Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Collector Field Maintenance: Distributed Solar Thermal Systems  

Science Journals Connector (OSTI)

This paper reports on recent operation and maintenance experiences with distributed solar thermal systems. Although some information on system-...

E. C. Boes; E. C. Cameron; E. L. Harley

1986-01-01T23:59:59.000Z

2

Thermal distribution systems in commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal distribution systems in commercial buildings Thermal distribution systems in commercial buildings Title Thermal distribution systems in commercial buildings Publication Type Journal Article LBNL Report Number LBNL-51860 Year of Publication 2003 Authors Diamond, Richard C., Craig P. Wray, Darryl J. Dickerhoff, Nance Matson, and Duo Wang Start Page Chapter Abstract Previous research suggests that HVAC thermal distribution systems in commercial buildings suffer from thermal losses, such as those caused by duct air leakage and poor duct location. Due to a lack of metrics and data showing the potentially large energy savings from reducing these losses, the California building industry has mostly overlooked energy efficiency improvements in this area. The purpose of this project is to obtain the technical knowledge needed to properly measure and understand the energy efficiency of these systems. This project has three specific objectives: to develop metrics and diagnostics for determining system efficiencies, to develop design and retrofit information that the building industry can use to improve these systems, and to determine the energy impacts associated with duct leakage airflows in an existing large commercial building. The primary outcome of this project is the confirmation that duct leakage airflows can significantly impact energy use in large commercial buildings: our measurements indicate that adding 15% duct leakage at operating conditions leads to an increase in fan power of about 25 to 35%. This finding is consistent with impacts of increased duct leakage airflows on fan power that have been predicted by previous simulations. Other project outcomes include the definition of a new metric for distribution system efficiency, the demonstration of a reliable test for determining duct leakage airflows, and the development of new techniques for duct sealing. We expect that the project outcomes will lead to new requirements for commercial thermal distribution system efficiency in future revisions of California's Title 24.

3

NREL: Energy Systems Integration Facility - Thermal Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal distribution bus consists of a thermal water loop connected to a research boiler and chiller that provide precise and efficient control of the water temperature...

4

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

5

Performance of thermal distribution systems in large commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of thermal distribution systems in large commercial buildings Performance of thermal distribution systems in large commercial buildings Title Performance of thermal distribution systems in large commercial buildings Publication Type Journal Article LBNL Report Number LBNL-44331 Year of Publication 2002 Authors Xu, Tengfang T., François Rémi Carrié, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Duo Wang, and Mark P. Modera Journal Energy and Buildings Volume 34 Start Page Chapter Pagination 215-226 Abstract This paper presents major findings of a field study on the performance of five thermal distribution systems in four large commercial buildings. The five systems studied are typical single-duct or dual-duct constant air volume (CAV) systems and variable air volume (VAV) systems, each of which serves an office building or a retail building with floor area over 2,000 m2. The air leakage from ducts are reported in terms of effective leakage area (ELA) at 25 Pa reference pressure, the ASHRAE-defined duct leakage class, and air leakage ratios. The specific ELAs ranged from 0.7 to 12.9 cm2 per m2 of duct surface area, and from 0.1 to 7.7 cm2 per square meter of floor area served. The leakage classes ranged from 34 to 757 for the five systems and systems sections tested. The air leakage ratios are estimated to be up to one-third of the fan- supplied airflow in the constant-air-volume systems. The specific ELAs and leakage classes indicate that air leakage in large commercial duct systems varies significantly from system to system, and from system section to system section even within the same thermal distribution system. The duct systems measured are much leakier than the ductwork specified as "unsealed ducts" by ASHRAE. Energy losses from supply ducts by conduction (including convection and radiation) are found to be significant, on the scale similar to the losses induced by air leakage in the duct systems. The energy losses induced by leakage and conduction suggest that there are significant energy-savings potentials from duct-sealing and insulation practice in large commercial buildings

6

Commercial thermal distribution systems, Final report for CIEE/CEC  

SciTech Connect

According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

1999-12-01T23:59:59.000Z

7

Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems  

E-Print Network (OSTI)

1 LBNL-43724 Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems Walker, I., Sherman, M., and Siegel, J. Environmental Energy Technologies Division Energy .................................................................................................................. 14 Figure 1. Simulations of Pulldowns from 3:00 p.m. on a Sacramento Design Day

8

A prototype data archive for the PIER "thermal distribution systems in  

NLE Websites -- All DOE Office Websites (Extended Search)

A prototype data archive for the PIER "thermal distribution systems in A prototype data archive for the PIER "thermal distribution systems in commercial buildings" project Title A prototype data archive for the PIER "thermal distribution systems in commercial buildings" project Publication Type Report LBNL Report Number LBNL-54191 Year of Publication 2004 Authors Diamond, Richard C., Craig P. Wray, Brian V. Smith, Darryl J. Dickerhoff, Nance Matson, and Skylar A. Cox Date Published 01/2004 Publisher Lawrence Berkeley National Laboratory Abstract A prototype archive for a selection of building energy data on thermal distribution systems in commercial buildings was developed and pilot tested. While the pilot demonstrated the successful development of the data archive prototype, several questions remain about the usefulness of such an archive. Specifically, questions on the audience, frequency of use, maintenance, and updating of the archive would need to be addressed before this prototype is taken to the next level.

9

DRAIN-BACK PROTECTED LOW-FLOW SOLAR HEATING SYSTEM WITH DISTRIBUTED ELEVATED THERMALLY STRATIFIED STORAGE  

Science Journals Connector (OSTI)

ABSTRACT Design considerations concerning a drain-back freeze and overheat protection system are given with emphasis on nitrogen management and thermal stratification of an elevated distributed storage. The actual system of GNT in Berg, Federal Republic of Germany is described. KEYWORDS Solar Heating; Freeze Protection; Overheat Protection; Drain-Back System;

W.B. VELTKAMP; J. VAN BERKEL; A.T. KEESMAN

1990-01-01T23:59:59.000Z

10

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

air-volume HVAC systems, static pressures across theIn VAY HVAC systems, the static pressures may likely changefor the Static Pressure Analysis Tool are: HVAC schedule

Xu, T.

2011-01-01T23:59:59.000Z

11

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Building Type and System Type (Million SF) Total Education Food Sales Food Service Health Care Lodging Mercantile and Service Office Public Buildings WarehouseStorage Total...

12

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

HVAC Equipment Manufacturers (2009 Million) Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123...

13

Leakage diagnostics, sealant longevity, sizing and technologytransfer in residential thermal distribution systems: Part II.Residential thermal Distribution Systesm, Phase VI FinalReport  

SciTech Connect

This report builds on and extends our previous efforts as described in "Leakage Diagnostics, Sealant Longevity, Sizing and Technology Transfer in Residential Thermal Distribution Systems- CIEE Residential Thermal Distribution Systems Phase V Final Report, October 1997". New developments include defining combined duct and equipment efficiencies in a concept called "Tons At the Register" and on performance issues related to field use of the aerosol sealant technology. Some of the key results discussed in this report include: o Register, boot and air handler cabinet leakage can often represent a significant fraction of the total duct leakage in new construction. Because of the large range of pressures in duct systems an accurate characterization may require separating these components through improved leakage testing. o Conventional duct tape failed our accelerated longevity testing and is not, therefore, considered generally acceptable for use in sealing duct systems. Many other tapes and sealing approaches are available and practical and have passed our longevity tests. o Simulations of summer temperature pull-down time have shown that duct system improvements can be combined with equipment downsizing to save first cost, energy consumption, and peak power and still provide equivalent or superior comfort. o Air conditioner name plate capacity ratings alone are a poor indicator of how much cooling will actually be delivered to the conditioned space. Duct system efficiency can have as large an impact on performance as variations in SEER. o Mechanical duct cleaning techniques do not have an adverse impact on the ducts sealed with the Aerosol sealant. The material typically used in Aerosol sealing techniques does not appear to present a health or safety hazard. Results from this study were used by the California Energy Commission in the formation of the current Energy Efficiency Standards for Low-Rise Residential Buildings (CEC, (1998)), often referred to as Title 24. Current information on ducts and thermal distribution research can be found at http://ducts.lbl.gov

Buchanan, C.; Modera, M.; Sherman, M.; Siegel, J.; Walker, I.; Wang, D.

1998-12-01T23:59:59.000Z

14

Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance  

E-Print Network (OSTI)

Underfloor Air Distribution (UFAD) Design Guide. Atlanta:for design cooling loads in underfloor air distribution (

Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

2012-01-01T23:59:59.000Z

15

Maximizing Commercial Hydraulic Software Simulation in Thermal Distribution System Continuous Commissioning  

E-Print Network (OSTI)

, such as water distribution systems, industrial cooling systems, oil pipelines, or any network carrying an impressible newtonian fluid in full pipe from purily hydraulic point of view. It not only provides simulation models for pipes, tees, heat exchangers..., such as water distribution systems, industrial cooling systems, oil pipelines, or any network carrying an impressible newtonian fluid in full pipe from purily hydraulic point of view. It not only provides simulation models for pipes, tees, heat exchangers...

Chen, Q.; Xu, C.; Claridge, D. E.; Turner, W. D.; Deng, S.

2005-01-01T23:59:59.000Z

16

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network (OSTI)

potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

17

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network (OSTI)

HP Abs. Chiller PV Solar Thermal Annual CO 2 Emissionsfrom CHP [kW] heat from solar thermal [kW] heat from naturalof micro-CHP units, solar thermal units and heat pumps (

Steen, David

2014-01-01T23:59:59.000Z

18

Thermal Control & System Integration  

Energy.gov (U.S. Department of Energy (DOE))

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

19

Efficient Thermal Energy Distribution in Commercial Final Report  

E-Print Network (OSTI)

energy distribution. These include, but not limited to, 1) reducing thermal losses induced by air leakage through system components (i.e., duct, equipment), 2) decreasing thermal losses induced by heat conductionLBNL-41365 Efficient Thermal Energy Distribution in Commercial Buildings Final Report to California

20

Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration  

SciTech Connect

Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382-428 (India)

2014-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network (OSTI)

tanks in the simulation of CHP plants," Energy Conversionoption combined with CHP system for different commercialas combined heat and power (CHP) or photovoltaics (PV), can

Steen, David

2014-01-01T23:59:59.000Z

22

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

23

Bernstein instability driven by thermal ring distribution  

SciTech Connect

The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

Yoon, Peter H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hadi, Fazal; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan)

2014-07-15T23:59:59.000Z

24

Susceptibility of members of the family Legionellaceae to thermal stress: implications for heat eradication methods in water distribution systems.  

Science Journals Connector (OSTI)

...all Legionellaceae to heat inactivation (an eradication...foundation for the utility of heat inactiva- tion as a...rapid and precipitous loss of viability when temperatures...conditions more repre; water distribution system, i.e., when...evaluating sediment on the heat resistance of Legionella...

J E Stout; M G Best; V L Yu

1986-08-01T23:59:59.000Z

25

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

26

Thermal ignition combustion system  

SciTech Connect

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

27

Thermal ignition combustion system  

SciTech Connect

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

28

FRIB cryogenic distribution system  

SciTech Connect

The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

Ganni, Venkatarao [JLAB; Dixon, Kelly D. [JLAB; Laverdure, Nathaniel A. [JLAB; Knudsen, Peter N. [JLAB; Arenius, Dana M. [JLAB; Barrios, Matthew N. [Michigan State; Jones, S. [Michigan State; Johnson, M. [Michigan State; Casagrande, Fabio [Michigan State

2014-01-01T23:59:59.000Z

29

FRIB cryogenic distribution system  

SciTech Connect

The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States); Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

2014-01-29T23:59:59.000Z

30

FUTURE DIRECTIONS FOR THERMAL DISTRIBUTION STANDARDS  

SciTech Connect

This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

31

Ductless Hydronic Distribution Systems  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is from a Building America webinar conducted on November 8, 2011, by the Alliance for Residential Building Innovation (ARBI) about ductless hydronic distribution systems.

32

Low-cost distributed solar-thermal-electric power generation  

E-Print Network (OSTI)

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

33

Thermal comfort and cold air distribution  

SciTech Connect

Cold air distribution systems supply air at temperatures between 38 F and 51 F. Cold air distribution systems are increasingly attractive when used in conjunction with ice storage systems to shave peak load by shifting the demand to off-peak hours. They also require less operating and capital costs because they use smaller fans, ducts, piping, and pumps. However, an important issue in design and application of cold air systems is the effect on occupant comfort. There are several techniques and methodologies that practitioners use for evaluation of conventional air distribution systems. Among these is the Air Diffusion Performance Index (ADPI). It is widely used in the US and is referenced in the 1993 ASHRAE Handbook--Fundamentals. However, this technique is based on empirical correlations obtained from tests conducted with conventional systems and it cannot be guaranteed that they will be equally applicable to cold air systems. This study was undertaken, therefore, to extend the existing techniques (especially the Air Diffusion Performance Index) to applications where cold air distribution systems are utilized. This work presents a critical review of the evolution of the ADPI technique and offers several recommendations for developing a firm foundation for future room air distribution research.

Hassani, V. [National Renewable Energy Lab., Golden, CO (United States); Miller, P.L. [Miller (Paul), Arvada, CO (United States)

1998-10-01T23:59:59.000Z

34

Integrated Vehicle Thermal Management Systems (VTMS) Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

35

Using ductwork to improve supply plenum temperature distribution in underfloor air distribution (UFAD) system  

E-Print Network (OSTI)

overhead air distribution design(1). 1.3 Thermal comfortS. Under Floor Air Distribution (UFAD) Design Guide. s.l. :load design tool for underfloor air distribution systems.

Pasut, Wilmer

2011-01-01T23:59:59.000Z

36

Distribution System Research Priorities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark McGranaghan Mark McGranaghan EPRI ELECTRICITY DISTRIBUTION SYSTEM WORKSHOP Crystal City, VA September 24, 2012 Distribution System Research Priorities 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. The Power System Roadmaps start with a Vision Future Power System will require new technologies, infrastructure, and control systems 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. R&D Roadmaps - Coordination is Critical Roadmaps are living documents 4 © 2012 Electric Power Research Institute, Inc. All rights reserved. Developing the next generation grid * Industry needs new technologies, communication protocols, and information management methods - More variable generation sources and controllable loads - Aging infrastructure

37

Thermalization of isolated quantum systems  

E-Print Network (OSTI)

Understanding the evolution towards thermal equilibrium of an isolated quantum system is at the foundation of statistical mechanics and a subject of interest in such diverse areas as cold atom physics or the quantum mechanics of black holes. Since a pure state can never evolve into a thermal density matrix, the Eigenstate Thermalization Hypothesis (ETH) has been put forward by Deutsch and Srednicki as a way to explain this apparent thermalization, similarly to what the ergodic theorem does in classical mechanics. In this paper this hypothesis is tested numerically. First, it is observed that thermalization happens in a subspace of states (the Krylov subspace) with dimension much smaller than that of the total Hilbert space. We check numerically the validity of ETH in such a subspace, for a system of hard core bosons on a two-dimensional lattice. We then discuss how well the eigenstates of the Hamiltonian projected on the Krylov subspace represent the true eigenstates. This discussion is aided by bringing the projected Hamiltonian to the tridiagonal form and interpreting it as an Anderson localization problem for a finite one-dimensional chain. We also consider thermalization of a subsystem and argue that generation of a large entanglement entropy can lead to a thermal density matrix for the subsystem well before the whole system thermalizes. Finally, we comment on possible implications of ETH in quantum gravity.

Sergei Khlebnikov; Martin Kruczenski

2014-03-12T23:59:59.000Z

38

Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Tech Team Grid Tech Team Discussion Summary Electricity Distribution System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Common Themes ...................................................................................................................................... 5 Discussion Topic Tables ............................................................................................................................. 8

39

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program...

40

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building diagnosable distributed systems  

E-Print Network (OSTI)

Building diagnosable distributed systems Petros Maniatis Intel Research Berkeley ICSI ­ Security] Project response@R (R, K, SI) lookup response Specification #12;2/8/2006 Petros Maniatis9 Strawman Design Join lookup.NI == node.NI Join lookup.NI == succ.NI Select K in (N, S] Project response@R (R, K, SI

Maniatis, Petros

42

Laser Texturing for Solar Thermal Systems  

Science Journals Connector (OSTI)

High solar absorptance and low thermal emittance is desired for absorber surface in solar thermal systems. Molybdenum surface was textured by pulsed fiber laser and...

Shah, Ankit; Gupta, Mool

43

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network (OSTI)

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design renewable energy applications. A key advantage of a solar thermal system is that they can incorporate

Sanders, Seth

44

The Application and Verification of ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) to DOE-2-1e Simulation Program  

E-Print Network (OSTI)

ESL-TR-08-06-01 THE APPLICATION AND VERIFICATION OF ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) TO DOE-2.1e SIMULATION PROGRAM Jeff S... Systems Laboratory, Texas A&M University System 1 EXECUTIVE SUMMARY This report describes the application and verification of duct model on DOE 2.1e version 119 using ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal...

Kim, S.; Haberl, J. S.

45

Onsite Wastewater Treatment Systems: Spray Distribution System  

E-Print Network (OSTI)

Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

46

Ductless Hydronic Distribution Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 Ductless Hydronic Distribution Systems Welcome to the Webinar! We will start at 1:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 800-779-8694; Pass code: 2506667 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies www.buildingamerica.gov Introduction to Building America Building Technologies Program eere.energy.gov Building America Industry Consortia

47

Permanent magnet thermal energy system  

SciTech Connect

An improved rotary magnet thermal generator system of the type having an array of magnets in alternating disposition coaxially disposed about and parallel with the shaft of a motor driving the rotary array and having a copper heat absorber and a ferro-magnetic plate fixed on a face of the heat absorber, includes as efficiency improver a plurality of heat sink plates extending beyond the ferro-magnet plate into a plenum through a respective plurality of close-fitting apertures. In a further embodimetn the heat sink plates are in thermal contact with sinusoidally convoluted tubing that both increases surface area and provides for optional heating of gases and/or fluids at the same time.

Gerard, F.

1985-04-16T23:59:59.000Z

48

Hydrogen storage and distribution systems  

Science Journals Connector (OSTI)

Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or ... or airplanes. All batch transportation requires a storage system but al...

Andreas Zttel

2007-03-01T23:59:59.000Z

49

Distribution System State Estimation  

Office of Scientific and Technical Information (OSTI)

these include reactive power management, outage management, loss reduction, demand response, adaptable over-current protection, condition-based maintenance, distributed...

50

Measuring Advances in HVAC Distribution System Design  

E-Print Network (OSTI)

Advances in HV AC Distribution System Design Ellen FranconiAdvances in HVAC Distribution System Design Ellen Franconisavings result from distribution system design improvements,

Franconi, E.

2011-01-01T23:59:59.000Z

51

Network Reconfiguration at the Distribution System with Distributed Generators  

Science Journals Connector (OSTI)

This article proposes a novel model for distribution network reconfiguration to meet current distribution system operating demands. In the model the connection of distributed generators to distribution system is ...

Gao Xiaozhi; Li Linchuan; Xue Hailong

2010-01-01T23:59:59.000Z

52

Thermal Simulation of Advanced Powertrain Systems  

Energy.gov (U.S. Department of Energy (DOE))

Under this project, the Volvo complete vehicle model was modified to include engine and exhaust system thermal outputs and cooling system to enable WHR simulations from a system perspective.

53

Gossiping in distributed systems  

E-Print Network (OSTI)

Exchange of information between various nodes in a distributed network can be useful to utilize the available resources effectively. Gossiping algorithms can be used for this purpose. We begin with a survey of various gossiping schemes for different...

Penubothu, Muralidhar V

2012-06-07T23:59:59.000Z

54

Exergy analysis of a rock bed thermal storage system  

Science Journals Connector (OSTI)

In this paper, a thermodynamic procedure is presented to analyse energy and exergy balances of a rock bed thermal storage system. The thermal behaviour is described by means of a control volume that includes three subsystems: the solar collectors, the fluid distribution system and the storage chamber. Solar-to-thermal energy conversion was obtained by means of a solar collector at a fixed airflow rate. The final purpose of the method is to determine how well the thermodynamic modelling fits the real data obtained experimentally from the prototype under normal operating conditions.

J.J. Navarrete-Gonzalez; J.G. Cervantes-de Gortari; E. Torres-Reyes

2008-01-01T23:59:59.000Z

55

Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion Summary Discussion Summary Electricity Transmission System Workshop 1 Grid Tech Team Discussion Summary Electricity Transmission System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Synthesized Challenges ............................................................................................................................. 5

56

Dynamic thermal management in chip multiprocessor systems  

E-Print Network (OSTI)

- mal Management (PDTM) based on Application-based Thermal Model (ABTM) and Core-based Thermal Model (CBTM) in the multicore systems. Based on predicted temperature from ABTM and CBTM, the proposed PDTM can maintain the system temperature below a desired...

Liu, Chih-Chun

2009-05-15T23:59:59.000Z

57

Thermal Storage with Ice Harvesting Systems  

E-Print Network (OSTI)

Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

Knebel, D. E.

1986-01-01T23:59:59.000Z

58

Thermal processing systems for TRU mixed waste  

SciTech Connect

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-01-01T23:59:59.000Z

59

Thermal processing systems for TRU mixed waste  

SciTech Connect

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-08-01T23:59:59.000Z

60

Main Injector power distribution system  

SciTech Connect

The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

Cezary Jach and Daniel Wolff

2002-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Chapter 10 - Solar Thermal Power Systems  

Science Journals Connector (OSTI)

Abstract Chapter 10 deals with solar thermal power systems. Initially, the general design considerations are given followed by the presentation of the three basic technologies. These include the parabolic trough collector system, which includes a description of the PTC power plant and outlook of the technology; the power tower systems and the dish systems. This is followed by the thermal analysis of the basic cycles of solar thermal power plants. Subsequently, solar updraft tower systems are examined, which include the initial steps and first demonstration, and the thermal analysis. Finally, solar ponds are examined, which is a form of large solar collector and storage system that can be used for solar power generation and include practical design considerations, salty water transmission estimation, methods of heat extraction, description of two large experimental solar ponds, and applications of solar ponds.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

62

Variable emissivity laser thermal control system  

DOE Patents (OSTI)

A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

Milner, Joseph R. (Livermore, CA)

1994-01-01T23:59:59.000Z

63

Preliminary Investigation into Solar Thermal Combi-system Performance.  

E-Print Network (OSTI)

??Solar thermal combi-systems use solar energy to provide thermal energy for space heating and domestic hot water. These systems come in many different designs and (more)

Lee, Elizabeth

2014-01-01T23:59:59.000Z

64

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

from controlling heat loss through the distribution pipes.distribution system configurations; a collection of analytical heat lossdistribution system configurations; a collection of analytical heat loss

Lutz, Jim

2012-01-01T23:59:59.000Z

65

Design optimization of thermal paths in spacecraft systems  

E-Print Network (OSTI)

This thesis introduces a thermal design approach to increase thermal control system performance and decrease reliance on system resources, e.g., mass. Thermal design optimization has lagged other subsystems because the ...

Stout, Kevin Dale

2013-01-01T23:59:59.000Z

66

Constructing Reliable Distributed Communication Systems with CORBA  

E-Print Network (OSTI)

Constructing Reliable Distributed Communication Systems with CORBA Silvano Maffeis Douglas C Communication software and distributed services for next- generation applications must be reliable, efficient model to support reliable data- and process- oriented distributed systems that communicate through syn

Schmidt, Douglas C.

67

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS  

E-Print Network (OSTI)

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter-mounted system couples the benefits of distributed PV electricity generation with the on-site generation of thermal energy in a temperature range of 60 to 220 ºC. This is ideal for applications ranging from

68

DOE Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DISTRIBUTION SYSTEM WORKSHOP DISTRIBUTION SYSTEM WORKSHOP Mapping Challenges and Opportunities to Help Guide DOE R&D Investments over the Next Five Years Sheraton Crystal City, 1800 Jefferson Davis Hwy, Arlington, Virginia September 24-26, 2012 AGENDA Monday, September 24, 2012 1:00-1:30 Welcome and Introduction to the Grid Tech Team (GTT), Vision, and Framework The GTT synchronizes all grid-related activities across the DOE Dr. Anjan Bose, Grid Tech Team Lead 1:30-1:50 OE Vision, Activities, and Issues Patricia A. Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability (OE) 1:50-2:10 EERE Vision, Activities, and Issues Dr. David Danielson, Assistant Secretary for the Office of Energy Efficiency and Renewable Energy (EERE) 2:10-2:40 Open Q&A Rich Scheer,

69

Project Profile: Novel Thermal Energy Storage Systems for Concentratin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

70

Thermal analysis of the ATLAS dump system  

E-Print Network (OSTI)

The dump system of the ATLAS Magnet, situated on third level of the USA15 cavern is an assembly of diodes and dump resistors through which the energy stored in the Magnet is dissipated when running down the magnet current to zero. The dump system is permanently connected to the Magnet through a system of bus bars and is able to dissipate about 1.5 GJ of energy in 3 hours. The goal of this thermal analysis, performed by ST/CV, is to understand whether the heat released by the dump system can be removed by free convection into the PX15 shaft or if forced ventilation is needed

Wichrowska Polok, I

2003-01-01T23:59:59.000Z

71

Distribution System Voltage Regulation by Distributed Energy Resources  

SciTech Connect

This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

Ceylan, Oguzhan [ORNL; Liu, Guodong [ORNL; Xu, Yan [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

72

Thermal diffusivity measurement system applied to polymers  

Science Journals Connector (OSTI)

In the search for cleaner energy sources the improvement of the efficiency of the actual ones appears as a primary objective. In this way thermoelectric materials which are able to convert wasted heat into electricity are reveal as an interesting way to improve efficiency of car engines for example. Cost-effective energy harvesting from thermoelectric devices requires materials with high electrical conductivities and Seebeck coefficient but low thermal conductivity. Conductive polymers can fulfil these conditions if they are doped appropriately. One of the most promising polymers is Polyaniline. In this work the thermal conductivity of the polyaniline and mixtures of polyaniline with nanoclays has been studied using a new experimental set-up developed in the lab. The novel system is based on the steady-state method and it is used to obtain the thermal diffusivity of the polymers and the nanocomposites.

2012-01-01T23:59:59.000Z

73

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management...

74

Selecting Thermal Storage Systems for Schools  

E-Print Network (OSTI)

-in freezers and refrigerators. 10. Occupancy sensors for lighting and HVAC control. 11. Electrical distribution system broken down into HVAC, lighting, and miscellaneous loads with each load submetered. 12. All the meters and submeters can be remotely... start automatically when area served is occupied. I. DDC Control System - Controls equipment, provides system operation information, generates historical data files for meter readings and selected system points. The greatest innovation...

Maxwell, C. L.

1990-01-01T23:59:59.000Z

75

Local Thermalization in the d + Au System  

E-Print Network (OSTI)

The extent of a locally equilibrated parton plasma in d + Au collisions at sqrt(s_NN) = 200 GeV is investigated as a function of collision centrality in a nonequilibrium-statistical framework. Based on a three-sources model, analytical solutions of a relativistic diffusion equation are in precise agreement with recent data for charged-particle pseudorapidity distributions. The moving midrapidity source indicates the size of the local thermal equilibrium region after hadronization. In central d + Au collisions it contains about 19% of the produced particles, and its relative importance rises with decreasing centrality.

Georg Wolschin; Minoru Biyajima; Takuya Mizoguchi; Naomichi Suzuki

2005-03-22T23:59:59.000Z

76

A reliability assessment methodology for distribution systems with distributed generation  

E-Print Network (OSTI)

Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability... Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability...

Duttagupta, Suchismita Sujaya

2006-08-16T23:59:59.000Z

77

Designing Distributed, Real-Time Systems  

E-Print Network (OSTI)

- - Designing Distributed, Real-Time Systems Kevin L. Mills INFT 796 SUMMER 1993 DIRECTED READINGS IN SOFTWARE ENGINEERING WITH DR. H. GOMAA GEORGE MASON UNIVERSITY #12;Designing Distributed, Real-Time Systems problem faced by designers of software systems, and particularly by designers of distributed, real

Mills, Kevin

78

Low-temperature thermally regenerative electrochemical system  

DOE Patents (OSTI)

A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, R.O.; Brown, A.P.; Yao, N.P.

1982-04-21T23:59:59.000Z

79

Low temperature thermally regenerative electrochemical system  

DOE Patents (OSTI)

A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, Raouf O. (Tucson, AZ); Brown, Alan P. (Bolingbrook, IL); Yao, Neng-Ping (Clarendon Hills, IL)

1983-01-01T23:59:59.000Z

80

Applications of HVAC System Utilizing Building Thermal Mass in Japan  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of HVAC System Utilizing Building Thermal Mass in Japan Applications of HVAC System Utilizing Building Thermal Mass in Japan Speaker(s): Katsuhiro Miura Date: January 27, 2012 - 10:00am Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Buildings have a large thermal capacity and it affects much on building thermal load for the HVAC system. The thermal mass can be utilized also to control the thermal load by storing thermal energy before HVAC operation. There are two ways to store thermal energy. One is by operating the HVAC system and the other is by natural ventilation, mainly at night. The latter could be combined with daily HVAC operation as a hybrid ventilation. Thermal mass storage is useful to decrease the hourly peak load and the daily thermal load and can be used for both cooling and heating purpose.

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal rectification in quantum graded mass systems  

E-Print Network (OSTI)

We show the existence of thermal rectification in the graded mass quantum chain of harmonic oscillators with self-consistent reservoirs. Our analytical study allows us to identify the ingredients leading to the effect. The presence of rectification in this effective, simple model (representing graded mass materials, systems that may be constructed in practice) indicates that rectification in graded mass quantum systems may be an ubiquitous phenomenon. Moreover, as the classical version of this model does not present rectification, our results show that, here, rectification is a direct result of the quantum statistics.

Emmanuel Pereira

2010-03-01T23:59:59.000Z

82

Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition  

E-Print Network (OSTI)

Anthony G. Evans* Materials Institute, Princeton University, Princeton, New Jersey 08544 Thermal barrier and generating new thermal resistance solutions, as appropri- ate. A continuum heat flow analysis is usedDistributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor

Wadley, Haydn

83

Heat Distribution Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distribution Systems Distribution Systems Heat Distribution Systems May 16, 2013 - 5:26pm Addthis Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves two heat distribution systems -- steam radiators and hot water radiators. Steam Radiators Steam heating is one of the oldest heating technologies, but the process of boiling and condensing water is inherently less efficient than more modern systems, plus it typically suffers from significant lag times between the

84

Definition: Distribution Management System | Open Energy Information  

Open Energy Info (EERE)

Management System Management System Jump to: navigation, search Dictionary.png Distribution Management System A Distribution Management System (DMS) is a utility IT system capable of collecting, organizing, displaying and analyzing real-time or near real-time electric distribution system information. A DMS can also allow operators to plan and execute complex distribution system operations in order to increase system efficiency, optimize power flows, and prevent overloads. A DMS can interface with other operations applications such as geographic information systems (GIS), outage management systems (OMS), and customer information systems (CIS) to create an integrated view of distribution operations.[1] View on Wikipedia Wikipedia Definition In the recent years, utilization of electrical energy increased

85

Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage  

E-Print Network (OSTI)

Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

2007-01-01T23:59:59.000Z

86

The Clouds Distributed Operating System * Partha Dasgupta  

E-Print Network (OSTI)

The Clouds Distributed Operating System * Partha Dasgupta Dept. of Computer Science and Engg Ramachandran. College of Computing Georgia Tech, Atlanta, GA 30332 Keywords: Distributed Operating Systems operating system that runs on general purpose computers connected via a local­area network. The system

Yeom, Heon Young

87

Information sharing for distributed intrusion detection systems  

Science Journals Connector (OSTI)

In this paper, we present an information sharing model for distributed intrusion detection systems. The typical challenges faced by distributed intrusion detection systems is what information to share and how to share information. We address these problems ... Keywords: Anomaly detection, Denial of service attack, Distributed intrusion detection, Information sharing, Reflector attack

Tao Peng; Christopher Leckie; Kotagiri Ramamohanarao

2007-08-01T23:59:59.000Z

88

Describing and Analyzing Distributed Software System Designs  

E-Print Network (OSTI)

Describing and Analyzing Distributed Software System Designs GEORGE S. AVRUNIN and JACK C. WILEDEN by applying it to a realistic distributed software-system design problem involving mutual exclusion Additional Key Words and Phrases: Analysis of software design, design notation, distributed mutual exclusion

Avrunin, George S.

89

Exergetic optimization of solar collector and thermal energy storage system  

Science Journals Connector (OSTI)

This paper deals with the exergetic optimization of a solar thermal energy system. This consists of a solar collector (SC) and a rectangular water storage tank (ST) that contains a phase change material (PCM) distributed in an assembly of slabs. The study takes into account both conduction and convection heat transfer mode for water in the SC, and also the phase change process for the PCM in the ST. An analytical solution for the melting process in the PCM is also presented. The results of the study are compared with previous experimental data, confirming the accuracy of the model. Results of a numerical case study are presented and discussed.

F. Aghbalou; F. Badia; J. Illa

2006-01-01T23:59:59.000Z

90

Thermal Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Energy Systems Energy Systems Jump to: navigation, search Name Thermal Energy Systems Place London, United Kingdom Sector Biomass Product UK based company that constructs and installs boilers for biomass projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Rehabilitating A Thermal Storage System Through Commissioning  

E-Print Network (OSTI)

supplementary chiller (50 tons) was needed due to an under- sized storage tank and an under-sized chller. In 1995, the authors were asked to investigate the problems and provide possible solutions. The thermal storage system was subsequently rehabilitated... draws water from the bottom of the tank and sends the return water to the top of the tank. Valve V4 isolates the chiller from the building and the tank. In the charging mode (Figure 2b), valves V3 and V4 are open while valve V1 is 06 wcad closed...

Liu, M.; Veteto, B.; Claridge, D. E.

1998-01-01T23:59:59.000Z

92

Low jitter RF distribution system  

DOE Patents (OSTI)

A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

2012-09-18T23:59:59.000Z

93

WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF  

E-Print Network (OSTI)

CHAPTER 5 WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF SIMULATED ANNEALING Fred E. Goldman Arizona State University, Tempe, Arizona 5.1 INTRODUCTION The operation of water distribution systems affects the water quality in these systems. EPA regulations require that water quality be maintained

Mays, Larry W.

94

Thermal Hydraulic Optimization of Nuclear Systems [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Hydraulic Thermal Hydraulic Optimization of Nuclear Systems Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Thermal Hydraulic Optimization of Nuclear Systems Accelerator Driven Test Facility Target Accelerator Driven Test Facility Target. Click on image to view larger

95

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network (OSTI)

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

96

Laser Spark Distribution and Ignition System  

NLE Websites -- All DOE Office Websites (Extended Search)

partners interested in implement- ing United States Patent Number 7,421,166 entitled "Laser Spark Distribution and Ignition System." Disclosed in this patent is NETL's laser...

97

A Distributed Honeypot System for Grid Security  

Science Journals Connector (OSTI)

In this paper, we propose a distributed honeypot model for grid computing system security. Based on the IDS Snort and the...

Geng Yang; Chunming Rong; Yunping Dai

2004-01-01T23:59:59.000Z

98

Building a Smarter Distribution System in Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of an advanced distribution management system (DMS) software is at the heart of the project. The DMS monitors and controls all of the smart devices being installed...

99

Building America Webinar: Ductless Hydronic Distribution Systems...  

Energy Savers (EERE)

Ductless Hydronic Distribution Systems This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility...

100

Pressure Regain Strategies for Existing Air Distribution Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pressure Regain Strategies for Pressure Regain Strategies for Existing Air Distribution Systems Arlan Burdick IBACOS, Inc. Pressure Regain Strategies for Existing Air Distribution Systems Problem Statement Thermal enclosure upgrades can reduce peak loads by 50%. If the furnace is right-sized for this new peak load and the ducts are not modified or replaced, the resulting airflows at the supply registers will be significantly reduced. -Will the outlets meet industry standards for performance? - Should they be replaced to achieve good room air mixing? - Should the end of the duct be modified to improve airflow characteristics? Pressure Regain Strategies for Existing Air Distribution Systems Expected Results We expect to find a cost-effective solution to gaining proper airflow to a room without completely replacing

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

102

International Space Station power module thermal control system hydraulic performance  

SciTech Connect

The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

Goldberg, V. [Boeing North American, Inc., Canoga Park, CA (United States). Rocketdyne Div.

1997-12-31T23:59:59.000Z

103

Hybrid solar lighting distribution systems and components  

DOE Patents (OSTI)

A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

2011-07-05T23:59:59.000Z

104

Battery Thermal Management System Design Modeling  

SciTech Connect

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

105

Thermally efficient compact fluorescent fixture systems  

SciTech Connect

Compact fluorescent lamps that can be inserted into conventional light fixtures are rapidly gaining acceptance as both a viable retrofit and new design approach to reducing lighting loads. Ideally, the compact fluorescent lamp should have the same light output as the incandescent lamp it replaces, but overheating inside typically small enclosed fixtures can reduce lumen output and hence lighting fixture efficiency by 15 to 20 percent. Fortunately, simple fixture modifications can erase this efficiency penalty, so that the full efficiency benefit of replacing incandescent lamps with fluorescent lamps can be realized. The paper describes such modifications and presents experimental data documenting the potential efficiency enhancement associated with thermal control systems. 4 refs., 7 figs.

Siminovitch, M.J.; Rubinstein, F.M.; Packer, M.

1991-04-01T23:59:59.000Z

106

Project Profile: High-Efficiency Thermal Energy Storage System...  

Office of Environmental Management (EM)

the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system...

107

Lockheed Testing the Waters for Ocean Thermal Energy System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin is developing a design for an OTEC system that would produce...

108

Power Electronic Thermal System Performance and Integration (Presentation)  

SciTech Connect

This presentation gives an overview of the status and FY09 accomplishments for the NREL Power Electronic Thermal System Performance and Integration Project.

Bennion, K.

2009-05-01T23:59:59.000Z

109

Laser Spark Distribution and Ignition System  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Distribution and Ignition System Spark Distribution and Ignition System Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implement- ing United States Patent Number 7,421,166 entitled "Laser Spark Distribution and Ignition System." Disclosed in this patent is NETL's laser spark distribution and ignition system, which reduces the high-power optical requirements normally needed for such a system by using optical fibers to deliver low-peak-energy pumping pulses to a laser amplifier or laser oscillator. Laser spark generators then produce a high-peak-power laser spark from a single low power pulse. The system has ap- plications in natural gas fueled reciprocating engines, turbine combustors, explosives, and laser induced breakdown spectroscopy diagnostic sensors.

110

Concentrating Solar Power Thermal Storage System Basics | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Storage System Basics Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to generate electricity. If the receiver contains oil or molten salt as the heat-transfer medium, then the thermal energy can be stored for later use. This enables CSP systems to be cost-competitive options for providing clean, renewable energy. Several thermal energy storage technologies have been tested and

111

Reliability Assessment of Distribution Systems.  

E-Print Network (OSTI)

?? A stable and reliable electric power supply system is an inevitable pre-requisite for the technological and economic growth of any nation. Due to this, (more)

Dorji, Tempa

2009-01-01T23:59:59.000Z

112

Reliability improvement of distribution systems using SSVR  

Science Journals Connector (OSTI)

This paper presents a reliability assessment algorithm for distribution systems using a Static Series Voltage Regulator (SSVR). Furthermore, this algorithm considers the effects of Distributed Generation (DG) units, alternative sources, system reconfiguration, load shedding and load adding on distribution system reliability indices. In this algorithm, load points are classified into 8 types and separated restoration times are considered for each class. Comparative studies are conducted to investigate the impacts of DG and alternative source unavailability on the distribution system reliability. For reliability assessment, the customer-oriented reliability indices such as SAIFI, SAIDI, CAIDI ASUI and also load- and energy-oriented indices such as ENS and AENS are evaluated. The effectiveness of the proposed algorithm is examined on the two standard distribution systems consisting of 33 and 69 nodes. The best location of the SSVR in distribution systems is determined based on different reliability indices, separately. Results show that the proposed algorithm is efficient for large-scale radial distribution systems and can accommodate the effects of fault isolation and load restoration.

Mehdi Hosseini; Heidar Ali Shayanfar; Mahmoud Fotuhi-Firuzabad

2009-01-01T23:59:59.000Z

113

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot  

Open Energy Info (EERE)

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Details Activities (3) Areas (1) Regions (0) Abstract: Chemical interaction of thermal fluids with reservoir rock in the Roosevelt Hot Springs thermal area, Utah, has resulted in the development of characteristic trace-element dispersion patterns. Multielement analyses of surface rock samples, soil samples and drill cuttings from deep exploration wells provide a three-dimensional perspective of chemical redistribution within this structurally-controlled hot-water geothermal system. Five distinctive elemental suites of chemical enrichment are

114

Performance evaluation of thermal energy storage systems;.  

E-Print Network (OSTI)

??Solar thermal technologies are promising, given the fact that solar newlineenergy is the cheapest and most widely available of all renewable energy newlinetechnologies. The recent (more)

Ramana A S

2014-01-01T23:59:59.000Z

115

Development of an Integrated Distribution Management System  

SciTech Connect

This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nations critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nations economic security. Our Nations economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

Schatz, Joe E.

2010-10-20T23:59:59.000Z

116

NREL: Electric Infrastructure Systems Research - Distributed Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources Test Facility Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as electric power system equipment capable of simulating a real-world electric system. Photo of the Distributed Energy Resources Test Facility and an adjacent solar photovoltaic array. The Distributed Energy Resources Test Facility is located at the National Wind Technology Center near Boulder, Colorado. Take a virtual tour of the DERTF. Researchers at the facility can vary equipment configurations and introduce common electrical disturbances such as sags, swells, and harmonic issues on

117

Thermal model of solar absorption HVAC systems  

SciTech Connect

This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

Bergquam, J.B.; Brezner, J.M. [California State Univ., Sacramento, CA (United States). Dept. of Mechanical Engineering; [Bergquam Energy Systems, Sacramento, CA (United States)

1995-11-01T23:59:59.000Z

118

A thermal distribution function for relativistic magnetically insulated electron flows  

SciTech Connect

A distribution function is presented that may be used to study the effects of finite temperature on the equilibrium and stability properties of magnetically insulated electron flows. This distribution function has the useful property that it generates the thoroughly studied class of constant Q = ..omega../sup 2//sub p//..cap omega../sup 2/ equilibria in its zero-temperature limit. Analytic solutions are given for the general, constant Q, zero-temperature equilibria.

Desjarlais, M.P.; Sudan, R.N.

1986-05-01T23:59:59.000Z

119

A thermal distribution function for relativistic magnetically insulated electron flows  

Science Journals Connector (OSTI)

A distribution function is presented that may be used to study the effects of finite temperature on the equilibrium and stability properties of magnetically insulated electron flows. This distribution function has the useful property that it generates the thoroughly studied class of constant Q=?2 p /?2 equilibria in its zero?temperature limit. Analytic solutions are given for the general constant Q zero?temperature equilibria.

M. P. Desjarlais; R. N. Sudan

1986-01-01T23:59:59.000Z

120

Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos  

E-Print Network (OSTI)

The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

1998-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Examination and characterization of distribution system biofilms.  

Science Journals Connector (OSTI)

...18 May 1987/Accepted 21 August 1987 Investigations concerning the role of distribution...not occurring at the treatment plant. Remedial actions to control the coliform episode...forms in a water distribution system: a remedial approach. J. Am. Water Works Assoc...

M W LeChevallier; T M Babcock; R G Lee

1987-12-01T23:59:59.000Z

122

A DISTRIBUTED AUTOMATION SYSTEM FOR ELECTROPHYSICAL INSTALLATIONS  

E-Print Network (OSTI)

A DISTRIBUTED AUTOMATION SYSTEM FOR ELECTROPHYSICAL INSTALLATIONS V.R. Kozak Budker Institute There was designed a set of devices for automation systems of physical installations. On this basis approach. KEY WORDS Automation, systems, applications, CANBUS, embedded, controller. 1. Introduction Budker

Kozak, Victor R.

123

Virtualizing Operating Systems for Seamless Distributed Environments  

E-Print Network (OSTI)

Virtualizing Operating Systems for Seamless Distributed Environments 1 Tom Boyd and Partha Dasgupta. Abstract Applications and operating systems can be augmented with extra functionality by injecting bindings. This is called virtualiza- tion. We are developing a virtualizing Operating System (vOS) residing

Dasgupta, Partha

124

EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM  

E-Print Network (OSTI)

cost benefits are still evident. Currently, there are many solar power plants that have been announced Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because, power output from a solar field. At the right cost, a storage system can improve overall economics

125

Thermal comfort, skin temperature distribution, and sensible heat loss distribution in the sitting posture in various asymmetric radiant fields  

Science Journals Connector (OSTI)

This study aimed at investigating the thermal comfort for the whole body as well as for certain local areas, skin temperatures, and sensible heat losses in various asymmetric radiant fields. Human subject experiments were conducted to assess the overall comfort sensation and local discomfort, and local skin temperatures were measured. Through thermal manikin experiments, we discovered a new method for the precise measurement of the local sensible heat loss in nonuniform thermal environments. The local sensible heat losses were measured by the use of a thermal manikin that had the same local skin temperatures as the human subjects. The experimental conditions consisted of the anteriorposterior, rightleft, and updown asymmetric thermal environments created by radiation panels. A total of 35 thermal environmental conditions were created ranging from 25.5 to 30.5C for air temperature, from 11.5 to 44.5C for surface temperature of radiation panels, from 40% RH to 50% RH for humidity, and less than 0.05m/s for inlet air velocity to the climatic chamber. The local skin temperature changed depending on the environmental thermal nonuniformity, even if the mean skin temperature remained almost the same. It is essential to use the skin temperature distribution as well as mean skin temperature for expressing thermal comfort in nonuniform environments. The local sensible heat loss changed depending on the environmental thermal nonuniformity, even if the mean sensible heat loss remained almost the same. The relationship between the local skin temperature and local sensible heat loss cannot be depicted by a simple line; instead, it varies depending on the environmental thermal nonuniformity. The local heat discomfort in the head area was dependent on both the local skin temperature and local sensible heat loss. However, the local cold discomfort in the foot area was related only to the local skin temperature.

Tomonori Sakoi; Kazuyo Tsuzuki; Shinsuke Kato; Ryozo Ooka; Doosam Song; Shengwei Zhu

2007-01-01T23:59:59.000Z

126

Strategy Guideline: Compact Air Distribution Systems  

SciTech Connect

This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

Burdick, A.

2013-06-01T23:59:59.000Z

127

Distributed Delays Stabilize Ecological Feedback Systems  

Science Journals Connector (OSTI)

We consider the effect of distributed delays in predator-prey models and ecological food webs. Whereas the occurrence of delays in population dynamics is usually regarded a destabilizing factor leading to the extinction of species, we here demonstrate complementarily that delay distributions yield larger stability regimes than single delays. Food webs with distributed delays closely resemble nondelayed systems in terms of ecological stability measures. Thus, we state that dependence of dynamics on multiple instances in the past is an important, but so far underestimated, factor for stability in dynamical systems.

Christian W. Eurich; Andreas Thiel; Lorenz Fahse

2005-04-22T23:59:59.000Z

128

An Optimized Adaptive Protection Scheme for Distribution Systems Penetrated with Distributed Generators  

Science Journals Connector (OSTI)

An intelligent adaptive protection scheme for distribution systems penetrated with distributed generators is proposed in this chapter. The scheme...

Ahmed H. Osman; Mohamed S. Hassan

2014-01-01T23:59:59.000Z

129

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

for Storage of Solar Thermal Energy, Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage, Angewandtescale molecular solar thermal energy storage system, in

Coso, Dusan

2013-01-01T23:59:59.000Z

130

Exergy in the Thermal Systems Analysis  

Science Journals Connector (OSTI)

Exergy analysis has been developed as a result ... imperfection of industrial thermal processes. Precursors of exergy analysis were Gouy [1] and Stodola ... due to the thermodynamic irrevesibility. The term exergy

J. Szargut

1999-01-01T23:59:59.000Z

131

Thermal Analysis of a Telecommunications Rack System  

Science Journals Connector (OSTI)

This paper describes a study of a prototype design of a transmission subrack under development by a major European manufacturer of telecommunications equipment. The paper details the thermal model, and presents t...

Dr. J. D. Parry; Dr. D. G. Tatchell

1994-01-01T23:59:59.000Z

132

Thermal barrier coating for alloy systems  

DOE Patents (OSTI)

An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

2000-01-01T23:59:59.000Z

133

Thermal Storage with Conventional Cooling Systems  

E-Print Network (OSTI)

The newly opened Pennsylvania Convention Center in Philadelphia, PA; Exxon's Computer Facility at Florham Park, NJ; The Center Square Building in Philadelphia, are success stories for demand shifting through thermal storage. These buildings employ a...

Kieninger, R. T.

1994-01-01T23:59:59.000Z

134

Design and Implementation of Tracking System for Dish Solar Thermal Energy Based on Embedded System  

Science Journals Connector (OSTI)

Solar thermal energy has lots of advantages compare with photovoltage ... and stability cant satisfy the requirements of thermal energy system. This paper gives a design and implementation of tracking system for...

Jian Kuang; Wei Zhang

2012-01-01T23:59:59.000Z

135

Mechanical properties of thermal protection system materials.  

SciTech Connect

An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

2005-06-01T23:59:59.000Z

136

Building a Smarter Distribution System in Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study - PPL Electric Utilities Corporation Smart Grid Investment Grant Study - PPL Electric Utilities Corporation Smart Grid Investment Grant 1 Building a Smarter Distribution System in Pennsylvania PPL Electric Utilities Corporation (PPL) provides electricity to 1.4 million customers across central and eastern Pennsylvania. Having installed smart meters and other advanced technologies over the last several years, PPL has experience with operating smart grid systems and achieving operational improvements. To further improve quality of service for its customers, PPL is implementing a $38 million Smart Grid Investment Grant, which includes $19 million in Recovery Act funds from the U.S. Department of Energy (DOE). PPL is installing a distribution management system (DMS), distribution automation (DA) devices, and supporting communication systems in a pilot program in the Harrisburg

137

Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation  

Science Journals Connector (OSTI)

Abstract Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.

Byron W. Jones; Robert Powell

2015-01-01T23:59:59.000Z

138

Energy optimization of water distribution system  

SciTech Connect

In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

Not Available

1993-02-01T23:59:59.000Z

139

Chapter 12 - Assessment of Thermal Energy Storage Systems  

Science Journals Connector (OSTI)

Abstract The foremost challenges of energy supply in meeting the energy demand apply to the development of energy efficient technologies to achieve energy security and environmental emissions. In the spectrum of energy-efficient technologies, thermal energy storage systems offer huge potential to bridge the mismatch between energy supply and energy demand. The overall operational performance of thermal storage systems depends on the quality of energy content and the energy degradation effects exhibited during the cyclic charging and discharging processes. The assessment pertaining to the exergy efficiency in addition to energy efficiency can have a pivotal role to enable thermal storage systems to outperform on a long-term basis.

S. Kalaiselvam; R. Parameshwaran

2014-01-01T23:59:59.000Z

140

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Integration of HVAC System Design with Simplified Duct Distribution...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building...

142

Distributed/Stationary Fuel Cell Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

143

Exergy Analysis of Data Center Thermal Management Systems  

Science Journals Connector (OSTI)

Data center thermal management systems exist to maintain the computer equipment within acceptable operating temperatures. As power densities have increased in data centers, however, the energy used by the cooling...

Amip J. Shah; Van P. Carey; Cullen E. Bash

2012-01-01T23:59:59.000Z

144

Thermal processing system concepts and considerations for RWMC buried waste  

SciTech Connect

This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

1992-02-01T23:59:59.000Z

145

Small solar (thermal) water-pumping system  

SciTech Connect

A small solar (thermal) water pump phototype was tested. The pump works on an organic Rankine cycle using refrigerant R113. The design of the pump is described. Detailed temperature and pressure measurements of the working fluid for different operating conditions are performed. The behaviour of the cycle is analysed to get a clear picture of the thermodynamic process. Power-characteristic curves are obtained by a systematic variation of water temperature, pumping head and heat input. 10 refs., 13 figs., 2 tabs.

Spindler, K.; Hahne, E. [Universitaet Stuttgart (Germany)] [Universitaet Stuttgart (Germany); Chandwalker, K. [Stiletto Engineers, Hyderabad (India)] [Stiletto Engineers, Hyderabad (India)

1996-07-01T23:59:59.000Z

146

Correcting Thermal Distribution Problems for a Large University Campus  

E-Print Network (OSTI)

? A Wonderful Technology?, Energy Engineering, Vol. 99, No. 1, pp. 74-80. Rishel, J.B., 1998. ?Twenty-five Years? Experience with Variable Speed Pumps on Hot and Chilled Water Systems?, ASHARE Transactions, Vol. 94, Part 2. Sauer, J.M., 1989... Cummings, J.B., Withers, C., McIlvaine, J., Sonne, J., Fairey, P., and Lombardi, M., ?Field Testing to Characterize the Airtightness and Operating Pressures of Residential Air Handlers,? FSEC-CR- 1285-01, Florida Solar Energy Center, Cocoa, FL...

Chen, H.; Deng, S.; Bruner, H. L.; Claridge, D. E.; Turner, W. D.

2002-01-01T23:59:59.000Z

147

World Class Boilers and Steam Distribution System  

E-Print Network (OSTI)

WORLD CLASS BOILERS AND STEAM DISTRIBUTION SYSTEM Vernon P. Portell, Ph.D. Manager Armstrong Service, Inc. ABSTRACT categorizing, measuring, and comparing subjects which are of interest to us is the way we identify the "World class" is a... of information can also be obtained through an independent firm that provides third-party assessment of steam systems. One of these third parties, Armstrong Energy Certification, Inc., has used data gleaned from decades of industrial experience...

Portell, V. P.

148

Senslide: a distributed landslide prediction system  

Science Journals Connector (OSTI)

We describe the design, implementation, and current status of Senslide, a distributed sensor system aimed at predicting landslides in the hilly regions of western India. Landslides in this region occur during the monsoon rains and cause significant damage ... Keywords: fault tolerant, landslide prediction, sensor network application

Anmol Sheth; Chandramohan A. Thekkath; Prakshep Mehta; Kalyan Tejaswi; Chandresh Parekh; Trilok N. Singh; Uday B. Desai

2007-04-01T23:59:59.000Z

149

Organic Rankine power conversion subsystem development for the small community solar thermal power system  

SciTech Connect

The development and preliminary test results for an air-cooled, hermetically sealed 20 kW sub E organic Rankine cycle engine/alternator unit for use with point focussing distributed receiver solar thermal power system. A 750 F toluene is the working fluid and the system features a high speed, single-stage axial flow turbine direct-coupled to a permanent magnet alternator. Good performance was achieved with the unit in preliminary tests.

Barber, R.E.; Boda, F.P.

1982-07-01T23:59:59.000Z

150

Fire tests on defective tank-car thermal protection systems  

Science Journals Connector (OSTI)

Many railway tank-cars carrying hazardous materials are thermally protected from fire impingement by thermal insulation and a steel jacket applied to the outside of the tank-car shell. Over time, it is possible that the thermal insulation will sag, rip, degrade, or be crushed under the steel jacket. A thermographic technique to determine whether or not a tank has insulation deficiencies has been developed, but it is necessary to determine which thermal deficiencies do not affect a tanks survivability in a fire and which thermal deficiencies must be repaired. In order to develop a guideline in assessing thermal defects, a thermal model and experimental data would be beneficial. A series of fire tests were performed on a quarter-section tank-car mock-up to assist in developing a guideline and to provide validation data for a thermal model. Twelve fire tests, with constant, credible, simulated pool fire conditions, were performed on the tank-car mock-up with various insulation deficiencies. An infrared thermal imaging camera was used to measure the tank wall temperature. The thermal images were useful in determining the temperature profiles across the defects at different times and the transient temperature behaviour at different locations. It was seen that the properly installed thermal protection system significantly reduced the heat transfer from the fire to the tank wall. It was also seen that the steel jacket alone (i.e. 100% defect) acted as a radiation shield and provided a significant level of protection. With small defects, it was observed that the surrounding protected material provided a cooling effect by thermal conduction. A square defect greater than about 40 cm on each side should be considered significant, because unlike smaller defects, there is little benefit from the surrounding material as far as the peak defect temperature is concerned.

J.D.J VanderSteen; A.M Birk

2003-01-01T23:59:59.000Z

151

Integrated thermal treatment system sudy: Phase 2, Results  

SciTech Connect

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

Feizollahi, F.; Quapp, W.J.

1995-08-01T23:59:59.000Z

152

DOE Action Plan Addressing the Electricity Distribution System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACTION PLAN ACTION PLAN ADDRESSING THE ELECTRICITY DISTRIBUTION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Distribution System 1 Table of Contents INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ................................................................................................ 2 Focus on Distribution .............................................................................................. 3 Roadmap Goals ....................................................................................................... 3 PROCESS OVERVIEW ........................................................................................................... 4

153

Laser spark distribution and ignition system  

DOE Patents (OSTI)

A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

2008-09-02T23:59:59.000Z

154

Distributed computer controls for accelerator systems  

SciTech Connect

A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multi-user Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implementation with four months with a computer and instrumentation cost of approximately $100K. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking and operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the efficient implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. 3 refs.

Moore, T.L.

1988-09-01T23:59:59.000Z

155

Integrated thermal treatment system study -- Phase 2 results. Revision 1  

SciTech Connect

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

Feizollahi, F.; Quapp, W.J.

1996-02-01T23:59:59.000Z

156

Locality, entanglement, and thermalization of isolated quantum systems  

Science Journals Connector (OSTI)

A way to understand thermalization in an isolated system is to interpret it as an increase in entanglement between subsystems. Here we test this idea through a combination of analytical and Krylov-subspace-based numerical methods applied to a quantum gas of bosons. We find that the entanglement entropy of a subsystem is rapidly generated at the initial state of the evolution, to quickly approach the thermal value. Our results also provide an accurate numerical test of the eigenstate thermalization hypothesis (ETH), according to which a single energy eigenstate of an isolated system behaves in certain respects as a thermal state. In the context of quantum black holes, we propose that the ETH is a quantum version of the classical no-hair theorem.

S. Khlebnikov and M. Kruczenski

2014-11-03T23:59:59.000Z

157

Combustion chemical vapor deposited coatings for thermal barrier coating systems  

SciTech Connect

The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-12-31T23:59:59.000Z

158

Distributed Energy Systems Corp | Open Energy Information  

Open Energy Info (EERE)

Systems Corp Systems Corp Jump to: navigation, search Name Distributed Energy Systems Corp Place Wallingford, Connecticut Zip CT 06492 Product The former holding company of Proton Energy Systems and Northern Power Systems that ceased to operate upon the sale of both subsidiaries. Coordinates 43.473755°, -72.976925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.473755,"lon":-72.976925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Optimization of Ice Thermal Storage Systems Design for HVAC Systems  

E-Print Network (OSTI)

Ice thermal storage is promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper discusses the optimal design of ice thermal storage and its impact on energy consumption, demand, and total...

Nassif, N.; Hall, C.; Freelnad, D.

2013-01-01T23:59:59.000Z

160

Enhancing reliability in passive anti-islanding protection schemes for distribution systems with distributed generation.  

E-Print Network (OSTI)

??This thesis introduces a new approach to enhance the reliability of conventional passive anti-islanding protection scheme in distribution systems embedding distributed generation. This approach uses (more)

Sheikholeslamzadeh, Mohsen

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Design and Simulation for a Solar House with Building Integrated Photovoltaic-Thermal System and Thermal Storage  

Science Journals Connector (OSTI)

Building integrated photovoltaic-thermal systems (BIPV/T) that pre-heat ambient air may be used in combination with ventilated concrete slabs for thermal storage purposes. This is one of many feasible ways to ...

YuXiang Chen; A. K. Athienitis; K. E. Galal

2009-01-01T23:59:59.000Z

162

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

163

Thermal Storage Options for HVAC Systems  

E-Print Network (OSTI)

this method is based on the specific heat of water rather than the latent 'heat of fusion of ice as in ice storage, it requires about 4 times the storage capacity of an equivalent ice storage system. ? Salt Storage: This system utilizes eutectic salts... which freeze and melt around 47 o F. Exist ing chillers can be easily retrofitted for salt storage or chilled water storage. For ice stor age systems, a direct refrigerant system or glycol chillers are suitable. This paper discusses the details...

Weston, R. F.; Gidwani, B. N.

164

Phonon distribution in a model polariton system  

Science Journals Connector (OSTI)

We consider a simple model polariton problem and show that the phonons in this system will never exhibit sub-Poissonian statistics. We furthermore observe that the probability distribution of the phonons will be classical at all temperatures, although the polariton complex as a whole can have a nonclassical behavior below a threshold temperature whose value will depend on the photon-phonon coupling strength.

Sharmishtha Ghoshal and Ashok Chatterjee

1995-07-01T23:59:59.000Z

165

Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment  

SciTech Connect

There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry. More recently, plasma/catalyst systems have been evaluated for NOx reduction and particulate removal on a CIDI engine. Performance results for select plasma-catalyst systems for both simulated and actual CIDI exhaust will be presented. The effect of NOx and hydrocarbon concentration on plasma-catalyst performance will also be shown. SAE Paper SAE-2000-01-1601 {copyright} 2000 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Balmer, M. Lou (Pacific Northwest National Laboratory (PNNL)); Tonkyn, Russell (Battelle Pacific Northwest Laboratories (BPNL)); Maupin, Gary; Yoon, Steven; Kolwaite, Ana (PNNL); Barlow, Stephen (BPNL); Domingo, Norberto; Storey, John M. (Oak Ridge National Laboratory); Hoard, John Wm. (Ford Research Laboratory); Howden, Ken (U.S. Dept. of Energy)

2000-04-01T23:59:59.000Z

166

STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM  

SciTech Connect

Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.

HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K; Maienschein, J L

2011-08-03T23:59:59.000Z

167

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies. Thermal control is a critical element to enable power density, cost, and reliability of Power Electronics and Electric Machines (PEEM). Current hybrid electric vehicle systems typically use a dedicated 65°C coolant loop to cool the electronics and electric machines. A primary research focus is to develop cooling technologies that will enable the use of coolant temperatures of up to 105°C. Enabling the higher-temperature coolant would reduce system cost by using a single loop to cool the PEEM, internal combustion engine or fuel cell. Several candidate cooling technologies are being investigated along with the potential to reduce material and component costs through the use of more aggressive cooling. Advanced component modeling, fabrication, and manufacturing techniques are also being investigated.

168

Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object  

DOE Patents (OSTI)

The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

Crane, T.W.

1983-12-21T23:59:59.000Z

169

Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object  

DOE Patents (OSTI)

The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

Crane, Thomas W. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

170

Review of the integrated thermal and nonthermal treatment system studies  

SciTech Connect

This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

NONE

1996-08-01T23:59:59.000Z

171

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNLs metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800C). A high-temperature tank in PNNLs storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNLs thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

172

Distributed Power Electronics for PV Systems (Presentation)  

SciTech Connect

An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

Deline, C.

2011-12-01T23:59:59.000Z

173

Demo Abstract: TOSS: Thermal Occupancy Sensing System  

E-Print Network (OSTI)

to a building's energy management system in order to control the Heating, Ventilation, Air Condition- ing, (HVAC, Measurement, Performance Keywords Occupancy sensing, Occupancy-based HVAC 1. INTRODUCTION To increase energy materials harnessing passive solar technologies along with increasingly efficient HVAC systems have

Cerpa, Alberto E.

174

Advanced Non-Distributed Operating Systems Course Yair Wiseman  

E-Print Network (OSTI)

1 Advanced Non-Distributed Operating Systems Course Yair Wiseman Computer Science Department Bar://www.cs.biu.ac.il/~wiseman wiseman@cs.huji.ac.il Keywords: Operating Systems, Graduate Course, Operating System Kernel, Non-Distributed Operating Systems. Abstract The use of Non-Distributed Operating Systems is very common and old. Many

Wiseman, Yair

175

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

176

Thermal monitoring and optimization of geothermal district heating systems using artificial neural network: A case study  

Science Journals Connector (OSTI)

This paper deals with determine the energy and exergy efficiencies and exergy destructions for thermal optimization of a geothermal district heating system by using artificial neural network (ANN) technique. As a comprehensive case study, the Afyonkarahisar geothermal district heating system (AGDHS) in Afyonkarahisar/Turkey is considered and its actual thermal data as of average weekly data are collected in heating seasons during the period 20062010 for ANN based monitoring and thermal optimization. The measured data and calculated values are used at the design of Levenberg-Marquardt (LM) based multi-layer perceptron (MLP) in Matlab program. The results of the study are described graphically. The results show that the developed model is found to quickly predict the thermal performance and exergy destructions of the AGDHS with good accuracy. In addition, two main factors play important roles in the thermal optimization: (i) ambient temperature and (ii) flow rates in energy distribution cycle of the AGDHS. Various cases are investigated to determine how to change the energy and exergy efficiencies of the AGDHS for the temperature and flow rate. Finally, a monitoring and performance evaluation of a geothermal district heating system and its components by ANN will reduce the losses and human involvement and make the system more effective and efficient.

Ali Keeba?; ?smail Yabanova

2012-01-01T23:59:59.000Z

177

Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam  

Science Journals Connector (OSTI)

Abstract To enhance the heat transfer of phase change material in battery thermal management system for electric vehicle, a battery thermal management system by using paraffin/copper foam was designed and experimentally investigated in this paper. The thermal performances of the system such as temperature reduction and distribution are discussed in detail. The results showed that the local temperature difference in both a single cell and battery module were increased with the increase of discharge current, and obvious fluctuations of local temperature difference can be observed when the electric vehicle is in road operating state. When the battery is discharging at constant current, the maximum temperature and local temperature difference of the battery module with paraffin/copper foam was lower than 45C and 5C, respectively. After the battery thermal management system was assembled in electric vehicle, the maximum temperature and local temperature difference in road operating state was lower than 40C and 3C, respectively. The experimental results demonstrated that paraffin/copper foam coupled battery thermal management presented an excellent cooling performance.

Zhonghao Rao; Yutao Huo; Xinjian Liu; Guoqing Zhang

2014-01-01T23:59:59.000Z

178

The component interaction network approach for modeling of complex thermal systems  

Science Journals Connector (OSTI)

A practical approach for the thermal modeling of complex thermal systems, called the component interaction network (CIN) is presented. Its stages are explained: description of the thermal system as a set of non-overlapping components and their interactions ... Keywords: Component interaction network, Electric furnace, Experimental validation, Heat transfer, Rapid thermal processing, Thermal modeling

K. El Khoury; G. Mouawad; G. El Hitti; M. Nemer

2013-11-01T23:59:59.000Z

179

Energy performance of underfloor air distribution systems  

E-Print Network (OSTI)

UnderfloorAirDistribution(UFAD)DesignGuide. Atlanta:distribution,UFAD,EnergyPlus,EnergyPlus/UFAD,energy modeling,designdesigncalculationsmustaccountforthedistributionof

Bauman, Fred; Webster, Tom; Linden, Paul; Buhl, Fred

2007-01-01T23:59:59.000Z

180

Thermal Performance of Ferrocement Green Building System  

Science Journals Connector (OSTI)

System must not only cope with strengths and flexibility requirements, but the insulation value is of high importance. In summer heat must be kept outside as much as possible. The great demands of electric power ...

Wail N. Al-Rifaie; Waleed K. Ahmed

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Entanglement growth during thermalization in holographic systems  

E-Print Network (OSTI)

We derive in detail several universal features in the time evolution of entanglement entropy and other nonlocal observables in quenched holographic systems. The quenches are such that a spatially uniform density of energy ...

Liu, Hong

182

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

carbon tax, combined heat and power, distributed energyuseful heat in combined heat and power systems, thermally-fossil-fuel based combined heat and power (CHP), thermally-

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

183

Continuous Commissioning(SM) of a Thermal Storage System  

E-Print Network (OSTI)

shows that commissioning of the thermal storage system is not limited to the storage tank itself, but is closely related to successful commissioning of building air handling units (AHUs) and chilled water loops. The full benefit of a thermal storage... than a dozen major buildings. The storage system was installed after a campus-wide energy efficiency retrofit. It is designed to store 42?F chilled water with a return water temperature of 56?F. Total storage capacity is 7000 ton-hours. The tank...

Turner, W. D.; Liu, M.

2001-01-01T23:59:59.000Z

184

A description of the thermal power system analyser structure and commands  

E-Print Network (OSTI)

This report describes a system comprised of a set of interactive commands and a data base which aids in the modeling of thermal power systems with the aid of a computer. This system, named TPSA (Thermal Power System ...

Margulies, B. I.

1980-01-01T23:59:59.000Z

185

Determination of Non-thermal Velocity Distributions from SERTS Linewidth Observations  

Science Journals Connector (OSTI)

Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 and a temperature range from 80,000K to 12.6MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22kms1 in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfvn wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

Aaron J. Coyner; Joseph M. Davila

2011-01-01T23:59:59.000Z

186

DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS  

SciTech Connect

Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2011-12-01T23:59:59.000Z

187

Renewable and Distributed Systems Integration Peer Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Denver Marriott West Golden, Colorado AGENDA Tuesday, November 2, 2010 8:00 am Registration and Continental Breakfast 9:00 am-9:10 am Welcome Dr. Robert Hawsey, Associate Laboratory Director for Renewable Electricity and End Use Systems, US DOE-National Renewable Energy Laboratory 9:10 am-9:25 am Overview of Smart Grid Program Eric Lightner, U.S. Department of Energy 9:25 am-9:40 am Overview of Smart Grid Research and Development Activities Dan Ton, U.S. Department of Energy Moderator - Merrill Smith, U.S. Department of Energy 9:40 am-10:10 am University of Hawaii Renewable and Distributed Systems Jay Griffin, University of Hawaii 10:10 am-10:40 am Demonstration of a Coordinated and Integrated System Dennis Sumner, City of Fort Collins

188

Autonomous Thermal Control System Omid Ardakanian  

E-Print Network (OSTI)

18-24% of all energy usage. Building energy management can reduce both its operating costs and its- and middle-income countries, energy is mostly gener- ated from fossil fuel, directly contributing to global system in terms of energy efficiency. 1. Introduction Energy consumption of residential and commercial

Waterloo, University of

189

Guest Editorial: Special Issue on Reliable Distributed Systems  

E-Print Network (OSTI)

Guest Editorial: Special Issue on Reliable Distributed Systems Shambhu J. Upadhyaya, Senior Member, designers, and implementers of distributed systems, with emphasis on system properties such as reliability with the 19th IEEE Symposium on Reliable Distributed Systems held at Nuernberg, Germany, 2000, but the topics

Firenze, Università degli Studi di

190

Advanced thermal barrier coating system development. Technical progress report, June 1, 1996--July 31, 1996  

SciTech Connect

An improved thermal barrier coating system with good reliability and thermal performance is described. The report discusses the coating process, manufacturing, repair, deposition, and microstructure of the coatings.

NONE

1996-08-07T23:59:59.000Z

191

Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems  

Science Journals Connector (OSTI)

Heat pumps are seen as a promising technology for load management in the built environment, in combination with the smart grid concept. They can be coupled with thermal energy storage (TES) systems to shift electrical loads from high-peak to off-peak hours, thus serving as a powerful tool in demand-side management (DSM). This paper analyzes heat pumps with radiators or underfloor heating distribution systems coupled with TES with a view to showing how a heat pump system behaves and how it influences the building occupants' thermal comfort under a DSM strategy designed to flatten the shape of the electricity load curve by switching off the heat pump during peak hours (16:0019:00). The reference scenario for the analysis was Northern Ireland (UK). The results showed that the heat pump is a good tool for the purposes of DSM, also thanks to the use of TES systems, in particular with heating distribution systems that have a low thermal inertia, e.g. radiators. It proved possible to achieve a good control of the indoor temperature, even if the heat pump was turned off for 3h, and to reduce the electricity bill if a time of use tariff structure was adopted.

A. Arteconi; N.J. Hewitt; F. Polonara

2013-01-01T23:59:59.000Z

192

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents (OSTI)

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

193

Hybrid Control Network Intrusion Detection Systems for Automated Power Distribution Systems  

E-Print Network (OSTI)

and improve the reliability of the distribution system [3].distribution topology for protection and to improve reliability.

Parvania, Masood; Koutsandria, Georgia; Muthukumar, Vishak; Peisert, Sean; McParland, Chuck; Scaglione, Anna

2014-01-01T23:59:59.000Z

194

Distributed Robust Power System State Estimation  

E-Print Network (OSTI)

Deregulation of energy markets, penetration of renewables, advanced metering capabilities, and the urge for situational awareness, all call for system-wide power system state estimation (PSSE). Implementing a centralized estimator though is practically infeasible due to the complexity scale of an interconnection, the communication bottleneck in real-time monitoring, regional disclosure policies, and reliability issues. In this context, distributed PSSE methods are treated here under a unified and systematic framework. A novel algorithm is developed based on the alternating direction method of multipliers. It leverages existing PSSE solvers, respects privacy policies, exhibits low communication load, and its convergence to the centralized estimates is guaranteed even in the absence of local observability. Beyond the conventional least-squares based PSSE, the decentralized framework accommodates a robust state estimator. By exploiting interesting links to the compressive sampling advances, the latter jointly es...

Kekatos, Vassilis

2012-01-01T23:59:59.000Z

195

High resolution, low cost, privacy preserving human motion tracking system via passive thermal sensing  

E-Print Network (OSTI)

Thermal imaging is powerful but expensive. This thesis presents an alternative thermal sensing system capable of tracking human motion by using a novel projection mechanism from an array of inexpensive single-bit thermal ...

Browarek, Sharmeen

2010-01-01T23:59:59.000Z

196

Three-dimensional thermal analysis of wirelessly powered light-emitting systems  

Science Journals Connector (OSTI)

...geometrical parameters and thermal conductivities of the...bio-implanted applications. thermal analysis|wireless...wireless power, instead of batteries, could bring additional...battery replacement and battery biocompatibility. Recently...bio-integrated applications. The thermal behaviour of such systems...

2012-01-01T23:59:59.000Z

197

Optimal planning of distributed generation systems in distribution system: A review  

Science Journals Connector (OSTI)

This paper attempts to present the state of art of research work carried out on the optimal planning of distributed generation (DG) systems under different aspects. There are number of important issues to be considered while carrying out studies related to the planning and operational aspects of DG. The planning of the electric system with the presence of DG requires the definition of several factors, such as: the best technology to be used, the number and the capacity of the units, the best location, the type of network connection, etc. The impact of DG in system operating characteristics, such as electric losses, voltage profile, stability and reliability needs to be appropriately evaluated. For that reason, the use of an optimization method capable of indicating the best solution for a given distribution network can be very useful for the system planning engineer, when dealing with the increase of DG penetration that is happening nowadays. The selection of the best places for installation and the preferable size of the DG units in large distribution systems is a complex combinatorial optimization problem. This paper aims at providing a review of the relevant aspects related to DG and its impact that DG might have on the operation of distributed networks. This paper covers the review of basics of DG, DG definition, current status of DG technologies, potential advantages and disadvantages, review for optimal placement of DG systems, optimizations techniques/methodologies used in optimal planning of DG in distribution systems. An attempt has been made to judge that which methodologies/techniques are suitable for optimal placement of DG systems based on the available literature and detail comparison(s) of each one.

Rajkumar Viral; D.K. Khatod

2012-01-01T23:59:59.000Z

198

Economic analysis of community solar heating systems that use annual cycle thermal energy storage  

SciTech Connect

The economics of community-scale solar systems that incorporate a centralized annual cycle thermal energy storage (ACTES) coupled to a distribution system is examined. Systems were sized for three housing configurations: single-unit dwellings, 10-unit, and 200-unit apartment complexes in 50-, 200-, 400-, and 1000-unit communities in 10 geographic locations in the United States. Thermal energy is stored in large, constructed, underground tanks. Costs were assigned to each component of every system in order to allow calculation of total costs. Results are presented as normalized system costs per unit of heat delivered per building unit. These methods allow: (1) identification of the relative importance of each system component in the overall cost; and (2) identification of the key variables that determine the optimum sizing of a district solar heating system. In more northerly locations, collectors are a larger component of cost. In southern locations, distribution networks are a larger proportion of total cost. Larger, more compact buildings are, in general, less expensive to heat. For the two smaller-scale building configurations, a broad minima in total costs versus system size is often observed.

Baylin, F.; Monte, R.; Sillman, S.; Hooper, F.C.; McClenahan, J.D.

1981-02-01T23:59:59.000Z

199

Solid-state current limiter for power distribution system  

SciTech Connect

To prevent voltage decrease of distribution systems, the principle and fundamental characteristics of a solid-state current limiter using GTO thyristors were investigated. Basic components of the apparatus were a fast solid-state switch and a current limiting impedance of low resistance in parallel with the switch. Experimental results of the test current limiter showed the fault current was limited successfully, regardless of DC component size. The time from detection of fault current was limited successfully, regardless of DC component size. The time from detection of fault occurrence to interruption of the fault current by the solid-state switch was 40 [mu]s. This time was very short in comparison with that before the fault current reached a large value. Thermal rise of the solid-state switch for conduction was solved by a self-cooling apparatus using a non-combustible cooling liquid. The results indicated that the solid-state current limiter was a valuable protecting device for high fault current distribution systems.

Ueda, T.; Morita, M. (Chubu Electric Power Co. Inc., Nagoya (Japan)); Arita, H.; Kida, J.; Kurosawa, Y.; Yamagiwa, T. (Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.)

1993-10-01T23:59:59.000Z

200

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; Mara Jos Montes; Manuel Valdes; Jos Mara Martnez-Val

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SOFC combined cycle systems for distributed generation  

SciTech Connect

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

202

Best Management Practice: Distribution System Audits, Leak Detection, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Distribution System Audits, Leak Best Management Practice: Distribution System Audits, Leak Detection, and Repair Best Management Practice: Distribution System Audits, Leak Detection, and Repair October 7, 2013 - 3:06pm Addthis A distribution system audit, leak detection, and repair programs help Federal facilities reduce water losses and make better use of limited water resources. Overview Federal facilities with large campus settings and expansive distribution systems can lose a significant amount of total water production and purchases to system leaks. Leaks in distribution systems are caused by a number of factors, including pipe corrosion, high system pressure, construction disturbances, frost damage, damaged joints, and ground shifting and settling. Regular distribution system leak detection surveys

203

Multi-scale Analysis of Large Distributed Computing Systems  

E-Print Network (OSTI)

Multi-scale Analysis of Large Distributed Computing Systems Lucas Mello Schnorr INRIA MESCAL, CNRS-scale distributed systems, Performance visualization analysis, Resource usage anomalies, Volunteer computing, Triva.Vincent@imag.fr ABSTRACT Large scale distributed systems are composed of many thou- sands of computing units. Today

Paris-Sud XI, Université de

204

Thermal and Power Challenges in High Performance Computing Systems  

Science Journals Connector (OSTI)

This paper provides an overview of the thermal and power challenges in emerging high performance computing platforms. The advent of new sophisticated applications in highly diverse areas such as health, education, finance, entertainment, etc. is driving the platform and device requirements for future systems. The key ingredients of future platforms are vertically integrated (3D) die-stacked devices which provide the required performance characteristics with the associated form factor advantages. Two of the major challenges to the design of through silicon via (TSV) based 3D stacked technologies are (i) effective thermal management and (ii) efficient power delivery mechanisms. Some of the key challenges that are articulated in this paper include hot-spot superposition and intensification in a 3D stack, design/optimization of thermal through silicon vias (TTSVs), non-uniform power loading of multi-die stacks, efficient on-chip power delivery, minimization of electrical hotspots etc.

Venkat Natarajan; Anand Deshpande; Sudarshan Solanki; Arun Chandrasekhar

2009-01-01T23:59:59.000Z

205

Carbon and Water Resource Management for Water Distribution Systems  

E-Print Network (OSTI)

the embodied energy in drinking water supply systems: a caselosses to 5% of total drinking water supply for threeResearch Council. Drinking Water Distribution Systems:

Hendrickson, Thomas Peter

2013-01-01T23:59:59.000Z

206

User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text  

SciTech Connect

A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

Huber, H.D.; Brown, D.R.; Reilly, R.W.

1982-04-01T23:59:59.000Z

207

Computational Design and Experimental Validation of New Thermal Barrier Systems  

SciTech Connect

This project (10/01/2010-9/30/2014), Computational Design and Experimental Validation of New Thermal Barrier Systems, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. In this project, the focus is to develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments.

Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

2014-04-01T23:59:59.000Z

208

High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15. 2013 | Singh April 15. 2013 | Singh * Thermal modeling will be conducted to establish the benefits of using a high thermal conducting graphite foams in conjunction with PCM and to develop a design for a laboratory scale prototype. * Variety of characterizations will be carried out to qualify the materials (PCMs, alloys, coatings) for the prototype construction. * Process to infiltrate selected PCM into the foam will be developed. * Using the appropriate brazing/joining techniques, prototype will be assembled. * Performance testing of the TES system prototype to ensure a full- scale system will meet the SunShot goals. * Complete cost analysis of the proposed TES system * Complete laboratory scale prototype design * Develop SiC coating using polycarbosilanes for graphite

209

Cathode power distribution system and method of using the same for power distribution  

DOE Patents (OSTI)

Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

2014-11-11T23:59:59.000Z

210

Process modeling for the Integrated Thermal Treatment System (ITTS) study  

SciTech Connect

This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

1995-09-01T23:59:59.000Z

211

High-speed thermal cycling system and method of use  

DOE Patents (OSTI)

A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

Hansen, A.D.A.; Jaklevic, J.M.

1996-04-16T23:59:59.000Z

212

High-speed thermal cycling system and method of use  

DOE Patents (OSTI)

A thermal cycling system and method of use are described. The thermal cycling system is based on the-circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate microtiter plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 .mu.l of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded.

Hansen, Anthony D. A. (Berkely, CA); Jaklevic, Joseph M. (Lafayette, CA)

1996-01-01T23:59:59.000Z

213

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Efficiency Thermal Energy High-Efficiency Thermal Energy Storage System for CSP to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Facebook Tweet about SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Twitter Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Google Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Delicious Rank SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Digg Find More places to share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act

214

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

thermal absorption solar photo- storage chiller thermalbetween solar thermal collection and storage systems and CHPimpact of solar thermal and heat storage on CO 2 emissions

Marnay, Chris

2010-01-01T23:59:59.000Z

215

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

lead/acid battery, and thermal storage, capabilities, withhour electrical flow battery 8 thermal Not all constraintslifetime ( a) thermal storage 11 flow battery absorption

Stadler, Michael

2008-01-01T23:59:59.000Z

216

Scalable Distributed Automation System: Scalable Real-time Decentralized Volt/VAR Control  

SciTech Connect

GENI Project: Caltech is developing a distributed automation system that allows distributed generatorssolar panels, wind farms, thermal co-generation systemsto effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltechs software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

None

2012-03-01T23:59:59.000Z

217

Flow distribution analysis on the cooling tube network of ITER thermal shield  

SciTech Connect

Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

2014-01-29T23:59:59.000Z

218

Time dependent evolution of RF-generated non-thermal particle distributions in fusion plasmas  

Science Journals Connector (OSTI)

We describe fully self-consistent time-dependent simulations of radio frequency (RF) generated ion distributions in the ion cyclotron range of frequencies and RF-generated electron distributions in the lower hybrid range of frequencies using combined FokkerPlanck and full wave electromagnetic field solvers. In each regime, the non-thermal particle distributions have been used in synthetic diagnostic codes to compare with diagnostic measurements from experiment, thus providing validation of the simulation capability. The computational intensive simulations require multiple full wave code runs that iterate with a FokkerPlanck code. We will discuss advanced algorithms that have been implemented to accelerate both the massively parallel full wave simulations as well as the iteration with the distribution code. A vector extrapolation method (Sidi A 2008 Comput. Math. Appl. 56) that permits Jacobian-free acceleration of the traditional fixed point iteration technique is used to reduce the number of iterations needed between the distribution and wave codes to converge to self-consistency. The computational burden of the parallel full wave codes has been reduced by using a more efficient two level parallel decomposition that improves the strong scaling of the codes and reduces the communication overhead.

J C Wright; A Bader; L A Berry; P T Bonoli; R W Harvey; E F Jaeger; J-P Lee; A Schmidt; E D'Azevedo; I Faust; C K Phillips; E Valeo

2014-01-01T23:59:59.000Z

219

Property:Distributed Generation System Enclosure | Open Energy Information  

Open Energy Info (EERE)

System Enclosure System Enclosure Jump to: navigation, search This is a property of type String. The allowed values for this property are: Indoor Outdoor Dedicated Shelter Pages using the property "Distributed Generation System Enclosure" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Indoor + Distributed Generation Study/615 kW Waukesha Packaged System + Outdoor + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Outdoor + Distributed Generation Study/Arrow Linen + Outdoor + Distributed Generation Study/Dakota Station (Minnegasco) + Outdoor + Distributed Generation Study/Elgin Community College + Indoor + Distributed Generation Study/Emerling Farm + Dedicated Shelter + Distributed Generation Study/Floyd Bennett + Outdoor +

220

Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety Standard  

E-Print Network (OSTI)

Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety thermal management system (BTMS) is an important and integral part of battery management system (BMS battery pack ecosystem. Fig. 1 corresponds a generic battery thermal management system operating

Andreasen, Søren Juhl

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermalization, Error Correction, and Memory Lifetime for Ising Anyon Systems  

Science Journals Connector (OSTI)

We consider two-dimensional lattice models that support Ising anyonic excitations and are coupled to a thermal bath. We propose a phenomenological model for the resulting short-time dynamics that includes pair creation, hopping, braiding, and fusion of anyons. By explicitly constructing topological quantum error-correcting codes for this class of system, we use our thermalization model to estimate the lifetime of the quantum information stored in the encoded spaces. To decode and correct errors in these codes, we adapt several existing topological decoders to the non-Abelian setting. We perform large-scale numerical simulations of these two-dimensional Ising anyon systems and find that the thresholds of these models range from 13% to 25%. To our knowledge, these are the first numerical threshold estimates for quantum codes without explicit additive structure.

Courtney G. Brell; Simon Burton; Guillaume Dauphinais; Steven T. Flammia; David Poulin

2014-09-30T23:59:59.000Z

222

On the thermalization of the $?$-Fermi-Pasta-Ulam system  

E-Print Network (OSTI)

We study theoretically the original $\\alpha$-Fermi-Pasta-Ulam (FPU) system with $N=16,32$ and $64$ masses connected by a nonlinear quadratic spring. Our approach is based on resonant wave-wave interaction theory. We show that the route to thermalization consists of three stages. The first one is associated with non-resonant three-wave interactions. At this short time scale, the dynamics is reversible; this stage coincides with the observation of recurrent phenomena in numerical simulations of the $\\alpha$-FPU. On a larger time scale, exact four-wave resonant interactions start to take place; however, we find that all quartets are isolated, preventing a full mixing of energy in the spectrum and thermalization. The last stage corresponds to six-wave resonant interactions. Those are responsible for the energy equipartition recently observed in numerical simulations. A key role in our finding is played by the {\\it Umklapp} (flip over) resonant interactions, typical of discrete systems.

Miguel Onorato; Lara Vozella; Davide Proment; Yuri V. Lvov

2014-02-07T23:59:59.000Z

223

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

the other hand, such distributed generators as fuel cells ordistributed and conventional. Nuclear plants and conventional coal fired generators

Kahn, E.

2011-01-01T23:59:59.000Z

224

Cost Modeling and Design Techniques for Integrated Package Distribution Systems  

E-Print Network (OSTI)

Cost Modeling and Design Techniques for Integrated Package Distribution Systems Karen R. Smilowitz and Carlos F. Daganzo December 23, 2005 Abstract Complex package distribution systems are designed using-scale integrated distribution networks. While the network design problem is quite complex, we demonstrate

Smilowitz, Karen

225

Integrated thermal treatment system study: Phase 1 results. Volume 1  

SciTech Connect

An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

1994-07-01T23:59:59.000Z

226

HOLARCTIC ECOLOGY 12: 137-143. Copenhagen 1989 Thermal ecology and spatio-temporal distribution of the  

E-Print Network (OSTI)

at 24.5"C (air temperature) and 31.4"C (body temperature). The spatial distribution pattern of Pvariationsof air (Ta) and ground (Ts: areas exposed to sun; Tsh: areas in the shade) temperatures (bottomHOLARCTIC ECOLOGY 12: 137-143. Copenhagen 1989 Thermal ecology and spatio-temporal distribution

Carrascal, Luis M.

227

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

228

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

229

A prototype photovoltaic/thermal system integrated with transpired collector  

SciTech Connect

Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

2011-01-15T23:59:59.000Z

230

Performance of thermal distribution systems in large commercial buildings  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy, Office of BuildingEnergy Efficiency and Renewable Energy, Office of Building

Xu, T.

2011-01-01T23:59:59.000Z

231

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

load power, calculated based on motor nameplate electrical data.nameplate data is used to calculate the full-load power ofload factors based on the measured power (or current) data.

Xu, T.

2011-01-01T23:59:59.000Z

232

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

HVAC schedule must be input on the 'START' tab. This schedule is used to filterHVAC schedule must be input on the 'START' tab. This schedule is used to filterHVAC schedule must also be input on the 'START' tab. This schedule is used to filter

Xu, T.

2011-01-01T23:59:59.000Z

233

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

by Building Activity Education 0.5 1.3 Food Sales 1.1 6.4 Food Service 1.5 6.4 Health Care 1.5 5.6 Lodging 0.5 1.9 Mercantile and Service 0.9 2.7 Office 1.3 3.3 Public...

234

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

cycle and supply air temperature controls. The tool can beSupply Air Temperature setpoint (if applicable) Economizer controlCOOL- CONTROL=CONSTANT. It is the supply air temperature out

Xu, T.

2011-01-01T23:59:59.000Z

235

GridLab Power Distribution System Simulation | Open Energy Information  

Open Energy Info (EERE)

GridLab Power Distribution System Simulation GridLab Power Distribution System Simulation Jump to: navigation, search Tool Summary Name: GridLab Power Distribution System Simulation Agency/Company /Organization: Pacific Northwest National Laboratory Sector: Energy Focus Area: Grid Assessment and Integration Phase: Evaluate Options Topics: Pathways analysis User Interface: Desktop Application Website: www.gridlabd.org/ Cost: Free OpenEI Keyword(s): EERE tool Language: English References: GridLAB-D Simulation Software[1] Examine in detail the interplay of every part of a distribution system with every other part of the system. GridLAB-D(tm) is a new power distribution system simulation and analysis tool that provides valuable information to users who design and operate distribution systems, and to utilities that wish to take advantage of the

236

Research on Energy Efficiency of DC Distribution System  

Science Journals Connector (OSTI)

Abstract Energy efficiency of DC distribution systems is researched in this paper. Efficiency calculation models of feeders and loads are established, efficiencies of AC/DC, DC/DC and DC/AC are analyzed. Moreover, energy efficiencies of an AC system and two DC systems, monopole and bipolar, are calculated and compared. The efficiency improvement of office building supplied by DC power system compared to supply by AC power system is demonstrated. From analysis, it is showed that the energy efficiency is higher in DC distribution system than AC distribution system.

Zifa Liu; Mengyu Li

2014-01-01T23:59:59.000Z

237

Time dependent quantum thermodynamics of a coupled quantum oscillator system in a small thermal environment  

SciTech Connect

Simulations are performed of a small quantum system interacting with a quantum environment. The system consists of various initial states of two harmonic oscillators coupled to give normal modes. The environment is designed by its level pattern to have a thermodynamic temperature. A random coupling causes the system and environment to become entangled in the course of time evolution. The approach to a Boltzmann distribution is observed, and effective fitted temperatures close to the designed temperature are obtained. All initial pure states of the system are driven to equilibrium at very similar rates, with quick loss of memory of the initial state. The time evolution of the von Neumann entropy is calculated as a measure of equilibration and of quantum coherence. It is pointed out using spatial density distribution plots that quantum interference is eliminated only with maximal entropy, which corresponds thermally to infinite temperature. Implications of our results for the notion of classicalizing behavior in the approach to thermal equilibrium are briefly considered.

Barnes, George L. [Department of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211 (United States)] [Department of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211 (United States); Kellman, Michael E. [Department of Chemistry and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)] [Department of Chemistry and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

2013-12-07T23:59:59.000Z

238

Quality Modeling of Water Distribution Systems using Sensitivity Equations  

E-Print Network (OSTI)

Quality Modeling of Water Distribution Systems using Sensitivity Equations P. Fabrie1 ; G. Gancel2 and the associated sensitivity equa- tions are solved for Water Distribution Systems (WDS). A new solution algorithm presented in this study permits global sensitivity analysis of the system to be performed and its efficiency

Boyer, Edmond

239

Managing Uncertainty in Operational Control of Water Distribution Systems  

E-Print Network (OSTI)

Managing Uncertainty in Operational Control of Water Distribution Systems A. Bargiela Department. There are system management decisions concerning the regulatory measures such as water pricing principles, effluent in water distribution systems con- cern reservoir(s) management with associated pump scheduling

Bargiela, Andrzej

240

Distributed dynamic load balancing for pipelined computations on heterogeneous systems  

Science Journals Connector (OSTI)

One of the most significant causes for performance degradation of scientific and engineering applications on high performance computing systems is the uneven distribution of the computational work to the resources of the system. This effect, which is ... Keywords: Distributed model, Dynamic load balancing algorithms, Loops with dependencies, Master-worker model, Non-dedicated heterogeneous systems, Synchronization, Weighting

Ioannis Riakiotakis; Florina M. Ciorba; Theodore Andronikos; George Papakonstantinou

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development of a compact thermal lithium atom beam source for measurements of electron velocity distribution function anisotropy in electron cyclotron resonance plasmas  

SciTech Connect

The anisotropy of the electron velocity distribution function (EVDF) in plasmas can be deduced from the polarization of emissions induced by anisotropic electron-impact excitation. In this paper, we develop a compact thermal lithium atom beam source for spatially resolved measurements of the EVDF anisotropy in electron cyclotron resonance (ECR) plasmas. The beam system is designed such that the ejected beam has a slab shape, and the beam direction is variable. The divergence and flux of the beam are evaluated by experiments and calculations. The developed beam system is installed in an ECR plasma device with a cusp magnetic field, and the LiI 2s2p emission (670.8 nm) is observed in low-pressure helium plasma. The two-dimensional distributions of the degree and direction of the polarization in the LiI emission are measured by a polarization imaging system. The evaluated polarization distribution suggests the spatial variation of the EVDF anisotropy.

Nishioka, T.; Shikama, T.; Nagamizo, S.; Fujii, K.; Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan)] [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan); Zushi, H. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan)] [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Uchida, M.; Tanaka, H.; Maekawa, T. [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Kyoto 606-8502 (Japan)] [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Kyoto 606-8502 (Japan); Iwamae, A. [Research Center for Development of Far-Infrared Region, Fukui University, Fukui 910-8507 (Japan)] [Research Center for Development of Far-Infrared Region, Fukui University, Fukui 910-8507 (Japan)

2013-07-15T23:59:59.000Z

242

Engineering Incentives in Distributed Systems with Healthcare Applications  

E-Print Network (OSTI)

ENGINEERING INCENTIVES IN DISTRIBUTED SYSTEMS WITH HEALTHCARE APPLICATIONS A Dissertation by BRANDON REED POPE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY August 2011 Major Subject: Industrial Engineering Engineering Incentives in Distributed Systems with Healthcare Applications Copyright 2011 Brandon Reed Pope ENGINEERING INCENTIVES IN DISTRIBUTED SYSTEMS WITH HEALTHCARE...

Pope, Brandon 1984-

2011-07-15T23:59:59.000Z

243

Temperature and thermal stress distributions for the HFIR permanent reflector generated by nuclear heating  

SciTech Connect

The beryllium permanent reflector of the High Flux Isotope Reactor has the main functions for slowing down and reflecting the neutrons and housing the experimental facilities. The reflector is heated as a result of the nuclear reaction. Heat is removed mainly by the cooling water passing through the densely distributed coolant holes along the vertical or axial direction of the reflector. The reflector neutronic distribution and its heating rate are calculated by J.C. Gehin of the Oak Ridge National Laboratory by applying the Monte Carlo Code MCNP. The heat transfer boundary conditions along several reflector interfaces are estimated to remove additional heat from the reflector. The present paper is to report the calculation results of the temperature and the thermal stress distributions of the permanent reflector by applying the computer aided design code I-DEAS and the finite element code ABAQUS. The present calculation is to estimate the high stress areas as a result of the new beam tube cutouts along the horizontal mid-plane of the reflector of the recent reactor upgrade project. These high stresses were not able to be calculated in the preliminary design analysis in earlier 60`s. The heat transfer boundary conditions are used in this redesigned calculation. The material constants and the acceptance criteria for the allowable stresses are mainly based on that assumed in the preliminary design report.

Chang, S.J.

1998-04-01T23:59:59.000Z

244

Distributed generation capabilities of the national energy modeling system  

SciTech Connect

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

245

Automatic diagnosis and control of distributed solid state lighting systems  

Science Journals Connector (OSTI)

This paper describes a new design concept of automatically diagnosing and compensating LED degradations in distributed solid state lighting (SSL) systems. A failed LED may...

Dong, Jianfei; van Driel, Willem; Zhang, Guoqi

2011-01-01T23:59:59.000Z

246

An integrated optimal design method for utility power distribution systems.  

E-Print Network (OSTI)

??This dissertation presents a comprehensive and integrated design methodology to optimize both the electrical and the economic performance of a utility power distribution system. The (more)

Fehr, Ralph E

2005-01-01T23:59:59.000Z

247

Sensor Networks for Monitoring and Control of Water Distribution Systems  

E-Print Network (OSTI)

Water distribution systems present a significant challenge for structural monitoring. They comprise a complex network of pipelines buried underground that are relatively inaccessible. Maintaining the integrity of these ...

Whittle, Andrew

248

Economic Operation and Planning of Distribution System Sources.  

E-Print Network (OSTI)

??This thesis presents the findings of some research carried out pertaining to economic operation and planning distribution systems. An optimal capacitor switching algorithm is developed (more)

Li, KaiYu

2010-01-01T23:59:59.000Z

249

Designing shipboard electrical distribution systems for optimal reliability.  

E-Print Network (OSTI)

??Analysis was performed to quantify and compare the reliability of several different notional shipboard DC distribution system topologies in serving their equipment loads. Further, the (more)

Stevens, McKay Benjamin

2013-01-01T23:59:59.000Z

250

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

251

NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems  

SciTech Connect

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-10-01T23:59:59.000Z

252

Century Electric Distribution System Operations Lorenzo Kristov,1  

E-Print Network (OSTI)

May 2014 1 21st Century Electric Distribution System Operations Lorenzo Kristov,1 California adoption of distribution energy technologies. All of this has occurred during a period of increasing of Renewable and Distributed Energy Resources, Caltech Resnick Institute, 2012 #12;May 2014 2 and wholesale

Low, Steven H.

253

State Control Design for Linear Systems with Distributed Time Delays  

E-Print Network (OSTI)

State Control Design for Linear Systems with Distributed Time Delays Daniel Gontkovic and Róbert with distributed time delays. Using an extended form of the Lyapunov- Krasovskii functional the controller design involving distributed time delays is a problem of large practical interest where intensive activity are done

Paris-Sud XI, Université de

254

Designing Directories in Distributed Systems: A Systematic Framework  

E-Print Network (OSTI)

Designing Directories in Distributed Systems: A Systematic Framework K. Mani Chandy and Eve M of directory­based distributed applications. We evaluate a space of directory designs using our frame­ work. We distributed applications, including directory design. We propose a weaker con­ cept: estimation. We define

255

Standard Guide for Specifying Thermal Performance of Geothermal Power Systems  

E-Print Network (OSTI)

1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

256

239Pu Resonance Evaluation for Thermal Benchmark System Calculations  

SciTech Connect

Analyses of thermal plutonium solution critical benchmark systems have indicated a deciency in the 239Pu resonance evaluation. To investigate possible solutions to this issue, the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) Working Party for Evaluation Cooperation (WPEC) established Subgroup 34 to focus on the reevaluation of the 239Pu resolved resonance parameters. In addition, the impacts of the prompt neutron multiplication (nubar) and the prompt neutron ssion spectrum (PFNS) have been investigated. The objective of this paper is to present the results of the 239Pu resolved resonance evaluation eort.

Leal, Luiz C [ORNL] [ORNL; Noguere, G [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance] [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; De Saint Jean, C [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance] [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Kahler, A. [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL)

2013-01-01T23:59:59.000Z

257

Solar-thermal-energy collection/storage-pond system  

DOE Patents (OSTI)

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

258

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and solar thermal collectors; electrical storage, flowis disallowed; 5. a low storage, PV, and solar thermal priceand heat storage; heat exchangers for application of solar

Stadler, Michael

2008-01-01T23:59:59.000Z

259

Effect of sun radiation on the thermal behavior of distribution transformer  

Science Journals Connector (OSTI)

Performance and life of oil-immersed distribution transformers are strongly dependent on the oil temperature. Transformers, working in regions with high temperature and high solar radiation, usually suffer from excessive heat in summers which results in their early failures. In this paper, the effect of sun radiation on the transformer was investigated by using experimental and analytical methods. Transformer oil temperature was measured in two different modes, with and without sun shield. Effects of different parameters such as direct and indirect solar radiation on the thermal behavior of the transformer were mathematically modeled and the results were compared with experimental findings. Agreements between the experimental and numerical results show that the model can reasonably predict thermal behavior of the transformer. It was found that a sun shield has an important effect on the oil temperature reduction in summer which could be as high as 7C depending on the load ratio. The amount of temperature reduction by sun shield reduces as the load ratio of transformer increases. By installing a sun shield and reducing oil temperature, transformer life could be increased up to 24% in average.

Ebrahim Hajidavalloo; Mohamad Mohamadianfard

2010-01-01T23:59:59.000Z

260

Adaptive Thermal Management for Portable System Batteries by Forced Convection Cooling  

E-Print Network (OSTI)

Adaptive Thermal Management for Portable System Batteries by Forced Convection Cooling Qing Xie the battery longevity increases. This is the first work that formulates the adaptive thermal management is proposed to derive the ATMB policy. Keywords-- battery system; adaptive thermal management; forced

Pedram, Massoud

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

System-level, Unified In-band and Out-of-band Dynamic Thermal Control  

E-Print Network (OSTI)

and improve the reliability of systems. Our thermal control framework unifies temperature control mechanisms supply, etc.) to operate less efficiently. Third, high temperatures can trigger thermal emergenciesSystem-level, Unified In-band and Out-of-band Dynamic Thermal Control Dong Li* , Rong Ge** , Kirk

262

Numerical Analysis of a Cold Air Distribution System  

E-Print Network (OSTI)

Cold air distribution systems may reduce the operating energy consumption of air-conditioned air supply system and improve the outside air volume percentages and indoor air quality. However, indoor temperature patterns and velocity field are easily...

Zhu, L.; Li, R.; Yuan, D.

2006-01-01T23:59:59.000Z

263

MSc Distributed Computing Systems Engineering Department of Electronic & Computer  

E-Print Network (OSTI)

Computing Systems Engineering Department of Electronic & Computer Engineering Brunel University Audio ServerMSc Distributed Computing Systems Engineering Department of Electronic & Computer Engineering Brunel University Audio Server for Virtual Reality Applications Marc Schreier May 2002 A dissertation

Schulze, Jürgen P.

264

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

265

A Distributed Facilities Automation System For IBM Buildings  

E-Print Network (OSTI)

protocol. This will allow the facility manager to take advantage of the expertise of ~any control system suppliers while retaining central control, override authority, and specialized manage ment functions. A distributed facilities automation system... protocol. This will allow the facility manager to take advantage of the expertise of ~any control system suppliers while retaining central control, override authority, and specialized manage ment functions. A distributed facilities automation system...

Houle, W. D. Sr.

266

Coping with dependent failures in distributed systems  

E-Print Network (OSTI)

election, as well as practical applications, such as replication in multi-site systems and cooperative

Junqueira, Flavio

2006-01-01T23:59:59.000Z

267

A Task Context Aware Physical Distribution Knowledge Service System  

Science Journals Connector (OSTI)

A physical distribution task has typical characteristics of dynamic mobility: dynamic locations, time criticality, and environmental complexity. Research has focused on creating an environmental and task adaptive knowledge service system to support collaborative ... Keywords: Collaborative Physical Distribution, Context Awareness, Knowledge Services, Service Systems, Task Context

Liang Xiao, Yanli Pei

2011-01-01T23:59:59.000Z

268

Local dynamic update for component-based distributed systems  

Science Journals Connector (OSTI)

Dynamic evolution is a key aspect of the design, development, and maintenance of complex and distributed software systems built by integrating components. Evolution, traditionally obtained by producing software upgrades, may derive from changes in the ... Keywords: component-based distributed system, dynamic reconfiguration, dynamic software update, software evolution

Valerio Panzica La Manna

2012-06-01T23:59:59.000Z

269

Dynamic software update for component-based distributed systems  

Science Journals Connector (OSTI)

Dynamic evolution is a key aspect of the design, development, and maintenance of complex and distributed software systems built by integrating components. Evolution, tradi- tionally obtained by producing software upgrades, may de- rive from changes in ... Keywords: component-based distributed system, dynamic reconfiguration, dynamic software update, software evolution

Valerio Panzica La Manna

2011-06-01T23:59:59.000Z

270

STOCHASTIC CONTROL FOR DISTRIBUTED SYSTEMS WITH APPLICATIONS TO WIRELESS  

E-Print Network (OSTI)

STOCHASTIC CONTROL FOR DISTRIBUTED SYSTEMS WITH APPLICATIONS TO WIRELESS COMMUNICATIONS Minyi Huang Departement of Electrical and Computer Engineering McGill University, Montr´eal June 2003 A Thesis submitted and optimization of distributed stochastic systems motivated by current wireless applications. In wireless

Huang, Minyi

271

Reliability-Based Prioritizing Maintenance Policy for Distribution System  

Science Journals Connector (OSTI)

This paper presents an approach to prioritize maintenance tasks in power distribution system based on reliability models. This approach define weighted average system reliability index WASRI employing reliability indices SAIFI, SAIDI, MAIFI and interruption ... Keywords: Maintenance management, distribution reliability, reliability indices

Zhang Yong; Sun Xiaorong; Chen Hao; Fangxing Li

2010-06-01T23:59:59.000Z

272

Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

The University of Connecticut, under the Thermal Storage FOA, is developing innovative heat transfer devices and methodologies for novel thermal energy storage (TES) systems for CSP involving phase change materials (PCMs).

273

Methane adsorption comparison of different thermal maturity kerogens in shale gas system  

Science Journals Connector (OSTI)

To determine the effect of thermal maturity on the methane sorption in shale gas system, two different thermal maturity kerogens of type II isolated from Barnett shale of Fort Worth Basin were used to...

Haiyan Hu

2014-12-01T23:59:59.000Z

274

Project Profile: Indirect, Dual-Media, Phase Changing Material Modular Thermal Energy Storage System  

Energy.gov (U.S. Department of Energy (DOE))

Acciona Solar, under the Thermal Storage FOA, plans to design and validate a prototype and demonstrate a full-size (800 MWth) thermal energy storage (TES) system based on phase change materials (PCMs).

275

Thermal Systems Process and Components Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Process and Systems Process and Components Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Systems Process and Components Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Systems Process and Components Laboratory The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds

276

Spatial distribution of the air temperature in mountainous areas using satellite thermal infra-red data  

Science Journals Connector (OSTI)

Understanding the spatial distribution of air temperature in mountainous areas is essential in hydrological modelling. In the Moroccan High-Atlas range, the meteorological stations network is sparse. In order to get additional information, we investigated the thermal infrared data supplied by the Enhanced Thematic Mapper (ETM+) sensor onboard the Landsat 7 satellite. The brightness temperature derived from ETM+ images is used as a proxy for air temperature to set up a model that describes its spatial distribution. This model accounts for sun location and topographic characteristics derived from the SRTM digital elevation model. It was evaluated on the Rheraya watershed, a 225-km2 region located within the semi-arid High-Atlas mountain range, using two different sources of data. The first data set consists in in-situ air temperature collected by meteorological stations installed during the experiment at various altitudes from 1400 to 3200m. The second data set is satellite estimates of snow-covered areas (SCA) derived from MODIS images over the whole catchment at 500m spatial resolution.

Abdelghani Boudhar; Benot Duchemin; Lahoucine Hanich; Gilles Boulet; Abdelghani Chehbouni

2011-01-01T23:59:59.000Z

277

Numerical Study on the Thermal Environment of UFAD System with Solar Chimney for the Data Center  

Science Journals Connector (OSTI)

Abstract To improve the thermal environment in the data center, a solar chimney was integrated with Under-floor Air Distribution (UFAD) system in the Computational Fluid Dynamics (CFD) software Airpak. By using the validated model, three types of solar chimney, such as solar chimney transversely over the hot and cold aisles, solar chimney lengthways above the cold or hot aisles, were simulated. The comparison between the model calculation result shows that all types of solar chimneys used in this paper has great potential in providing a better temperature and airflow distribution. Especially in the case of the solar chimney above the cold aisle, the temperature in upper zone of cold aisle can be decreased by 13C, and the temperature field inside the rack is improved greatly without any additional power.

Kai Zhang; Xiaosong Zhang; Shuhong Li; Geng Wang

2014-01-01T23:59:59.000Z

278

21 - Thermal energy storage systems for concentrating solar power (CSP) technology  

Science Journals Connector (OSTI)

Abstract The option to supply electricity on demand is a key advantage of solar thermal power plants with integrated thermal storage. Diurnal storage systems providing thermal power in the multi-MW range for several hours are required here, the temperature range being between 250C and 700C. This chapter describes the state of the art in commercial storage systems used in solar thermal power generation. An overview of alternative and innovative storage concepts for this application area is given.

W.-D. Steinmann

2015-01-01T23:59:59.000Z

279

The Comandos Toolset for Distributed Systems Management  

Science Journals Connector (OSTI)

......Hoffner, Y. (1992) Management in Object-Based Federated...1988) Construction and management of distributed office...MEITNER AND F. REIM approach. In Proc. Int. Workshop...die Gestaltung und das Management verteilter Informationssysteme...374-378, Elsevier Science Publishers, Amsterdam......

Gerrit Kerber; Helmut Meitner; Friedemann Reim

1994-01-01T23:59:59.000Z

280

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

of a solar-thermal- assisted hvac system. Energy andsolar thermal collectors using flat reflective surfaces. Solar Energy,of a solar-assisted HVAC system with thermal storage. Energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

An analysis of distributed solar fuel systems  

E-Print Network (OSTI)

While solar fuel systems offer tremendous potential to address global clean energy needs, most existing analyses have focused on the feasibility of large centralized systems and applications. Not much research exists on ...

Thomas, Alex, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

282

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

283

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

to be more suited to solar thermal energy sources. Airunit of solar thermal and solar electric energy from a DCS-concentrating solar systems is indeed thermal energy. There

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

284

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network (OSTI)

. Supplementary sensors may be necessary for some special solar systems (e. g. solar systems with several storagesQuality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch/Output-Controllers for in situ and automatic function control of solar thermal systems that were developed within the research

285

Minimizing Energy Consumption in a Water Distribution System: A Systems Modeling Approach  

E-Print Network (OSTI)

In a water distribution system from groundwater supply, the bulk of energy consumption is expended at pump stations. These pumps pressurize the water and transport it from the aquifer to the distribution system and to elevated storage tanks. Each...

Johnston, John

2011-08-08T23:59:59.000Z

286

MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM  

SciTech Connect

In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

V.K. Mathur

2003-02-01T23:59:59.000Z

287

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

applied to the case of hydroelectric facilities with large3. For comparison, the hydroelectric system in California asas droughts which reduce hydroelectric energy availability,

Kahn, E.

2011-01-01T23:59:59.000Z

288

Performance Enhancement of Radial Distributed System with Distributed Generators by Reconfiguration Using Binary Firefly Algorithm  

Science Journals Connector (OSTI)

The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/cl...

N. Rajalakshmi; D. Padma Subramanian

2014-08-01T23:59:59.000Z

289

Performance contracting for parabolic trough solar thermal systems  

SciTech Connect

Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

Brown, H.; Hewett, R.; Walker, A. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Golden, CO (United States)

1997-12-31T23:59:59.000Z

290

Application of Atmospheric Non Thermal Plasma-Catalysis Hybrid System for Air Pollution Control: Toluene removal.  

E-Print Network (OSTI)

1 Application of Atmospheric Non Thermal Plasma-Catalysis Hybrid System for Air Pollution Control for these technologies. As an alternative to conventional VOCs abatement techniques, atmospheric non-thermal plasma (NTP rue d'Issoudun, BP 6744, 45067 Orléans Cedex 02, France. Keywords: Non thermal Plasma, Catalysis

Paris-Sud XI, Université de

291

Ambient variation-tolerant and inter components aware thermal management for mobile system on chips  

E-Print Network (OSTI)

, such as thermal conductivity and heat capacity of the package including cover, display and battery are measuredAmbient variation-tolerant and inter components aware thermal management for mobile system on chips:josephz@qti.qualcomm.com Abstract-- In this work we measure and study two key aspects of the thermal behavior of smartphones: 1

Simunic, Tajana

292

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

293

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

mean value of load and its variance as follows: where W =as a function of load for a given system. This follows fromto some load W. We can write this as follows: LOLP = Prob [

Kahn, E.

2011-01-01T23:59:59.000Z

294

The Case for Distributed Decision Making Systems  

Science Journals Connector (OSTI)

......Manager team three Foreman plumber Foreman electrician 1 Project 1 Projea Figure 1. Divisional...Director. The actual labour used (electricians, plumbers, etc.) is, however...A. C. D. Smith, APL--A Design Handbook for Commercial Systems. Wiley, Chichester......

R. C. Thomas; A. Burns

1982-02-01T23:59:59.000Z

295

Automated Fault Location In Smart Distribution Systems  

E-Print Network (OSTI)

measured at the power substation during a single phase to ground fault clearance [17] .............................................. 111 Figure 26 Analyzed signal using wavelet transform from phase B current during a fault [17..., but are not limited to, substation and feeder relay, intelligent controllers for capacitor bank switches or reclosers, Automatic Meter Reading (AMR) systems installed at the customer sites, power quality meters installed at strategic locations in the system, low...

Lotfifard, Saeed

2012-10-19T23:59:59.000Z

296

Summary Results of Electricity Distribution System Challenges and Opportunities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 Summary Results of Electricity Distribution System Challenges & Opportunities From Breakout Group Sessions Red Team Results Top Challenges * Communication * System Awareness & Modeling * Standards and Interoperability * Need a national scale Grid Operating System (Grid OS) including microgrids - a uniform framework towards operating all of the nation's distribution grids using a collaborative approach - DOE needs to develop an advanced SCADA system definition given to system operators * Bring information together from various sources - differing protocols, lack of a data service bus, automated processes * Lack of a standard communication protocols, data formats/interfaces

297

Thermal management of long-length HTS cable systems  

SciTech Connect

Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

Demko, Jonathan A [ORNL; Hassenzahl, William V [ORNL

2011-01-01T23:59:59.000Z

298

Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System  

SciTech Connect

Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

2011-02-01T23:59:59.000Z

299

Distributed Sensor Coordination for Advanced Energy Systems  

SciTech Connect

The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called agents from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards what to observe rather than how to observe in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using sensor teams, system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

Tumer, Kagan

2013-07-31T23:59:59.000Z

300

A distributed data storage and processing framework for next-generation residential distribution systems  

Science Journals Connector (OSTI)

Abstract As the number of smart meters/sensors increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art centralized information processing architecture will no longer be sustainable under such a big data explosion. Hence, an innovative data management system is urgently needed to facilitate the real-world deployment of a future residential distribution system. In this paper, we investigate a radically different approach through distributed software agents to translate the legacy centralized data storage and processing scheme to a completely distributed cyber-physical architecture. We further substantiate the proposed distributed data storage and processing framework on a proof-of-concept testbed using a cluster of low-cost and credit-card-sized single-board computers. Finally, we evaluate the proposed distributed framework and proof-of-concept testbed with a comprehensive set of performance measures.

Ni Zhang; Yu Yan; Shengyao Xu; Wencong Su

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cost Modeling and Design Techniques for Integrated Package Distribution Systems  

E-Print Network (OSTI)

Cost Modeling and Design Techniques for Integrated Package Distribution Systems Karen R. Smilowitz idealizations of network geometries, operating costs, demand and customer distributions, and routing patterns that approximate the total cost of operation. The design problem is then reduced to a series of optimization

Daganzo, Carlos F.

302

Collaborative Creativity: A Complex Systems Model with Distributed Affect  

E-Print Network (OSTI)

Collaborative Creativity: A Complex Systems Model with Distributed Affect Cecilia R. Aragon E16 2RD UK alisonwilliams62@googlemail.com ABSTRACT The study of creativity has received significant attention over the past century, with a recent increase in interest in collaborative, distributed creativity

Anderson, Richard

303

Identifying Transformer Incipient Events for Maintaining Distribution System Reliability  

E-Print Network (OSTI)

Identifying Transformer Incipient Events for Maintaining Distribution System Reliability Karen L events in single-phase distribution transformers. This analysis will aid in the development of an automatic detection method for internal incipient faults in the transformers. The detection method can

304

A Smart Energy System: Distributed Resource Management, Control and Optimization  

E-Print Network (OSTI)

A Smart Energy System: Distributed Resource Management, Control and Optimization Yong Ding, Student of distributed energy resource and consumption management, which proposes to design a networked and embedded platform for realizing a dynamic energy mix and optimizing the energy consumption dy- namically. Based

Beigl, Michael

305

Reliability of Heterogeneous Distributed Computing Systems in the Presence  

E-Print Network (OSTI)

Reliability of Heterogeneous Distributed Computing Systems in the Presence of Correlated Failures of correlated failures are also investigated. Index Terms--Distributed computing, load balancing, reliability Jorge E. Pezoa, Member, IEEE and Majeed M. Hayat, Fellow, IEEE Abstract--While the reliability

Hayat, Majeed M.

306

Co-Simulation of Functional SystemC TLM Models with Power/Thermal Solvers  

E-Print Network (OSTI)

Co-Simulation of Functional SystemC TLM Models with Power/Thermal Solvers Tayeb Bouhadiba CNRS at the system-level need to be developed. Existing approaches for system-level power and thermal analysis several problems: most obvious are battery life for portable devices as well as heating of devices

Boyer, Edmond

307

Thermal modeling and temperature control of a PEM fuel cell system for forklift applications  

E-Print Network (OSTI)

Thermal modeling and temperature control of a PEM fuel cell system for forklift applications simulation System modeling and control PEMFC a b s t r a c t Temperature changes in PEM fuel cell stacks. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially

Berning, Torsten

308

Second law analysis of a liquid cooled battery thermal management system for hybrid and electric vehicles.  

E-Print Network (OSTI)

??As hybrid and electric vehicles continue to evolve there is a need for better battery thermal management systems (BTMS), which maintain uniformity of operating temperature (more)

Ramotar, Lokendra

2010-01-01T23:59:59.000Z

309

Investigation into the Interactions between thermal management, lubrication and control systems of a diesel engine.  

E-Print Network (OSTI)

??Engine thermal and lubricant systems have only recently been a serious focus in engine design and in general remain under passive control. The introduction of (more)

Burke, Richard D

2011-01-01T23:59:59.000Z

310

High Temperature InGaN Topping Cells for Hybrid Photovoltaic/Concentrating Solar Thermal Systems  

Science Journals Connector (OSTI)

Hybrid PV/CSP systems offer the potential of higher solar to grid efficiency, with the benefits of dispatchable electricity from thermal storage. Here we present an implementation...

Honsberg, Christiana; Gleckman, Philip; Doolittle, William A; Ponce, Fernando; Arena, Chantal; Vasileska, Dragica; Goodnick, Stephen M

311

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

312

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

313

Next-Generation Distributed Power Management for Photovoltaic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

314

Modeling the Effect of Hurricanes on Power Distribution Systems  

E-Print Network (OSTI)

There are many calamitous events such as earthquakes, hurricanes, tsunamis etc. that occur suddenly and cause great loss of life, damage, or hardship. Hurricanes cause significant damage to power distribution systems, resulting in prolonged customer...

Chanda, Suraj

2012-10-19T23:59:59.000Z

315

A distributed boundary detection algorithm for multi-robot systems  

E-Print Network (OSTI)

We describe a distributed boundary detection algorithm suitable for use on multi-robot systems with dynamic network topologies. We assume that each robot has access to its local network geometry, which is the combination ...

McLurkin, James

316

Leader Election in Asynchronous Distributed Systems Scott D. Stoller  

E-Print Network (OSTI)

Leader Election in Asynchronous Distributed Systems Scott D. Stoller March 9, 2000 Abstract cation, which is satis ed by the Invitation Algorithm and never forces nodes that cannot directly

Stoller, Scott

317

Process and dataflow control in distributed data-intensive systems  

Science Journals Connector (OSTI)

In dataflow architectures, each dataflow operation is typically executed on a single physical node. We are concerned with distributed data-intensive systems, in which each base (i.e., persistent) set of data has been declustered over many physical ...

W. Alexander; G. Copeland

1988-06-01T23:59:59.000Z

318

Statistical estimation of water distribution system pipe break risk  

E-Print Network (OSTI)

The deterioration of pipes in urban water distribution systems is of concern to water utilities throughout the world. This deterioration generally leads to pipe breaks and leaks, which may result in reduction in the water-carrying capacity...

Yamijala, Shridhar

2009-05-15T23:59:59.000Z

319

Universal software packages to model the distributed-parameter systems  

Science Journals Connector (OSTI)

Consideration was given to the universal software packages for modeling objects and distributed-parameter systems obeying the partial differential equations. The packages may serve as important tools for industrial automation because the majority of ... Keywords: 07.05.Tp

E. E. Dudnikov

2009-01-01T23:59:59.000Z

320

Photovoltaic Systems Interconnected onto Secondary Network Distribution Systems Success Stories  

Energy.gov (U.S. Department of Energy (DOE))

This report examines six case studies of photovoltaic (PV) systems integrated into secondary network systems. The six PV systems were chosen for evaluation because they are interconnected to secondary network systems located in four major Solar America Cities.

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

1980, but its thermal solar and storage systems received achiller. A 30 m heat storage tank solar decouples heatfacility with thermal storage and solar- assisted HVAC for

Mammoli, Andrea

2014-01-01T23:59:59.000Z

322

Green field planning of distribution systems  

Science Journals Connector (OSTI)

It as an evident that the everyday life is basically based on electric power. Electric power networks provide the required power to the customers. However as greater amounts of power are daily demanded, the need for the construction of new networks or ... Keywords: energy transmission, green field approach, power demand, power loss, power system modelling, voltage drop

S. Hadjiionas; D. S. Oikonomou; G. P. Fotis; V. Vita; L. Ekonomou; C. Pavlatos

2009-05-01T23:59:59.000Z

323

PROTECTIVE SYSTEMS FOR RURAL ELECTRICAL DISTRIBUTION  

Science Journals Connector (OSTI)

... a system entirely protected by Petersen coils, and (6) the interruption in supply to substations connected to healthy lines between switching points must of necessity sometimes be experienced, it ... event of the fault being on the last section in the series, or in a substation structure, that the full sequence of operation takes place. ...

1943-07-03T23:59:59.000Z

324

Residential hot water distribution systems: Roundtablesession  

SciTech Connect

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01T23:59:59.000Z

325

Distributed Timing and Triggering Control System  

SciTech Connect

This document is a slide show type presentation regarding the need and realization of a new control system for work at the Nevada National Security Site. Commercial products that met the need are identified, both hardware and software. Particular emphasis is on the Integrated Signal Programmer.

Bowen, T., Huerta, J. A.

2012-08-01T23:59:59.000Z

326

Parallel and Distributed Systems Speaker: Dick Epema  

E-Print Network (OSTI)

systems Online Social Netw. #12;3 M.Sc. Thesis Projects: The Supervision · We help you excel, without is international · We often organize the top international conferences in our field #12;4 M.Sc. Thesis Projects concepts and show that they work · For examples of previous MSc projects see the theses on the PDS website

Kuzmanov, Georgi

327

Water Distribution and Wastewater Systems Operators (North Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Distribution and Wastewater Systems Operators (North Dakota) Water Distribution and Wastewater Systems Operators (North Dakota) Water Distribution and Wastewater Systems Operators (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting All public water supply and wastewater disposal systems are subject to classification and regulation by the State of North Dakota, and must obtain certification from the State Department of Health

328

Collector/Receiver Characterization (Fact Sheet), Thermal Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

coolant, at near-ambient temperature and low pressure, is pumped to the receiver. Because heat loss is extremely low, optical efficiency can be determined independent of thermal...

329

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

Mammoli, Andrea

2014-01-01T23:59:59.000Z

330

Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System  

SciTech Connect

HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

None

2012-01-04T23:59:59.000Z

331

Analysis of thermal response of a food self-heating system  

Science Journals Connector (OSTI)

This paper presents a distributed model of heat transfer in a self-heating unit for group meals and its numerical simulation. A magnesium alloy and water exothermic reaction provides the necessary energy. The resulting governing equations of chemical reaction and heat conduction that depicts the heater performance were solved to develop an approximate analytical solution, to which experimental data found from literature were compared and curve fitted. Then, a model of a complete food-heating unit for group meals, which include a stack of four sets of food tray, heating tray, and heater sandwiched between them, as well as the cardboard container, was developed. The governing equations for heat conduction in the complete model were solved. The response in thermal performance of the heating system to the parameters that influence heating profiles of the heater such as decay constant and heat generation capacity were studied. The results show that the system thermal performance is most significantly affected by heat generation and a proper combination of heaters with different heat generation capacity can improve temperature uniformity between food trays. The results are useful for designing and optimizing self-heating multi-food tray units.

Son H. Ho; Muhammad M. Rahman; Aydin K. Sunol

2010-01-01T23:59:59.000Z

332

Data transmission system with distributed microprocessors  

DOE Patents (OSTI)

A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

Nambu, Shigeo (Fuchu, JP)

1985-01-01T23:59:59.000Z

333

Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems  

Science Journals Connector (OSTI)

......particle feels a finite force parallel to the average...of the current. This force is interpreted as the...Stegun I.A., eds. Handbook of Mathematical Functions...particle feels a finite force parallel to the average...summarizes the article. 2. Fundamental calculations We mainly......

Satoshi Yukawa; Fumiko Ogushi; Takashi Shimada; Nobuyasu Ito

2010-03-01T23:59:59.000Z

334

Advanced islanding detection utilized in distribution systems with DFIG  

Science Journals Connector (OSTI)

Abstract The penetration of distributed generation (DG) in electrical power systems is rapidly increasing these days and more attention is drawn to maintain a healthy distribution system. Islanding operation of \\{DGs\\} is one of the biggest challenges to the distribution system stability. Fast and accurate islanding detection can avoid the possibility of damages to the \\{DGs\\} when they are un-intentionally reconnected to the grid and also provide useful information to the protection and automation design of the stand alone operated system. Rate of change of frequency (ROCOF) method is one of the most commonly employed anti-islanding protection techniques, it offers fast detection and easy implementation. However, it is often easily affected by the system disturbance and might not able to detect the islanding situation if the power imbalance between the DG and the load is small. This paper investigates an inter-lock method which can improve the performance of rate of change of frequency (ROCOF) by applying system impedance estimation. It was found that this new method can help in verifying the ROCOF relay islanding detection and avoiding false operations of ROCOF in a grid connected distribution system which has large load variations. The proposed method was verified using the experimental testing results derived from both an experimental testing model which includes an 8kW Double Feed Induction Generator (DFIG) and a 9MW DFIG simulation system.

Ke Jia; Tianshu Bi; Bohan Liu; David Thomas; Andrew Goodman

2014-01-01T23:59:59.000Z

335

Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems  

E-Print Network (OSTI)

Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems Rekha Bachwani,ricardob}@cs.rutgers.edu {gryz,dubnicki}@nec-labs.com Abstract In this paper, we argue that the reliability of large-scale storage systems can be significantly improved by using bet- ter reliability metrics and more efficient

Bianchini, Ricardo

336

How to Effectively Compute the Reliability of a Thermal-Hydraulic Nuclear Passive System  

E-Print Network (OSTI)

of a thermal-hydraulic (T-H) passive system of a nuclear power plant can be obtained by i) Monte Carlo (MC1 How to Effectively Compute the Reliability of a Thermal- Hydraulic Nuclear Passive System E. Zio1 be prohibitive because of the large number of (typically long) T-H code simulations that must be performed (one

Boyer, Edmond

337

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

338

Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems  

Science Journals Connector (OSTI)

Abstract A honeycomb-ceramic thermal energy storage (TES) was proposed for thermal utilization of concentrating solar energy. A numerical model was developed to simulate the thermal performances, and TES experiments were carried out to demonstrate and improve the model. The outlet temperature difference between simulation and experimental results was within 5% at the end of a charging period, indicating the simulation model was reasonable. The simulation model was applied to predict the effects of geometric, thermo-physical parameters and flow fluxes on TES performances. The temperature dropped more quickly and decreased to a lower temperature in discharging period when the conductivity was smaller. The storage capacity increased with the growth of volumetric heat capacity. As to a TES with big channels and thin walls, the outlet temperature increased quickly and greatly in a charging process and dropped sharply in a discharging process.

Zhongyang Luo; Cheng Wang; Gang Xiao; Mingjiang Ni; Kefa Cen

2014-01-01T23:59:59.000Z

339

Thermal energy storage technologies and systems for concentrating solar power plants  

Science Journals Connector (OSTI)

This paper presents a review of thermal energy storage system design methodologies and the factors to be considered at different hierarchical levels for concentrating solar power (CSP) plants. Thermal energy storage forms a key component of a power plant for improvement of its dispatchability. Though there have been many reviews of storage media, there are not many that focus on storage system design along with its integration into the power plant. This paper discusses the thermal energy storage system designs presented in the literature along with thermal and exergy efficiency analyses of various thermal energy storage systems integrated into the power plant. Economic aspects of these systems and the relevant publications in literature are also summarized in this effort.

Sarada Kuravi; Jamie Trahan; D. Yogi Goswami; Muhammad M. Rahman; Elias K. Stefanakos

2013-01-01T23:59:59.000Z

340

Advanced thermal barrier coating system development. Technical progress report, April 1, 1996--May 31, 1996  

SciTech Connect

Objectives of this program are to provide an improved thermal barrier system with increased temperature capability and reliability relative to current systems. This report describes the bond coat development and deposition, manufacturing, and repair.

NONE

1996-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced thermal barrier coating system development. Technical progress report, January 1, 1996--March 31, 1996  

SciTech Connect

Objectives of this program are to provide a thermal barrier coating system with increased temperature capability and improved reliability relative to current state of the art systems. This report describes the bond coat deposition process, manufacturing, and repair.

NONE

1996-04-08T23:59:59.000Z

342

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

343

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

344

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

Distributions Systems category. Distributions Systems category. Pages in category "Smart Grid Projects - Electric Distributions Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C Consolidated Edison Company of New York, Inc. Smart Grid Project E El Paso Electric Smart Grid Project H Hawaii Electric Co. Inc. Smart Grid Project M Memphis Light, Gas and Water Division Smart Grid Project Municipal Electric Authority of Georgia Smart Grid Project N Northern Virginia Electric Cooperative Smart Grid Project NSTAR Electric Company Smart Grid Project P Powder River Energy Corporation Smart Grid Project P cont. PPL Electric Utilities Corp. Smart Grid Project S Snohomish County Public Utilities District Smart Grid Project

345

A Simulation Model for Evaluating Distributed Systems Dependability  

E-Print Network (OSTI)

In this paper we present a new simulation model designed to evaluate the dependability in distributed systems. This model extends the MONARC simulation model with new capabilities for capturing reliability, safety, availability, security, and maintainability requirements. The model has been implemented as an extension of the multithreaded, process oriented simulator MONARC, which allows the realistic simulation of a wide-range of distributed system technologies, with respect to their specific components and characteristics. The extended simulation model includes the necessary components to inject various failure events, and provides the mechanisms to evaluate different strategies for replication, redundancy procedures, and security enforcement mechanisms, as well. The results obtained in simulation experiments presented in this paper probe that the use of discrete-event simulators, such as MONARC, in the design and development of distributed systems is appealing due to their efficiency and scalability.

Dobre, Ciprian; Cristea, Valentin

2012-01-01T23:59:59.000Z

346

Defects, thermal phenomena and design in photonic crystal systems  

E-Print Network (OSTI)

The physics of blackbodies has been an ongoing source of fascination and scientific research for over a hundred years. Kirchhoff's law states that emissivity and absorptivity are equal for an object in thermal equilibrium. ...

Chan, David Lik Chin

2006-01-01T23:59:59.000Z

347

Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation  

Science Journals Connector (OSTI)

Concentrating solar thermal power and photovoltaics are two major technologies for converting sunlight to electricity. Variations of the annual solar irradiation depending on the site influence their annual efficiency, specific output and electricity generation cost. Detailed technical and economical analyses performed with computer simulations point out differences of solar thermal parabolic trough power plants, non-tracked and two-axis-tracked PV systems. Therefore, 61 sites in Europe and North Africa covering a global annual irradiation range from 923 to 2438 kWh/m2a have been examined. Simulation results are usable irradiation by the systems, specific annual system output and levelled electricity cost. Cost assumptions are made for today's cost and expected cost in 10 years considering different progress ratios. This will lead to a cost reduction by 50% for PV systems and by 40% for solar thermal power plants. The simulation results show where are optimal regions for installing solar thermal trough and tracked PV systems in comparison to non-tracked PV. For low irradiation values the annual output of solar thermal systems is much lower than of PV systems. On the other hand, for high irradiations solar thermal systems provide the best-cost solution even when considering higher cost reduction factors for PV in the next decade. Electricity generation cost much below 10 Eurocents per kWh for solar thermal systems and about 12 Eurocents/kWh for PV can be expected in 10 years in North Africa.

Volker Quaschning

2004-01-01T23:59:59.000Z

348

US Recovery Act Smart Grid Projects - Electric Distributions Systems | Open  

Open Energy Info (EERE)

Distributions Systems Distributions Systems Jump to: navigation, search CSV Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

349

E-Print Network 3.0 - air-distribution systems interactions Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distribution Systems Bass Abushakra Iain S. Walker... , and the installation of supply boots and diffusers. Introduction The installation of air distribution systems... in the...

350

Distribution and Correlation of Events During Thermal Inactivation of Bacillus megaterium Spores  

Science Journals Connector (OSTI)

...a normal distribution of resistances...suggested loss of ability...viability during heat inactivation...examined the distribution of heat re- sistances...heat-induced loss of DPA and...interest was heat sterilization...log-normal distribution of resistances...the initial loss in viability...

Hillel S. Levinson; Mildred T. Hyatt

1971-10-01T23:59:59.000Z

351

Integrating Renewable Energy into the Transmission and Distribution System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrating Renewable Energy into the Transmission and Distribution Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands This report describes one area in which islands may lead: integrating a high percentage of renewable energy resources into an isolated grid. In addition, it explores the challenges, feasibility, and potential benefits of interconnecting the USVI grids with the much larger Puerto Rican grid. 51294.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands U.S. Virgin Islands Energy Road Map: Analysis Waste-to-Energy Evaluation: U.S. Virgin Islands

352

Efficient Symbolic Detection of Global Properties in Distributed Systems  

E-Print Network (OSTI)

to total orders containing the happened­before relation. A consistent global state (CGS) of a computation cEfficient Symbolic Detection of Global Properties in Distributed Systems Scott D. Stoller a global state satisfying property \\Phi. Previous general­purpose algorithms for this problem explicitly

Stoller, Scott

353

Distributed Predictive Control and Estimation for Systems with Information  

E-Print Network (OSTI)

constraints and a stationary LQG (Linear Quadratic Gaussian) control law is presented based on the model control and estimation law is demonstrated through a numerical simulation of smart grid. KeywordsDistributed Predictive Control and Estimation for Systems with Information Structures Exemplified

354

SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)  

E-Print Network (OSTI)

SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

355

Uni ed Support for Heterogeneous Security Policies in Distributed Systems  

E-Print Network (OSTI)

Uni ed Support for Heterogeneous Security Policies in Distributed Systems Naftaly H. Minsky in this paper a security mechanism that can support e ciently, and in a uni ed manner, a wide range of security policies are de ned formallyandexplicitly,and are enforced bya uni ed mechanism. Each policy under

Minsky, Naftaly

356

Distributed Proving in Access-Control Systems Scott Garriss  

E-Print Network (OSTI)

]). That is, credentials (i.e., certificates) are encoded as formulas in the logic (e.g., "KAlice signed (KBobDistributed Proving in Access-Control Systems Lujo Bauer Scott Garriss Michael K. Reiter§ Abstract- dentials in a formal logic (e.g., [16]). Of particular in- terest here are those in which the evidence

Reiter, Michael

357

THE DEVELOPMENT OF DISTRI-bution systems poses new challenges  

E-Print Network (OSTI)

in the way distribution systems are designed, planned, operated, and managed is a must for both developed came into exis- tence. However, recognizing the value of electric energy and the need for development levels of electrification need to be increased and electricity served reliably for sus- tainable economic

Dixon, Juan

358

Fuzzy logic based operated device identification in power distribution systems  

E-Print Network (OSTI)

of an operated device identification algorithm to be used as one of four modules in an automated modular scheme for fault section estimation on radial distribution systems. This algorithm will be executed in tandem with the other fault location modules that form...

Manivannan, Karthick Muthu

2002-01-01T23:59:59.000Z

359

Topic 5: Renewable Power 1Networking and Distributed Systems  

E-Print Network (OSTI)

Communications and Control in Smart Grid 10 · Wave power is the energy from ocean surface waves. · Orbital motion the device to the ocean floor to hold it. cable Power modules Tubular section #12;Wave Energy Converter DrTopic 5: Renewable Power 1Networking and Distributed Systems Department of Electrical & Computer

Mohsenian-Rad, Hamed

360

DISTRIBUTED VISION SYSTEM FOR ROBOT LOCALISATION IN INDOOR ENVIRONMENT  

E-Print Network (OSTI)

DISTRIBUTED VISION SYSTEM FOR ROBOT LOCALISATION IN INDOOR ENVIRONMENT E. Menegatti, G. Gatto, and E. Pagello Department of Information Engineering Faculty of Engineering, The University of Padua in an environment whose appear- ance is changing in time. We propose an extension to the classical image

Menegatti, Emanuele

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Application of an Energy Management System to a Distribution Center  

E-Print Network (OSTI)

such a System in its Dallas Distribution Center. In one year the electric bills were reduced by a total of $17,668.91. Electric consumption (KWH) was reduced by thirty-one percent, electrical demand (KW) was reduced by thirty-six percent while plant...

Warnick, T.

1984-01-01T23:59:59.000Z

362

Cu-Bi as a Model System For Liquid Phase Sintered Thermal Interface Management Materials  

E-Print Network (OSTI)

relates electrical resistivity to thermal conductivity for materials where electrons are principleCu-Bi as a Model System For Liquid Phase Sintered Thermal Interface Management Materials P to produce composite materials. A high melting phase (HMP) and low melting phase (LMP) are mixed

Collins, Gary S.

363

Design and global optimization of high-efficiency solar thermal systems  

E-Print Network (OSTI)

, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPVDesign and global optimization of high-efficiency solar thermal systems with tungsten cermets DavidDepartment of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts

Soljaèiæ, Marin

364

Belgirate, Italy, 28-30 September 2005 A COMPREHENSIVE THERMAL-AWARE POWER MANAGEMENT SYSTEM WITH  

E-Print Network (OSTI)

control mechanism more flexible. Besides battery life, thermal impact is another major reason to utilizeBelgirate, Italy, 28-30 September 2005 A COMPREHENSIVE THERMAL-AWARE POWER MANAGEMENT SYSTEM power techniques due to shortage of battery life. Conventional power management designs focused

Paris-Sud XI, Université de

365

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network (OSTI)

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

366

PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM  

E-Print Network (OSTI)

comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed of big coal red blocks with several pumped storage plants of di ering e ciencies provides the mainPRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller

Römisch, Werner

367

Method and apparatus for thermal management of vehicle exhaust systems  

DOE Patents (OSTI)

A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1995-01-01T23:59:59.000Z

368

Advances and challenges in ORC systems modeling for low grade thermal energy recovery  

Science Journals Connector (OSTI)

Abstract Low-grade thermal energy recovery has attained a renewed relevance, driven by the desire to improve system efficiency and reduce the carbon footprint of power generation. Various technologies have been suggested to exploit low-temperature thermal energy sources, otherwise difficult to access using conventional power generation systems. In this paper, the authors review the most recent advances and challenges for the exploitation of low grade thermal energy resources, with particular emphasis on ORC systems, based on information gathered from the technical literature. An outline of the issues related to ORC system modeling is also presented, and some guidelines drawn to develop an effective and powerful simulation tool. As a summary conclusion of the revised models, a simulation tool of an ORC system suitable for the exploitation of low grade thermal energy is introduced.

Davide Ziviani; Asfaw Beyene; Mauro Venturini

2014-01-01T23:59:59.000Z

369

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

370

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

E-Print Network (OSTI)

Imaging Fluid Flow in Geothermal Wells Using Distributed16 Imaging Fluid Flow in Geothermal Wells Using Distributedflow processes near a geothermal well under heating and

Freifeld, B.

2011-01-01T23:59:59.000Z

371

The Fermilab CMTF cryogenic distribution remote control system  

SciTech Connect

The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R. [Fermi National Accelerator Laboratory Batavia, IL, 60510 (United States)

2014-01-29T23:59:59.000Z

372

ENERGY STAR Building Upgrade Manual Chapter 8: Air Distribution Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

8: Air Distribution 8: Air Distribution Systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

373

Factor Influencing Logistics Service Providers Efficiency in Urban Distribution Systems  

Science Journals Connector (OSTI)

Abstract The increased urbanization and the awareness of freight transportation impacts have stressed the importance of City Logistics (CL) as a comprehensive approach aimed at mitigating the negative effects of distribution activities without penalizing social, cultural, and economic issues. In this context, a crucial role is played by logistics service providers (LSPs). This paper proposes an empirical analysis on the operational factors determining the level of efficiency of a LSP. This study represents an attempt to develop a panel of operational variables supporting the efficiency of the urban distribution system of LSPs. The potential benefits are both economic and environmental.

Alberto De Marco; Anna C. Cagliano; Giulio Mangano; Francesca Perfetti

2014-01-01T23:59:59.000Z

374

Electricity Distribution Systems: How Information Will Lead the Transformation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBM IBM Electricity Distribution Systems How information will lead the transformation Allan Schurr VP Energy and Utilities 24 September 2012 Corporation Challenges facing the energy grid New entrants and disruptive technologies environmental concerns Increased pressure on Climate change and Aging asset performance operational efficiency with increased expectations and workforce on reliability productivity Increasing desire by consumers for a role in energy management and Growth in renewable generation and distributed resources conservation © 2012 IBM Corporation 2 Other transformed industries have lessons for the power grid Common Themes * Technology innovation * Disruptive new entrants * New business models Benefits for the consumer © 2012 IBM Corporation

375

Distributed Generation Study/Patterson Farms CHP System Using Renewable  

Open Energy Info (EERE)

Farms CHP System Using Renewable Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machinery System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1366072 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Customer Assembled Start Date 2007/05/02 Monitoring Termination Date 2007/05/26

376

Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies  

E-Print Network (OSTI)

of our time. Data center energy consumption is now 2-3% of total US electricity use and is increasing-level energy consumption. I. INTRODUCTION Energy efficiency is one of the central societal and technical issues- sired level of performance while reducing energy consumption. A closely related issue is thermal

Herbordt, Martin

377

Impact of automatic switches on power distribution system reliability  

Science Journals Connector (OSTI)

In this paper quantitative impact of automatic switches on the reliability of power distribution systems is studied. Based on the characteristics of the studied system's topology, the reliability model is developed for the implementation of Monte Carlo simulation. Reliability indices on each load have been computed to obtain an overall reliability assessment of the system, and the sensitivity of the reliability indices to the location of automatic switches is also studied. Simulation results are used to illustrate the validity of the approach and are compared with the historical reliability records.

H. Zheng; Y. Cheng; B. Gou; D. Frank; A. Bern; W.E. Muston

2012-01-01T23:59:59.000Z

378

Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

379

Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch  

E-Print Network (OSTI)

Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch...

Ilic, Marija; Hsieh, Eric; Remanan, Prasad

2004-06-16T23:59:59.000Z

380

Advanced thermal barrier coating system development. Technical progress report, August 1, 1996--September 30, 1996  

SciTech Connect

Objectives of this program are to provide an advanced thermal barrier coating system with improved reliability and temperature capability. This report describes the coating/deposition process, repair, and manufacturing.

NONE

1996-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project Profile: High-Efficiency Thermal Storage System for Solar Plants  

Energy.gov (U.S. Department of Energy (DOE))

SENER, under the Baseload CSP FOA, aims to develop a highly efficient, low-maintenance and economical thermal energy storage (TES) system using solid graphite modular blocks for CSP plants.

382

Analysis of a solar dishStirling system with hybridization and thermal storage  

Science Journals Connector (OSTI)

A high potential of thermosolar power generation systems is the use of thermal storage and/or hybridization to overcome dependability of solar resource availability. The incorporation of these technologies ... on...

Carlos Monn; Yolanda Bravo

2014-07-01T23:59:59.000Z

383

Thermal and lighting performance of toplighting systems in the hot and humid climate of Thailand  

E-Print Network (OSTI)

performance of three toplighting systems were compared. For the thermal performance, total cooling loads, heat gains and losses, and interior temperature were evaluated. The lighting performance parameters examined were daylight factor, illuminance level...

Harntaweewongsa, Siritip

2006-10-30T23:59:59.000Z

384

A Methodological Framework for Integrating Waste Biomass into a Portfolio of Thermal Energy Production Systems  

Science Journals Connector (OSTI)

The integration of Renewable Energy Sources (RES) within the contextual framework of existing thermal energy production systems has emerged as a promising ... and sustainable policy towards addressing the growing...

Eleftherios Iakovou; Dimitrios Vlachos; Agorasti Toka

2012-01-01T23:59:59.000Z

385

Thermal Performance Characteristics of a Combined External Insulation System under Simulated Space Vehicle Operating Conditions  

Science Journals Connector (OSTI)

The main purpose of this investigation was to determine the long-term thermal performance characteristics, with liquid hydrogen, of an externally applied combined foam/multilayer insulation system under simulated...

F. J. Muller; P. L. Klevatt

1995-01-01T23:59:59.000Z

386

Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems  

Science Journals Connector (OSTI)

A major aspect for safe and efficient operation of battery electric vehicles (BEV) is the thermal management of their battery systems. As temperature uniformity and level highly ... performance and the lifetime, ...

Ch. Huber; A. Jossen; R. Kuhn

2014-01-01T23:59:59.000Z

387

Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems  

E-Print Network (OSTI)

, encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

Sebzali, M.; Hussain, H. J.; Ameer, B.

2010-01-01T23:59:59.000Z

388

Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)  

SciTech Connect

This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

Not Available

2011-09-01T23:59:59.000Z

389

Revise CS 552: Distributed Systems to CS552: Distributed Real-Time Systems  

E-Print Network (OSTI)

Text Book: Real-Time Systems by Jane W.S. Liu, Prentice Hall, 2000 Research papers: Research papers Liu's book 1 #12;­ Resources and resource access control ­ Multiprocessor scheduling, resource access

Heller, Barbara

390

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network (OSTI)

INTEGRATING SOLAR THERMAL AND PHOTOVOLTAIC SYSTEMS IN WHOLE BUILDING ENERGY SIMULATION Soolyeon Cho1 and Jeff S. Haberl2 1The Catholic University of America, Washington, DC 2Texas A&M University, College Station, TX ABSTRACT... This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze...

Cho, S.; Haberl, J.

391

Interconnecting PV on New York City's Secondary Network Distribution System  

SciTech Connect

The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1???¢????????PV Deployment Analysis for New York City???¢????????we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2???¢????????A Briefing for Policy Makers on Connecting PV to a Network Grid???¢????????presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3???¢????????Technical Review of Concerns and Solutions to PV Interconnection in New Y

K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

2009-11-30T23:59:59.000Z

392

The design of a distributed image processing and dissemination system  

SciTech Connect

The design and implementation of a distributed image processing and dissemination system was undertaken and accomplished as part of a prototype communication and intelligence (CI) system, the contingency support system (CSS), which is intended to support contingency operations of the Tactical Air Command. The system consists of six (6) Sun 3/180C workstations with integrated ITEX image processors and three (3) 3/50 diskless workstations located at four (4) system nodes (INEL, base, and mobiles). All 3/180C workstations are capable of image system server functions where as the 3/50s are image system clients only. Distribution is accomplished via both local and wide area networks using standard Defense Data Network (DDN) protocols (i.e., TCP/IP, et al.) and Defense Satellite Communication Systems (DSCS) compatible SHF Transportable Satellite Earth Terminals (TSET). Image applications utilize Sun's Remote Procedure Call (RPC) to facilitate the image system client and server relationships. The system provides functions to acquire, display, annotate, process, transfer, and manage images via an icon, panel, and menu oriented Sunview{trademark} based user interface. Image spatial resolution is 512 {times} 480 with 8-bits/pixel black and white and 12/24 bits/pixel color depending on system configuration. Compression is used during various image display and transmission functions to reduce the dynamic range of image data of 12/6/3/2 bits/pixel depending on the application. Image acquisition is accomplished in real-time or near-real-time by special purpose Itex image hardware. As a result all image displays are highly interactive with attention given to subsecond response time. 3 refs., 7 figs.

Rafferty, P.; Hower, L.

1990-01-01T23:59:59.000Z

393

Parallel Breadth-First Search on Distributed Memory Systems  

SciTech Connect

Data-intensive, graph-based computations are pervasive in several scientific applications, and are known to to be quite challenging to implement on distributed memory systems. In this work, we explore the design space of parallel algorithms for Breadth-First Search (BFS), a key subroutine in several graph algorithms. We present two highly-tuned par- allel approaches for BFS on large parallel systems: a level-synchronous strategy that relies on a simple vertex-based partitioning of the graph, and a two-dimensional sparse matrix- partitioning-based approach that mitigates parallel commu- nication overhead. For both approaches, we also present hybrid versions with intra-node multithreading. Our novel hybrid two-dimensional algorithm reduces communication times by up to a factor of 3.5, relative to a common vertex based approach. Our experimental study identifies execu- tion regimes in which these approaches will be competitive, and we demonstrate extremely high performance on lead- ing distributed-memory parallel systems. For instance, for a 40,000-core parallel execution on Hopper, an AMD Magny- Cours based system, we achieve a BFS performance rate of 17.8 billion edge visits per second on an undirected graph of 4.3 billion vertices and 68.7 billion edges with skewed degree distribution.

Computational Research Division; Buluc, Aydin; Madduri, Kamesh

2011-04-15T23:59:59.000Z

394

Lessons learned in modeling Underfloor Air Distribution system  

E-Print Network (OSTI)

Underfloor Air Distribution (UFAD) Design Guide. Atlanta:for design cooling loads in underfloor air distribution (

Lee, Kwang Ho; Schiavon, Stefano; Webster, Tom; Bauman, Fred; Feng, Jingjuan; Hoyt, Tyler

2011-01-01T23:59:59.000Z

395

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of Distribution Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

396

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

397

Measurements of the spatial and energy distribution of thermal neutrons in uranium, heavy water lattices  

E-Print Network (OSTI)

Intracell activity distributions were measured in three natural uranium, heavy water lattices of 1. 010 inch diameter, aluminum clad rods on triangular spacings of 4. 5 inches, 5. 0 inches, and 5. 75 inches, respectively, ...

Brown, Paul S. (Paul Sherman)

1962-01-01T23:59:59.000Z

398

OE's Smart Grid Activities in the Distribution System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1/2013 1 1/2013 1 National Academy of Engineering - BMED December 2008 www.oe.energy.gov U.S. Department of Energy - 1000 Independence Ave., SW Washington, DC 20585 OE's Smart Grid Activities in the Distribution system September 2012 Patricia Hoffman Assistant Secretary December 2008 Mission  Drive Grid Modernization and Resiliency in the Energy Infrastructure  The formation of the Grid Technology Team is a recognition by DOE that we need to bring more resources to bear on grid modernization, coordinating effort from the Science programs, ARPA-E, and the other applied programs 2 December 2008 Desired Outcomes from this Workshop  Better shared understanding of the technology needs of the Distribution system  Identification of gaps in current research

399

Compiling software for a hierarchical distributed processing system  

DOE Patents (OSTI)

Compiling software for a hierarchical distributed processing system including providing to one or more compiling nodes software to be compiled, wherein at least a portion of the software to be compiled is to be executed by one or more nodes; compiling, by the compiling node, the software; maintaining, by the compiling node, any compiled software to be executed on the compiling node; selecting, by the compiling node, one or more nodes in a next tier of the hierarchy of the distributed processing system in dependence upon whether any compiled software is for the selected node or the selected node's descendents; sending to the selected node only the compiled software to be executed by the selected node or selected node's descendent.

Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

2013-12-31T23:59:59.000Z

400

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Using Active Customer Participation in Managing Distribution Systems  

E-Print Network (OSTI)

;Impact AnalysisUtility Cost Benefit Analysis Consumer Participation DSM Objectives Load Shape Request] Department of Energy, Online: http://energy.gov/oe/technology-development/smart-grid #12;Current State 5 Gen at feeder/lateral level o IEEE 13 bus system o Distributed solar PV at 40% penetration 0.0 0.2 0.4 0.6 0.8 1

Van Veen, Barry D.

402

Evaluation of the application uniformity of subsurface drip distribution systems  

E-Print Network (OSTI)

. .......................................................................................13 Table 3. Recommended acid concentration to treat water (Netafim, 2000a)................15 Table 4. Methods of comparison of statistical uniformity (ASAE, 1999). ...................19 Table 5. Evaluation of type Y emitter flow rates... is This thesis is written to conform to the style of Transactions of the ASAE. 2 essential for proper treatment of wastewater. Subsurface drip distribution systems can be used in these areas, but the effects of different site conditions and drip emitter...

Weynand, Vance Leo

2004-09-30T23:59:59.000Z

403

Abstract--The reliability and quality of power distribution systems are usually affected by many different distribution faults.  

E-Print Network (OSTI)

1 Abstract--The reliability and quality of power distribution systems are usually affected by many different distribution faults. Tree-caused faults are one of the major fault causes. In this paper, four to analyze the characteristics of tree-caused distribution faults. This paper also uses statistical

Chow, Mo-Yuen

404

High-temperature Thermal Storage System for Solar Tower Power Plants with Open-volumetric Air Receiver Simulation and Energy Balancing of a Discretized Model  

Science Journals Connector (OSTI)

Abstract This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants.

Valentina Kronhardt; Spiros Alexopoulos; Martin Reiel; Johannes Sattler; Bernhard Hoffschmidt; Matthias Hnel; Till Doerbeck

2014-01-01T23:59:59.000Z

405

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

406

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

407

Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems  

SciTech Connect

PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to improve system efficiency and reduce packaging size.

Mark K. Gee

2008-10-01T23:59:59.000Z

408

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Efficiency Thermal Energy Storage System for CSP High-Efficiency Thermal Energy Storage System for CSP ANL logo Photo of a black and white porous material magnified 50 times by a microscope. Microstructure of the highly thermal conductive foam that will be used for the prototype TES system. Image from ANL Argonne National Laboratory and project partner Ohio Aerospace Institute, under the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system with rapid charging and discharging times. By increasing the efficiency of TES systems, this project aims to lower the capital costs of concentrating solar power (CSP) systems. Approach The research team is developing and evaluating a novel approach for TES at temperatures greater than 700˚C for CSP systems. The approach uses high thermal conductivity and high-porosity graphite foams infiltrated with a phase change material (PCM) to provide TES in the form of latent heat.

409

System level design of power distribution network for mobile computing platforms.  

E-Print Network (OSTI)

??Providing a reliable power distribution network (PDN) is a critical design challenge for mobile system on chip platforms. A well-designed power distribution network should be (more)

Shayan Arani, Amirali

2011-01-01T23:59:59.000Z

410

FY 93 thermal loading systems study final report: Volume 1. Revision 1  

SciTech Connect

The ability to meet the overall performance requirements for the proposed Mined Geology Disposal System at Yucca Mountain, Nevada requires the two major subsystem (natural barriers and engineered barriers) to positively contribute to containment and radionuclide isolation. In addition to the postclosure performance the proposed repository must meet preclosure requirements of safety, retrievability, and operability. Cost and schedule were also considered. The thermal loading strategy chosen may significantly affect both the postclosure and preclosure performance of the proposed repository. Although the current Site Characterization Plan reference case is 57 kilowatts (kW)/acre, other thermal loading strategies (different areal mass loadings) have been proposed which possess both advantages and disadvantages. The objectives of the FY 1993 Thermal Loading Study were to (1) place bounds on the thermal loading which would establish the loading regime that is ``too hot`` and the loading regime that is ``too cold``, to (2) ``grade`` or evaluate the performance, as a function of thermal loading, of the repository to contain high level wastes against performance criteria and to (3) evaluate the performance of the various options with respect to cost, safety, and operability. Additionally, the effort was to (4) identify important uncertainties that need to be resolved by tests and/or analyses in order to complete a performance assessment on the effects of thermal loading. The FY 1993 Thermal Loading Study was conducted from December 1, 1992 to December 30, 1993 and this final report provides the findings of the study. Volume 1 contains the Introduction; Performance requirements; Input and assumptions; Near-field thermal analysis; Far-field thermal analysis; Cost analysis; Other considerations; System analysis; Additional thermal analysis; and Conclusions and recommendations. 71 refs., 54 figs.

Saterlie, S.F.; Thomson, B.H.

1994-08-29T23:59:59.000Z

411

Repair duration effects on distribution system reliability indices and customer outage costs.  

E-Print Network (OSTI)

??The distribution system is part of the electric power system that links the bulk transmission system and the individual customers. Approximately 80 percent of outages (more)

Shakya, Binendra

2013-01-01T23:59:59.000Z

412

Optimisation of Solar Collector Area for Solar Thermal Systems  

Science Journals Connector (OSTI)

Invariably solar energy systems are provided with an auxiliary energy source to meet the energy requirements of a system operating at a constant temperature. A technoeconomic analysis has been developed in thi...

N. K. Bansal; Aman Dang

1984-01-01T23:59:59.000Z

413

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

1996-01-01T23:59:59.000Z

414

JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation  

SciTech Connect

The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

2008-02-01T23:59:59.000Z

415

Distributed embedded computing systems are special-purpose computer systems designed for particular applications and set up in a networked or distributed manner. A  

E-Print Network (OSTI)

ABSTRACT Distributed embedded computing systems are special-purpose computer systems designed). Therefore, this thesis presents a design methodology for distributing DSP applica- tions across wireless-power, application-specific sensor node platform for distributed WSN sys- tems is designed and demonstrated

Bhattacharyya, Shuvra S.

416

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15T23:59:59.000Z

417

Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration  

SciTech Connect

An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published.

Peter, F.J.; Laguna, G.R. [Sandia National Labs., Albuquerque, NM (United States). Manufacturing Control Subsystems Dept.

1996-09-01T23:59:59.000Z

418

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

SciTech Connect

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

419

Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: To create an Enhanced Geothermal System on the margin of the Cosofield through the hydraulic, thermal, and/or chemical stimulation of one or more tight injection wells; To increase the productivity of the Cosofield by 10 MWe; To develop and calibrate geomechanical, geochemical, and fluid flow models in order to extend the Coso/EGS concepts to wherever appropriate tectonic and thermal conditions apply.

420

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa  

Science Journals Connector (OSTI)

Abstract A thermocline-based rock bed thermal energy storage system potentially offers a cheap and simple way of achieving dispatchability in an air-cooled central receiver CSP plant. In order to efficiently match heliostat field size, storage dimensions, back-up fuel consumption and turbine sizes for non-stop power generation and economic feasibility, year-long power plant simulations have to be run. This paper focuses on the storage as the center of in- and outgoing thermal energy. The derived storage model has one spatial dimension which is justified by the high tube-to-particle diameter ratio and because yearly aggregated and not momentary values are of interest. A validation of the correlations with data from the literature shows acceptable agreement. Sensitivity analyses indicate that, due to low costs of the storage system, above certain minimum storage dimensions, the influence on energetic and monetary performance indicators is marginal. The calculated LCOE is in the range of 0.110.18EUR/kWh and in agreement with other studies on combined cycle CSP plants.

Lukas Heller; Paul Gauch

2013-01-01T23:59:59.000Z

422

Thermal performance of an ammonia-water refrigeration system  

SciTech Connect

The conservation and efficient use of energy has led to alternate methods for air conditioning in buildings. Presently, two types of absorption air conditioning systems are widely used: the lithium-bromide-water system and the ammonia-water system. The first type is typically a water fired absorption chiller while the second one is a gas fired chiller. Some of the lithium-bromide-water systems use as a source of heat a stream of hot water supplied from solar collectors at a temperature level of the order of 95-100 {degrees}C. The purpose of this paper is to explore the possibilities to use solar energy to operate an ammonia-water system and to predict its thermodynamic performance. The results indicate that it is feasible to use solar energy to operate an ammonia-water absorption-refrigeration system.

Manrique, J.A. (Inst. Tecnologico y de Estudios Superiores de Monterrey, Dept. of Thermal Engineering, Monterrey, NL (MX))

1991-11-01T23:59:59.000Z

423

Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve  

E-Print Network (OSTI)

In Korea two popular water distribution systemsthe branch type and the separate type systemshave serious drawbacks. The branch type suffers from temperature instability while the separate type suffers from excessive piping. Neither of them re...

Cha, K. S.; Park, M. S.; Seo, H. Y.

424

Optimal Control of Harvesting Ice Thermal Storage Systems  

E-Print Network (OSTI)

for optimal control of a harvesting ice storage system. A simplified procedure is used to develop 24 hour load data. Example installations will be shown....

Knebel, D. E.

1988-01-01T23:59:59.000Z

425

Solar integration: applying hybrid photovoltaic/thermal systems.  

E-Print Network (OSTI)

??On-site energy production is becoming increasingly prevalent in building systems design with a renewed public awareness of sustainability, decreased energy resources, and an increase in (more)

Williams, Kristen

2010-01-01T23:59:59.000Z

426

Thermal effects in the equilibrium structure and size distribution of small Si clusters  

Science Journals Connector (OSTI)

We present the first calculation of the free energy of semiconductor clusters at nonzero temperatures. Explicit determination of electronic, vibrational, and rotational contributions to the entropy allows us to investigate the effect of temperature on the equilibrium geometric structure and size distribution of these clusters. The formalism is applied to Si4, Si5, and Si6 clusters with symmetric geometries. We find that, in these clusters, entropy can modify relative stabilities, but does not change major trends at finite temperatures.

D. Tomnek; C. Sun; N. Sharma; L. Wang

1989-03-15T23:59:59.000Z

427

Analysis of control strategies for thermally activated building systems under demand side management mechanisms  

Science Journals Connector (OSTI)

Abstract Thermally activated buildings systems (TABS) are systems that integrate heating/cooling devices in the building structure, so that the building elements act as thermal storage and have an active role in the energy supply and demand management. Although TABS are well known systems, there are still open questions in their realization, mainly concerning appropriate control strategies which are influenced by the large thermal inertia. The purpose of this paper is to analyze the influence of demand side management control strategies on the performance of a thermally activated building system applied in a commercial building. The goal is to estimate the potential of TABS for load shifting requested by the electricity grid. The analysis is performed by means of a sample case: first the existing TABS control strategy and then the possible implementation of DSM mechanisms are analyzed. In particular three different demand side management mechanisms are evaluated: (i) a peak shaving strategy, (ii) a random request of switching on/off the system and (iii) a night load shifting strategy. The simulation results show high potential of TABS within the DSM framework, since TABS allow load control while scarcely affect thermal comfort.

A. Arteconi; D. Costola; P. Hoes; J.L.M. Hensen

2014-01-01T23:59:59.000Z

428

Design and operation methodology for active building-integrated thermal energy storage systems  

Science Journals Connector (OSTI)

Abstract A methodology is presented for integrating the design and operation of active building-integrated thermal energy storage (BITES) systems to enhance their thermal and energy performance. A bounding-condition based design approach is proposed in conjunction with predictive control strategies. The predictive control uses frequency domain models and room air temperature set-point profile as input. The set-point profiles and BITES design are improved in a holistic manner according to the thermal dynamic response of active BITES systems and their thermal zones. The dynamic response is obtained from the transfer functions of frequency domain models. The methodology is demonstrated on ventilated systems. The results show that the methodology can significantly improve the design and operation of active BITES systems, and hence improve their thermal and energy performance. The dynamic response of different sizes of systems is presented to provide useful information for design selection. It is shown that concrete thickness of 0.20.3m is a good value to initiate design. Other important application considerations are also discussed.

Yuxiang Chen; Khaled E. Galal; Andreas K. Athienitis

2014-01-01T23:59:59.000Z

429

Review of the integrated thermal and nonthermal treatment system studies. Final report  

SciTech Connect

This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1 -- issued July 1994; Integrated Thermal Treatment System Study, Phase 2 -- issued February 1996; and Integrated Nonthermal Treatment System Study -- drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

NONE

1996-10-01T23:59:59.000Z

430

Advanced thermal barrier coating system development: Technical progress report  

SciTech Connect

Objectives are to provide an improved TBC system with increased temperature capability and improved reliability, for the Advanced Turbine Systems program (gas turbine). The base program consists of three phases: Phase I, program planning (complete); Phase II, development; and Phase III (selected specimen-bench test). Work is currently being performed in Phase II.

NONE

1996-08-07T23:59:59.000Z

431

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

Steinfeld, G.; Meyers, S.J.; Lee, A.

1996-09-10T23:59:59.000Z

432

Energy efficient HVAC system features thermal storage and heat recovery  

SciTech Connect

This article describes a HVAC system designed to efficiently condition a medical center. The topics of the article include energy efficient design of the HVAC system, incentive rebate program by the local utility, indoor air quality, innovative design features, operations and maintenance, payback and life cycle cost analysis results, and energy consumption.

Bard, E.M. (Bard, Rao + Athanas Consulting Engineering Inc., Boston, MA (United States))

1994-03-01T23:59:59.000Z

433

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

434

Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage  

Science Journals Connector (OSTI)

Abstract Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200MWe capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWht and LCE (levelized cost of electricity) less than 6/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant.

K. Nithyanandam; R. Pitchumani

2014-01-01T23:59:59.000Z

435

Active charge/passive discharge solar heating systems: thermal analysis  

SciTech Connect

The performance of active charge/passive discharge solar space-heating systems is analyzed. This type of system combines liquid-cooled solar collector panels with a massive integral storage component that passively heats the building interior by radiation and free convection. The TRNSYS simulation program is used to evaluate system performance and to provide input for the development of a simplified analysis method. This method, which provides monthly calculations of delivered solar energy, is based on Klein's Phi-bar procedure and data from hourly TRNSYS simulations. The method can be applied to systems using a floor slab, a structural wall, or a water tank as the storage component. Important design parameters include collector area and orientation, building heat loss, collector and heat-exchanger efficiencies, storage capacity, and storage to room coupling.

Swisher, J.

1981-01-01T23:59:59.000Z

436

Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems  

E-Print Network (OSTI)

a common viewing plane perpen- dicular to a FLIR model P60ThermaCAM (FLIR Systems Inc. , North Billerica,For our experiments, the FLIR camera was set to display

Ryoo, Na; Kwon, Ji-Won; Wee, Won; Miller, Kevin M; Han, Young

2013-01-01T23:59:59.000Z

437

Thermal and mechanical development of the East African Rift System  

E-Print Network (OSTI)

The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

Ebinger, Cynthia Joan

1988-01-01T23:59:59.000Z

438

Sheet beam model for intense space-charge: with application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam  

SciTech Connect

A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet beam model is then applied to analyze several problems of fundamental interest. A sheet beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- d three-dimensional thermal equilibrium models in terms of the equilibrium structure and Deybe screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability.

Lund, Steven M.; Friedman, Alex; Bazouin, Guillaume

2011-01-10T23:59:59.000Z

439

EVACUATED TUBE COLLECTORS SIMPLIFY SOLAR THERMAL SYSTEM LAYOUT  

Science Journals Connector (OSTI)

SUMMARY Evacuated tube collectors (ETC's) differ quite markedly in their behaviour from the more familiar flat plate solar collectors. The consequences in cost of the entire system are investigated for a typical residential dwelling, making full use of the advantages offered by ETC's. A significant saving in initial cost as well as in maintenance costs can be realised. KEYWORDS Evacuated tube collectors; solar system layout; freeze protection; overheat protection.

C.W.J. van Koppen; P. Verhaart

1986-01-01T23:59:59.000Z

440

Depositional systems distribution of the lower Oligocene Vicksburg Formation, TX  

SciTech Connect

The lower Oligocene Vicksburg Formation of Texas is situated between the upper Eocene Jackson Group and the upper Oligocene Frio Formation. The paleogeography of the Texas Gulf coastal plain during the early Oligocene is typical of a progradational passive continental margin. However, a detailed regional depositional systems analysis of stratigraphic units, such as the Vicksburg, within a mature petroleum basin can yield results beneficial in both exploration and development. Stratigraphic plays are determined from the distribution of depositional systems, and reservoir characteristics are heavily influenced by conditions of sedimentation. Two primary depocenters (and exploration fairways) of the Texas Vicksburg were the Houston Embayment and the Rio Grande Embayment; they were separated by a deep-rooted structural nose in central Texas: the San Marcos arch. Within the embayments, deltaic depositional systems merged along strike with barrier/strand plain systems. Updip, fluvial systems traversed coastal plain units. On the seaward edge of the paralic systems, sand and mud deposits prograded across, and built up over, the relict Jackson shelf and shelf margin. Contemporaneous growth faulting controlled deltaic depositional patterns in the Rio Grande Embayment and, to a lesser degree, in the Houston Embayment. A barrier/strand plain system within an interdeltaic coastal bight extended across the northern flank of the San Marcos arch. Several minor wave-dominated delta complexes were interspersed within this regional setting. The southern flank of the arch was influenced by the fluvial systems of the Rio Grande Embayment that established another wave-dominated delta. Deposition of the Vicksburg progradational paralic sediments was initiated seaward of the Jackson coastal position. A brief, minor transgression interrupted the progradational pattern during middle Vicksburg deposition.

Coleman, J.; Galloway, W.E. (Univ. of Texas, Austin (USA))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems  

Office of Scientific and Technical Information (OSTI)

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report March 31, 2012 Michael Schuller, Frank Little, Darren Malik, Matt Betts, Qian Shao, Jun Luo, Wan Zhong, Sandhya Shankar, Ashwin Padmanaban The Space Engineering Research Center Texas Engineering Experiment Station Texas A&M University Abstract We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials,

442

Task 39 Exhibition Assembly of Polymeric Components for a New Generation of Solar Thermal Energy Systems  

Science Journals Connector (OSTI)

Abstract IEA SHC Task 39 is dedicated to the development, optimization and deployment of materials and designs for polymer based solar thermal systems and components. To increase the confidence in polymeric solar thermal applications, Task 39 actively supports international research activities and seeks to promote successful applications and state-of-the-art products. For the SHC conference 2013, different polymeric components suitable for domestic hot water preparation and space heating were singled out for an exhibition. Promising polymeric collectors, air collectors, thermosiphons, storage tanks and other components from industrial partners all over the world were brought to Freiburg and assembled at the Fraunhofer-Institute for Solar Energy Systems ISE. The resulting SHC Task 39 Exhibition of polymeric components shows the feasibility of all-polymeric solar thermal systems and highlights their potential, especially as scalable and modular applications for building integration or as export products to sunny regions.

Michael Koehl; Sandrin Saile; Andreas Piekarczyk; Stephan Fischer

2014-01-01T23:59:59.000Z

443

Differential evolution applied for reliability optimization of radial distribution systems  

Science Journals Connector (OSTI)

This paper describes a methodology for reliability enhancement of radial distribution system by determining optimal values of repair times and failure rates of each section. Penalty cost functions have been constructed as function of failure rates and repair times. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered. The problem has been decomposed in two stages. One stage determines the optimum failure rates and second stage optimizes repair times satisfying constraints. A population based approach, i.e. differential evolution (DE) has been used as optimization technique. The algorithm has been implemented on a sample test system. Results obtained have been compared with those obtained using particle swarm optimization (PSO) and co-ordinated aggregation based particle swarm optimization techniques (CAPSO).

L.D. Arya; S.C. Choube; Rajesh Arya

2011-01-01T23:59:59.000Z

444

Rigid foam polyurethane (PU) derived from castor oil (Ricinus communis) for thermal insulation in roof systems  

Science Journals Connector (OSTI)

This paper discusses the response of the thermal insulation lining of rigid foam polyurethane (PU) derived from castor oil (Ricinus communis) in heat conditions, based on dynamic climate approach. Liners have been widely used, because the coverage of buildings is responsible for the greatest absorption of heat by radiation, but the use of PU foam derived from this vegetal oil is unprecedented and has the advantage of being biodegradable and renewable. The hot wire parallel method provided the thermal conductivity value of the foam. The thermogravimetric analysis enabled the study of the foam decomposition and its lifetime by kinetic evaluation that involves the decomposition process. The PU foam thermal behavior analysis was performed by collecting experimental data of internal surface temperature measured by thermocouples and assessed by representative episode of the climatic fact. The results lead to the conclusion that the PU foam derived from castor oil can be applied to thermal insulation of roof systems and is an environmentally friendly material.

Grace Tibrio Cardoso; Salvador Claro Neto; Francisco Vecchia

2012-01-01T23:59:59.000Z

445

A Microkernel Middleware Architecture for Distributed Embedded Real-Time Systems  

E-Print Network (OSTI)

microcontrollers and (ii) development of a permanent monitoring distributed system for an oil drilling application control embedded distributed system for oil drilling application.. A comparison of the OSA+ approach

Ungerer, Theo

446

Spin-dependent thermal and electrical transport in a spin-valve system Zheng-Chuan Wang,1  

E-Print Network (OSTI)

Spin-dependent thermal and electrical transport in a spin-valve system Zheng-Chuan Wang,1 Gang Su,1 governed by thermal processes at high temperature. The so-called spin-valve phenomenon is clearly uncovered, the quantum size effect on the thermal conduc- tance and the Peltier coefficient,2 the diffusive thermopower

Gao, Song

447

A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators  

Science Journals Connector (OSTI)

In recent years, Distributed Generators (DGs) connected to the distribution network have received increasing attention. The connection of enormous \\{DGs\\} into existing distribution network changes the operation of distribution systems. Because of the small X/R ratio and radial structure of distribution systems, \\{DGs\\} affect the daily Volt/Var control. This paper presents a new algorithm for multiobjective daily Volt/Var control in distribution systems including Distributed Generators (DGs). The objectives are costs of energy generation by \\{DGs\\} and distribution companies, electrical energy losses and the voltage deviations for the next day. A new optimization algorithm based on a Chaotic Improved Honey Bee Mating Optimization (CIHBMO) is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. Since objectives are not the same, a fuzzy system is used to calculate the best solution. The plausibility of the proposed algorithm is demonstrated and its performance is compared with other methods on a 69-bus distribution feeder. Simulation results illustrate that the proposed algorithm has better outperforms the other algorithms.

Taher Niknam

2011-01-01T23:59:59.000Z

448

Advanced thermal barrier coating system development. Technical progress report  

SciTech Connect

The objectives of the program are to provide an improved TBC system with increased temperature capability and improved reliability relative to current state of the art TBC systems. The development of such a coating system is essential to the ATS engine meeting its objectives. The base program consists of three phases: Phase 1: Program Planning--Complete; Phase 2: Development; Phase 3: Selected Specimen--Bench Test. Work is currently being performed in Phase 2 of the program. In Phase 2, process improvements will be married with new bond coat and ceramic materials systems to provide improvements over currently available TBC systems. Coating reliability will be further improved with the development of an improved lifing model and NDE techniques. This will be accomplished by conducting the following program tasks: II.1 Process Modeling; II.2 Bond Coat Development; II.3 Analytical Lifing Model; II.4 Process Development; II.5 NDE, Maintenance and Repair; II.6 New TBC Concepts. A brief summary is given of progress made in each of these 6 areas.

NONE

1996-06-10T23:59:59.000Z

449

Advanced thermal barrier coating system development. Technical progress report  

SciTech Connect

The objectives of the program are to provide an improved TBC system with increased temperature capability and improved reliability relative to current state of the art TBC systems. The development of such a coating system is essential to the ATS engine meeting its objectives. The base program consists of three phases: Phase 1: Program Planning--Complete; Phase 2: Development; Phase 3: Selected Specimen--Bench Test. Work is currently being performed in Phase 2 of the program. In Phase 2, process improvements will be married with new bond coat and ceramic materials systems to provide improvements over currently available TBC systems. Coating reliability will be further improved with the development of an improved lifing model and NDE techniques. This will be accomplished by conducting the following program tasks: II.1 Process Modeling; II.2 Bond Coat Development; II.3 Analytical Lifing Model; II.4 Process Development; II.5 NDE, Maintenance and Repair; II.6 New TBC Concepts. A brief summary of progress made in each of these 6 areas is given.

NONE

1996-10-04T23:59:59.000Z

450

Entropy Production in Non-Linear, Thermally Driven Hamiltonian Systems  

E-Print Network (OSTI)

We consider a finite chain of non-linear oscillators coupled at its ends to two infinite heat baths which are at different temperatures. Using our earlier results about the existence of a stationary state, we show rigorously that for arbitrary temperature differences and arbitrary couplings, such a system has a unique stationary state. (This extends our earlier results for small temperature differences.) In all these cases, any initial state will converge (at an unknown rate) to the stationary state. We show that this stationary state continually produces entropy. The rate of entropy production is strictly negative when the temperatures are unequal and is proportional to the mean energy flux through the system.

Jean-Pierre Eckmann; Claude-Alain Pillet; Luc Rey-Bellet

1998-10-30T23:59:59.000Z

451

Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance  

E-Print Network (OSTI)

zones. Variable-speed fan coil units ( FCU) supply air tounit (AHU) including an economizer, chilled water cooling coil, hot water heating coil and supply fan.

Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

2012-01-01T23:59:59.000Z

452

Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance  

E-Print Network (OSTI)

accurate control of the diffuser supply temperature, whileTo maintain space temperature control, room supply airflow

Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

2012-01-01T23:59:59.000Z

453

Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies  

SciTech Connect

In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy`s (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled {open_quotes}Integrated Thermal Treatment System Study - Phase 1 Results{close_quotes} (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was {open_quotes}to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.{close_quotes} The study also {open_quotes}identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.{close_quotes} This study evaluated ten primary thermal treatment technologies, organized into complete {open_quotes}cradle-to-grave{close_quotes} systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews.

NONE

1996-12-01T23:59:59.000Z

454

Installation of PV systems in GreeceReliability improvement in the transmission and distribution system  

Science Journals Connector (OSTI)

Photovoltaic (PV) power systems are becoming one of the most developing investment areas in the field of Renewable Energy Sources (RES). A statement of the status quo of PV power systems in Greece, and their contribution towards the improvement of power system reliability, is the scope of the present paper. Siting and installation of PV power systems is performed according to a recent Greek law, along with environmental and geographical constraints. Meteorological data are computed, formulated and imported to appropriate software in order to simulate the PV units and generate their power output. Data for unserved loads, resulting from load shedding during peak hours, are compared to the above estimated power production. Assuming that a proportion of the eventually unsupplied power could be provided by the accessed power generation of the PV units, the reliability of both transmission and distribution system is improved. The impact on the transmission system is shown by an improvement of LOLP and LOEP indices, whereas peak shaving for the Interconnected Greek Transmission System (IGTS) is also illustrated. For the distribution system the impact is quantified using the distribution system reliability indices SAIDI, SAIFI, and CAIDI. Finally, the resulting improvement is also expressed in financial terms.

Aggelos S. Bouhouras; Antonios G. Marinopoulos; Dimitris P. Labridis; Petros S. Dokopoulos

2010-01-01T23:59:59.000Z

455

Systems Management with Distributed Objects: Porting SNMP Agents to a CORBA Environment  

E-Print Network (OSTI)

Systems Management with Distributed Objects: Porting SNMP Agents to a CORBA Environment NM M TEAM the management of these systems in an efficient manner. Currently, this is not the case: while no such CORBA. Keywords: CORBA, Distributed Objects, Distributed Systems Management, Middleware 1 Introduction

456

Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters  

E-Print Network (OSTI)

1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram power distribution system of a next generation transport aircraft is addressed. Detailed analysis with the analysis of subsystem integration in power distribution systems of next generation transport aircraft

Lindner, Douglas K.

457

Action Models: A Reliability Modeling Formalism for Fault-Tolerant Distributed Computing Systems  

E-Print Network (OSTI)

Action Models: A Reliability Modeling Formalism for Fault-Tolerant Distributed Computing Systems. Introduction Model-based evaluation of the reliability of distributed systems has traditionally required expert- proach to analyze the reliability of fault-tolerant distributed systems. More in particular, we want

Newcastle upon Tyne, University of

458

Distributed digital real-time control system for TCV tokamak  

Science Journals Connector (OSTI)

Abstract A new digital feedback control system (named the SCD Systme de Contrle Distribu) has been developed, integrated and used successfully to control TCV (Tokamak Configuration Variable) plasmas. The system is designed to be modular, distributed, and scalable, accommodating hundreds of diagnostic inputs and actuator outputs. With many more inputs and outputs available than previously possible, it offers the possibility to design advanced control algorithms with better knowledge of the plasma state and to coherently control all TCV actuators, including poloidal field (PF) coils, gas valves, the gyrotron powers and launcher angles of the electron cyclotron heating and current drive system (ECRH/ECCD) together with diagnostic triggering signals. The system consists of multiple nodes; each is a customised Linux desktop or embedded PC which may have local ADC and DAC cards. Each node is also connected to a memory network (reflective memory) providing a reliable, deterministic method of sharing memory between all nodes. Control algorithms are programmed as block diagrams in Matlab-Simulink providing a powerful environment for modelling and control design. The C code is generated automatically from the Simulink block diagram and compiled, with the Simulink Embedded Coder (SEC, formerly Real-Time Workshop Embedded Coder), into a Linux shared library (.so file) and distributed to target nodes in the discharge preparation phase. During the TCV discharge, an application on each node is executed that dynamically loads the shared library at runtime. In order to obtain reliable and reproducible real time execution of the algorithm, all interrupts to the CPU on each node are suspended just before firing the shot and re-enabled afterwards. Since installation, the new digital control system has been used for a multitude of plasma control applications, ranging from basic experiments of coil current and density control to advanced experiments of MHD (magnetohydrodynamics) and plasma profile control, as well as real-time plasma transport simulations. Recently, a real-time version of a plasma equilibrium reconstruction code was developed and implemented, providing the future possibility to control the plasma shape and profiles directly during the discharge evolution. This paper presents the architecture of the new control system, its integration into the TCV plant and a sample of control applications used for TCV plasma discharges.

H.B. Le; F. Felici; J.I. Paley; B.P. Duval; J.-M. Moret; S. Coda; O. Sauter; D. Fasel; P. Marmillod

2014-01-01T23:59:59.000Z

459

Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada  

Science Journals Connector (OSTI)

This document presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto, Canada, were estimated. TRNSYS, a system simulation software tool, was used to model yearly performance of a conventional GSHP system as well as a proposed hybrid GSHP system. Actual yearly data collected from the site were examined against the simulation results. This study demonstrates that hybrid ground source heat pump system combined with solar thermal collectors is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground heat exchanger (GHX) length. Combining three solar thermal collectors with a total area of 6.81m2 to a GSHP system will reduce GHX length by 15%. Sensitivity analysis was carried out for different cities of Canada and resulted that Vancouver, with mildest climate compared to other cities, was the best candidate for the proposed solar hybrid GSHP system with a GHX length reduction to solar collector area ratio of 7.64m/m2. Overall system economic viability was also evaluated using a 20-year life-cycle cost analysis. The analysis showed that there is small economic benefit in comparing to the conventional GSHP system. The net present value of the proposed hybrid system based on the 20-year life-cycle cost analysis was estimated to be in a range of 3.7%7.6% (or $1500 to $3430 Canadian dollar) lower than the conventional GSHP system depending on the drilling cost.

Farzin M. Rad; Alan S. Fung; Wey H. Leong

2013-01-01T23:59:59.000Z

460

Time-cost analysis of a quantum key distribution system clocked at 100 MHz  

Science Journals Connector (OSTI)

We describe the realization of a quantum key distribution (QKD) system clocked at 100 MHz. The system includes classical postprocessing implemented via software, and is operated over a...

Mo, X F; Lucio-Martinez, I; Chan, P; Healey, C; Hosier, S; Tittel, W

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Compression of felt?type thermal insulation layer for underfloor heating system and floor impact sound  

Science Journals Connector (OSTI)

In Korea almost every house uses underfloor heating which has advantages of thermal comfort and energy efficiency. However when it is constructed for high?rise apartment houses it yields a problem in floor impact sound insulation. It accounts for the fact that a foam?type thermal insulator sandwiched between structural slab and heating floor functions as a spring and easily transmits impacts on the floor to the slab. In that case the system's transmissibility is determined by dynamic stiffness of the thermal insulation layer and the lower the dynamic stiffness is the more the floor impact is isolated. For that reason apartments construction companies are attempting to lower the dynamic stiffness of the thermal insulation layer for impact sound reduction. As part of the attempt felt?type materials with relatively low dynamic stiffness such as glass wool or polyester felt are considered as a substitution for the foam?type thermal insulator. However there is a possibility that compression of the felt?type materials would increase the dynamic stiffness and the impact sound insulation effect at early stage might be weakened in the long term. This paper investigates the correlation between gradual compression of the felt?type thermal insulation layer and the impact sound variation.

Tongjun Cho; Hyun?Min Kim

2008-01-01T23:59:59.000Z

462

Distribution System Voltage Performance Analysis for High-Penetration Photovoltaics  

SciTech Connect

This report examines the performance of commonly used distribution voltage regulation methods under reverse power flow.

Liu, E.; Bebic, J.

2008-02-01T23:59:59.000Z

463

Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth  

Science Journals Connector (OSTI)

Abstract Load growth in a system is a natural phenomenon. With the increase in load demand, system power loss and voltage drop increases. Distributed generators (DGs) are one of the best solutions to cope up with the load growth if they are allocated appropriately in the distribution system. In this work, optimal size and location of multiple \\{DGs\\} are found to cater the incremental load on the system and minimization of power loss without violating system constraints. For this a predetermined annual load growth up to five years is considered with voltage regulation as a constraint. The particle swarm optimization with constriction factor approach is applied to determine the optimum size and location with multiple DGs. To see the effect of load growth on system, 33-node IEEE standard test case is considered. It is observed that with the penetration of multiple number of \\{DGs\\} in distribution system, there is great improvement in several distribution system parameters. Moreover, the loading capacity of distribution system is enhanced through DG placement and its techno-economic benefits are also established.

Khyati D. Mistry; Ranjit Roy

2014-01-01T23:59:59.000Z

464

Distributed Generation Systems Inc DISGEN | Open Energy Information  

Open Energy Info (EERE)

DISGEN DISGEN Jump to: navigation, search Name Distributed Generation Systems Inc (DISGEN) Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of Green Mountain (10.4 MW) and Ponnequin (16 MW) wind generation projects in the US. Manages everything from site selection through construction. Coordinates 45.300538°, -88.522572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.300538,"lon":-88.522572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Log Summarization and Anomaly Detection for TroubleshootingDistributed Systems  

SciTech Connect

Today's system monitoring tools are capable of detectingsystem failures such as host failures, OS errors, and network partitionsin near-real time. Unfortunately, the same cannot yet be said of theend-to-end distributed softwarestack. Any given action, for example,reliably transferring a directory of files, can involve a wide range ofcomplex and interrelated actions across multiple pieces of software:checking user certificates and permissions, getting details for allfiles, performing third-party transfers, understanding re-try policydecisions, etc. We present an infrastructure for troubleshooting complexmiddleware, a general purpose technique for configurable logsummarization, and an anomaly detection technique that works in near-realtime on running Grid middleware. We present results gathered using thisinfrastructure from instrumented Grid middleware and applications runningon the Emulab testbed. From these results, we analyze the effectivenessof several algorithms at accurately detecting a variety of performanceanomalies.

Gunter, Dan; Tierney, Brian L.; Brown, Aaron; Swany, Martin; Bresnahan, John; Schopf, Jennifer M.

2007-08-01T23:59:59.000Z

466

Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCR systems  

E-Print Network (OSTI)

Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCRE Journal. Keywords: Multi-component, , evaporation, UWS, Adbue, urea decomposition, thermolysis SCR Catalytic Reduction (SCR) systems. In the multi-component evaporation model, the influence of urea

Boyer, Edmond

467

MAGNET/CRYOCOOLER INTEGRATIONFOR THERMAL STABILITY IN CONDUCTION-COOLED SYSTEMS  

E-Print Network (OSTI)

MAGNET/CRYOCOOLER INTEGRATIONFOR THERMAL STABILITY IN CONDUCTION-COOLED SYSTEMS H.-M. Chang and K The stability conditions that take into accounts the size of superconducting magnets and the refrigeration the refrigeration, causing a rise in the temperature of the magnet winding and leading to burnout. It is shown

Chang, Ho-Myung

468

Development of encapsulated lithium hydride thermal energy storage for space power systems  

SciTech Connect

Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

Morris, D.G.; Foote, J.P.; Olszewski, M.

1987-12-01T23:59:59.000Z

469

Pressure drops for direct steam generation in line-focus solar thermal systems  

E-Print Network (OSTI)

the focus of the solar collector, and then generate steam outside the collector in a large heat exchanger applicable to DSG in long horizontal pipes as required for the current work with a line-focus collector. #12Pressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham

470

Thermal Economic Analysis of an Underground Water Source Heat Pump System  

E-Print Network (OSTI)

The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

Zhang, W.; Lin, B.

2006-01-01T23:59:59.000Z

471

Electrical-Thermal Co-analysis for Power Delivery Networks in 3D System Integration  

E-Print Network (OSTI)

Electrical-Thermal Co-analysis for Power Delivery Networks in 3D System Integration Jianyong Xie1 Rubin3 1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 2 IBM Package Design, Development, and Electrical Services Group, Poughkeepsie, N.Y. 12601 3 IBM T

Swaminathan, Madhavan

472

Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System  

Energy.gov (U.S. Department of Energy (DOE))

The Savannah River National Laboratory (SRNL), under the National Laboratory R&D competitive funding opportunity, is collaborating with Curtin University (CU) to evaluate new metal hydride materials for thermal energy storage (TES) that meet the SunShot cost and performance targets for TES systems.

473

Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance  

Science Journals Connector (OSTI)

...light into thermal energy. Nonetheless, pioneering...used for treatment planning, localization...the temperature distribution during the treatments...Echospeed, General Electric Medical Systems...Workstation, General Electric Medical Systems...sections to assess the distribution of tissue damage...

L. R. Hirsch; R. J. Stafford; J. A. Bankson; S. R. Sershen; B. Rivera; R. E. Price; J. D. Hazle; N. J. Halas; J. L. West

2003-01-01T23:59:59.000Z

474

Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations  

SciTech Connect

This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

Brancucci Martinez-Anido, C.; Hodge, B. M.

2014-09-01T23:59:59.000Z

475

Energy efficient control of HVAC systems with ice cold thermal energy storage  

Science Journals Connector (OSTI)

Abstract In heating, ventilation and air conditioning (HVAC) systems of medium/high cooling capacity, energy demands can be matched with the help of thermal energy storage (TES) systems. If properly designed, TES systems can reduce energy costs and consumption, equipment size and pollutant emissions. In order to design efficient control strategies for TES systems, we present a model-based approach with the aim of increasing the performance of HVAC systems with ice cold thermal energy storage (CTES). A simulation environment based on Matlab/Simulink is developed, where thermal behaviour of the plant is analysed by a lumped formulation of the conservation equations. In particular, the ice CTES is modelled as a hybrid system, where the water phase transitions (solidmeltingliquid and liquidfreezingsolid) are described by combining continuous and discrete dynamics, thus considering both latent and sensible heat. Standard control strategies are compared with a non-linear model predictive control (NLMPC) approach. In the simulation examples model predictive control proves to be the best control solution for the efficient management of ice CTES systems.

Alessandro Beghi; Luca Cecchinato; Mirco Rampazzo; Francesco Simmini

2014-01-01T23:59:59.000Z

476

Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems  

Science Journals Connector (OSTI)

Abstract Building-Integrated (BI) solar thermal are systems which are integrated into the building, are a new tendency in the building sector and they provide multiple advantages in comparison with the Building-Added (BA) solar thermal configurations. The present investigation is a critical review about Life Cycle Analysis (LCA) studies of solar systems. Emphasis is given on the BI solar thermal installations. Studies about BA configurations and systems which produce electrical (or electrical/thermal) energy are also presented in order to provide a more complete overview of the literature. The influence of the BI solar thermal systems on building environmental profile is also examined. Critical issues such as ongoing standardization and environmental indicators are discussed. The results reveal that there is a gap in the field of LCA about real BI solar thermal (and solar thermal/electrical) installations. Thus, there is a need for more LCA studies which examine the BI solar thermal system itself and/or in conjunction with the building. Active systems which could provide energy for the building would be interesting to be studied. Investigations about the influence of the BI solar thermal systems on building life-cycle performance could also provide useful information in the frame of a more sustainable built environment.

Chr. Lamnatou; D. Chemisana; R. Mateus; M.G. Almeida; S.M. Silva

2015-01-01T23:59:59.000Z

477

Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating  

Science Journals Connector (OSTI)

Abstract This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 2025% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.

Hakan Aydin; Ho-Saeng Lee; Hyeon-Ju Kim; Seung Kyoon Shin; Keunhan Park

2014-01-01T23:59:59.000Z

478

An on-line information system for radioisotope thermal generator production  

SciTech Connect

An on-line production information system has been designed to support radioisotope thermal generator assembly and testing in a new facility being built at the Department of Energy Hanford Site in Washington State. This system is intended to make handling the large volumes of information associated with radioisotope thermal generator production and certification more efficient with less opportunity for error than traditional paper methods. It provides for tracking materials, implementing work procedures directly from computer terminals, and cross referencing among materials, procedures, and other documents related to production. This system will be implemented on a network of microcomputers using UNIX{sup TM} for its operating system. It has been designed to allow increased capabilities to be added as operating experience with the new facility dictates.

Kiebel, G.R.; Wiemers, M.J. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (US))

1991-01-01T23:59:59.000Z

479

4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems  

Science Journals Connector (OSTI)

Abstract This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part of the implementation of overall sustainable energy systems. The basic assumption is that district heating and cooling has an important role to play in future sustainable energy systems including 100 percent renewable energy systems but the present generation of district heating and cooling technologies will have to be developed further into a new generation in order to play such a role. Unlike the first three generations, the development of 4GDH involves meeting the challenge of more energy efficient buildings as well as being an integrated part of the operation of smart energy systems, i.e. integrated smart electricity, gas and thermal grids.

Henrik Lund; Sven Werner; Robin Wiltshire; Svend Svendsen; Jan Eric Thorsen; Frede Hvelplund; Brian Vad Mathiesen

2014-01-01T23:59:59.000Z

480

Controlling and maximizing effective thermal properties by manipulating transient behaviors during energy-system cycles  

E-Print Network (OSTI)

Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers' needs. In the present study, behaviors related to both thermal conductivities ($\\kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $\\kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as "nonlinear thermal bias", is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transien...

Gao, Z J; Merlitz, H; Pagni, P J; Chen, Z

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

System Integration of Distributed Power for Complete Building Systems: Phase 1 Report  

SciTech Connect

This report describes NiSource Energy Technologies Inc.'s base year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of CHP systems in end-user environments and a further understanding of electric interconnection and siting issues. Important results from the first year were a survey of the state of the art of interconnection issues associated with distributed generation, a survey of the local zoning requirements for the NiSource service territory, and the acquisition of data about the operation, reliability, interconnection, and performance of CHP systems and components of two test sites.

Kramer, R.

2003-12-01T23:59:59.000Z

482

Abstract--Multimedia groupware systems provide rich support for distributed team work. Yet effective design of these systems is  

E-Print Network (OSTI)

evolve design ideas. The problem is that multimedia groupware is hard to prototype because distributed that inform the design of universally accepted toolkits for building distributed multimedia systems: we1 Abstract--Multimedia groupware systems provide rich support for distributed team work. Yet

Greenberg, Saul

483

Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013  

SciTech Connect

Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

Jonemann, M.

2013-05-01T23:59:59.000Z

484

Building thermal envelope systems and materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-10-01T23:59:59.000Z

485

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-12-01T23:59:59.000Z

486

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-01-01T23:59:59.000Z

487

Performance and Reliability of Non-Markovian Heterogeneous Distributed Computing Systems  

E-Print Network (OSTI)

Performance and Reliability of Non-Markovian Heterogeneous Distributed Computing Systems Jorge E-of-service (QoS), and service reliability associated with heterogeneous parallel and distributed computing-Markovian processes, distributed queuing theory, reliability, distributed computing, load balancing. ? 1 INTRODUCTION

Hayat, Majeed M.

488

ALBL: an adaptive load balancing algorithm for distributed web systems  

Science Journals Connector (OSTI)

This paper presents an adaptive load balancing algorithm (ALBL) for cluster-based web systems. The balancing policy is based on two criteria: HTTP process time and network delay. The former describes web server ability to process a forthcoming request, while the latter tries to estimate network conditions. Periodic criteria calculations are performed by agents at the web switch and the weight estimation process is transparent to web servers enhancing therefore distributed system's scalability. We put to test our implementation against known blind selection balancing algorithms used at web-farms such as: Round Robin, stateful ones such as Least Connections and adaptive ones such as Least Load. We also put to test performance and scalability of previous algorithms. From our testbed scenario results we show that ALBL algorithm outperforms stateless and stateful algorithms and also presents significant performance gains towards adaptive algorithms. We also show that our algorithm scales well as the number of balancing servers and web cluster's requests rate increases. We also pinpoint ALBL algorithm ability to predict network conditions and web servers load without the use of feedback information obtained by web servers but frequent service and network probes towards web servers issued by the web switch.

Sotirios Kontogiannis; Alexandros Karakos

2014-01-01T23:59:59.000Z

489

Cybersecurity through Real-Time Distributed Control Systems  

SciTech Connect

Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequate and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.

Kisner, Roger A [ORNL; Manges, Wayne W [ORNL; MacIntyre, Lawrence Paul [ORNL; Nutaro, James J [ORNL; Munro Jr, John K [ORNL; Ewing, Paul D [ORNL; Howlader, Mostofa [ORNL; Kuruganti, Phani Teja [ORNL; Wallace, Richard M [ORNL; Olama, Mohammed M [ORNL

2010-04-01T23:59:59.000Z

490

Linac cryogenic distribution system maintenance and upgrades at JLab  

SciTech Connect

The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

Dixon, K.; Wright, M.; Ganni, V. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States)

2014-01-29T23:59:59.000Z

491

Linac cryogenic distribution system maintenance and upgrades at Jlab  

SciTech Connect

The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

Dixon, Kelly D. [JLAB; Wright, Mathew C. [JLAB; Ganni, Venkatarao [JLAB

2014-01-01T23:59:59.000Z

492

Comparison of thermal neutron distributions within shield materials obtained by experiments, SN and monte carlo code calculations  

Science Journals Connector (OSTI)

......The TLDs for thermal neutrons, which consist...measurements of induced activity of gold...measurement of thermal neutron fluence was...region of the energy range 5.04...Watt neutron fission spectrum of 252Cf and......

Yoshihiro Asano; Takeshi Sugita; Takenori Suzaki; Hideyuki Hirose

2005-12-20T23:59:59.000Z

493

Development of a Combined Hot Water and Sorption Store for Solar Thermal Systems  

Science Journals Connector (OSTI)

Abstract The motivation for the development of a combined hot water and sorption store is to complement the advantages and to reduce the disadvantages of the two particular storage technologies. Hot water stores offer high heat supply rates but are particularly suitable for short term storage due to heat losses whereas for a sorption store the power drain is low but it shows the advantage of a high storage density and long-term heat storage almost without losses. The combined hot water and sorption store has been developed using the example of a solar thermal system for domestic hot water preparation. The store consists of a radial stream adsorber integrated in a hot water store. Adsorption and desorption experiments in laboratory have been conducted with a prototype store in full-scale. A numerical model of the combined store has been developed and annual simulations of a solar thermal system including a combined hot water and sorption store have been conducted. The thermal performance has been compared to those of reference hot water stores. The results of the experimental and numerical investigations will be presented in this paper and the benefit of a combined hot water and sorption store applied for solar thermal systems will be discussed.

Rebecca Weber; Henner Kerskes; Harald Drck

2014-01-01T23:59:59.000Z

494

Distributed Solar PV for Electricity System Resiliency: Policy...  

NLE Websites -- All DOE Office Websites (Extended Search)

supply. Members of the community installed a total of 700 kW of distributed rooftop solar capacity. CES units were added at the substation and distribution circuits, along with...