Sample records for thermal distribution systems

  1. Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system

    E-Print Network [OSTI]

    Laughlin, David E.

    Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system X dependence of the thermal stability factor, the width of the thermal energy barrier distribution- ropy energy distribution and the interaction and the thermal energy barrier distribution determined

  2. An FPGA-based Distributed Computing System with Power and Thermal Management Capabilities

    E-Print Network [OSTI]

    Qiu, Qinru

    An FPGA-based Distributed Computing System with Power and Thermal Management Capabilities Hao Shen of New York Binghamton, NY, 13902, USA ABSTRACT Runtime power and thermal management has attracted step in the research of distributed power and thermal management. Compared to software simulation

  3. Distributed Task Migration for Thermal Management in Many-core Systems

    E-Print Network [OSTI]

    Qiu, Qinru

    chip complexity and power envelope elevate peak temperatures of chip and imbalance the thermal gradientDistributed Task Migration for Thermal Management in Many-core Systems Yang Ge, Parth Malani, Qinru York {yge2, pmalani1, qqiu}@binghamton.edu ABSTRACT In the deep submicron era, thermal hot spots

  4. Commercial thermal distribution systems, Final report for CIEE/CEC

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    thermal envelope..Branch Duct -Hot-Air Duct Outside Thermal Envelope. - - -Cold-Air Duct Outside Thermal Envelope =="-"Hot-Air Duct

  5. Thermal analysis of directly buried conduit heat-distribution systems

    SciTech Connect (OSTI)

    Fang, J.B.

    1990-08-01T23:59:59.000Z

    The calculations of heat losses and temperature field for directly buried conduit heat distribution systems were performed using the finite element computer programs. The finite element analysis solved two-dimensional, steady-state heat transfer problems involving two insulated parallel pipes encased in the same conduit casing and in separate casings, and the surrounding earth. Descriptions of the theoretical basis, computational scheme, and the data input and outputs of the developed computer programs are presented. Numerical calculations were carried out for predicting the temperature distributions within the existing high temperature hot water distribution system and two insulated pipes covered in the same metallic conduit and the surrounding soil. The predicted results generally agree with the experimental data obtained at the test site.

  6. ENERGY SAVINGS POTENTIALS IN RESIDENTIAL AND SMALL COMMERCIAL THERMAL DISTRIBUTION SYSTEMS - AN UPDATE

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    2003-10-31T23:59:59.000Z

    This is an update of a report (Andrews and Modera 1991) that quantified the amounts of energy that could be saved through better thermal distribution systems in residential and small commercial buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling from the space-conditioning equipment to the conditioned space. This update involves no basic change in methodology relative to the 1991 report, but rather a review of the additional information available in 2003 on the energy-use patterns in residential and small commercial buildings.

  7. NREL: Energy Systems Integration Facility - Thermal Distribution Bus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure The foundation ofThermal

  8. Commercial thermal distribution systems, Final report for CIEE/CEC

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    another Building? Cooling Capacity SUPPLY-AIR SYSTEM CoolingMODE. During cooling operation, the supply temperature swingafter the cooling coil), the supply air temperature rise may

  9. A Prototype Data Archive for the PIER "Thermal Distribution Systems in Commercial Buildings" Project

    E-Print Network [OSTI]

    . The Florida Solar Energy Center (FSEC) has an excellent on-line energy data base at: http archive for a selection of building energy data on thermal distribution systems in commercial buildings supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies

  10. THERMAL DISTRIBUTION SYSTEMS IN COMMERCIAL BUILDINGS Rick Diamond, Craig Wray, Darryl Dickerhoff, Nance Matson, and Duo Wang

    E-Print Network [OSTI]

    1 THERMAL DISTRIBUTION SYSTEMS IN COMMERCIAL BUILDINGS Rick Diamond, Craig Wray, Darryl Dickerhoff SYSTEMS IN COMMERCIAL BUILDINGS 2 Acknowledgements Our largest debt of gratitude is to our Energy assistance guiding us through the EMCS system of the large commercial test building. The building management

  11. Thermal environment in indoor spaces with under-floor air distribution systems: 2. Determination of design parameters (1522-

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Thermal environment in indoor spaces with under-floor air distribution systems: 2. Determination of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA 2 Building Energy and Environment Engineering LLP, Lafayette, Indiana 47905, USA 3 School of Environmental Science and Engineering

  12. Test procedures and protocols: Their relevance to the figure of merit for thermal distribution systems. Volume 1: Informal report

    SciTech Connect (OSTI)

    Andrews, J.W.

    1993-09-01T23:59:59.000Z

    A conceptual framework is developed that categorizes measurement protocols for forced-air thermal distribution systems in small buildings. This framework is based on the distinction between two generic approaches. The {open_quote}system-comparison{close_quote} approach seeks to determine, via a pair of whole-house energy-use measurements, the difference in energy use between the house with the as-found duct system and the same house with no energy losses attributable to the thermal distribution system. The {open_quote}component loss-factor{close_quote} approach identifies and measures the individual causes of duct losses, and then builds up a value for the net overall duct efficiency, usually with the help of computer simulation. Examples of each approach are analyzed and related to a proposed Figure of Merit for thermal distribution systems. This Figure of Merit would serve as the basis for a Standard Method of Test analogous to those already in place for furnaces, boilers, air conditioners, and heat pumps.

  13. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01T23:59:59.000Z

    potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

  14. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01T23:59:59.000Z

    potential materials for thermal energy storage in buildingcogeneration coupled with thermal energy storage," AppliedN. Fumo, "Benefits of thermal energy storage option combined

  15. Maximizing Commercial Hydraulic Software Simulation in Thermal Distribution System Continuous Commissioning

    E-Print Network [OSTI]

    Chen, Q.; Xu, C.; Claridge, D. E.; Turner, W. D.; Deng, S.

    2005-01-01T23:59:59.000Z

    Hot Water ESL Energy Systems Laboratory HHW Heating Hot Water SS3 South Satellite Plant #3 TAMU Texas A&M University TEP Thermal Energy Plant UTSA University of Texas at San Antonio WC1 West Campus Plant #1 WC2 West Campus Plant #2 WC4 West... Campus Plant #4 INTRODUCTION Continuous Commissioning ® began as part of the Texas LoanSTAR program at the Energy Systems Laboratory (ESL) at Texas A&M University (TAMU). Based on current usage, instead of design intent, this process identifies...

  16. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  17. Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models

    E-Print Network [OSTI]

    Steen, David

    2014-01-01T23:59:59.000Z

    and a Ph.D. in Energy and Resources, all from the Universityof distributed energy resources," in Power and EnergyPouresmaeil, "Distributed energy resources and benefits to

  18. Measuring Advances in HVAC Distribution System Design

    E-Print Network [OSTI]

    Franconi, E.

    2011-01-01T23:59:59.000Z

    Gabel and Andresen, HVAC Secondary Toolkil. Atlanta: ASHRAE,P_02 Measuring Advances in HVAC Distribution System Designdesign and operation of the HVAC thermal distribution system

  19. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    SciTech Connect (OSTI)

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382-428 (India)

    2014-01-29T23:59:59.000Z

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

  20. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01T23:59:59.000Z

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  1. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    SciTech Connect (OSTI)

    Rothe, R.E.

    1996-09-30T23:59:59.000Z

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution`s concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the `Poisoned Tube Tank` because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service.

  2. Thermal Insulation Systems

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01T23:59:59.000Z

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  3. Correcting Thermal Distribution Problems for a Large University Campus

    E-Print Network [OSTI]

    Chen, H.; Deng, S.; Bruner, H. L.; Claridge, D. E.; Turner, W. D.

    2002-01-01T23:59:59.000Z

    VFD for pump motors larger than 5 hp. Three Way Constant Speed Systems with Blending Station (Figures 5 and 6) Figures 5 and 6 show three-way valve constant speed system with a blending station. This type of system is more widely used than... by these large campuses. If the thermal distribution efficiency is improved, the overall energy consumption of the system is also improved (Deng et al., 2000). Several options that seem to improve the thermal transmission performance include: VFD systems...

  4. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01T23:59:59.000Z

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  5. Bernstein instability driven by thermal ring distribution

    SciTech Connect (OSTI)

    Yoon, Peter H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hadi, Fazal; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan)

    2014-07-15T23:59:59.000Z

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  6. On the spatial distribution of thermal energy in equilibrium

    E-Print Network [OSTI]

    Bar-Sinai, Yohai

    2015-01-01T23:59:59.000Z

    The equipartition theorem states that in equilibrium thermal energy is equally distributed among uncoupled degrees of freedom which appear quadratically in the system's Hamiltonian. However, for spatially coupled degrees of freedom --- such as interacting particles --- one may speculate that the spatial distribution of thermal energy may differ from the value predicted by equipartition, possibly quite substantially in strongly inhomogeneous/disordered systems. Here we show that in general the averaged thermal energy may indeed be inhomogeneously distributed, but is universally bounded from above by $\\frac{1}{2}k_BT$. In addition, we show that in one-dimensional systems with short-range interactions, the thermal energy is equally partitioned even for coupled degrees of freedom in the thermodynamic limit.

  7. Proceedings of the 1992 DOE-industry thermal distribution conference

    SciTech Connect (OSTI)

    Andrews, J.W. [ed.

    1992-06-01T23:59:59.000Z

    The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE`s current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

  8. Proceedings of the 1992 DOE-industry thermal distribution conference

    SciTech Connect (OSTI)

    Andrews, J.W. (ed.)

    1992-06-01T23:59:59.000Z

    The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE's current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

  9. Simulation of Thermal Plant Optimization and Hydraulic Aspects of Thermal Distribution Loops for Large Campuses

    E-Print Network [OSTI]

    Chen, Q.

    simulation models for chilled water and heating hot water distribution systems. The simulation model was used in a $2.3 million Ross Street chilled water pipe replacement project at Texas A&M University. A second project conducted at the University... of Texas at San Antonio was used as an example to demonstrate how to identify and design an optimal distribution system by using a simulation model. The author found that the minor losses of these closed loop thermal distribution systems...

  10. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19T23:59:59.000Z

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  11. HYDRONIC BASEBOARD THERMAL DISTRIBUTION SYSTEM WITH OUTDOOR RESET CONTROL TO ENABLE THE USE OF A CONDENSING BOILER.

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    2004-10-01T23:59:59.000Z

    Use of condensing boilers in residential heating systems offers the potential for significant improvements in efficiency. For these to operate in a condensing mode the return water temperature needs to be about 10 degrees below the saturation temperature for the flue gas water vapor. This saturation temperature depends on fuel type and excess air and ranges from about 110 F to 135 F. Conventional baseboard hydronic distribution systems are most common and these are designed for water temperatures in the 180 F range, well above the saturation temperature. Operating strategies which may allow these systems to operate in a condensing mode have been considered in the past. In this study an approach to achieving this for a significant part of the heating season has been tested in an instrumented home. The approach involves use of an outdoor reset control which reduces the temperature of the water circulating in the hydronic loop when the outdoor temperature is higher than the design point for the region. Results showed that this strategy allows the boiler to operate in the condensing region for 80% of the winter heating season with oil, 90% with propane, and 95% with gas, based on cumulative degree days. The heating system as tested combines space heating and domestic hot water loads using an indirect, 40 gallon tank with an internal heat exchanger. Tests conducted during the summer months showed that the return water temperature from the domestic hot water tank heat exchanger is always below a temperature which will provide condensing operation of the boiler. In the field tests both the condensing boiler and the conventional, non-condensing boiler were in the test home and each was operated periodically to provide a direct performance comparison.

  12. Lighting system with heat distribution face plate

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10T23:59:59.000Z

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  13. Distributed Theorem Proving for Distributed Hybrid Systems

    E-Print Network [OSTI]

    Platzer, André

    system with a varying number of arbitrarily many cars. 1 Introduction Hybrid systems with joint discrete a multi-agent system, e.g., distributed car control systems. Such systems form distributed hybrid systemsDistributed Theorem Proving for Distributed Hybrid Systems David W. Renshaw, Sarah M. Loos

  14. Introduction to Distributed Systems

    E-Print Network [OSTI]

    Pous, Damien

    1 Introduction to Distributed Systems Fabienne Boyer, LIG, fabienne.boyer@inria.fr Sources: Cours d'Olivier Gruber, Sacha Krakowiak, Sara Bouchenak, UJF Fabienne Boyer, Distributed Programming 2 Objectives Study conceptual and practical aspects of distributed systems l Client-server model l Distributed protocols l

  15. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  16. FRIB cryogenic distribution system

    SciTech Connect (OSTI)

    Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States); Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2014-01-29T23:59:59.000Z

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  17. FRIB cryogenic distribution system

    SciTech Connect (OSTI)

    Ganni, Venkatarao [JLAB; Dixon, Kelly D. [JLAB; Laverdure, Nathaniel A. [JLAB; Knudsen, Peter N. [JLAB; Arenius, Dana M. [JLAB; Barrios, Matthew N. [Michigan State; Jones, S. [Michigan State; Johnson, M. [Michigan State; Casagrande, Fabio [Michigan State

    2014-01-01T23:59:59.000Z

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  18. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12T23:59:59.000Z

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  19. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07T23:59:59.000Z

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  20. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard (Pittsburgh, PA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  1. Thermalization in Quantum Systems

    E-Print Network [OSTI]

    of equilibrated states. iv. Definition for "quantum integrability". v. Many-body localization... vi. Open systems () 0 = ||2 . ETH: is approximately constant in the "energy window" of the state . ETH: For all 10 #12;Integrability 101 Quantum Integrability Classical systems: Definition: A system is integrable

  2. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  3. Distributed Optimization System

    DOE Patents [OSTI]

    Hurtado, John E. (Albuquerque, NM); Dohrmann, Clark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM)

    2004-11-30T23:59:59.000Z

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  4. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05T23:59:59.000Z

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  5. Distributed computing systems programme

    SciTech Connect (OSTI)

    Duce, D.

    1984-01-01T23:59:59.000Z

    Publication of this volume coincides with the completion of the U.K. Science and Engineering Research Council's coordinated programme of research in Distributed Computing Systems (DCS) which ran from 1977 to 1984. The volume is based on presentations made at the programme's final conference. The first chapter explains the origins and history of DCS and gives an overview of the programme and its achievements. The remaining sixteen chapters review particular research themes (including imperative and declarative languages, and performance modelling), and describe particular research projects in technical areas including local area networks, design, development and analysis of concurrent systems, parallel algorithm design, functional programming and non-von Neumann computer architectures.

  6. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, D.

    1997-03-18T23:59:59.000Z

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

  7. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, David (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  8. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  9. Onsite Wastewater Treatment Systems: Spray Distribution System

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

  10. Distributed road assessment system

    DOE Patents [OSTI]

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25T23:59:59.000Z

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  11. Thermal Storage Options for HVAC Systems

    E-Print Network [OSTI]

    Weston, R. F.; Gidwani, B. N.

    THERMAL STORAGE OPTIONS FOR HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT With the ever-increasing cost of electricity and the high demand charges levied by utility compa nies, thermal storage... for cooling is rapidly becom ing a widely recognized method to lower cooling costs. There are three maior types of thermal stor age systems: ? Ice Storage: This utilizes the latent heat of fusion of ice for thermal storage. During off Deak periods...

  12. Thermal emission microscopy measures the spa-tial distribution of temperature in a sample. Thermal

    E-Print Network [OSTI]

    per unit area emitted by an object is proportional to its absolute temperature to the fourth powerThermal emission microscopy measures the spa- tial distribution of temperature in a sample. Thermal- cause the optical power emitted by the sample is a function of its local temperature. The optical power

  13. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  14. Measuring Advances in HVAC Distribution System Design

    SciTech Connect (OSTI)

    Franconi, E.

    1998-05-01T23:59:59.000Z

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  15. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

  16. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R. J.

    1980-08-01T23:59:59.000Z

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  17. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01T23:59:59.000Z

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  18. Thermal Storage with Ice Harvesting Systems

    E-Print Network [OSTI]

    Knebel, D. E.

    1986-01-01T23:59:59.000Z

    Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

  19. Thermal Storage with Conventional Cooling Systems

    E-Print Network [OSTI]

    McGee, E. E.

    1990-01-01T23:59:59.000Z

    demand which results in lower electrical costs. The effectiveness of this 'Thermal Retention System" is determined by its design characteristics, its operational efficiency and comparative system analysis. Today's computer technology has provided...

  20. A prototype Distributed Audit System

    SciTech Connect (OSTI)

    Banning, D.L. [Sparta, Inc., El Segundo, CA (United States)

    1993-08-01T23:59:59.000Z

    Security auditing systems are used to detect and assess unauthorized or abusive system usage. Historically, security audits were confined to a single computer system. Recent work examines ways of extending auditing to include heterogeneous groups of computers (distributed system). This paper describes the design and prototype development of a Distributed Audit System (DAS) which was developed with funding received from Lawrence Livermore Laboratory and through the Master`s thesis effort performed by the author at California State University, Long Beach. The DAS is intended to provide collection, transfer, and control of audit data on distributed, heterogeneous hosts.

  1. Energy Efficiency of Distributed Environmental Control Systems

    SciTech Connect (OSTI)

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23T23:59:59.000Z

    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant’s thermal dissatisfaction below a given threshold. The DECS energy usage was calculated using the simplified thermal model. OSFA control; providing a uniform temperature to the entire building, and occupant-selected HIYW control with a thermostat at each workstation were implemented for 3 cities representing 3 different climatic regions and control scenarios. It is shown that optimization allows DECS to deliver a higher level of individual and population thermal comfort while achieving annual energy savings between 14 and 26% compared to OSFA. The optimization model also allowed us to study the influence of the partitions’ thermal resistance and the variability of internal loads at each office. These influences didn’t make significant changes in the optimized energy consumption relative to OSFA. The results show that it is possible to provide thermal comfort for each occupant while saving energy compared to OSFA Furthermore, to simplify the implementation of this approach, a fuzzy logic system has been developed to generalize the overall optimization strategy. Its performance was almost as good as the gradient system. The fuzzy system provided thermal comfort to each occupant and saved energy compared to OSFA. The energy savings of the fuzzy system were not as high as for the gradient-optimized system, but the fuzzy system avoided complete connectivity, and the optimization did not have to be repeated for each population. 3. We employed a detailed CFD model of adjacent occupied cubicles to extend the thermal-circuit model in three significant ways: (a) relax the “office wall” requirement by allowing energy to flow between zones via advection as well as conduction, (b) improve the comfort model to account both for radiation as well as convection heat transfer, and (c) support ventilation systems in which the temperature is stratified, such as in underfloor air distribution systems. Initially, three-dimensional CFD simulations of several cubicle configurations, with an adjoining corridor, were performed both to understand the advection between cubicles and the

  2. Thermal performance measurements of insulated roof systems

    SciTech Connect (OSTI)

    Courville, G.E.; Childs, K.W.; Walukas, D.J.; Childs, P.W.; Griggs, E.I.

    1985-01-01T23:59:59.000Z

    Oak Ridge National Laboratory has established a Roof Thermal Researcch Apparatus for carrying out thermal and hygric experiments on sections of low-sloped roofs. Test panels are exposed to a controlled temperature interior space and to the prevailing East Tennessee exterior environment. They are well instrumented and all data are stored and aided in the analysis by computer systems. Current experiments include studies of the effect of wet insulation on membrane temperature, thermal storage phenomena in built-up roof insulation, and the effects of varying surface reflectance on roof thermal performance.

  3. Development of a Thermal Oxidizer for Distributed Microturbine Based Generation

    SciTech Connect (OSTI)

    Tom Barton

    2009-03-01T23:59:59.000Z

    This project concerns the replacement of the catalytic bed in a microturbine with a thermal oxidizer. The advantage of a thermal oxidizer over a traditional combustion chamber is that the length and temperature of the device allows the volatile species to oxidize relatively slowly and without a flame front. With no flame, the temperature increase throughout the unit is spread over a much larger volume so there is no hot spot for thermal NO{sub x} formation, and the gas Btu level does not have to be above the ignition concentration. Project specific objectives included assessment of the materials and performance requirements of the thermal oxidizer, design the thermal oxidizer system, fabrication of the thermal oxidizer, testing of the oxidizer's performance in concert with the microturbine and comparison of the performance of the oxidizer with catalytic beds and traditional combustion chambers. The thermal oxidizer was designed and fabricated with the assistance of High Country Fabrication of Casper, Wyoming. The design consists of a long set of tubes surrounded by a packed bed of loose ceramic material. The outer vessel containing the tubes and packing is a 3-foot diameter steel shell with multiple layers of thermal insulation. After the metal components were fabricated, the vessel was shipped to Denver where the insulation was poured. The unit was shipped to the cosponsor site for integration with the 100 kW microturbine device. Connection of the thermal oxidizer to the Elliot microturbine turned out to be problematic. The high flow rate of gas tended to push the hot zone out of the oxidizer as assembled. The research team identified several approaches to improve the oxidizer performance including a longer gas path, increased residence time, higher surface area packing material and improved combustion catalysts. The cosponsor is working with an engineering form with oxidizer experience to reconfigure the hardware before moving to a field trial on landfill gas.

  4. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, Joseph R. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  5. A New Aerosol Flow System for Photochemical and Thermal Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols. A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols....

  6. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect (OSTI)

    Demko, Jonathan A [ORNL] [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida] [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida] [Sierra Lobo Inc., Kennedy Space Center, Florida

    2008-01-01T23:59:59.000Z

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  7. Design optimization of thermal paths in spacecraft systems

    E-Print Network [OSTI]

    Stout, Kevin Dale

    2013-01-01T23:59:59.000Z

    This thesis introduces a thermal design approach to increase thermal control system performance and decrease reliance on system resources, e.g., mass. Thermal design optimization has lagged other subsystems because the ...

  8. Constructing Reliable Distributed Communication Systems with CORBA

    E-Print Network [OSTI]

    Schmidt, Douglas C.

    Constructing Reliable Distributed Communication Systems with CORBA Silvano Maffeis Douglas C model to support reliable data- and process- oriented distributed systems that communicate through syn distributed object computing systems with CORBA. First, we examine the question of whether reliable applica

  9. Pulse thermal energy transport/storage system

    DOE Patents [OSTI]

    Weislogel, Mark M. (23133 Switzer Rd., Brookpark, OH 44142)

    1992-07-07T23:59:59.000Z

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  10. Building America Webinar: Ductless Hydronic Distribution Systems...

    Energy Savers [EERE]

    Building America Webinar: Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team...

  11. Air distribution effectiveness with stratified air distribution systems

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Air distribution effectiveness with stratified air distribution systems Kisup Lee* Zheng Jiang, Ph.D Qingyan Chen, Ph.D. Student Member ASHRAE Fellow ASHRAE ABSTRACT Stratified air distribution systems such as Traditional Displacement Ventilation (TDV) and Under- Floor Air Distribution (UFAD

  12. Enhanced distributed energy resource system

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Clark, Nancy H. (Corrales, NM); Boyes, John D. (Albuquerque, NM); Ranade, Satishkumar J. (Las Cruces, NM)

    2007-07-03T23:59:59.000Z

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  13. Distributed vs. Centralized Power Systems Frequency Control

    E-Print Network [OSTI]

    Dimarogonas, Dimos

    Distributed vs. Centralized Power Systems Frequency Control Martin Andreasson12 , Dimos V control of electrical power systems. We propose a distributed controller which retains the reference class of large- scale systems are electrical power systems, which employ automatic generation control

  14. ME 343 Thermal-Fluid Systems ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ) 8. Unsteady thermal system modeling, energy storage 9. Software design and development ClassME 343 ­ Thermal-Fluid Systems Page 1 ABET EC2000 syllabus ME 343 ­ Thermal-Fluid Systems Spring thermal and fluid processes are central to function and performance: thermodynamics of nonreacting

  15. The Dark Matter distribution function and Halo Thermalization from the Eddington equation in Galaxies

    E-Print Network [OSTI]

    H. J. de Vega; N. G. Sanchez

    2015-02-04T23:59:59.000Z

    We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with Warm DM. With these methods we find: (i) Cored density profiles behaving quadratically for small distances rho(r) r -> 0 = rho(0) - K r^2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r gas equation of state with local temperature T(r) = m v^2(r)/3. T(r) turns to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T_0 for r gas for r < R_{virial}. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.

  16. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, J.R.

    1994-10-25T23:59:59.000Z

    A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

  17. Thermal Storage Systems at IBM Facilities

    E-Print Network [OSTI]

    Koch, G.

    1981-01-01T23:59:59.000Z

    In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27...

  18. Distributed fiber optic moisture intrusion sensing system

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2003-06-24T23:59:59.000Z

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  19. Performance Evaluation of the Delphi Non-Thermal Plasma System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution from a Non-Thermal Plasma Reactor Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Development of Optimal Catalyst...

  20. EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM

    E-Print Network [OSTI]

    Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because-scale thermal energy storage via hot compressed liquid water. Such a cycle is potentially interesting becauseEXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM Paul T. O'Brien 1 , and John Pye 2 1

  1. A reliability assessment methodology for distribution systems with distributed generation

    E-Print Network [OSTI]

    Duttagupta, Suchismita Sujaya

    2006-08-16T23:59:59.000Z

    Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economic manner with minimal interruption of customer loads. With the advances in renewable energy sources, Distributed Generation (DG...

  2. Thermalization and decoherence in open Majorana systems

    E-Print Network [OSTI]

    Earl T. Campbell

    2015-02-19T23:59:59.000Z

    Coupling to a thermal bath leads to thermalisation and decoherence of stored quantum information. For a system of Gaussian fermions, the fermionic analog of linear or Gaussian optics, these dynamics can be elegantly and efficiently described by evolution of the system's covariance matrix. Taking both system and bath to be Gaussian fermionic, we observe that thermalization and decoherence occurs at a rate that is independent of the bath temperature. Furthermore, we also consider a weak coupling regime where the dynamics are Markovian. We present a microscopic derivation of Markovian master equations entirely in the language of covariance matrices, where temperature independence remains manifest. This is radically different from behaviour seen in other scenarios, such as when fermions interact with a bosonic bath. Our analysis applies to many Majorana fermion systems that have been heralded as very robust, topologically protected, qubits. In these systems, it has been claimed that thermal decoherence can be exponentially suppressed by reducing temperature, but we find Gaussian decoherence cannot be cooled away.

  3. THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, S. E.

    2011-01-01T23:59:59.000Z

    on Thermal Performance of the Exterior Envelopes ofof thermal loads resulting from the building envelope areThermal Test Facility, LhL-9653, prepared for the ASHRAE/DOE Conference-on"t:heThermal Performance the Exterior Envelope

  4. Model NOx storage systems: Storage capacity and thermal aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3NiAl(100). Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3...

  5. Low-temperature thermally regenerative electrochemical system

    DOE Patents [OSTI]

    Loutfy, R.O.; Brown, A.P.; Yao, N.P.

    1982-04-21T23:59:59.000Z

    A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  6. Low temperature thermally regenerative electrochemical system

    DOE Patents [OSTI]

    Loutfy, Raouf O. (Tucson, AZ); Brown, Alan P. (Bolingbrook, IL); Yao, Neng-Ping (Clarendon Hills, IL)

    1983-01-01T23:59:59.000Z

    A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  7. Distribution System Voltage Regulation by Distributed Energy Resources

    SciTech Connect (OSTI)

    Ceylan, Oguzhan [ORNL; Liu, Guodong [ORNL; Xu, Yan [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2014-01-01T23:59:59.000Z

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  8. STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-15A NA7.5.14 Thermal Energy Storage (TES) System THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION

  9. Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage

    E-Print Network [OSTI]

    Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

    2007-01-01T23:59:59.000Z

    Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

  10. Reliable Distributed Computing for Decision Support Systems

    E-Print Network [OSTI]

    Bargiela, Andrzej

    Reliable Distributed Computing for Decision Support Systems Taha Osman, Andrzej Bargiela Department of application tasks on the currently avail- able computing nodes. Distributed Systems Reliability Due decision-support systems such as water distribution net- works, involving hundreds or even thousands

  11. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  12. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

  13. Trinity Thermal Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinity Thermal Systems Jump to: navigation, search

  14. Distributed Termination Detection for Dynamic Systems

    E-Print Network [OSTI]

    Dhamdhere, Dhananjay Madhav

    Distributed Termination Detection for Dynamic Systems D. M. Dhamdhere \\Lambda Sridhar R. Iyer E for detecting the termination of a dis­ tributed computation is presented. The algorithm does not require global are provided. Keywords Distributed algorithms, Distributed computation, Distributed termination, Dynamic

  15. Tuning energy transport in solar thermal systems using nanostructured materials

    E-Print Network [OSTI]

    Lenert, Andrej

    2014-01-01T23:59:59.000Z

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  16. Thermal Performance of Vegetative Roofing Systems

    SciTech Connect (OSTI)

    Desjarlais, Andre Omer [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL; Ennis, Mike J [ORNL

    2010-01-01T23:59:59.000Z

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space. The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.

  17. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  18. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  19. Runtime Monitoring of Distributed Systems Adrian Francalanza

    E-Print Network [OSTI]

    Pace, Gordon J.

    As systems become more complex, monolithic architec- tures are becoming less common, and distributed-based and service-oriented systems readily fit in the above architecture, as do systems adhering to the Enterpris

  20. Runtime Monitoring of Distributed Systems Adrian Francalanza

    E-Print Network [OSTI]

    Francalanza, Adrian

    As systems become more complex, monolithic architec- tures are becoming less common, and distributed-based and service-oriented systems readily fit in the above architecture, as do systems adhering to the Enterprise

  1. A reliability assessment methodology for distribution systems with distributed generation 

    E-Print Network [OSTI]

    Duttagupta, Suchismita Sujaya

    2006-08-16T23:59:59.000Z

    Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economic manner with minimal interruption of customer loads. With the advances in renewable energy sources, ...

  2. Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  3. Thermal cycling effect on the nanoparticle distribution and specific heat of a carbonate eutectic with alumina nanoparticles 

    E-Print Network [OSTI]

    Shankar, Sandhya

    2011-08-08T23:59:59.000Z

    in a separate cold tank, and then is circulated through the collector field, where it is heated again. Figure 3: Schematic of an active direct storage system (Solar Tres Power Plant) (3) The SEGS I plant included a direct two-tank storage system... Thomas Lalk Committee Member Michael Schuller Head of Department, Dennis O?Neal May 2011 Major Subject: Mechanical Engineering iii ABSTRACT Thermal Cycling Effects on the Nanoparticle Distribution...

  4. WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 5 WATER DISTRIBUTION SYSTEM OPERATION: APPLICATION OF SIMULATED ANNEALING Fred E. Goldman Arizona State University, Tempe, Arizona 5.1 INTRODUCTION The operation of water distribution systems affects the water quality in these systems. EPA regulations require that water quality be maintained

  5. Prognostics for the Maintenance of Distributed Systems

    E-Print Network [OSTI]

    Pencolé, Yannick

    but also higher level function prognosis. I. INTRODUCTION In the classical case, preventive maintenance of preventive maintenance for complex systems. In this sense, a distributed system can be split down into a setPrognostics for the Maintenance of Distributed Systems Pauline Ribot, Yannick Pencol´e and Michel

  6. Low jitter RF distribution system

    DOE Patents [OSTI]

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18T23:59:59.000Z

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  7. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01T23:59:59.000Z

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  8. Building a Smarter Distribution System in Pennsylvania

    Office of Environmental Management (EM)

    Development of an advanced distribution management system (DMS) software is at the heart of the project. The DMS monitors and controls all of the smart devices being installed...

  9. Performance Evaluation of the Delphi Non-Thermal Plasma System...

    Broader source: Energy.gov (indexed) [DOE]

    Dynamics & Propulsion Innovation Center Performance Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions 8 th Diesel Engine Emission...

  10. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2011-07-05T23:59:59.000Z

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  11. VAXclusters: A Closely-Coupled Distributed System

    E-Print Network [OSTI]

    Anderson, Richard

    of VAX computers that operate as a single system. To achieve performance in a multicomputer environment designed. The software is a distributed version of the VAX/VMS operating system that uses a distributed efficient, for example, capable of sending and receiving 3000 messages per second on a VAX-11

  12. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  13. A Formal Model of Provenance in Distributed Systems

    E-Print Network [OSTI]

    Francalanza, Adrian

    A Formal Model of Provenance in Distributed Systems Issam Souilah2 Adrian Francalanza1 Vladimiro;Motivation Trust In a Distributed System #12;Motivation Trust In a Distributed System Distribution inherent parallelism. #12;Motivation Trust In a Distributed System Distribution inherent parallelism. Distribution

  14. Bringing Big Systems to Small Schools: Distributed Systems for Undergraduates

    E-Print Network [OSTI]

    Albrecht, Jeannie

    Bringing Big Systems to Small Schools: Distributed Systems for Undergraduates Jeannie R. Albrecht Williams College Williamstown, MA 01267 jeannie@cs.williams.edu ABSTRACT Distributed applications have, especially at small colleges, do not offer courses that focus on the design and implementation of distributed

  15. The energy distribution of atoms in the field of thermal blackbody radiation

    E-Print Network [OSTI]

    F. V. Prigara

    2002-02-06T23:59:59.000Z

    Using the principle of detailed balance and the assumption on the absorption cross-section consistent with available astrophysical data, we obtain the energy distribution of atoms in the field of thermal blackbody radiation and show that this distribution diverges from the Boltzmann law.

  16. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

  17. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    National Labs, "Solar Thermal Energy Research," in Sandiareclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  18. Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos

    E-Print Network [OSTI]

    M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

    1998-11-24T23:59:59.000Z

    The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

  19. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

  20. Avoiding Distribution System Upgrade Costs Using Distributed Generation

    SciTech Connect (OSTI)

    Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.

    2004-01-20T23:59:59.000Z

    PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The “customer-owned” backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the “customer owned” backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.

  1. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20T23:59:59.000Z

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  2. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30T23:59:59.000Z

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  3. Thermal barrier coating for alloy systems

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  4. Automated rapid thermal imaging systems technology

    E-Print Network [OSTI]

    Phan, Long N., 1976-

    2012-01-01T23:59:59.000Z

    A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy ...

  5. Econophysical Dynamics of Market-Based Electric Power Distribution Systems

    E-Print Network [OSTI]

    Nicolas Ho; David P. Chassin

    2006-02-09T23:59:59.000Z

    As energy markets begin clearing at sub-hourly rates, their interaction with load control systems becomes a potentially important consideration. A simple model for the control of thermal systems using market-based power distribution strategies is proposed, with particular attention to the behavior and dynamics of electric building loads and distribution-level power markets. Observations of dynamic behavior of simple numerical model are compared to that of an aggregate continuous model. The analytic solution of the continuous model suggests important deficiencies in each. The continuous model provides very valuable insights into how one might design such load control system and design the power markets they interact with. We also highlight important shortcomings of the continuous model which we believe must be addressed using discrete models.

  6. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01T23:59:59.000Z

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  7. Convex Models of Distribution System Reconfiguration

    E-Print Network [OSTI]

    Taylor, Joshua A.

    We derive new mixed-integer quadratic, quadratically constrained, and second-order cone programming models of distribution system reconfiguration, which are to date the first formulations of the ac problem that have convex, ...

  8. Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing

    SciTech Connect (OSTI)

    Freifeld, B.; Finsterle, S.

    2010-12-10T23:59:59.000Z

    The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.

  9. PhD Recent Graduates with background in Distributed Systems. Virtualization, Distributed Systems, Application Servers or Operating Systems

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    and maintenance support of the project. * Work closely with internal SAP associates, external partnersPhD Recent Graduates with background in Distributed Systems. Virtualization, Distributed Systems, Application Servers or Operating Systems Global Business Incubator Location ­ Palo Alto PURPOSE

  10. A Distributed Building Evacuation System

    E-Print Network [OSTI]

    Qumsiyeh, Dany M.

    2008-07-14T23:59:59.000Z

    This thesis investigates the feasibility of a smart building evacuation system, capable of guiding occupants along safe paths to exits and responding to changing threats. Inspired by developments in amorphous computing, ...

  11. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  12. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, A.

    2013-06-01T23:59:59.000Z

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  13. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 Forschungsgemeinschaft. leads to a tremendous increase in the complex- ity of the traditional power optimization mod- els-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  14. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect (OSTI)

    Lee, Si Y.; King, William D.

    2012-12-20T23:59:59.000Z

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  15. Virtualizing Operating Systems for Seamless Distributed Environments

    E-Print Network [OSTI]

    Dasgupta, Partha

    Virtualizing Operating Systems for Seamless Distributed Environments 1 Tom Boyd and Partha Dasgupta of the "Computing Communities" project, a joint effort between Arizona State University and New York University. Abstract Applications and operating systems can be augmented with extra functionality by injecting

  16. A Distributed System for Cooperative MIMO Transmissions

    E-Print Network [OSTI]

    Kalyanaraman, Shivkumar

    a distributed system for facilitating cooperative MIMO transmissions in networks without multiple antenna diversity can be leveraged at the network, link or physical layers to provide energy efficient transmissions for reliable low-power transmissions. The rest of this paper is organized as follows: the proposed system

  17. Distributed expert systems for nuclear reactor control

    SciTech Connect (OSTI)

    Otaduy, P.J.

    1992-12-01T23:59:59.000Z

    A network of distributed expert systems is the heart of a prototype supervisory control architecture developed at the Oak Ridge National Laboratory (ORNL) for an advanced multimodular reactor. Eight expert systems encode knowledge on signal acquisition, diagnostics, safeguards, and control strategies in a hybrid rule-based, multiprocessing and object-oriented distributed computing environment. An interactive simulation of a power block consisting of three reactors and one turbine provides a realistic, testbed for performance analysis of the integrated control system in real-time. Implementation details and representative reactor transients are discussed.

  18. Distributed expert systems for nuclear reactor control

    SciTech Connect (OSTI)

    Otaduy, P.J.

    1992-01-01T23:59:59.000Z

    A network of distributed expert systems is the heart of a prototype supervisory control architecture developed at the Oak Ridge National Laboratory (ORNL) for an advanced multimodular reactor. Eight expert systems encode knowledge on signal acquisition, diagnostics, safeguards, and control strategies in a hybrid rule-based, multiprocessing and object-oriented distributed computing environment. An interactive simulation of a power block consisting of three reactors and one turbine provides a realistic, testbed for performance analysis of the integrated control system in real-time. Implementation details and representative reactor transients are discussed.

  19. Comprehensive Diagnosis of Complex Electrical Power Distribution Systems

    E-Print Network [OSTI]

    Daigle, Matthew

    Comprehensive Diagnosis of Complex Electrical Power Distribution Systems Indranil Roychoudhury Abstract: Electrical power distribution systems are composed of heterogeneous components, which include and discrete faults in electrical power distribution systems that include dc and ac components. We use a hybrid

  20. On-Site Wastewater Treatment Systems: Spray Distribution

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06T23:59:59.000Z

    A spray distribution system is very similar to a lawn irrigation system. Spray heads are used to distribute treated wastewater to the surface of the yard. This publication explains the advantages and disadvantages of spray distribution systems...

  1. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect (OSTI)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01T23:59:59.000Z

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  2. Distributed Storage Systems for Data Intensive Computing

    SciTech Connect (OSTI)

    Vazhkudai, Sudharshan S [ORNL; Butt, Ali R [Virginia Polytechnic Institute and State University (Virginia Tech); Ma, Xiaosong [ORNL

    2012-01-01T23:59:59.000Z

    In this chapter, the authors present an overview of the utility of distributed storage systems in supporting modern applications that are increasingly becoming data intensive. Their coverage of distributed storage systems is based on the requirements imposed by data intensive computing and not a mere summary of storage systems. To this end, they delve into several aspects of supporting data-intensive analysis, such as data staging, offloading, checkpointing, and end-user access to terabytes of data, and illustrate the use of novel techniques and methodologies for realizing distributed storage systems therein. The data deluge from scientific experiments, observations, and simulations is affecting all of the aforementioned day-to-day operations in data-intensive computing. Modern distributed storage systems employ techniques that can help improve application performance, alleviate I/O bandwidth bottleneck, mask failures, and improve data availability. They present key guiding principles involved in the construction of such storage systems, associated tradeoffs, design, and architecture, all with an eye toward addressing challenges of data-intensive scientific applications. They highlight the concepts involved using several case studies of state-of-the-art storage systems that are currently available in the data-intensive computing landscape.

  3. Energy optimization of water distribution system

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  4. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01T23:59:59.000Z

    from solar heat is o These solar thermal systems provide lowTechnologies, Vol. 5, Solar Thermal Electric Systems" MITREWind Cogeneration and Solar Thermal Hydroelectric Power

  5. Thermal modeling of the Tevatron magnet system

    SciTech Connect (OSTI)

    Jay C. Theilacker; Arkadiy L. Klebaner

    2004-07-20T23:59:59.000Z

    Operation of the Tevatron at lower temperatures, for the purpose of allowing higher energies, has resulted in a renewed interest in thermal modeling of the magnet strings. Static heat load and AC loses in the superconducting coils are initially transported through subcooled liquid helium. Heat exchange between the subcooled liquid and a counter flowing two-phase stream transfers the load to the latent heat. Stratification of the two-phase helium stream has resulted in considerably less heat exchange compared to the original design. Spool pieces have virtually no heat transfer to the two-phase resulting in a ''warm'' dipole just downstream. A model of the magnet string thermal behavior has been developed. The model has been used to identify temperature profiles within magnet strings. The temperature profiles are being used in conjunction with initial magnet quench performance data to predict the location of quench limiting magnets within the Tevatron. During thermal cycles of magnet strings, the model is being used to ''shuffle'' magnets within the magnet string in order to better match the magnets quench performance with its actual predicted temperature. The motivation for this analysis is to raise the operating energy of the Tevatron using a minimal number of magnets from the spares pool.

  6. Thermal Solar Energy Systems for Space Heating of Buildings

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage...

  7. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  8. Distributed/Stationary Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

  9. Standard Data Exchanges for Distribution System Management

    SciTech Connect (OSTI)

    Thomas E. McDermott

    2007-10-05T23:59:59.000Z

    Databases and software tools for electric power distribution systems have not been integrated, and this leads to extra costs and restrictions imposed on utilities and other stakeholders. For example, distributed resource integration studies and modern grid technology assessments are more difficult and costly. New vendors face high market entry barriers, because it’s necessary to interface with large and customized data systems at each potential utility customer. This project promotes data and software tool integration, through a set of data translators based on a common object model. The data translators are delivered as open-source software, using appropriate Web software technologies. The parties who benefit include electric utilities (and their ratepayers), researchers at government laboratories and universities, small software companies wishing to enter the electric utility market, and parties wishing to interconnect distributed generation to a utility system.

  10. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01T23:59:59.000Z

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  11. Analysis of the Thermal Loads on the KSTAR Cryogenic System

    SciTech Connect (OSTI)

    Kim, Y.S.; Oh, Y.K.; Kim, W.C.; Park, Y.M.; Lee, Y.J.; Jin, S.B.; Sa, J.W.; Choi, C.H.; Cho, K.W.; Bak, J.S.; Lee, G.S. [Korea Basic Science Institute, Yusung-Ku, Daejeon 305-806 (Korea, Republic of)

    2004-06-23T23:59:59.000Z

    A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.

  12. LVT: A Layered Verification Technique for Distributed Computing Systems

    E-Print Network [OSTI]

    Olsson, Ron

    LVT: A Layered Verification Technique for Distributed Computing Systems Cui Zhang ? , Brian R of distributed computing systems with multiple component layers. Each lower layer in such a system provides languages as interfaces of systems, LVT treats each layer in a distributed computing system as a distributed

  13. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

  14. Selecting Thermal Storage Systems for Schools

    E-Print Network [OSTI]

    Maxwell, C. L.

    1990-01-01T23:59:59.000Z

    measurement at six equally spaced elevations. Charged by chiller or hydronic vent cycle. B. Hot Water Storage Tank - Concrete lined steel 17,000 gallon with four headers arranged for dual temperature storage. C. Chiller - Variable frequency drive, 196... for Thermal Storage Projects since 1985: KW SCHOOL REDUCTION Kimball E.S. 7 1 Poteet H.S. 210 Phases I & I1 AC New M.S. 18 4 Pirrung E.S. 7 6 Poteet H.S. 14 0 Phase I11 Kimball E.S. 2 0 Phase I1 Black E.S. 3 7 Cannaday E.S. 9 0 Austin E.S. 94 N...

  15. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  16. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  17. Painting a Picture of Gas Hydrate Distribution with Thermal Images

    SciTech Connect (OSTI)

    Weinberger, Jill L.; Brown, Kevin M.; Long, Philip E.

    2005-02-25T23:59:59.000Z

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, the entire gas hydrate stability zone was sampled in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space of 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs.

  18. Demo Abstract: TOSS: Thermal Occupancy Sensing System

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    materials harnessing passive solar technologies along with increasingly efficient HVAC systems have,jlusby,acerpa}@andes.ucmerced.edu ABSTRACT We propose a system that can accurately determine the oc- cupancy of zones within a building to a building's energy management system in order to control the Heating, Ventilation, Air Condition- ing, (HVAC

  19. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

  20. Centralized and Distributed Generated Power Systems -A Comparison Approach

    E-Print Network [OSTI]

    White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future ElectricCentralized and Distributed Generated Power Systems - A Comparison Approach Future Grid Initiative Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach Prepared

  1. Distributed Power Control in Wireless Communication Systems

    E-Print Network [OSTI]

    Chronopoulos, Anthony T.

    Distributed Power Control in Wireless Communication Systems S. Jagannathan A. T. Chronopoulos, S layered structure in that we jointly address the issue of transmitted power levels in point to point commu the transmitter power at a given node increases not only the operating life of the bat- tery but also the overall

  2. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  3. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Allen, G.C.

    1992-09-09T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  4. Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Balmer, M. Lou (Pacific Northwest National Laboratory (PNNL)); Tonkyn, Russell (Battelle Pacific Northwest Laboratories (BPNL)); Maupin, Gary; Yoon, Steven; Kolwaite, Ana (PNNL); Barlow, Stephen (BPNL); Domingo, Norberto; Storey, John M. (Oak Ridge National Laboratory); Hoard, John Wm. (Ford Research Laboratory); Howden, Ken (U.S. Dept. of Energy)

    2000-04-01T23:59:59.000Z

    There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry. More recently, plasma/catalyst systems have been evaluated for NOx reduction and particulate removal on a CIDI engine. Performance results for select plasma-catalyst systems for both simulated and actual CIDI exhaust will be presented. The effect of NOx and hydrocarbon concentration on plasma-catalyst performance will also be shown. SAE Paper SAE-2000-01-1601 {copyright} 2000 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

  5. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect (OSTI)

    None

    2011-12-05T23:59:59.000Z

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  6. Optimization of Ice Thermal Storage Systems Design for HVAC Systems

    E-Print Network [OSTI]

    Nassif, N.; Hall, C.; Freelnad, D.

    2013-01-01T23:59:59.000Z

    Ice thermal storage is promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper discusses the optimal design of ice thermal storage and its impact on energy consumption, demand, and total...

  7. Review of the integrated thermal and nonthermal treatment system studies

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  8. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01T23:59:59.000Z

    Reliability Corporation Polyethylene Polyvinyl chloride Society of Environmental Toxicology and Chemistry Water Distribution System

  9. THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2011-01-01T23:59:59.000Z

    Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

  10. FY 93 Thermal Loading Systems Study Final Report

    SciTech Connect (OSTI)

    S.F. Saterlie

    1994-08-29T23:59:59.000Z

    The objective of the Mined Geologic Disposal System (MGDS) Thermal Loading Systems Study being conducted by the is to identify a thermal strategy that will meet the performance requirements for waste isolation and will be safe and licensable. Specifically, both postclosure and preclosure performance standards must be met by the thermal loading strategy ultimately selected. In addition cost and schedule constraints must be considered. The Systems Engineering approach requires structured, detailed analyses that will ultimately provide the technical basis for the development, integration, and evaluation of the overall system, not just a subelement of that system. It is also necessary that the systems study construct options from within the range that are allowed within the current legislative and programmatic framework. For example the total amount of fuel that can legally be emplaced is no more than 70,000 metric tons of uranium (MTU) which is composed of 63,000 MTU spent fuel and 7,000 MTU of defense high level waste. It is the intent of this study to begin the structured development of the basis for a thermal loading decision. However, it is recognized that to be able to make a final decision on thermal loading will require underground data on the effects of heating as well as a suite of ''validated'' models. It will be some time before these data and models are available to the program. Developing a final, thermal loading decision will, therefore, be an iterative process. In the interim, the objective of the thermal loading systems study has been to utilize the information available to assess the impact of thermal loading. Where technical justification exists, recommendations to narrow the range of thermal loading options can be made. Additionally, recommendations as to the type of testing and accuracy of the testing needed to establish the requisite information will be made. A constraint on the ability of the study to select an option stems from the lack of primary hard data, uncertainties in derived data, unsubstantiated models, and the inability to fully consider simultaneously coupled processes. As such, the study must rely on idealized models and available data to compare the thermal loading options. This report presents the findings of the FY 1993 MGDS Thermal Loading Systems Study. The objectives of the study were to: (1) if justified, place bounds on the thermal loading which would establish the loading that is ''too hot''; (2) ''grade'' or evaluate the performance as a function of thermal loading of the potential repository to contain high level spent nuclear fuel against performance criteria; (3) evaluate the performance of the various options with respect to cost, safety, and operability; and (4) recommend the additional types of tests and/or analyses to be conducted to provide the necessary information for a thermal loading selection.

  11. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

    2008-09-02T23:59:59.000Z

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  12. Review of the integrated thermal and nonthermal treatment system studies

    SciTech Connect (OSTI)

    Durrani, H.A.; Schmidt, L.J.; Erickson, T.A.; Sondreal, E.A.; Erjavec, J.; Steadman, E.N.; Fabrycky, W.J.; Wilson, J.S.; Musich, M.A.

    1996-07-01T23:59:59.000Z

    This report analyzes three systems engineering (SE) studies performed on integrated thermal treatment systems (ITTSs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the US Department of Energy (DOE) weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center (EERC), Science Applications International Corporation (SAIC), the Waste Policy Institute (WPI), and Virginia Tech (VT). The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions taken in the studies might bias the resulting economic evaluations of both thermal and nonthermal systems, (2) identify the critical areas of the studies that would benefit from further investigation, and (3) develop a standard template that could be used in future studies to produce sound SE applications.

  13. Thermal Protection Systems Materials and Manufacturing

    E-Print Network [OSTI]

    and liquid hydrogen, the main engine could attain a maximum thrust level (in vacuum) of 232,375 kg (512 Engineering for Life Cycle of Complex Systems Engineering Innovations 157Engineering Innovations #12;The of the Main Propulsion System-- the Space Shuttle Main Engine and the Solid Rocket Boosters (SRBs)-- powering

  14. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01T23:59:59.000Z

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  15. Distributed parallel messaging for multiprocessor systems

    DOE Patents [OSTI]

    Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka

    2013-06-04T23:59:59.000Z

    A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.

  16. Thermal Characterization of Molten Salt Systems

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01T23:59:59.000Z

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  17. Thermal Plasma Systems for Industrial Processes

    E-Print Network [OSTI]

    Fey, M. G.; Meyer, T. N.; Reed, W. H.; Philbrook, W. O.

    1982-01-01T23:59:59.000Z

    furnaces, extending from below 2000 F to almost any conceivably useful processing temperature, with efficiencies much higher than can be achieved with combustion heating equipment. Numerous applications for plasma systems exist in the chemical...

  18. DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS

    SciTech Connect (OSTI)

    Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2011-12-01T23:59:59.000Z

    Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

  19. A system for distributed intrusion detection

    SciTech Connect (OSTI)

    Snapp, S.R.; Brentano, J.; Dias, G.V.; Goan, T.L.; Heberlein, L.T.; Ho, Che-Lin; Levitt, K.N.; Mukherjee, B. (California Univ., Davis, CA (USA). Div. of Computer Science); Grance, T. (Air Force Cryptologic Support Center, San Antonio, TX (USA)); Mansur, D.L.; Pon, K.L. (Lawrence Livermore National Lab., CA (USA)); Smaha, S.E. (Haystack Labs., Inc., Austin, TX (USA))

    1991-01-01T23:59:59.000Z

    The study of providing security in computer networks is a rapidly growing area of interest because the network is the medium over which most attacks or intrusions on computer systems are launched. One approach to solving this problem is the intrusion-detection concept, whose basic premise is that not only abandoning the existing and huge infrastructure of possibly-insecure computer and network systems is impossible, but also replacing them by totally-secure systems may not be feasible or cost effective. Previous work on intrusion-detection systems were performed on stand-alone hosts and on a broadcast local area network (LAN) environment. The focus of our present research is to extend our network intrusion-detection concept from the LAN environment to arbitarily wider areas with the network topology being arbitrary as well. The generalized distributed environment is heterogeneous, i.e., the network nodes can be hosts or servers from different vendors, or some of them could be LAN managers, like our previous work, a network security monitor (NSM), as well. The proposed architecture for this distributed intrusion-detection system consists of the following components: a host manager in each host; a LAN manager for monitoring each LAN in the system; and a central manager which is placed at a single secure location and which receives reports from various host and LAN managers to process these reports, correlate them, and detect intrusions. 11 refs., 2 figs.

  20. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    alternative. Ocean thermal energy conversion requires anpresent designs of ocean thermal energy systems are intendedthat ocean thermal gradients will contribute energy supplies

  1. Tehachapi solar thermal system first annual report

    SciTech Connect (OSTI)

    Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

    1993-05-01T23:59:59.000Z

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  2. On-Site Wastewater Treatment Systems: Subsurface Drip Distribution

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06T23:59:59.000Z

    A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground. This publication explains the advantages and disadvantages of subsurface drip distribution systems, as well as estimated costs...

  3. Lighting system with thermal management system having point contact synthetic jets

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10T23:59:59.000Z

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  4. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita (Old Field, NY)

    2001-01-01T23:59:59.000Z

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  5. Review of the integrated thermal and nonthermal treatment system studies

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  6. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01T23:59:59.000Z

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  7. Analyzing the Effects of Climate and Thermal Configuration on Community Energy Storage Systems (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Coleman, D.; Chen, D.

    2013-10-01T23:59:59.000Z

    Community energy storage (CES) has been proposed to mitigate the high variation in output from renewable sources and reduce peak load on the electrical grid. Thousands of these systems may be distributed around the grid to provide benefits to local distribution circuits and to the grid as a whole when aggregated. CES must be low cost to purchase and install and also largely maintenance free through more than 10 years of service life to be acceptable to most utilities.Achieving the required system life time is a major uncertainty for lithium-ion batteries. The lifetime and immediate system performance of batteries can change drastically with battery temperature, which is a strong function of system packaging, local climate, electrical duty cycle, and other factors. In other Li-ion applications, this problem is solved via air or liquid heating and cooling systems that may need occasional maintenance throughout their service life. CES requires a maintenance-free thermal management system providing protection from environmental conditions while rejecting heat from a moderate electrical duty cycle. Thus, the development of an effective, low-cost, zero-maintenance thermal management system poses a challenge critical to the success of CES. NREL and Southern California Edison have collaborated to evaluate the long-term effectiveness of various CES thermal configurations in multiple climates by building a model of CES based on collected test data, integrating it with an NREL-developed Li-ion degradation model, and applying CES electrical duty cycles and historic location-specific meteorological data to forecast battery thermal response and degradation through a 10-year service life.

  8. Interconnected hydro-thermal systems Models, methods, and applications

    E-Print Network [OSTI]

    Interconnected hydro-thermal systems Models, methods, and applications Magnus Hindsberger Kgs. Lyngby 2003 IMM-PHD-2003-112 Interconnected hydro-thermalsystems #12;Technical University of Denmark 45882673 reception@imm.dtu.dk www.imm.dtu.dk IMM-PHD-2003-112 ISSN 0909-3192 #12;Interconnected hydro

  9. Continuous Commissioning(SM) of a Thermal Storage System

    E-Print Network [OSTI]

    Turner, W. D.; Liu, M.

    2001-01-01T23:59:59.000Z

    be costly, which can result in turning on chillers during on-peak hours in order to provide cooling to the buildings. In this paper the optimization of a thermal storage system operation through Continuous CommissioningSM is presented. Detailed building...

  10. Rehabilitating A Thermal Storage System Through Commissioning

    E-Print Network [OSTI]

    Liu, M.; Veteto, B.; Claridge, D. E.

    1998-01-01T23:59:59.000Z

    systems. The design air flow rate is 40,300 cfm (1.67 cfin/ft2) with 8,800 cfin (0.37 cfin/ft2) outside air. The installed coil capacity is 130 tons for the 13 AHUs excluding the FCUs. The summary of design air-handler information is listed in Table... handlers has direct return. The FCUs in the patient rooms have three-way valves while the roof top units have two-way valves. Table 1: Summary of Design Characteristics of the AHtJs * Outside air unit for the patient rooms. Figure 2a presents a...

  11. Thermal Distributions, Saha Equation, Weak Interactions This chapter deals with some background issues important to modeling the BBN as well as

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    Chapter 3 Thermal Distributions, Saha Equation, Weak Interactions This chapter deals with some · the Saha equation · low-energy weak interactions 3.1 Thermal distributions The thermal distributions to be considered: the Saha equation discussion will il- lustrate this.) The parameter µ, the chemical potential

  12. Distribution System Analysis Tools for Studying High Penetration of PV

    E-Print Network [OSTI]

    Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support Features Electric Energy System #12;#12;Distribution System Analysis Tools for Studying High Penetration of PV project titled "Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support

  13. Guest Editorial: Special Issue on Reliable Distributed Systems

    E-Print Network [OSTI]

    Firenze, Universitŕ degli Studi di

    Guest Editorial: Special Issue on Reliable Distributed Systems Shambhu J. Upadhyaya, Senior Member, designers, and implementers of distributed systems, with emphasis on system properties such as reliability with the 19th IEEE Symposium on Reliable Distributed Systems held at Nuernberg, Germany, 2000, but the topics

  14. Shutdown heat removal system reliability in thermal reactors

    SciTech Connect (OSTI)

    Sun, Y.H.; Bari, R.A.

    1980-01-01T23:59:59.000Z

    An analysis of the failure probability per year of the shutdown heat removal system (SHRS) at hot standby conditions for two thermal reactor designs is presented. The selected reactor designs are the Pressurized Water Reactor and the Nonproliferation Alternative System Assessment Program Heavy Water Reactor. Failures of the SHRS following the initiating transients of loss of offsite power and loss of main feedwater system are evaluated. Common mode failures between components are incorporated in this anlaysis via the ..beta..-factor method and the sensitivity of the system reliability to common mode failures is investigated parametrically.

  15. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15T23:59:59.000Z

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  16. Effects of thermal sulfate reduction on permeability distributions of the Norphlet Formation

    SciTech Connect (OSTI)

    Dunn, T.L.; Surdam, R.C. (Univ. of Wyoming, Laramie (United States))

    1991-03-01T23:59:59.000Z

    Framework grain coatings are common in the Norphlet. Clay coatings are present throughout the depth range (16,000 to 22,000 ft) over which significant variations of permeability occur. Pyrobitumen coatings occur within the deep, low-permeability interval (approximately 18,000-20,000 ft) and the deeper (greater than 20,000 ft), more permeable interval. Both types of coatings may be important in preserving porosity during portions of the burial history of the Norphlet sandstones; however, their occurrence does not correlate with observed variations in permeability. Diagenetic reactions associated with thermal sulfate reduction provide a mechanism for the dissolution of carbonate cements in deep zones characterized by enhanced permeabilities. Protons generated from dissociation of H{sub 2}S produced during sulfate reduction results in the dissolution of carbonate cements. To be effective, this process must remove cements that precipitated after grain coatings. Uncoated quartz grains produce quartz overgrowths. Vertical permeability distributions within the Norphlet suggest that early and intermediate diagenetic carbonate and sulfate cements, sourced from the intercalated, interdunal pond strata, were redistributed throughout the dune sands. Portions of carbonate cements were either dissolved or the extent of their precipitation was reduced as thermal decarboxylation was closely followed by the initiation of sulfate reduction. Hence, variations in Norphlet permeability distributions are in part the result of diagenetic reactions associated with thermal sulfate reduction and, therefore, can be predicted using kinetic modeling of sulfate reaction.

  17. Thermal cycling effect on the nanoparticle distribution and specific heat of a carbonate eutectic with alumina nanoparticles

    E-Print Network [OSTI]

    Shankar, Sandhya

    2011-08-08T23:59:59.000Z

    The objective of this research was to measure the effect of thermal cycling on the nanoparticle distribution and specific heat of a nanocomposite material consisting of a eutectic of lithium carbonate and potassium carbonate and 1% by mass alumina...

  18. Computational Design and Experimental Validation of New Thermal Barrier Systems

    SciTech Connect (OSTI)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2014-04-01T23:59:59.000Z

    This project (10/01/2010-9/30/2014), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. In this project, the focus is to develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments.

  19. Computational Design and Experimental Validation of New Thermal Barrier Systems

    SciTech Connect (OSTI)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2012-10-01T23:59:59.000Z

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DEFOA- 0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed Durability Test Rig.

  20. VALIDATION OF A THERMAL CONDUCTIVITY MEASUREMENT SYSTEM FOR FUEL COMPACTS

    SciTech Connect (OSTI)

    Jeff Phillips; Colby Jensen; Changhu Xing; Heng Ban

    2011-03-01T23:59:59.000Z

    A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.

  1. High-speed thermal cycling system and method of use

    DOE Patents [OSTI]

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16T23:59:59.000Z

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  2. High-speed thermal cycling system and method of use

    DOE Patents [OSTI]

    Hansen, Anthony D. A. (Berkely, CA); Jaklevic, Joseph M. (Lafayette, CA)

    1996-01-01T23:59:59.000Z

    A thermal cycling system and method of use are described. The thermal cycling system is based on the-circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate microtiter plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 .mu.l of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded.

  3. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01T23:59:59.000Z

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  4. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01T23:59:59.000Z

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  5. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01T23:59:59.000Z

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  6. Modeling of Distributed Systems by Concurrent Regular Expressions

    E-Print Network [OSTI]

    Garg, Vijay

    Modeling of Distributed Systems by Concurrent Regular Expressions Vijay K. Garg Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712 We propose an algebraic model called concurrent regular expressions for modeling and anal- ysis of distributed systems

  7. Modeling of Distributed Systems by Concurrent Regular Expressions

    E-Print Network [OSTI]

    Garg, Vijay

    Modeling of Distributed Systems by Concurrent Regular Expressions Vijay K. Garg Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712 We propose an algebraic model called concurrent regular expressions for modeling and anal­ ysis of distributed systems

  8. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    photovoltaics and solar thermal collectors; electricalfor application of solar thermal and recovered heat to end-absorption chiller solar thermal photovoltaics Results

  9. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    photovoltaics and solar thermal collectors; electricalelectricity) solar thermal collector (kW) PV (kW) electricelectricity) solar thermal collector (kW) PV (kW) electric

  10. Chaotic itinerancy and thermalization in one-dimensional self-gravitating systems

    E-Print Network [OSTI]

    Toshio Tsuchiya; Naoteru Gouda; Tetsuro Konishi

    1996-08-25T23:59:59.000Z

    This is the third paper of the series of our studies of the one-dimensional self-gravitating many-body systems. In this paper, we thus study the transition phenomena after the first transition from a quasiequilibrium. We found that irrespective of the initial conditions, the system wanders between many states which yield the same properties of the quasiequilibrium as the water-bag. This itinerancy is most prominent in the time scale $t\\sim 10^5 \\sim 10^6 t_c$. In the midway between two succeeding quasiequilibria, the system experiences a transient state, where one particle keeps exclusive high energy and its motion decouples with the others. Though the transient state is not the thermally relaxed equilibrium, its distribution quite resembles the isothermal distribution. Thus the macroscopic relaxation we discussed in the previous papers corresponds to the transition from one of quasiequilibria to a transient state. Averaging the behavior over a time scale much longer than the macroscopic relaxation time gives the isothermal distribution. Distribution of lifetime $\\tau$ of the transient states yields a power-law distribution of $\\tau^{-2}$. The transient state gives a clear example of chaotic itinerancy in conserved dynamical systems. The mechanism of the onset of itinerancy is examined.

  11. Flow distribution analysis on the cooling tube network of ITER thermal shield

    SciTech Connect (OSTI)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2014-01-29T23:59:59.000Z

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  12. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants

    SciTech Connect (OSTI)

    Oleszek, Sylwia, E-mail: sylwia_oleszek@yahoo.com [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze (Poland); Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze (Poland); Shibata, Etsuro, E-mail: etsuro@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Nakamura, Takashi, E-mail: ntakashi@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan)

    2013-09-15T23:59:59.000Z

    Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.

  13. Opis: Reliable Distributed Systems in OCaml Pierre-Evariste Dagand

    E-Print Network [OSTI]

    Kuncak, Viktor

    Opis: Reliable Distributed Systems in OCaml Pierre-´Evariste Dagand ENS Cachan-Bretagne, France languages provide an excellent vehicle for developing and debugging distributed systems. We present Opis, a functional-reactive approach for de- veloping distributed systems in Objective Caml. An Opis protocol

  14. Distributed Power Delivery for Energy Efficient and Low Power Systems

    E-Print Network [OSTI]

    Friedman, Eby G.

    Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department throughout a power distribution system. Due to the parasitic impedances of the power distribution networks current to the load circuits [3]. The complexity of the high performance power delivery systems has

  15. Electric Grid State Estimators for Distribution Systems with Microgrids

    E-Print Network [OSTI]

    Gupta, Vijay

    46556 Emails: {jhuang6,vgupta2,huang}@nd.edu Abstract--In the development of smart grid, state] into the distribution systems of the power grid. Such integration complicates the operation of distribution systemsElectric Grid State Estimators for Distribution Systems with Microgrids Jing Huang, Vijay Gupta

  16. Control and regulation of modern distribution system, ForskEL...

    Open Energy Info (EERE)

    system, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Control and regulation of modern distribution system, ForskEL Country Denmark Coordinates...

  17. 6.824 Distributed Computer Systems, Fall 2002

    E-Print Network [OSTI]

    Morris, Robert Tappan

    Abstractions and implementation techniques for design of distributed systems; server design, network programming, naming, storage systems, security, and fault tolerance. Readings from current literature. 6 Engineering ...

  18. Best Management Practice #3: Distribution System Audits, Leak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaks in distribution systems are caused by a number of factors, including pipe corrosion, high system pressure, construction disturbances, frost damage, damaged joints, and...

  19. Scalable Distributed Automation System: Scalable Real-time Decentralized Volt/VAR Control

    SciTech Connect (OSTI)

    None

    2012-03-01T23:59:59.000Z

    GENI Project: Caltech is developing a distributed automation system that allows distributed generators—solar panels, wind farms, thermal co-generation systems—to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech’s software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

  20. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept

    SciTech Connect (OSTI)

    Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

    2010-11-15T23:59:59.000Z

    This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

  1. Analysis, testing, and operation of the MAGI thermal control system

    SciTech Connect (OSTI)

    Yi, Sonny; Hall, Jeffrey L.; Kasper, Brian P. [The Aerospace Corporation, El Segundo, CA 90245 (United States)

    2014-01-29T23:59:59.000Z

    The Aerospace Corporation has completed the development of the Mineral and Gas Identifier (MAGI) sensor - an airborne multi-spectral infrared instrument that is designed to discriminate surface composition and to detect gas emissions from the environment. Sensor performance was demonstrated in a series of flights aboard a Twin Otter aircraft in December 2011 as a stepping stone to a future satellite sensor design. To meet sensor performance requirements the thermal control system was designed to operate the HgCdTe focal plane array (FPA) at 50 K with a 1.79 W heat rejection load to a 44.7 K sink and the optical assembly at 100 K with a 7.5 W heat load to a 82.3 K sink. Two commercial off-theshelf (COTS) Sunpower Stirling cryocoolers were used to meet the instrument’s cooling requirements. A thermal model constructed in Thermal Desktop was used to run parametric studies that guided the mechanical design and sized the two cryocoolers. This paper discusses the development, validation, and operation of the MAGI thermal control system. Detailed energy balances and temperature predictions are presented for various test cases to demonstrate the utility and accuracy of the thermal model. Model inputs included measured values of heat lift as a function of input power and cold tip temperature for the two cryocoolers. These measurements were also used to make predictions of the cool-down behavior from ambient conditions. Advanced heater software was developed to meet unique requirements for both sensor cool-down rate and stability at the set point temperatures.

  2. Architectural Concerns in Distributed and Mobile Collaborative Systems

    E-Print Network [OSTI]

    Dustdar, Schahram

    Architectural Concerns in Distributed and Mobile Collaborative Systems Schahram Dustdar Harald Gall Distributed Systems Group, Vienna University of Technology Argentinierstrasse 8/184-1 A-1040 Wien, Austria to integrate Workflow Management Systems (WfMS), Groupware Systems, and Busi- ness Process Modeling Systems

  3. SOFC combined cycle systems for distributed generation

    SciTech Connect (OSTI)

    Brown, R.A.

    1997-05-01T23:59:59.000Z

    The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

  4. Cathode power distribution system and method of using the same for power distribution

    DOE Patents [OSTI]

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11T23:59:59.000Z

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  5. Physical Effects of Distributed PV Generation on California's Distribution System

    E-Print Network [OSTI]

    Cohen, Michael A

    2015-01-01T23:59:59.000Z

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  6. Evaluation of diurnal thermal energy storage combined with cogeneration systems

    SciTech Connect (OSTI)

    Somasundaram, S.; Brown, D.R.; Drost, M.K.

    1992-11-01T23:59:59.000Z

    This report describes the results of an evaluation of thermal energy storage (TES) integrated with simple gas turbine cogeneration systems. The TES system captures and stores thermal energy from the gas turbine exhaust for immediate or future generation of process heat. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers the following two significant advantages: (1) Electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced; (2) Although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. The study evaluated the cost of power produced by cogeneration and cogeneration/TES systems designed to serve a fixed process steam load. The value of the process steam was set at the levelized cost estimated for the steam from a conventional stand-alone boiler. Power costs for combustion turbine and combined-cycle power plants were also calculated for comparison. The results indicated that peak power production costs for the cogeneration/TES systems were between 25% and 40% lower than peak power costs estimated for a combustion turbine and between 15% and 35% lower than peak power costs estimated for a combined-cycle plant. The ranges reflect differences in the daily power production schedule and process steam pressure/temperature assumptions for the cases evaluated. Further cost reductions may result from optimization of current cogeneration/TES system designs and improvement in TES technology through future research and development.

  7. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect (OSTI)

    W.E. Lowry

    2001-12-13T23:59:59.000Z

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  8. HOLARCTIC ECOLOGY 12: 137-143. Copenhagen 1989 Thermal ecology and spatio-temporal distribution of the

    E-Print Network [OSTI]

    Carrascal, Luis M.

    at 24.5"C (air temperature) and 31.4"C (body temperature). The spatial distribution pattern of Pvariationsof air (Ta) and ground (Ts: areas exposed to sun; Tsh: areas in the shade) temperatures (bottomHOLARCTIC ECOLOGY 12: 137-143. Copenhagen 1989 Thermal ecology and spatio-temporal distribution

  9. A method to characterize the influence of air distribution on the composting treatment: monitoring of the thermal fields

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A method to characterize the influence of air distribution on the composting treatment of air distribution on the composting treatment: monitoring of the thermal fields Hénon Florent a:anne.tremier@cemagref.fr Abstract In a composting process the monitoring of heat flows is a useful tool in terms of phenomenological

  10. Detection of contamination of municipal water distribution systems

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2012-01-17T23:59:59.000Z

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  11. Integrated thermal treatment system study: Phase 1 results. Volume 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01T23:59:59.000Z

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

  12. A prototype photovoltaic/thermal system integrated with transpired collector

    SciTech Connect (OSTI)

    Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

    2011-01-15T23:59:59.000Z

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  13. A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection

    E-Print Network [OSTI]

    Wang, Yu

    A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection a thermal-conscious system-level methodology to make energy-efficient voltage selection (VS) for nanometer), thermal resistance, are integrated and considered in our system models, and their impacts on energy

  14. Clock distribution system for digital computers

    DOE Patents [OSTI]

    Wyman, Robert H. (Brentwood, CA); Loomis, Jr., Herschel H. (Davis, CA)

    1981-01-01T23:59:59.000Z

    Apparatus for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse "overtaking" a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component V'.sub.01 (t); an array of N signal characteristic detector means, with detector means No. 1 receiving the timing means signal and producing a change-of-state signal V.sub.1 (t) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal V.sub.n (t) and producing a modified change-of-state signal V'.sub.n (t) (n=1, . . . , N) having a fundamental frequency component that is substantially proportional to V'.sub.01 (t-.theta..sub.n (t) with a cumulative phase shift .theta..sub.n (t) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1.ltoreq.n

  15. Thermal Attacks on Storage Systems Nathanael Paul Sudhanva Gurumurthi David Evans

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    temperature, known as the thermal envelope. Exceeding the thermal envelope decreases the drive's reliability relationship between disk RPM and viscous heating. If the drive exceeds the thermal envelope, the drive canThermal Attacks on Storage Systems Nathanael Paul Sudhanva Gurumurthi David Evans University

  16. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    Economic and Environmental Value of Solar Thermal Systems inEconomic and Environmental Value of Solar Thermal Systems insolar thermal and heat storage systems can improve the economic, as well as environmental

  17. Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage

    E-Print Network [OSTI]

    Mammoli, Andrea

    2014-01-01T23:59:59.000Z

    solar-thermal- assisted hvac system. Energy and Buildings, [of a Solar-Assisted HVAC System with Thermal Storage A.of a solar-assisted HVAC system with thermal storage. Energy

  18. Thermal bremsstrahlung probing the thermodynamical state of multifragmenting systems

    E-Print Network [OSTI]

    D. G. d'Enterria; L. Aphecetche; A. Chbihi; H. Delagrange; J. Díaz; M. J. van Goethem; M. Hoefman; H. Huisman; A. Kugler; H. Loehner; G. Martínez; R. Ortega; R. Ostendorf; S. Schadmand; Y. Schutz; R. Siemssen; D. Stracener; P. Tlusty; R. Turrisi; M. Volkerts; V. Wagner; H. Wilschut; N. Yahlali

    2000-07-06T23:59:59.000Z

    Inclusive and exclusive hard-photon (E$_\\gamma >$ 30 MeV) production in five different heavy-ion reactions ($^{36}$Ar+$^{197}$Au, $^{107}$Ag, $^{58}$Ni, $^{12}$C at 60{\\it A} MeV and $^{129}$Xe+$^{120}$Sn at 50{\\it A} MeV) has been studied coupling the TAPS photon spectrometer with several charged-particle multidetectors covering more than 80% of 4$\\pi$. The measured spectra, slope parameters and source velocities as well as their target-dependence, confirm the existence of thermal bremsstrahlung emission from secondary nucleon-nucleon collisions that accounts for roughly 20% of the total hard-photon yield. The thermal slopes are a direct measure of the temperature of the excited nuclear systems produced during the reaction.

  19. STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-14A NA7.5.13 Distributed Energy Storage DX AC DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  20. System Designs for Adaptive, Distributed Network Monitoring and Control

    E-Print Network [OSTI]

    Baras, John S.

    1 System Designs for Adaptive, Distributed Network Monitoring and Control H. Li, S. Yang, H. Xi.umd.edu Abstract We present system designs for adaptive, distributed network monitoring and control. The ideas are to distribute some processing intelligence to network elements, and to design a dynamic interface

  1. Reliability of Heterogeneous Distributed Computing Systems in the Presence

    E-Print Network [OSTI]

    Hayat, Majeed M.

    Reliability of Heterogeneous Distributed Computing Systems in the Presence of Correlated Failures of distributed-computing systems (DCSs) has been widely studied under the assumption that computing elements (CEs of correlated failures are also investigated. Index Terms--Distributed computing, load balancing, reliability

  2. atmospheric non-thermal plasma: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy distribution. Here, I review the arguments for thermal versus non-thermal plasmas in accreting black hole systems and discuss the physics and emission...

  3. Performance of thermal distribution systems in large commercial buildings

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    to overcome the loss of cooling supply. Therefore, bybe a total of about 32% cooling lost from supply duct due tofor heating or cooling delivered at the supply terminal unit

  4. Commercial thermal distribution systems, Final report for CIEE/CEC

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    building sector in the U.S. (Aeroseal Inc. , Austin, TX),building sector in the U.S. (Aeroseal Inc. , Austin, TX),

  5. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share22 Water Heater5

  6. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share22 Water Heater52 U.S.

  7. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share22 Water Heater52

  8. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share22 Water Heater524

  9. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share22 Water Heater5245

  10. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share22 Water Heater52456

  11. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share22 Water Heater524567

  12. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets

    E-Print Network [OSTI]

    Chester, David A.

    Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

  13. Apparatus for thermal performance measurements of insulated roof systems

    SciTech Connect (OSTI)

    Courville, G.E.; Childs, K.W.; Walukas, D.J.; Childs, P.W.; Griggs, E.I.

    1984-01-01T23:59:59.000Z

    The US Department of Energy conducted thermal performance measurements on low-slope roofs with a recently developed field test apparatus at Oak Ridge National Laboratory (ORNL). The apparatus accommodates four 4 ft x 8 ft test specimens and includes the measurement capabilities for specimen temperatures, temperature gradients, heat flows and moisture content. A weather station characterizes outdoor weather conditions. Tests underway include (1) validation of a roof surface temperature model developed to study the effects of wet insulation; (2) measurement of temperature distributions and heat transfer in high R-value roofs; and (3) validation of an analysis of the effectiveness of high reflectance surfaces. Preliminary experimental results are presented and correlations between experiment and modeling are discussed.

  14. The integration of renewable energy sources into electric power distribution systems. Volume 1: National assessment

    SciTech Connect (OSTI)

    Barnes, P.R.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [6714 Norway Road, Dallas, TX (United States); Zaininger, H.W. [Zaininger Engineering Co., San Jose, CA (United States)

    1994-06-01T23:59:59.000Z

    Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

  15. Integrated analysis of nuclear thermal rocket system performance

    SciTech Connect (OSTI)

    Buksa, J.J.; Rider, W.J.; Hall, M.; Perry, R.T.; Houts, M. (Los Alamos National Lab., NM (United States))

    1992-01-01T23:59:59.000Z

    As part of the Space Exploration Initiative (SEI), nuclear thermal rocket (NTR) engines will play a key transportation role. Although a number of tests of prismatic, solid-core nuclear engines were completed during the ROVER/NERVA program, the estimated cost of completing full-engine tests will severely limit the scope, duration, and number of any such tests in the future. Design optimization by test iteration is unlikely, and an emphasis on computational modeling is a cost-effective alternative. As a consequence of our responsibilities within the US Dept. of Energy's SEI efforts to develop key NTR technologies, Los Alamos National Laboratory (LANL) is developing the capability to design and verify the safety and performance of NTR systems. Because of the important role that computational modeling will play in the faster, better, and cheaper development of an NTR system, we are pursuing two paths of analysis. The first undertaking is the development of accurate separate-effects codes for design and analysis. Included in this category are thermal-hydraulic and radiation-transport codes. Our other endeavor, which is the focus of this paper, is to develop an advanced computational architecture that can be used to model the entire NTR system.

  16. Computational Design and Experimental Validation of New Thermal Barrier Systems

    SciTech Connect (OSTI)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2011-12-31T23:59:59.000Z

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

  17. Solar-thermal-energy collection/storage-pond system

    DOE Patents [OSTI]

    Blahnik, D.E.

    1982-03-25T23:59:59.000Z

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  18. The proposed combustion standards and DOE thermal treatment systems

    SciTech Connect (OSTI)

    McFee, J. [IT Corp. (United States); Hinman, M.B. [Carter and Hinman, P.A. (United States); Eaton, D.; NcNeel, K. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1997-08-01T23:59:59.000Z

    Under the provisions of the Clean Air Act (CAA) concerning emission of hazardous air pollutants (HAPs), the Environmental Protection Agency (EPA) published the proposed Revised Standards for Hazardous Waste Combustors on April 19, 1996 (EPA, 1996). These standards would apply to the existing Department of Energy (DOE) radioactive and mixed waste incinerators, and may be applied to several developing alternatives to incineration. The DOE has reviewed the basis for these regulations and prepared extensive comments to present concerns about the bases and implications of the standards. DOE is now discussing compliance options with the EPA for regulation of radioactive and mixed waste thermal treatment systems.

  19. Study on Commissioning Process for Control Logic of Thermal Storage System

    E-Print Network [OSTI]

    Shioya, M.; Tsubaki, M.; Nakahara, N.

    2004-01-01T23:59:59.000Z

    thermal storage system in an actual building using the CLT. Introduction In thermal storage systems, as large temperature difference between the supply water and the return water as possible should be maintained in order to ensure high system..., at the secondary water circuit of a heat exchanger installed between the thermal storage system and secondary HVAC system of an actual building. One of the authors, Nakahara, acted as Commissioning Authority during construction phase and later as a consultant...

  20. Tools for Continuously Evaluating Distributed System Qualities James H. Hill

    E-Print Network [OSTI]

    Schmidt, Douglas C.

    throughout the software lifecycle [9]. For ex- ample, test-driven development and continuous integration, and security) for distributed systems has historically occurred late in the software lifecycle. As a result the software lifecycle. Keywords. agile techniques, continuous system inte- gration, distributed systems

  1. Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems

    E-Print Network [OSTI]

    Bianchini, Ricardo

    Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems Rekha Bachwani-scale storage systems can be significantly improved by using bet- ter reliability metrics and more efficient on a distributed storage system based on erasure codes. We find that MinI improves relia- bility significantly

  2. Maximizing Service Reliability in Distributed Computing Systems with Random Node

    E-Print Network [OSTI]

    Hayat, Majeed M.

    Maximizing Service Reliability in Distributed Computing Systems with Random Node Failures: Theory Member, IEEE Abstract--In distributed computing systems (DCSs) where server nodes can fail permanently with nonzero probability, the system performance can be assessed by means of the service reliability, defined

  3. Impact of the Position of a Radiator to Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2005-01-01T23:59:59.000Z

    ESL-IC-10/05-35 1 Impact of the Position of the Radiator on Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System Xiangyang Gong David E... the energy consumption and thermal comfort distribution in a typical office with a mixed radiant and convective heating system for two different locations of radiant heat sources. Accurately estimating the energy consumption in a mixed heating space...

  4. Impact of the Position of a Radiator to Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System 

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2005-01-01T23:59:59.000Z

    ESL-IC-10/05-35 1 Impact of the Position of the Radiator on Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System Xiangyang Gong David E... the energy consumption and thermal comfort distribution in a typical office with a mixed radiant and convective heating system for two different locations of radiant heat sources. Accurately estimating the energy consumption in a mixed heating space...

  5. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01T23:59:59.000Z

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

  6. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Transportation Water Heaters and Hot Water DistributionLaboratory). 2008. Water Heaters and Hot Water Distributionfor instantaneous gas water heaters; and pressure loss

  7. RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    and deal only with solar cogeneration units that are assumedand Distributed. cogeneration). These provide just underparameters. as conventional cogeneration units. technologies

  8. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01T23:59:59.000Z

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  9. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

    1999-01-01T23:59:59.000Z

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  10. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27T23:59:59.000Z

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  11. Sensor Networks for Monitoring and Control of Water Distribution Systems

    E-Print Network [OSTI]

    Whittle, Andrew

    Water distribution systems present a significant challenge for structural monitoring. They comprise a complex network of pipelines buried underground that are relatively inaccessible. Maintaining the integrity of these ...

  12. Laser spark distribution and ignition system - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced...

  13. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01T23:59:59.000Z

    23 4.5 Water-Energy SustainabilityWater Distribution System Water-energy Sustainability ToolWastewater-energy Sustainability Tool v   Acknowledgements

  14. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  15. GSpace: Tailorable Data Distribution in Shared Data Space Systems

    E-Print Network [OSTI]

    Mousavi, Mohammad

    GSpace: Tailorable Data Distribution in Shared Data Space Systems Giovanni Russello1, Michel. The shared data space model has proven to be an effective paradigm for building distributed applications. However, building an efficient distributed implementation remains a challenge. A plethora of different

  16. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    SciTech Connect (OSTI)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01T23:59:59.000Z

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  17. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  18. Numerical Analysis of a Cold Air Distribution System

    E-Print Network [OSTI]

    Zhu, L.; Li, R.; Yuan, D.

    2006-01-01T23:59:59.000Z

    Cold air distribution systems may reduce the operating energy consumption of air-conditioned air supply system and improve the outside air volume percentages and indoor air quality. However, indoor temperature patterns and velocity field are easily...

  19. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    to be more suited to solar thermal energy sources. Airunit of solar thermal and solar electric energy from a DCS-concentrating solar systems is indeed thermal energy. There

  20. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    SciTech Connect (OSTI)

    V.K. Mathur

    2003-02-01T23:59:59.000Z

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  1. THE DEVELOPMENT OF DISTRI-bution systems poses new challenges

    E-Print Network [OSTI]

    Dixon, Juan

    are covered in a separate article. The six articles in this issue review the past, present, and the future level to respond to new energy challenges and the restruc- tured environment. The need for a change in the distribution systems of the 21st century. The Past Toward the end of the 19th century, dc distribution systems

  2. On Correlated Availability in Internet-Distributed Systems Derrick Kondo

    E-Print Network [OSTI]

    Boyer, Edmond

    On Correlated Availability in Internet-Distributed Systems Derrick Kondo INRIA, France dkondo measure and characterize the time dynamics of availability in a large-scale Internet- distributed system with over 110,000 hosts. Our char- acterization focuses on identifying patterns of corre- lated availability

  3. Development of an Approach to Compare the `Value' of Electrical and Thermal Output from a Domestic PV/Thermal System

    E-Print Network [OSTI]

    "Mandatory Renewable Energy Target" in Australia allows a unit of energy as solar hot water to be counted PV/Thermal System J.S. Coventry and K. Lovegrove Centre for Sustainable Energy Systems Australian National University Canberra 0200 ACT Australia E-mail: joe@faceng.anu.edu.au Abstract When considering

  4. Thermal and lighting performance of toplighting systems in the hot and humid climate of Thailand

    E-Print Network [OSTI]

    Harntaweewongsa, Siritip

    2006-10-30T23:59:59.000Z

    , light distribution, and uniformity. EnergyPlus was used as the thermal analysis tool, and RADIANCE, along with a physical scale model, was used as the lighting performance analysis tool. The sky conditions tested were overcast, clear sky...

  5. Discrete thermal element modelling of heat conduction in particle systems: Basic formulations

    E-Print Network [OSTI]

    Martin, Ralph R.

    methodology, termed the discrete thermal element method (DTEM), for the effec- tive modelling of heat rights reserved. Keywords: Discrete thermal element method; Circular particle; Thermal contact; Heat conduction; Boundary (integral) equation/element 1. Introduction Heat transfer in particle systems can

  6. Performance contracting for parabolic trough solar thermal systems

    SciTech Connect (OSTI)

    Brown, H.; Hewett, R.; Walker, A. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Golden, CO (United States)

    1997-12-31T23:59:59.000Z

    Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

  7. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect (OSTI)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  8. Renewable and Distributed Systems Integration Peer Review

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuaryGeothermalRenewableSolar ThermalAn RPS is4

  9. Minimizing Energy Consumption in a Water Distribution System: A Systems Modeling Approach

    E-Print Network [OSTI]

    Johnston, John

    2011-08-08T23:59:59.000Z

    In a water distribution system from groundwater supply, the bulk of energy consumption is expended at pump stations. These pumps pressurize the water and transport it from the aquifer to the distribution system and to elevated storage tanks. Each...

  10. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26T23:59:59.000Z

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  11. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    low and mid temperature solar collectors," Journal of SolarSA Kalogirou, "Solar thermal collectors and applications,"analysis of the solar collector system is presented. Results

  12. Thermal management of long-length HTS cable systems

    SciTech Connect (OSTI)

    Demko, Jonathan A [ORNL; Hassenzahl, William V [ORNL

    2011-01-01T23:59:59.000Z

    Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

  13. A DISTRIBUTED AUTOMATION SYSTEM FOR ELECTROPHYSICAL INSTALLATIONS

    E-Print Network [OSTI]

    Kozak, Victor R.

    on CAMAC devices. Growing requirements to functions, parameters and reliability of automation components and distributing panels between terminal equipment and control devices implemented in CAMAC standard. For avoiding this problem there was decided to implement new devices as embedded devices into end equipment. We assumed

  14. Hybrid Control Network Intrusion Detection Systems for Automated Power Distribution Systems

    E-Print Network [OSTI]

    Parvania, Masood; Koutsandria, Georgia; Muthukumar, Vishak; Peisert, Sean; McParland, Chuck; Scaglione, Anna

    2014-01-01T23:59:59.000Z

    Security protocols against cyber attacks in the distributioncyber security weak- ness and system fragility of power distribution

  15. Distributed Energy System Validation, Commissioning and

    E-Print Network [OSTI]

    ................................................................................................................... 4 2.2 Sunny Boy PV Inverter System................................................................................ 9 3.1 PV System to Sunny Boy Inverter............................................................................ 9 3.2 Sunny Boy Inverter to PV Sub

  16. An analysis of distributed solar fuel systems

    E-Print Network [OSTI]

    Thomas, Alex, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    While solar fuel systems offer tremendous potential to address global clean energy needs, most existing analyses have focused on the feasibility of large centralized systems and applications. Not much research exists on ...

  17. World Class Boilers and Steam Distribution System

    E-Print Network [OSTI]

    Portell, V. P.

    “World class” is a term used to describe steam systems that rank in the top 20% of their industry based on quantitative system performance data and energy management for the facility. The rating is determined through a proceduralized assessment...

  18. Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage

    E-Print Network [OSTI]

    Mammoli, Andrea

    2014-01-01T23:59:59.000Z

    performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

  19. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    SciTech Connect (OSTI)

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01T23:59:59.000Z

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  20. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31T23:59:59.000Z

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  1. Thermal analysis of the failed equipment storage vault system

    SciTech Connect (OSTI)

    Jerrell, J.; Lee, S.Y.; Shadday, A.

    1995-07-01T23:59:59.000Z

    A storage facility for failed glass melters is required for radioactive operation of the Defense Waste Processing Facility (DWPF). It is currently proposed that the failed melters be stored in the Failed Equipment Storage Vaults (FESV`s) in S area. The FESV`s are underground reinforced concrete structures constructed in pairs, with adjacent vaults sharing a common wall. A failed melter is to be placed in a steel Melter Storage Box (MSB), sealed, and lowered into the vault. A concrete lid is then placed over the top of the FESV. Two melters will be placed within the FESV/MSB system, separated by the common wall. There is no forced ventilation within the vault so that the melter is passively cooled. Temperature profiles in the Failed Equipment Storage Vault Structures have been generated using the FLOW3D software to model heat conduction and convection within the FESV/MSB system. Due to complexities in modeling radiation with FLOW3D, P/THERMAL software has been used to model radiation using the conduction/convection temperature results from FLOW3D. The final conjugate model includes heat transfer by conduction, convection, and radiation to predict steady-state temperatures. Also, the FLOW3D software has been validated as required by the technical task request.

  2. The ASME handbook on water technology for thermal power systems

    SciTech Connect (OSTI)

    Cohen, P. (ed.)

    1989-01-01T23:59:59.000Z

    The idea that a handbook on water technology be developed was initially put forth in 1978 by the ASME Research Committee on Water in Thermal Power Systems. A prospectus was issued in 1979 to solicit funding from industry and government. The preparation of the handbook began in 1980 under the direct control of a Handbook Steering Subcommittee established by the Research Committee and an editor reporting to that subcommittee. Handbook content was carefully monitored by an editorial committee of industry experts and by a special honorary editorial committee from the Chemistry Committee of the Edison Electric Institute. This handbook summarizes the current state of the art of water technology for steam power plant cycles. It is intended to serve both as a training text and a reference volume for power station chemists, engineers, manufacturers, and research and development institutions. While the primary emphasis is on Electric Utility Power Generation cycles (fossil and nuclear), the book will also serve as a valuable reference on high pressure industrial steam system technology.

  3. Concurrency control in heterogeneous distributed database systems

    E-Print Network [OSTI]

    Rahman, Md. Rezaur

    1992-01-01T23:59:59.000Z

    APPROACHES IN HDDBS . III. A Approaches Requiring Local DBMS Modihcations 17 19 III. B Approaches Without Local DBMS Modifications 22 IV A NEW APPROACH TO HDDBS CONCURRENCY CONTROL 30 IV. A The Concurrency Control Scheme 30 CIIA PTER Page IV. B... related to Database Systems in general which will be used consistently throughout this thesis. A Database system (DBS) consists of a set of dutiibiises (DB) which contain the data of interest and software, the database msnageinent system (DBMS), which...

  4. Laser Spark Distribution and Ignition System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser spark from a single low power pulse. The system has ap- plications in natural gas fueled reciprocating engines, turbine combustors, explosives, and laser induced...

  5. Seismic Fragility of the LANL Fire Water Distribution System

    SciTech Connect (OSTI)

    Greg Mertz

    2007-03-30T23:59:59.000Z

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels. Assumptions are presented in Section 2.2 of this report.

  6. Project Profile: Novel Thermal Energy Storage Systems for Concentratin...

    Broader source: Energy.gov (indexed) [DOE]

    resistance between the location where phase change occurs and the working fluid of the power cycle. Either thermosyphons or heat pipes can: Provide an effective thermal...

  7. THE DISTRIBUTED SPACECRAFT ATTITUDE CONTROL SYSTEM SIMULATOR

    E-Print Network [OSTI]

    Hall, Christopher D.

    compensation of an under-actuated system and coupled attitude control and energy storage techniques. Formation. INTRODUCTION Complex space systems are often both high-visibility and high-risk. However, programs that might@vt.edu 1 #12;custom hardware and software we have developed. The body of the paper presents information

  8. Ductless Hydronic Distribution Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471Site-WideonDuctless Hydronic Distribution

  9. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Energy Information At1986)Distributed

  10. Dynamic Interactions of PV units in Low Volatge Distribution Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Dynamic Interactions of PV units in Low Volatge Distribution Systems M. J. Hossain, J. Lu Griffith. Abstract--Photovoltaic (PV) units along with other distributed energy resources (DERs) are located close, robust control, stability. I. Introduction The integration level of PV units in low and medium voltage

  11. A Smart Energy System: Distributed Resource Management, Control and Optimization

    E-Print Network [OSTI]

    Beigl, Michael

    A Smart Energy System: Distributed Resource Management, Control and Optimization Yong Ding, Student of distributed energy resource and consumption management, which proposes to design a networked and embedded platform for realizing a dynamic energy mix and optimizing the energy consumption dy- namically. Based

  12. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    None

    2012-01-04T23:59:59.000Z

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  13. Traffic-and Thermal-Aware Run-Time Thermal Management Scheme for 3D NoC Systems

    E-Print Network [OSTI]

    Hung, Shih-Hao

    C), the combination of NoC and die-stacking 3D IC technology, is motivated to achieve lower latency, lower power consumption, and higher network bandwidth. However, the length of heat conduction path and power density per the vulnerability of the system in performance, power, reliability, and cost. To ensure both thermal safety and less

  14. On the Equivalence of Distributed Systems with Queries and Communication

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On the Equivalence of Distributed Systems with Queries and Communication Serge Abiteboul INRIA, such as evaluate some query. We study the equivalence of such systems. We model a dis- tributed system such as sending, receiving and querying data. As our model is quite general, the equivalence problem turns out

  15. How to Effectively Compute the Reliability of a Thermal-Hydraulic Nuclear Passive System

    E-Print Network [OSTI]

    Boyer, Edmond

    1 How to Effectively Compute the Reliability of a Thermal- Hydraulic Nuclear Passive System E. Zio1 of a thermal-hydraulic (T-H) passive system of a nuclear power plant can be obtained by i) Monte Carlo (MC be prohibitive because of the large number of (typically long) T-H code simulations that must be performed (one

  16. Power-Demand Routing in massive geo-distributed systems

    E-Print Network [OSTI]

    Qureshi, Asfandyar

    2010-01-01T23:59:59.000Z

    There is an increasing trend toward massive, geographically distributed systems. The largest Internet companies operate hundreds of thousands of servers in multiple geographic locations, and are growing at a fast clip. A ...

  17. A Calculus for Access Control in Distributed Systems 

    E-Print Network [OSTI]

    Abadi, Martin; Burrows, Michael; Lampson, Butler; Plotkin, Gordon

    1993-01-01T23:59:59.000Z

    We study some of the concepts, protocols, and algorithms for access control in distributed systems, from a logical perspective. We account for how a principal may come to believe that another principal is making a request, ...

  18. Impact of SolarSmart Subdivisions on SMUD's Distribution System

    SciTech Connect (OSTI)

    McNutt, P.; Hambrick, J.; Keesee, M.; Brown, D.

    2009-07-01T23:59:59.000Z

    This study analyzes the distribution impacts of high penetrations of grid-integrated renewable energy systems, specifically photovoltaic (PV) equipped SolarSmart Homes found in the Anatolia III Residential Community.

  19. RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    Problems and Research Needs, EPRI EL-377-SR, February 1977.Electric Utility Systems, EPRI, EM-336, November, 1976. 24.of Large Generating Units EPRI WS-77-50, February 1978.

  20. Voices of Experience | Advanced Distribution Management Systems...

    Office of Environmental Management (EM)

    systems and a move from reactive to predictive models increases the need for electrical engineering knowledge and IT skills in the operations center as well as in the fi eld. It...

  1. World Class Boilers and Steam Distribution System 

    E-Print Network [OSTI]

    Portell, V. P.

    2002-01-01T23:59:59.000Z

    environmental impacts are mitigated. Successful upgrading and maintenance of the energy system requires management support. This may necessitate changes in current practices, technical upgrades to equipment, additional personnel, or other resources. Managers...

  2. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2013-07-31T23:59:59.000Z

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards “what to observe” rather than “how to observe” in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using “sensor teams,” system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

  3. Abstract--The reliability and quality of power distribution systems are usually affected by many different distribution faults.

    E-Print Network [OSTI]

    Chow, Mo-Yuen

    1 Abstract--The reliability and quality of power distribution systems are usually affected by many and to provide a more effective fault restoration system. Index Terms-- power distribution systems, statistical analysis, tree-caused distribution faults. I. INTRODUCTION OWER systems play a very important role in our

  4. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    Gas-Fired Distributed Energy Resource Characterizations”,National Renewable Energy Resource Laboratory, Golden, CO,Edwards, “Distributed Energy Resources Customer Adoption

  5. Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER 

    E-Print Network [OSTI]

    Naveed, A.T.; Lee, E. J.; Kang, E. C.

    2006-01-01T23:59:59.000Z

    The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

  6. Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER

    E-Print Network [OSTI]

    Naveed, A.T.; Lee, E. J.; Kang, E. C.

    2006-01-01T23:59:59.000Z

    The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

  7. Photovoltaic Systems Interconnected onto Secondary Network Distribution Systems – Success Stories

    Broader source: Energy.gov [DOE]

    This report examines six case studies of photovoltaic (PV) systems integrated into secondary network systems. The six PV systems were chosen for evaluation because they are interconnected to secondary network systems located in four major Solar America Cities.

  8. Parallel and Distributed Systems Speaker: Dick Epema

    E-Print Network [OSTI]

    Kuzmanov, Georgi

    systems Online Social Netw. #12;3 M.Sc. Thesis Projects: The Supervision · We help you excel, without is international · We often organize the top international conferences in our field #12;4 M.Sc. Thesis Projects concepts and show that they work · For examples of previous MSc projects see the theses on the PDS website

  9. CSE 513: Distributed Systems (Fault-tolerance)

    E-Print Network [OSTI]

    Cao, Guohong

    fails to operate correctly, nothing catastrophic happens; e.g., in nuclear power plans at all servers in the same order. 8 The Two-Army Problem · Without failure, agreement is trivial, but agreement in faulty systems is much harder. ­ Agreement is needed in electing a coordinator, deciding

  10. Distributed Timing and Triggering Control System

    SciTech Connect (OSTI)

    Bowen, T., Huerta, J. A.

    2012-08-01T23:59:59.000Z

    This document is a slide show type presentation regarding the need and realization of a new control system for work at the Nevada National Security Site. Commercial products that met the need are identified, both hardware and software. Particular emphasis is on the Integrated Signal Programmer.

  11. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    utility electricity and natural gas purchases, amortized capital and maintenance costs for distributed generation (

  12. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. (Sandia National Labs., Albuquerque, NM (United States)); Todosow, M. (Brookhaven National Lab., Upton, NY (United States))

    1992-09-22T23:59:59.000Z

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  13. A 3kW PV-thermal system for home use

    SciTech Connect (OSTI)

    Yang, M.J.; Sato, Mikihiko; Tsuzuki, Kouye; Amono, Takashi; Yamaguchi, Masafumi [Toyota Technical Inst., Tempaku, Nagoya (Japan); Izumi, Hisao [IDEX, Seto, Aichi (Japan); Takamoto, Tatsuya [Japan Energy Corp., Saitama (Japan); Matsunaga, Shigenobu

    1997-12-31T23:59:59.000Z

    A combined 3kW PV-thermal system has been proposed for home use. Combining PV and thermal conversion makes this system economically efficient and competitive with traditional power supplies. GaAs and Si concentrator solar cells have been measured under concentration as candidate for use in this system. InGaP/GaAs tandem solar cells designed for 1-sun operation have been examined under concentration. The potential use of GaInP/GaAs tandem solar cells has been analyzed for this application. The properties of the thermal transfer unit of this system has been evaluated including the cooling of the solar cell holder.

  14. Thermal control system and method for a passive solar storage wall

    DOE Patents [OSTI]

    Ortega, Joseph K. E. (Westminister, CO)

    1984-01-01T23:59:59.000Z

    The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  15. Photovoltaic Systems Interconnected onto Network Distribution Systems--Success Stories

    SciTech Connect (OSTI)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Sammon, D.; Vaziri, M.; Yohn, T.

    2009-04-01T23:59:59.000Z

    This report examines six case studies of photovoltaic systems integrated into secondary network systems in four major U.S. Solar America cities.

  16. Similarity and generalized analysis of efficiencies of thermal energy storage systems

    SciTech Connect (OSTI)

    Peiwen Li; Jon Van Lew; Cholik Chan; Wafaa Karaki; Jake Stephens; J. E. O'Brien

    2012-03-01T23:59:59.000Z

    This paper examined the features of three typical thermal storage systems including: (1) direct storage of heat transfer fluid in containers, (2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and (3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.

  17. On the Equivalence of Distributed Systems with Queries and Communication$

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On the Equivalence of Distributed Systems with Queries and Communication$ Serge Abiteboula , Balder a common goal, such as eval- uating some query. We study the equivalence of such systems. We model for performing tasks such as sending, receiving and querying data. As our model is quite general, the equivalence

  18. Literature Review on Underfloor Air Distribution (UFAD) Systems

    E-Print Network [OSTI]

    Im, P.; Cho, S.; Haberl, J. S.

    2006-01-10T23:59:59.000Z

    ) ..................................................... 6 3.5. Task Ventilation Systems ................................................................................. 7 3.6. Recommendations from Experiences.............................................................. 8 IV. SUMMARY... transactions and journal papers are main sources about the UFAD systems. (More than 100 papers found) Elsevier Literature Search Engine: Keyword: Displacement Ventilation (26 papers found) Keyword: UnderFloor Air Distribution (2 papers found) Center...

  19. Towards a Discipline of Geospatial Distributed Event Based Systems

    E-Print Network [OSTI]

    Heaton, Thomas H.

    Towards a Discipline of Geospatial Distributed Event Based Systems Annie Liu Computer Science, Caltech 1200 E California Blvd Pasadena, CA 91125, USA mani@cms.caltech.edu ABSTRACT A geospatial system is one in which the state space in- cludes one, two or three-dimensional space and time. A geospatial

  20. Century Electric Distribution System Operations Lorenzo Kristov,1

    E-Print Network [OSTI]

    Low, Steven H.

    May 2014 1 21st Century Electric Distribution System Operations Lorenzo Kristov,1 California Independent System Operator Paul De Martini, Caltech Resnick Institute Introduction The electric industry has to provide similar functions for their area of responsibility. Many states also opened retail electricity

  1. Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    E-Print Network [OSTI]

    Giannakis, Georgios

    method for determining the active- and reactive-power set points for PV inverters in residential systems and ensuring voltage regulation. Binary PV-inverter selection variables and nonlinear power-flow relations--Distribution networks, inverter control, optimal power flow (OPF), photovoltaic (PV) systems, sparsity, voltage

  2. STOCHASTIC CONTROL FOR DISTRIBUTED SYSTEMS WITH APPLICATIONS TO WIRELESS

    E-Print Network [OSTI]

    Huang, Minyi

    communication systems, power control is important at the user level in order to minimize energy requirements, a class of stochastic control problems is for- mulated which includes a fading channel model and a powerSTOCHASTIC CONTROL FOR DISTRIBUTED SYSTEMS WITH APPLICATIONS TO WIRELESS COMMUNICATIONS Minyi Huang

  3. Fuzzy logic based operated device identification in power distribution systems

    E-Print Network [OSTI]

    Manivannan, Karthick Muthu

    2002-01-01T23:59:59.000Z

    by the po~er lines and the other components of distribution systems make them vulnerable to various factors like weather, disturbances caused by animals or human activity, overloading of the system and the aging of or defect in, the components...

  4. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect (OSTI)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01T23:59:59.000Z

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  5. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    could be acquired, e.g. battery storage, the costs for whichlead/acid battery, and thermal storage, capabilities, withis limited by battery size - Heat storage is limited by

  6. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOE Patents [OSTI]

    Kee, Robert J. (864 Lucille St., Livermore, CA 94550); Ting, Aili (7329 Stonedale Dr., Pleasanton, CA 94558)

    1996-01-01T23:59:59.000Z

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  7. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  8. We propose a wearable PIR thermal sensor system that can help users to perceive the

    E-Print Network [OSTI]

    Zhu, Zhigang

    We propose a wearable PIR thermal sensor system that can help users to perceive the surrounding environment from a thermal perspective. Wireless PIR sensor network technology has been developed to track and recognize multiple moving human subjects, as well as understand their activities. However, the PIR sensor

  9. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System 

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  10. Design and global optimization of high-efficiency solar thermal systems

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    Design and global optimization of high-efficiency solar thermal systems with tungsten cermets David, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPV by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class

  11. Belgirate, Italy, 28-30 September 2005 A COMPREHENSIVE THERMAL-AWARE POWER MANAGEMENT SYSTEM WITH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Belgirate, Italy, 28-30 September 2005 A COMPREHENSIVE THERMAL-AWARE POWER MANAGEMENT SYSTEM power techniques due to shortage of battery life. Conventional power management designs focused. In this research, a block-level optimization of comprehensive thermal aware power management is presented

  12. Colloids and Surfaces B: Biointerfaces 56 (2007) 290295 Thermal response of a microgel system

    E-Print Network [OSTI]

    an inverse power (temperature-dependent) attractive potential. To understand theoretically this thermallyColloids and Surfaces B: Biointerfaces 56 (2007) 290­295 Thermal response of a microgel system K densities each of which is weighed by its respective volume proportion. We show here that by minimizing

  13. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    Römisch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed aims at the cost optimal scheduling of on/o decisions and output levels for generating units. The power

  14. AGIS: Evolution of Distributed Computing Information system for ATLAS

    E-Print Network [OSTI]

    Anisenkov, Alexey; The ATLAS collaboration; Alandes Pradillo, Maria; Karavakis, Edward

    2015-01-01T23:59:59.000Z

    The variety of the ATLAS Computing Infrastructure requires a central information system to define the topology of computing resources and to store the different parameters and configuration data which are needed by the various ATLAS software components. The ATLAS Grid Information System is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services.

  15. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007...

  16. Monitoring solar-thermal systems: An outline of methods and procedures

    SciTech Connect (OSTI)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01T23:59:59.000Z

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  17. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23T23:59:59.000Z

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  18. Descriptive analysis of aquifer thermal energy storage systems

    SciTech Connect (OSTI)

    Reilly, R.W.

    1980-06-01T23:59:59.000Z

    The technical and economic feasibility of large-scale aquifer thermal energy storage (ATES) was examined. A key to ATESs attractiveness is its simplicity of design and construction. The storage device consists of two ordinary water wells drilled into an aquifer, connected at the surface by piping and a heat exchanger. During the storage cycle water is pumped out of the aquifer, through the heat exchanger to absorb thermal energy, and then back down into the aquifer through the second well. The thermal storage remains in the aquifer storage bubble until required for use, when it is recovered by reversing the storage operation. For many applications the installation can probably be designed and constructed using existing site-specific information and modern well-drilling techniques. The potential for cost-effective implementation of ATES was investigated in the Twin Cities District Heating-Cogeneration Study in Minnesota. In the study, ATES demonstrated a net energy saving of 32% over the nonstorage scenario, with an annual energy cost saving of $31 million. Discounting these savings over the life of the project, the authors found that the break-even capital cost for ATES construction was $76/kW thermal, far above the estimated ATES development cost of $23 to 50/kW thermal. It appears tht ATES can be highly cost effective as well as achieve substantial fuel savings. ATES would be environmentally beneficial and could be used in many parts of the USA. The existing body of information on ATES indicates that it is a cost-effective, fuel-conserving technique for providing thermal energy for residential, commercial, and industrial users. The negative aspects are minor and highly site-specific, and do not seem to pose a threat to widespread commercialization. With a suitable institutional framework, ATES promises to supply a substantial portion of the nation's future energy needs. (LCL)

  19. Method and apparatus for thermal management of vehicle exhaust systems

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1995-01-01T23:59:59.000Z

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.

  20. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet), Thermal Systems Group: CSP Capabilities (TSG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in theTheoretical Study onThermalEnergy Analysis

  1. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01T23:59:59.000Z

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  2. Shift-register coincidence electronics system for thermal neutron counters

    SciTech Connect (OSTI)

    Swansen, J.E.; Collinsworth, P.R.; Krick, M.S.

    1980-04-01T23:59:59.000Z

    An improved shift-register, coincidence-counting logic circuit, developed for use with thermal neutron well counters, is described in detail. A distinguishing feature of the circuit is its ability to operate usefully at neutron counting rates of several hundred kHz. A portable electronics package incorporating the new coincidence logic and support circuits is also described.

  3. Thermal model of attic systems with radiant barriers

    SciTech Connect (OSTI)

    Wilkes, K.E.

    1991-07-01T23:59:59.000Z

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  4. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15T23:59:59.000Z

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  5. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems

    E-Print Network [OSTI]

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01T23:59:59.000Z

    , encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

  6. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  7. Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation 

    E-Print Network [OSTI]

    Cho, S.; Haberl, J.

    2010-01-01T23:59:59.000Z

    This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze...

  8. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Yang, Yuan

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the ...

  9. Thermal design of humidification dehumidification systems for affordable and small-scale desalination

    E-Print Network [OSTI]

    Govindan, Prakash Narayan

    2012-01-01T23:59:59.000Z

    The humidification dehumidification (HDH) technology is a carrier-gas-based thermal desalination technique ideal for application in a small-scale system but, currently, has a high cost of water production (about 30 $/mł ...

  10. Optimal operation and design of solar-thermal energy storage systems

    E-Print Network [OSTI]

    Lizarraga-García, Enrique

    2012-01-01T23:59:59.000Z

    The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

  11. Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies

    E-Print Network [OSTI]

    Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

  12. Concept of SPDS integrated into Distributed Computer System (DCS)

    SciTech Connect (OSTI)

    Anikanov, S. S. [Westinghouse LLC, 4350 Northern Pike, Monroeville, PA 15146 (United States)

    2006-07-01T23:59:59.000Z

    Implementation of the Safety Parameter Display System (SPDS) during the NPP modernization activities or for the new plant imposes certain requirements on the system design. In many cases, such SPDS system functionality is integrated into the non-safety part of the Distributed Computer System (DCS). The SPDS becomes organically embedded into the major I and C hardware and application software. However, from the licensing perspective, SPDS shall be designed as a functional entity which satisfies industry standards and as such imposes requirements to the other plant MMI systems. 'Other MMI systems' that are used to support the operating staff during normal, abnormal and emergency plant conditions include Main Control Room Workstations, Shared Wall Panel Display (WPD), and other information systems. The SPDS resources, used to address the system requirements, also include the Emergency Response Facilities (TSC, Emergency on-site Facilities, and Emergency off-site Facilities). (authors)

  13. An experimental measurement of the thermal conductivity and diffusivity of a porous solid-liquid system 

    E-Print Network [OSTI]

    Dunn, James Elliott

    1959-01-01T23:59:59.000Z

    AN EXPERIMENTAL MEASUREMENT QF THE THERMAL CONDUCTIVITY AND DIFFUSIVITY OF A POROUS SOLID LIQUID SYSTEM By James Elliott Dunn A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the reQuirements for the degree of MASTER OF SCIENCE August 1959 Major Sub)ect: Mechanical Engineering AN EXPERIMENTAL MEASURFJ1ENT OF THE THERMAL CONDUCTIVITY AND DIFFUSIVITY OF A POROUS SOLID LIQUID SYSTEM A Thesis James Elliott Dunn...

  14. Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation

    E-Print Network [OSTI]

    Cho, S.; Haberl, J.

    to achieve further energy consumption reductions. To accomplish this, the F- Chart program was used for the solar thermal system analysis and the PV F-Chart program for the solar photovoltaic (PV) system analysis. Authors show how DOE-2.1e simulation... Time series plots of space heating and service hot water loads from SYSTEMS and PLANT simulation runs Due to the fact that the solar thermal systems analysis program, F-Chart, takes into account the system efficiencies in its loads calculation...

  15. Hybrid Control Network Intrusion Detection Systems for Automated Power Distribution Systems

    E-Print Network [OSTI]

    Peisert, Sean

    ) for protecting automated distribution systems (ADS) against certain types of cyber attacks in a new way, distribution au- tomation, network security, intrusion detection systems. I. INTRODUCTION A. Scope and Goals their development with that of an appropriate cyber security frame- work that would prevent attackers from gaining

  16. Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies

    E-Print Network [OSTI]

    Herbordt, Martin

    of our time. Data center energy consumption is now 2-3% of total US electricity use and is increasing better software for reducing energy consumption and thermal problems. For example, the distance that data-level energy consumption. I. INTRODUCTION Energy efficiency is one of the central societal and technical issues

  17. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    solar/calculators/PVWATTS/version1/ Firestone, R. , (2004), “Distributed Energy Resources Customersolar thermal collectors, absorption chillers, batteries and thermal storage systems. We apply the Distributed Energy Resources Customer

  18. Alternative Export - Wheat Distribution Systems for the Texas - Oklahoma Panhandle.

    E-Print Network [OSTI]

    Fuller, Stephen W.; Shanmugham C.V.

    1980-01-01T23:59:59.000Z

    .......................... and Port-Terminal Costs 9 Impacts of Alternative Distribution Systems Cost of Upgrading Country Elevators to Subterminals. . 9 O n Marketing-System Participants.. ............... 19 ............................................. Commercial T uck cost... be neces- sary to upgrade country elevators into subterminals. In which case, a potential subterminal organization would be at a relative cost disadvantage when compared to the Midwest. An additional factor is the region's relatively low density...

  19. A Distributed Facilities Automation System For IBM Buildings

    E-Print Network [OSTI]

    Houle, W. D. Sr.

    to the host would be via an IBM-supplied local communications network protocol. Remote appli cations would include process control, security, energy manage ment, facilities automation or any other automation application. The remote systems... of these areas which are affected are: - HVAC - Chemical Processes Control - Utilities Generation - Tank Farm Monitoring Resource Management - Solvent Supply and Recovery Systems - DI Water Distribution - Sewage and Waste Treatment Plant Control...

  20. Automated Energy Distribution and Reliability System (AEDR): Final Report

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-07-01T23:59:59.000Z

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  1. Synchronization in Multimedia Languages for Distributed Systems A. Guercio1

    E-Print Network [OSTI]

    Bansal, Arvind K.

    Synchronization in Multimedia Languages for Distributed Systems A. Guercio1 , A. Bansal2 , T. Arndt Introduction The rising popularity of multimedia content on the web has led to the development of special-purpose languages for multimedia authoring and presentations. Examples of such languages include SMIL [1], VRML [2

  2. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  3. Availability in the Sprite Distributed File System John Ousterhout

    E-Print Network [OSTI]

    Baker, Mary G.

    Availability in the Sprite Distributed File System Mary Baker John Ousterhout Computer Science faults means recovering from them quickly. Our position is that performance and availability server recovery is the most cost-effective way of providing such availability. Mechanisms used

  4. Security proof for quantum key distribution using qudit systems

    SciTech Connect (OSTI)

    Sheridan, Lana [Centre for Quantum Technologies, National University of Singapore (Singapore); Scarani, Valerio [Centre for Quantum Technologies, National University of Singapore (Singapore); Department of Physics, National University of Singapore (Singapore)

    2010-09-15T23:59:59.000Z

    We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use d-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with d. The finite key corrections are found to be almost insensitive to d < or approx. 20.

  5. A Robust Optimization Framework for Analyzing Distribution Systems with Transshipment

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    A Robust Optimization Framework for Analyzing Distribution Systems with Transshipment Mabel Chou operations. Mabel Chou NUS Business School National University of Singapore Singapore 117592 Email: bizchoum Email: dscsimm@nus.edu.sg Kut C. So The Paul Merage School of Business University of California Irvine

  6. Hazards Data Distribution System (HDDS) Explorer Help Documentation

    E-Print Network [OSTI]

    Hazards Data Distribution System (HDDS) Explorer Help Documentation Version 1.1 March 2014 #12;Page: ii Document History Number Date and Sections Notes 1 August 2013 Original document 1.0 2 September information on Access to Events #12;Page: iii Table of contents Document History

  7. Scalable Hierarchical Locking for Distributed Systems Nirmit Desai and Frank Mueller

    E-Print Network [OSTI]

    Mueller, Frank

    Scalable Hierarchical Locking for Distributed Systems Nirmit Desai and Frank Mueller Dept share computational resources in distributed environments, such as high-end clusters with ever larger requests in distributed systems. But concurrency protocols currently lack scalability. Adding

  8. Method and apparatus for thermal management of vehicle exhaust systems

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1995-12-26T23:59:59.000Z

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.

  9. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04T23:59:59.000Z

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¢�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  10. A Monolithic Microconcentrator Receiver For A Hybrid PV-Thermal System: Preliminary Performance

    E-Print Network [OSTI]

    ://solar.anu.edu.au Abstract: An innovative hybrid PV-thermal microconcentrator (MCT) system is being jointly developed by Chromasun Inc., San Jose, California, and at the Centre for Sustainable Energy Systems, Australian National University. The MCT aims to develop the small-scale, roof-top market for grid-integrated linear CPV systems

  11. System-Level Modeling of Energy in TLM for Early Validation of Power and Thermal Management

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    System-Level Modeling of Energy in TLM for Early Validation of Power and Thermal Management Tayeb--Modern systems-on-a-chip are equipped with power architectures, allowing to control the consumption of individual; hence the need for early system-level models of power consumption. B. High-Level Models and Simulation

  12. NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes.

    E-Print Network [OSTI]

    NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems to optimize overall space conditioning system design in both heating and cooling modes. Potential Impact

  13. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    credit for different air distribution methods can be given.Measured Air Distribution Effectiveness for Residential4   Distribution metric

  14. Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories

    Broader source: Energy.gov [DOE]

    Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

  15. Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch

    E-Print Network [OSTI]

    Ilic, Marija; Hsieh, Eric; Remanan, Prasad

    2004-06-16T23:59:59.000Z

    Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch...

  16. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

  17. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11T23:59:59.000Z

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  18. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect (OSTI)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R. [Fermi National Accelerator Laboratory Batavia, IL, 60510 (United States)

    2014-01-29T23:59:59.000Z

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  19. Measurements of the spatial and energy distribution of thermal neutrons in uranium, heavy water lattices

    E-Print Network [OSTI]

    Brown, Paul S. (Paul Sherman)

    1962-01-01T23:59:59.000Z

    Intracell activity distributions were measured in three natural uranium, heavy water lattices of 1. 010 inch diameter, aluminum clad rods on triangular spacings of 4. 5 inches, 5. 0 inches, and 5. 75 inches, respectively, ...

  20. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Mark K. Gee

    2008-10-01T23:59:59.000Z

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to improve system efficiency and reduce packaging size.

  1. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Distributed solar-thermal/electric generation. Technicalthermal load to absorb the energy rejected from the electric power generationthermal efficiency, (2) solar-electric efficiency, (3) fraction of Carnot efficiency for electrical generation, (

  2. Adsorption at the nanoparticle interface for increased thermal capacity in solar thermal systems

    E-Print Network [OSTI]

    Thoms, Matthew W

    2012-01-01T23:59:59.000Z

    In concentrated solar power (CSP) systems, high temperature heat transfer fluids (HTFs) are responsible for collecting energy from the sun at the solar receiver and transporting it to the turbine where steam is produced ...

  3. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect (OSTI)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01T23:59:59.000Z

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  4. Engineering a thermal squeezed reservoir by system energy modulation

    E-Print Network [OSTI]

    Ephraim Shahmoon; Gershon Kurizki

    2013-02-05T23:59:59.000Z

    We show that a thermal reservoir can effectively act as a squeezed reservoir on atoms that are subject to energy-level modulation. For sufficiently fast and strong modulation, for which the rotating-wave-approximation is broken, the resulting squeezing persists at long times. These effects are analyzed by a master equation that is valid beyond the rotating wave approximation. As an example we consider a two-level-atom in a cavity with Lorentzian linewidth, subject to sinusoidal energy modulation. A possible realization of these effects is discussed for Rydberg atoms.

  5. The Chain-Length Distribution in Subcritical Systems

    SciTech Connect (OSTI)

    Steven Douglas Nolen

    2000-06-01T23:59:59.000Z

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated.

  6. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ���¢��������networks���¢������� in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1���¢��������PV Deployment Analysis for New York City���¢��������we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2���¢��������A Briefing for Policy Makers on Connecting PV to a Network Grid���¢��������presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3���¢��������Technical Review of Concerns and Solutions to PV Interconnection in New Y

  7. NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

  8. The design of a distributed image processing and dissemination system

    SciTech Connect (OSTI)

    Rafferty, P.; Hower, L.

    1990-01-01T23:59:59.000Z

    The design and implementation of a distributed image processing and dissemination system was undertaken and accomplished as part of a prototype communication and intelligence (CI) system, the contingency support system (CSS), which is intended to support contingency operations of the Tactical Air Command. The system consists of six (6) Sun 3/180C workstations with integrated ITEX image processors and three (3) 3/50 diskless workstations located at four (4) system nodes (INEL, base, and mobiles). All 3/180C workstations are capable of image system server functions where as the 3/50s are image system clients only. Distribution is accomplished via both local and wide area networks using standard Defense Data Network (DDN) protocols (i.e., TCP/IP, et al.) and Defense Satellite Communication Systems (DSCS) compatible SHF Transportable Satellite Earth Terminals (TSET). Image applications utilize Sun's Remote Procedure Call (RPC) to facilitate the image system client and server relationships. The system provides functions to acquire, display, annotate, process, transfer, and manage images via an icon, panel, and menu oriented Sunview{trademark} based user interface. Image spatial resolution is 512 {times} 480 with 8-bits/pixel black and white and 12/24 bits/pixel color depending on system configuration. Compression is used during various image display and transmission functions to reduce the dynamic range of image data of 12/6/3/2 bits/pixel depending on the application. Image acquisition is accomplished in real-time or near-real-time by special purpose Itex image hardware. As a result all image displays are highly interactive with attention given to subsecond response time. 3 refs., 7 figs.

  9. Parallel Breadth-First Search on Distributed Memory Systems

    SciTech Connect (OSTI)

    Computational Research Division; Buluc, Aydin; Madduri, Kamesh

    2011-04-15T23:59:59.000Z

    Data-intensive, graph-based computations are pervasive in several scientific applications, and are known to to be quite challenging to implement on distributed memory systems. In this work, we explore the design space of parallel algorithms for Breadth-First Search (BFS), a key subroutine in several graph algorithms. We present two highly-tuned par- allel approaches for BFS on large parallel systems: a level-synchronous strategy that relies on a simple vertex-based partitioning of the graph, and a two-dimensional sparse matrix- partitioning-based approach that mitigates parallel commu- nication overhead. For both approaches, we also present hybrid versions with intra-node multithreading. Our novel hybrid two-dimensional algorithm reduces communication times by up to a factor of 3.5, relative to a common vertex based approach. Our experimental study identifies execu- tion regimes in which these approaches will be competitive, and we demonstrate extremely high performance on lead- ing distributed-memory parallel systems. For instance, for a 40,000-core parallel execution on Hopper, an AMD Magny- Cours based system, we achieve a BFS performance rate of 17.8 billion edge visits per second on an undirected graph of 4.3 billion vertices and 68.7 billion edges with skewed degree distribution.

  10. A full-scale thermal test and analytical evaluation of the beneficial uses shipping system cask

    SciTech Connect (OSTI)

    Moya, J.L.; Akau, R.L.

    1988-09-01T23:59:59.000Z

    A thermal test of the Beneficial Uses Shipping System (BUSS) cask containing irradiation source capsules was conducted to verify a two-dimensional axisymmetric thermal model developed for the Safety Analysis Report. The BUSS cask is a Type B package developed to transport irradiation source capsules of cesium chloride or strontium fluoride to commercially licensed food and pharmaceutical irradiating facilities. The uniqueness of this test is that it was performed on an internally instrumented, full-scale cask with actual radioactive capsules. This resulted in more realistic system temperatures than those obtained if heaters were used to simulate the large gamma source. In addition, the thermal test provides benchmark data for other thermal codes. 12 refs.; 24 figs.; 2 tabs.

  11. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect (OSTI)

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01T23:59:59.000Z

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  12. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    output P e Electrical power output of system Q Solar CHP to1.5, the CHP system cost of electrical power is obtained.thermal to electrical power output R of this system is (1 ?

  13. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  14. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

    1996-01-01T23:59:59.000Z

    A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

  15. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01T23:59:59.000Z

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  16. Video imaging system and thermal mapping of the molten hearth in an electron beam melting furnace

    SciTech Connect (OSTI)

    Miszkiel, M.E.; Davis, R.A.; Van Den Avyle, J.A. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-12-31T23:59:59.000Z

    This project was initiated to develop an enhanced video imaging system for the Liquid Metal Processing Laboratory Electron Beam Melting (EB) Furnace at Sandia and to use color video images to map the temperature distribution of the surface of the molten hearth. In a series of test melts, the color output of the video image was calibrated against temperatures measured by an optical pyrometer and CCD camera viewing port above the molten pool. To prevent potential metal vapor deposition onto line-of-sight optical surfaces above the pool, argon backfill was used along with a pinhole aperture to obtain the vide image. The geometry of the optical port to the hearth set the limits for the focus lens and CCD camera`s field of view. Initial melts were completed with the pyrometer and pinhole aperture port in a fixed position. Using commercially available vacuum components, a second flange assembly was constructed to provide flexibility in choosing pyrometer target sights on the hearth and to adjust the field of view for the focus lens/CCD combination. RGB video images processed from the melts verified that red wavelength light captured with the video camera could be calibrated with the optical pyrometer target temperatures and used to generate temperature maps of the hearth surface. Two color ratio thermal mapping using red and green video images, which has theoretical advantages, was less successful due to probable camera non-linearities in the red and green image intensities.

  17. Compiling software for a hierarchical distributed processing system

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-12-31T23:59:59.000Z

    Compiling software for a hierarchical distributed processing system including providing to one or more compiling nodes software to be compiled, wherein at least a portion of the software to be compiled is to be executed by one or more nodes; compiling, by the compiling node, the software; maintaining, by the compiling node, any compiled software to be executed on the compiling node; selecting, by the compiling node, one or more nodes in a next tier of the hierarchy of the distributed processing system in dependence upon whether any compiled software is for the selected node or the selected node's descendents; sending to the selected node only the compiled software to be executed by the selected node or selected node's descendent.

  18. Analytical evaluation of thermal conductance and heat capacities of one-dimensional material systems

    SciTech Connect (OSTI)

    Saygi, Salih [Department of Physics, Gaziosmanpasa University, Tokat, 60200 Turkey (Turkey)] [Department of Physics, Gaziosmanpasa University, Tokat, 60200 Turkey (Turkey)

    2014-02-15T23:59:59.000Z

    We theoretically predict some thermal properties versus temperature dependence of one dimensional (1D) material nanowire systems. A known method is used to provide an efficient and reliable analytical procedure for wide temperature range. Predicted formulas are expressed in terms of Bloch-Grüneisen functions and Debye functions. Computing results has proved that the expressions are in excellent agreement with the results reported in the literature even if it is in very low dimension limits of nanowire systems. Therefore the calculation method is a fully predictive approach to calculate thermal conductivity and heat capacities of nanowire material systems.

  19. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    1981-06-01T23:59:59.000Z

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  20. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday,...

  1. Reliability Improvement Programs in Steam Distribution and Power Generation Systems

    E-Print Network [OSTI]

    Petto, S.

    RELIABILITY IIIPROVEfWlT PROGRAMS IN STEAM DISTRIBUTION AND POVER GENERATION SYSTEItS Steve Petto Tech/Serv Corporation Blue Bell, PA Abstract This paper will present alternatives to costly corrective maintenance of the steam trap... In the reliability and efficiency of the system. Recent studies have shownt hat more than 40% of all In stalled steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems In condensate return...

  2. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01T23:59:59.000Z

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  3. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    E-Print Network [OSTI]

    Berning, Torsten

    in automotive applications such as forklifts. In this paper we present a control-oriented dynamic modelThermal modeling and temperature control of a PEM fuel cell system for forklift applications simulation System modeling and control PEMFC a b s t r a c t Temperature changes in PEM fuel cell stacks

  4. Review of the integrated thermal and nonthermal treatment system studies. Final report

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1 -- issued July 1994; Integrated Thermal Treatment System Study, Phase 2 -- issued February 1996; and Integrated Nonthermal Treatment System Study -- drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  5. Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure

    E-Print Network [OSTI]

    Quality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch different solar systems. The simulation model was validated with measured data. The deviation between meas * Tel. +49 (0)5151-999503, Fax: +49 (0)5151-999500, Email: paerisch@isfh.de Abstract Input/Output

  6. Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety Standard

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    acceptance; o power and energy capability; o reliability; o lifetime and life cycle cost. ThereofNovel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety,Denmark. Temperature excursions and non-uniformity of the temperature inside the battery systems are the main concern

  7. Optimal Control of Harvesting Ice Thermal Storage Systems

    E-Print Network [OSTI]

    Knebel, D. E.

    1988-01-01T23:59:59.000Z

    for optimal control of a harvesting ice storage system. A simplified procedure is used to develop 24 hour load data. Example installations will be shown....

  8. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    Faress Rahman; Nguyen Minh

    2004-01-04T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    Nguyen Minh

    2002-03-31T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  10. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

    2008-07-15T23:59:59.000Z

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  11. Energy efficient HVAC system features thermal storage and heat recovery

    SciTech Connect (OSTI)

    Bard, E.M. (Bard, Rao + Athanas Consulting Engineering Inc., Boston, MA (United States))

    1994-03-01T23:59:59.000Z

    This article describes a HVAC system designed to efficiently condition a medical center. The topics of the article include energy efficient design of the HVAC system, incentive rebate program by the local utility, indoor air quality, innovative design features, operations and maintenance, payback and life cycle cost analysis results, and energy consumption.

  12. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10T23:59:59.000Z

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  13. Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems

    E-Print Network [OSTI]

    Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal the confidence in solar thermal energy. The so called Input/Output-Procedure is controlling the solar heat systems. The simulation model was validated with measured data and a lot of failures in 11 solar thermal

  14. FY 93 thermal loading systems study final report: Volume 2. Revision 1

    SciTech Connect (OSTI)

    NONE

    1994-08-29T23:59:59.000Z

    The ability to meet the overall performance requirements for the proposed Mined Geology Disposal System at Yucca Mountain, Nevada requires the two major subsystem (natural barriers and engineered barriers) to positively contribute to containment and radionuclide isolation. In addition to the postclosure performance the proposed repository must meet preclosure requirements of safety, retrievability, and operability. Cost and schedule were also considered. The thermal loading strategy chosen may significantly affect both the postclosure and preclosure performance of the proposed repository. Although the current Site Characterization Plan reference case is 57 kilowatts (kW)/acre, other thermal loading strategies (different areal mass loadings) have been proposed which possess both advantages and disadvantages. The objectives of the FY 1993 Thermal Loading Study were to (1) place bounds on the thermal loading which would establish the loading regime that is ``too hot`` and the loading regime that is ``too cold``, to (2) ``grade`` or evaluate the performance, as a function of thermal loading, of the repository to contain high level wastes against performance criteria and to (3) evaluate the performance of the various options with respect to cost, safety, and operability. Additionally, the effort was to (4) identify important uncertainties that need to be resolved by tests and/or analyses in order to complete a performance assessment on the effects of thermal loading. The FY 1993 Thermal Loading Study was conducted from December 1, 1992 to December 30, 1993 and this final report provides the findings of the study. Volume 2 consists of 10 appendices which contain the following: Waste Stream Analysis; Waste Package Design Inputs; Subsurface Design Inputs; Thermal-Hydrologic Model Inputs; Near-Field Calculations; Far-Field; Reliability of Electronics as a Function of Temperature; Cost Analysis Details; Geochemistry; and Areas of Uncertainty in Thermal Loading.

  15. Thermal and mechanical development of the East African Rift System

    E-Print Network [OSTI]

    Ebinger, Cynthia Joan

    1988-01-01T23:59:59.000Z

    The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

  16. Management of a large distributed control system development project

    SciTech Connect (OSTI)

    Gurd, D. P. (David P.)

    2002-01-01T23:59:59.000Z

    Building an accelerator at six geographically dispersed sites is quite mad, but politically expedient. The Spallation Neutron Source (SNS), currently under construction in Oak Ridge, Tennessee, combines a pulsed 1 Gev H{sup -} superconducting linac with a compressor ring to deliver 2 MW of beam power to a liquid mercury target for neutron production [1]. Accelerator components, target and experimental (neutron-scattering) instruments are being developed collaboratively by Lawrence Berkeley (Ion Source and Front End), Los Alamos (Linac), Thomas Jefferson (Cryosystems), Brookhaven (Compressor Ring), Oak Ridge (Target and Conventional Facilities) and Argonne (Neutron Scattering Instruments) National Laboratories. Similarly, a team distributed among all of the participating laboratories is developing the EPICS-based control system. this paper discusses the management model and strategies being used to address the unusual issues of organization, communication, standardization, integration and hand-off inherent in this widely-distributed project.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  18. Mutual information-energy inequality for thermal states of a bipartite quantum system

    E-Print Network [OSTI]

    Aleksey Fedorov; Evgeny Kiktenko

    2015-03-19T23:59:59.000Z

    In this work, we consider an upper bound for the quantum mutual information in thermal states of a bipartite quantum system. This bound is related with the interaction energy and logarithm of the partition function of the system. We demonstrate the connection between this upper bound and the value of the mutual information for the bipartite system realized by two spin-1/2 particles in the external magnetic field with the XY-Heisenberg interaction.

  19. Completion report harmonic analysis of electrical distribution systems

    SciTech Connect (OSTI)

    Tolbert, L.M.

    1996-03-01T23:59:59.000Z

    Harmonic currents have increased dramatically in electrical distribution systems in the last few years due to the growth in non-linear loads found in most electronic devices. Because electrical systems have been designed for linear voltage and current waveforms; (i.e. nearly sinusoidal), non-linear loads can cause serious problems such as overheating conductors or transformers, capacitor failures, inadvertent circuit breaker tripping, or malfunction of electronic equipment. The U.S. Army Center for Public Works has proposed a study to determine what devices are best for reducing or eliminating the effects of harmonics on power systems typical of those existing in their Command, Control, Communication and Intelligence (C3I) sites.

  20. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Unknown

    2002-03-01T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

  1. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30T23:59:59.000Z

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  2. Distributed thermal energy storage in the residential sector: commercialization-readiness assessment and implementation strategy

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    The readiness of each of three candidate TES systems for near-term commercialization was examined. It was concluded that of these, TES for residential space and hot-water heating are technically and economically ready for commercialization. TES systems are unlikely to be more attractive than standard-heat-pump systems in all areas of the country; however, in many regions, particularly in the northeast and north central states, TES appears to be more attractive. In the not-too-distant future, use of TES with heat pumps may prove to be the best system nationwide. For the third system, TES for residential space cooling, it was found that those units that are presently technically viable would be too costly except in a few parts of the country; more development will be required before these systems could be commercialized on a national scale. TES systems that might be used in commercial buildings (e.g., stores and office buildings) were not examined. Environmental, market and economic, and institutional-readiness studies are presented. Market penetration and benefit analysis are summarized. Barriers to commercialization are identified along with strategies for overcoming the barriers. Schedules and resource requirements are discussed. Summaries of the study techniques and additional information are given in the appendices. (MCW)

  3. Voices of Experience | Insights into Advanced Distribution Management Systems

    Broader source: Energy.gov [DOE]

    The American Recovery and Reinvestment Act (ARRA) of 2009 spurred investments in smart grid technology and programs at utilities across the country. In 2011, the Office of Electricity Delivery and Energy Reliability (OE), in partnership with electric utilities that received ARRA funds, convened a series of Regional Smart Grid Peer-to-Peer Workshops. These were designed to bring together utilities to engage in dialogues about the most compelling smart grid topics in each region. In February 2014, OE formed the Advanced Distribution Management Systems (ADMS) Working Group by assembling a leadership team of representatives from the utility industry with the mission to collect the experiences, insights, and lessons learned from implementing these systems. This Voices of Experience | Insights into Advanced Distribution Management Systems report is the result of a one-day meeting held at CenterPoint Energy in Houston, Texas, in May 2014 that was followed by a series of conference calls about specific aspects of ADMS, interviews with individuals leading ADMS projects at their utilities, and a final small group meeting at San Diego Gas & Electric in California in October 2014.

  4. OSU Building and Environmental Thermal Systems Research Group Citation Index

    E-Print Network [OSTI]

    countries. Renewable and Sustainable Energy Reviews 13(6-7):1383- 1394. Li, S., W. Yang, and X. Zhang. 2009-borehole ground-coupled heat pumps: A review of models and systems. Applied Energy 87(1):16-27. Fabrizio, E., M., and S. Wang 2009. Building energy research in Hong Kong: A review. Renewable and Sustainable Energy

  5. Thermal Solar Energy Systems for Space Heating of Buildings 

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source...

  6. Effects of a thermal reservoir on variational functions in open systems

    SciTech Connect (OSTI)

    Jakob, Matthias; Stenholm, Stig [Laser Physics and Quantum Optics, Royal Institute of Technology (KTH), Alba Nova, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2004-07-01T23:59:59.000Z

    We connect the theory of a Lyapunov functional for an open system with the thermophysical concept of the relative entropy or equivalently with the entropy production rate. In order to do this we consider the environment of the open system as a thermal reservoir, which introduces the temperature as a thermophysical quantity. The general theory of the Lyapunov functional of an open system constructs a metric operator which contains an element of ambiguity in its scaling. This ambiguity can be removed by assuming a thermostatistic environment which fixes the scaling of the metric operator in a unique manner. The Lyapunov functional thus acquires a thermophysical meaning and can be connected with a relative entropy. In this case the metric operator is related to the inverse of the stationary density operator of the system. We illustrate the theory on a two-level atomic system and a degenerate three-level atom which are exposed to a thermal electromagnetic environment.

  7. Roof system effects on in-situ thermal performance of HCFC polyisocyanurate insulation. [Hydrochlorofluorocarbon (HCFC)

    SciTech Connect (OSTI)

    Christian, J.E.; Desjarlais, A.O.; Courville, G.; Graves, R.

    1992-01-01T23:59:59.000Z

    Industry-produced, permeably-faced, experimental polyisocyanurate (PIR) laminated boardstock foamed with several different hydrochlorofluorcarbons (HCFCS) is undergoing in-situ testing at the Building Envelopes Research User Center at Oak Ridge National Laboratory (ORNL). The overall objective of this research is to determine the long term thermal performance differences between PIR foamed with CFC-11 and PIR foamed with HCFC-123, HCFC-14lb and blends of HCFCs. Boards from the same batch were installed in outdoor test facilities and instrumented in part to determine if the insulation thermal performance aging characteristics are dependent on how they are handled and installed in the field. One of the major contributions of this research is the field validation of an accelerated thermal aging procedure. The laboratory measurements of the apparent thermal conductivity (k) of 10-mm-thick slices conducted over a period of less than a year are used to predict the k of 38-50-mm-thick PIR laminated board stock for 12--20 years after production. In situ thermal performance measurements of these well characterized three-year-old boards under white and under black ethylene propylene diene monomer (EPDM) membranes are compared with the accelerated aging procedure and with boards from the same batch in different roofing systems: mechanically attached EPDM, fully adhered EPDM, and built-up roof (BUR). The comparison indicates that this accelerated aging procedure should be seriously considered for providing in-service thermal performance information to building owners and roofing contractors.

  8. Roof system effects on in-situ thermal performance of HCFC polyisocyanurate insulation

    SciTech Connect (OSTI)

    Christian, J.E.; Desjarlais, A.O.; Courville, G.; Graves, R.

    1992-10-01T23:59:59.000Z

    Industry-produced, permeably-faced, experimental polyisocyanurate (PIR) laminated boardstock foamed with several different hydrochlorofluorcarbons (HCFCS) is undergoing in-situ testing at the Building Envelopes Research User Center at Oak Ridge National Laboratory (ORNL). The overall objective of this research is to determine the long term thermal performance differences between PIR foamed with CFC-11 and PIR foamed with HCFC-123, HCFC-14lb and blends of HCFCs. Boards from the same batch were installed in outdoor test facilities and instrumented in part to determine if the insulation thermal performance aging characteristics are dependent on how they are handled and installed in the field. One of the major contributions of this research is the field validation of an accelerated thermal aging procedure. The laboratory measurements of the apparent thermal conductivity (k) of 10-mm-thick slices conducted over a period of less than a year are used to predict the k of 38-50-mm-thick PIR laminated board stock for 12--20 years after production. In situ thermal performance measurements of these well characterized three-year-old boards under white and under black ethylene propylene diene monomer (EPDM) membranes are compared with the accelerated aging procedure and with boards from the same batch in different roofing systems: mechanically attached EPDM, fully adhered EPDM, and built-up roof (BUR). The comparison indicates that this accelerated aging procedure should be seriously considered for providing in-service thermal performance information to building owners and roofing contractors.

  9. Robust control strategy for PV system integration in distribution systems M.J. Hossain a,

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Robust control strategy for PV system integration in distribution systems M.J. Hossain a, , T t s " Robust control provides flexible photovoltaic (PV) accommodations. " A robust PV control can significantly enhance the penetration level. " The change in volatile PV generations is considered

  10. E-Print Network 3.0 - air-distribution systems interactions Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system designer does not know how to design the best air distribution method for an ice rink. Ice rink... of the effectiveness of ventilation system and air distribution method....

  11. Economical Analysis of the Cold Air Distribution System: A Case Study

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    of the cold air distribution system in detail. The detailed analysis includes the air quality, comfort index, initial cost, life cost, static recycle period, and dynamic recycle period. The advantages and trends of super cold air distribution systems...

  12. Ground state cooling is not possible given initial system-thermal bath factorization

    E-Print Network [OSTI]

    Lian-Ao Wu; Dvira Segal; Paul Brumer

    2012-10-16T23:59:59.000Z

    In this paper we prove that a fundamental constraint on the cooling dynamic implies that it is impossible to cool, via a unitary system-bath quantum evolution, a system that is embedded in a thermal environment down to its ground state, if the initial state is a factorized product of system and bath states. The latter is a crucial but artificial assumption often included in many descriptions of system-bath dynamics. The analogous conclusion holds for 'cooling' to any pure state of the system.

  13. Progress on the MICE Liquid Absorber Cooling and Cryogenic Distribution System

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    PROGRESS ON THE MICE LIQUID ABSORBER COOLING AND CRYOGENIC DISTRIBUTION SYSTEMprogress made on the design of the cryogenic cooling system

  14. Adaptive Thermal Management for Portable System Batteries by Forced Convection Cooling

    E-Print Network [OSTI]

    Pedram, Massoud

    Adaptive Thermal Management for Portable System Batteries by Forced Convection Cooling Qing Xie}@elpl.snu.ac.kr Abstract-- Cycle life of a battery largely varies according to the battery operating conditions, especially the battery temperature. In particular, batteries age much faster at high temperature. Extensive experiments

  15. Development of encapsulated lithium hydride thermal energy storage for space power systems

    SciTech Connect (OSTI)

    Morris, D.G.; Foote, J.P.; Olszewski, M.

    1987-12-01T23:59:59.000Z

    Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

  16. Thermal Economic Analysis of an Underground Water Source Heat Pump System

    E-Print Network [OSTI]

    Zhang, W.; Lin, B.

    2006-01-01T23:59:59.000Z

    The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

  17. Cost Optimal Operation of Thermal Energy Storage System with Real-Time Prices

    E-Print Network [OSTI]

    Cost Optimal Operation of Thermal Energy Storage System with Real-Time Prices Toru Kashima, Member of the result [4]. The same can be said for time varying real-time prices. Real-time energy pricing is not yet such as chillers. Energy resources such as electricity or natural gas are bought from suppliers at certain prices

  18. Thermal Performance of Vegetative Roofing Systems Andre O. Desjarlais, Abdi Zaltash, and Jerald A. Atchley

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Thermal Performance of Vegetative Roofing Systems Andre O. Desjarlais, Abdi Zaltash, and Jerald A purposes. #12;ABSTRACT Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have

  19. Analysis of the effective delayed neutron fraction in the coupled fast-thermal system HERBE

    SciTech Connect (OSTI)

    Milosevic, M.; Pesic, M.; Avdic, S.; Nikolic, D. [Institute of Nuclear Sciences, Beograd (Yugoslavia)

    1994-12-31T23:59:59.000Z

    The results of measurements {beta}{sub eff} and {beta}{sub eff}/{Lambda} and calculation results based on various sets of evaluated six-group delayed neutron parameters for the coupled fast-thermal system HERBE are shown in this paper.

  20. Economic Analysis of Trickle Distribution System Texas High Plains.

    E-Print Network [OSTI]

    Osborn, James E.; Young, Alan M.; Wilke, Otto C.; Wendt, Charles

    1977-01-01T23:59:59.000Z

    -subsurface distribution systems with 40-inch spacing of laterals and emitters (systems 4 through 9) ranged from $268.50 for subsurface 'Costs for hail insurance were included for expenses directly associated with irrigation. 7 TABLE 7. ESTIMATED IRRIGATION COSTS PER... 152.00 480.00 480.00 1,000.00 Sandseparator(s) 150.00 150.00 300.00 300.00 Other items' 620.58 1,193.10 1,295.12 2,829.17 Total investment 9,001.12 18,589.98 19,128.72 39,355.97 I nvestment per acre ' 562.57 580.94 597.77 614.94 'The automated...

  1. Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance

    E-Print Network [OSTI]

    Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

    2012-01-01T23:59:59.000Z

    a comparison of room cooling load and supply air to roomtemperatures, cooling load profiles, supply airflow rate,water cooling coil, hot water heating coil and supply fan.

  2. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 203 Distribution Locational Marginal Pricing for Optimal

    E-Print Network [OSTI]

    Oren, Shmuel S.

    (DSO) determines distribution locational marginal prices (DLMPs) by solving the social welfare, distribution locational marginal prices (DLMPs), distribution locational marginal pricing (DLMP), distribution at node . System locational marginal price (LMP) at time period for the node feeding the distribution grid

  3. Opis: Reliable Distributed Systems in OCaml EPFL Technical Report NSL-REPORT-2008-001

    E-Print Network [OSTI]

    Kuncak, Viktor

    Opis: Reliable Distributed Systems in OCaml EPFL Technical Report NSL-REPORT-2008-001 Pierre provide an excellent vehicle for developing and debugging distributed systems. We present Opis, a functional-reactive approach for de- veloping distributed systems in Objective Caml. In Opis, a protocol

  4. Some characteristics of emerging distribution systems considering the smart grid initiative

    SciTech Connect (OSTI)

    Brown, Hilary E.; Suryanarayanan, Siddharth; Heydt, Gerald T.

    2010-06-15T23:59:59.000Z

    Modernization of the electric power system in the United States is driven by the Smart Grid Initiative. Many changes are planned in the coming years to the distribution side of the U.S. electricity delivery infrastructure to embody the idea of ''smart distribution systems.'' However, no functional or technical definition of a smart distribution system has yet been accepted by all. (author)

  5. Impact of Dynamic PHEVs Load on Renewable Sources based Distribution System

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Impact of Dynamic PHEVs Load on Renewable Sources based Distribution System F. R. Islam, H. R. Pota.Roy@student.adfa.edu.au Abstract--In this paper, charging effect of dynamic Plug in Hybrid Electric Vehicle (PHEV) is presented in a renewable energy based electricity distribution system. For planning and designing a distribution system

  6. Magnetic Resonant Wireless Power Delivery for Distributed Sensor and Wireless Systems

    E-Print Network [OSTI]

    Cervesato, Iliano

    Magnetic Resonant Wireless Power Delivery for Distributed Sensor and Wireless Systems Brian J. Lee, Pittsburgh, PA 15213 Abstract-- In this paper we report on a resonant wireless power delivery system using to loads distributed in the system. We experimentally map the power distribution for one and multiple loads

  7. Action Models: A Reliability Modeling Formalism for Fault-Tolerant Distributed Computing Systems

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Action Models: A Reliability Modeling Formalism for Fault-Tolerant Distributed Computing Systems. Introduction Model-based evaluation of the reliability of distributed systems has traditionally required expert- proach to analyze the reliability of fault-tolerant distributed systems. More in particular, we want

  8. LOAD PROFILING IN DISTRIBUTED REALTIME SYSTEMS \\Lambda ``One Size Doesn't Fit All''

    E-Print Network [OSTI]

    LOAD PROFILING IN DISTRIBUTED REAL­TIME SYSTEMS \\Lambda ``One Size Doesn't Fit All'' Azer Bestavros a new load­profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize

  9. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  10. An on-line information system for radioisotope thermal generator production

    SciTech Connect (OSTI)

    Kiebel, G.R.; Wiemers, M.J. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (US))

    1991-01-01T23:59:59.000Z

    An on-line production information system has been designed to support radioisotope thermal generator assembly and testing in a new facility being built at the Department of Energy Hanford Site in Washington State. This system is intended to make handling the large volumes of information associated with radioisotope thermal generator production and certification more efficient with less opportunity for error than traditional paper methods. It provides for tracking materials, implementing work procedures directly from computer terminals, and cross referencing among materials, procedures, and other documents related to production. This system will be implemented on a network of microcomputers using UNIX{sup TM} for its operating system. It has been designed to allow increased capabilities to be added as operating experience with the new facility dictates.

  11. Controlling and maximizing effective thermal properties by manipulating transient behaviors during energy-system cycles

    E-Print Network [OSTI]

    Gao, Z J; Merlitz, H; Pagni, P J; Chen, Z

    2014-01-01T23:59:59.000Z

    Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers' needs. In the present study, behaviors related to both thermal conductivities ($\\kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $\\kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as "nonlinear thermal bias", is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transien...

  12. 3. A. A. Sadovoi and N. M. Chulkov, "Distribution of kinetic energy dissipation into thermal energy over a spherical shell thickness because of viscosity," in: Calculation Algorithms

    E-Print Network [OSTI]

    Alexandrov, Victor

    3. A. A. Sadovoi and N. M. Chulkov, "Distribution of kinetic energy dissipation into thermal energy over a spherical shell thickness because of viscosity," in: Calculation Algorithms of Engineering and N. M. Chulkov, "Inertial convergence of cylindrical and spherical shells of incompressible

  13. Trace-Element Distribution In An Active Hydrothermal System,...

    Open Energy Info (EERE)

    halo surrounding the thermal center; (4) concentrations of As in sulfides and Li in silicate alteration minerals immediately surrounding high-temperature fluid flow-controlling...

  14. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01T23:59:59.000Z

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  15. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    SciTech Connect (OSTI)

    Jonemann, M.

    2013-05-01T23:59:59.000Z

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  16. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

    1981-04-21T23:59:59.000Z

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  17. Index for the Evaluation of Distributed Generation Impacts on Distribution System Luis F. Ochoa (1,2)

    E-Print Network [OSTI]

    Harrison, Gareth

    decisions that lead to the best management of the system, regarding both technical and economical aspects. Various studies have demonstrated that integration of DG in distribution networks may create technical in voltage control processes, diminish or increase losses, etc. In fact, all our knowledge about distribution

  18. On the optimal feedback control of linear quantum systems in the presence of thermal noise

    E-Print Network [OSTI]

    Marco G. Genoni; Stefano Mancini; Alessio Serafini

    2013-04-27T23:59:59.000Z

    We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal environment to non-classical stationary states by feedback loops based on weak measurements and conditioned linear driving. We derive general analytical upper bounds for the single mode squeezing and multimode entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in the bath allow for larger steady-state squeezing and entanglement if the efficiency of the optimal continuous measurements conditioning the feedback loop is high enough. We also consider the performance of feedback strategies based on homodyne detection and show that, at variance with the optimal measurements, it degrades with increasing temperature.

  19. Artificial Neural Networks and quadratic Response Surfaces for the functional failure analysis of a thermal-hydraulic passive system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    system reliability, artificial neural network, quadratic response surface 1. INTRODUCTION Modern nuclearArtificial Neural Networks and quadratic Response Surfaces for the functional failure analysis of a thermal-hydraulic passive system George Apostolakisa , Nicola Pedronib , Enrico Ziob* a Massachusetts

  20. Distribution System Voltage Performance Analysis for High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Liu, E.; Bebic, J.

    2008-02-01T23:59:59.000Z

    This report examines the performance of commonly used distribution voltage regulation methods under reverse power flow.

  1. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  2. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    on Sustainable thermal Energy Storage Technologies, Part I:2009, “Review on Thermal Energy Storage with Phase Change2002, “Survey of Thermal Energy Storage for Parabolic Trough

  3. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  4. THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    dynamic test methods for envelope thermal performance whichtransieu~ thermal behavior of building envelopes, and theof dynamic thermal performance, of layered envelope construe

  5. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Review on Sustainable thermal Energy Storage Technologies,D. , 2009, “Review on Thermal Energy Storage with PhaseW. , 2002, “Survey of Thermal Energy Storage for Parabolic

  6. Field study on the thermal environment of passive cooling system in RC building

    SciTech Connect (OSTI)

    Zhou, Nan; Gao, Weijun; Nishida, Masaru; Kitayama, Hiroki; Ojima, Toshio

    2004-10-30T23:59:59.000Z

    In recent years, various passive methods have come to be adopted in architecture design. The rooftop lawn is seen to have merit in the reduction in the air conditioning load of the building, as well as contributing to the mitigation of the heat island phenomenon. The roofs praying system is seen to be an effective method for the roof of low heat insulation performance, and can greatly reduce the heat load in the summer season. However, at present most of the buildings with an RC construction have the insulating material in the roof for providing thermal insulation in the winter season. There has been a trend to adopt the roof spraying system actively in even such a general RC building, but it is not clear how much actual effect it has. In this study, the authors conducted a measurement in an RC building with a rooftop spraying system and roof lawn in order to clarify the effects and problems on the thermal environment.

  7. A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30T23:59:59.000Z

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­based DR controller (dubbed the Central Load-­Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­tune the strategies accordingly.

  8. Large Distributed Data Acquisition System at the Z Facility

    SciTech Connect (OSTI)

    Mills, Jerry A.; Potter, James E.

    1999-06-15T23:59:59.000Z

    Experiments at the Z machine generate over four hundred channels of waveform data on each accelerator shot. Most experiments require timing accuracy to better than one nanosecond between multiple distributed recording locations throughout the facility. Experimental diagnostics and high speed data recording equipment are typically located within a few meters of the 200 to 300 terawatt X- ray source produced during Z-pinch experiments. This paper will discuss techniques used to resolve the timing of the several hundred data channels acquired on each shot event and system features which allow viewing of waveforms within a few minutes after a shot. Methods for acquiring high bandwidth signals in a severe noise environment will also be discussed.

  9. CO3097 Programming Secure and Distributed Systems Credits: 20 Convenor: Dr. S. Yang Semester: 1st

    E-Print Network [OSTI]

    Yang, Shengxiang

    CO3097 Programming Secure and Distributed Systems Credits: 20 Convenor: Dr. S. Yang Semester: 1st and distributed applica- tions in Java. The course covers both the fundamental problems facing distributed be tackled and implemented in Java. Learning Outcomes Students will be able to: build simple distributed

  10. Full-scale study of a building equipped with phase change material wallboards and a multi-layer rack latent heat thermal energy store system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -layer rack latent heat thermal energy store system Julien Borderon1 , Joseph Virgone2 , Richard Cantin1 installed as wallboard and as latent heat thermal energy storage system coupled with the ventilation system for the ventilation air is efficient. INTRODUCTION Nowadays, thermal energy storage systems are one way for reducing

  11. System Integration of Distributed Power for Complete Building Systems: Phase 1 Report

    SciTech Connect (OSTI)

    Kramer, R.

    2003-12-01T23:59:59.000Z

    This report describes NiSource Energy Technologies Inc.'s base year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of CHP systems in end-user environments and a further understanding of electric interconnection and siting issues. Important results from the first year were a survey of the state of the art of interconnection issues associated with distributed generation, a survey of the local zoning requirements for the NiSource service territory, and the acquisition of data about the operation, reliability, interconnection, and performance of CHP systems and components of two test sites.

  12. Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels

    SciTech Connect (OSTI)

    Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Carbary, Lawrence D [Dow Corning Corporation, Midland, MI

    2013-01-01T23:59:59.000Z

    A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

  13. Systems and methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOE Patents [OSTI]

    Moore, Karen A.; Zatorski, Raymond A.

    2005-07-12T23:59:59.000Z

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  14. Isolated many-body quantum systems far from equilibrium: Relaxation process and thermalization

    SciTech Connect (OSTI)

    Torres-Herrera, E. J.; Santos, Lea F. [Physics Department, Yeshiva University, New York, New York 10016 (United States)

    2014-10-15T23:59:59.000Z

    We present an overview of our recent numerical and analytical results on the dynamics of isolated interacting quantum systems that are taken far from equilibrium by an abrupt perturbation. The studies are carried out on one-dimensional systems of spins-1/2, which are paradigmatic models of many-body quantum systems. Our results show the role of the interplay between the initial state and the post-perturbation Hamiltonian in the relaxation process, the size of the fluctuations after equilibration, and the viability of thermalization.

  15. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  16. Performance and Reliability of Non-Markovian Heterogeneous Distributed Computing Systems

    E-Print Network [OSTI]

    Hayat, Majeed M.

    Performance and Reliability of Non-Markovian Heterogeneous Distributed Computing Systems Jorge E-of-service (QoS), and service reliability associated with heterogeneous parallel and distributed computing and system settings for which the Markovian setting, resulting from employing an exponential- distribution

  17. Sizing Thermally Activated Building Systems (TABS): A Brief Literature Review and Model Evaluation

    E-Print Network [OSTI]

    Basu, Chandrayee; Schiavon, Stefano; Bauman, Fred

    2012-01-01T23:59:59.000Z

    m 2 /W Thermal resistance of the building envelope, K-m 2 /Wtemperature, envelope, slab and tubing thermal resistance,

  18. Universal Probability Distribution for the Wave Function of a Quantum System Entangled with Its Environment

    E-Print Network [OSTI]

    Sheldon Goldstein; Joel L. Lebowitz; Christian Mastrodonato; Roderich Tumulka; Nino Zanghi

    2015-02-10T23:59:59.000Z

    A quantum system (with Hilbert space $\\mathscr{H}_1$) entangled with its environment (with Hilbert space $\\mathscr{H}_2$) is usually not attributed a wave function but only a reduced density matrix $\\rho_1$. Nevertheless, there is a precise way of attributing to it a random wave function $\\psi_1$, called its conditional wave function, whose probability distribution $\\mu_1$ depends on the entangled wave function $\\psi\\in\\mathscr{H}_1\\otimes\\mathscr{H}_2$ in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of $\\mathscr{H}_2$ but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about $\\mu_1$, e.g., that if the environment is sufficiently large then for every orthonormal basis of $\\mathscr{H}_2$, most entangled states $\\psi$ with given reduced density matrix $\\rho_1$ are such that $\\mu_1$ is close to one of the so-called GAP (Gaussian adjusted projected) measures, $GAP(\\rho_1)$. We also show that, for most entangled states $\\psi$ from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval $[E,E+\\delta E]$) and most orthonormal bases of $\\mathscr{H}_2$, $\\mu_1$ is close to $GAP(\\mathrm{tr}_2 \\rho_{mc})$ with $\\rho_{mc}$ the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then $\\mu_1$ is close to $GAP(\\rho_\\beta)$ with $\\rho_\\beta$ the canonical density matrix on $\\mathscr{H}_1$ at inverse temperature $\\beta=\\beta(E)$. This provides the mathematical justification of our claim in [J. Statist. Phys. 125:1193 (2006), http://arxiv.org/abs/quant-ph/0309021] that $GAP$ measures describe the thermal equilibrium distribution of the wave function.

  19. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01T23:59:59.000Z

    coefficient, W/(m 2 ?K) (Btu/[h?ft 2 ?°F]) downwardcoefficient, W/(m 2 ?K) (Btu/[h?ft 2 ?° F]) forcedcoefficient, W/(m 2 ?K) (Btu/[h?ft 2 ?°F]) slab thermal

  20. Distributed embedded computing systems are special-purpose computer systems designed for particular applications and set up in a networked or distributed manner. A

    E-Print Network [OSTI]

    Bhattacharyya, Shuvra S.

    for such a distributed system setup is the domain of wireless sensor network (WSN) applications. In this thesis, studies-specific WSN system with compact size and low power features. This system design is the result of an integrated proposed design techniques. This thesis also presents a system-level synthesis methodology for finding