC-13-0004 - In the Matter of Liebherr Canada Ltd. http://energy.gov/oha/downloads/exc-13-0004-matter-liebherr-canada-ltd EXC-13-0004 - In the Matter of Liebherr Canada Ltd.

491

Making Efficiency a More Efficient Business | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Making Efficiency a More Efficient Business Making Efficiency a More Efficient Business Making Efficiency a More Efficient Business July 10, 2012 - 2:10pm Addthis The Better Buildings Neighborhood Program is supporting an expanding energy efficiency workforce upgrading buildings in communities around the country. Roland Risser Roland Risser Program Director, Building Technologies Office What does this project do? Six Better Buildings case studies profile successful workforce development and incentive initiatives for energy efficiency professionals. The Business Models Guide helps professionals expand their services, establish business strategies around energy efficiency, and incorporate market sector perspectives into public-private partnerships. Even with the sweltering heat and relaxation that summer usually brings, the Energy Department's Better Buildings

492

Thermally induced photon splitting  

E-Print Network [OSTI]

We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

Per Elmfors; Bo-Sture Skagerstam

1998-02-23T23:59:59.000Z

493

Thermal barrier coatings  

DOE Patents [OSTI]

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

494

Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine  

Science Journals Connector (OSTI)

A theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine is presented in this study. Without a displacer and its link, the thermal-lag engine contains only a moving part (piston) and a static part (regenerative heater) in engine's cylinder and hence, is regarded as a unique type of Stirling engines that featuring rather simple mechanical structure. In this study, a numerical simulation of thermodynamic behavior of the thermal-lag Stirling engine is performed based on the theoretical model developed. Transient variations of temperatures, pressures, pressure difference, and working fluid masses in the individual working spaces of the engine are predicted. Dependence of indicated power and thermal efficiency on engine speed has been investigated. Then, optimal engine speeds at which the engine may reach its maximum power output and/or maximum thermal efficiency is determined. Furthermore, effects of geometrical and operating parameters, such as heating and cooling temperatures, volumes of the chambers, thermal resistances, stroke of piston, and bore size on indicated power output and thermal efficiency are also evaluated.

Chin-Hsiang Cheng; Hang-Suin Yang

2013-01-01T23:59:59.000Z

495

MoWiTT:Mobile Window Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

496

Computational Design and Experimental Validation of New Thermal Barrier Systems  

SciTech Connect (OSTI)

This project (10/01/2010-9/30/2014), Computational Design and Experimental Validation of New Thermal Barrier Systems, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. In this project, the focus is to develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments.

Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

2014-04-01T23:59:59.000Z

497

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

OF CALIFORNIA RIVERSIDE Phase Change Materials for ThermalOF THE THESIS Phase Change Materials for Thermal Energyto utilize phase change materials (PCMs) to enhance thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

498

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

499

Energy Efficiency and Electric Utilities  

SciTech Connect (OSTI)

The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs are being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.

NONE

2007-11-15T23:59:59.000Z

500

Regenerative thermal oxidation and alternative technologies for VOC control  

SciTech Connect (OSTI)

Thermal oxidation technologies have been used successfully to control VOC`s for many years but the recent 1990 Clean Air Act Amendments have spurred improvements in the established processes and development of economic alternatives. The combination of the regulatory maze and confusion in the selection of the best technology for a particular application has created a potential nightmare for those companies facing a need to reduce their VOC EMISSIONS. The relative advantages and disadvantages of regenerative, recuperative and catalytic oxidizers will be reviewed, with an emphasis on the economic justification for regenerative thermal oxidation (RTO). Control efficiencies of more than 99% have been demonstrated for RTO`s on a multitude of industrial process exhaust streams. Lowest evaluated cost over a fifteen to twenty year effective equipment life is a key selection criteria. This paper describes the underlying principles of thermal oxidation, and discusses the applicability of these and other emerging technologies for VOC control.

Biedell, E.L. [REECQ, Somerville, NJ (United States)

1995-12-31T23:59:59.000Z