Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1....

2

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and...

3

Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System  

Science Conference Proceedings (OSTI)

One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions between the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power and power density can be significantly increased, without losing the passive heat removal feature. This paper will introduce the concept of using DRACS to enhance VHTR passive safety and economics. Three design options will be discussed, depending on the cooling pipe locations. Analysis results from a lumped volume based model and CFD simulations will be presented.

Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

2012-06-01T23:59:59.000Z

4

Efficient thermal energy distribution in commercial buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient thermal energy distribution in commercial buildings -- Final Report Title Efficient thermal energy distribution in commercial buildings -- Final Report Publication Type...

5

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

6

Measurement of the axial distribution of radioactivity in the auxiliary charcoal bed of the Molten Salt Reactor Experiment at ORNL  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory commenced operation in 1964 and was shut down in 1969. It was fueled with {sup 233}UF{sub 4} in a carrier salt of LiF-BeF{sub 2}-ZrF{sub 4}, and it operated at 1,200 F. After it was shut down, the fuel was heated annually to 200 C to recombine fluorine (with the fuel) released due to radiation-induced reactions in the fuel salt. However, a competing reaction oxidized uranium to UF{sub 6}, which was released (along with F{sub 2}) from the fuel and trapped in one of four charcoal filters in the auxiliary charcoal bed (ACB). One of the tasks for decommissioning of the MSRE requires that at least 90% of the estimated 3 kg of {sup 233}U, and radioactive decay products, in this filter be removed, and one of the proposed methods is to vacuum the charcoal above a specified axial position in the filter. This requires that the axial distribution of activity in the filter be measured in a 60 rad/h radiation field to determine where this penetration can be made. To accomplish this, the shielded detector with a pinhole collimator, and with a laser positioning capability, was remotely translated to various axial positions to accomplish these measurements. Activities in the steel screen, and various regions of the charcoal bed, are estimated, and uncertainties in these estimates are generally {lt}1%. Results from this analysis are used for continued operational decisions for decommissioning of the MSRE.

Miller, L.F.; Buckner, M.; Buchanan, M.

1999-07-01T23:59:59.000Z

7

Thermal distribution systems in commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal distribution systems in commercial buildings Thermal distribution systems in commercial buildings Title Thermal distribution systems in commercial buildings Publication Type Journal Article LBNL Report Number LBNL-51860 Year of Publication 2003 Authors Diamond, Richard C., Craig P. Wray, Darryl J. Dickerhoff, Nance Matson, and Duo Wang Start Page Chapter Abstract Previous research suggests that HVAC thermal distribution systems in commercial buildings suffer from thermal losses, such as those caused by duct air leakage and poor duct location. Due to a lack of metrics and data showing the potentially large energy savings from reducing these losses, the California building industry has mostly overlooked energy efficiency improvements in this area. The purpose of this project is to obtain the technical knowledge needed to properly measure and understand the energy efficiency of these systems. This project has three specific objectives: to develop metrics and diagnostics for determining system efficiencies, to develop design and retrofit information that the building industry can use to improve these systems, and to determine the energy impacts associated with duct leakage airflows in an existing large commercial building. The primary outcome of this project is the confirmation that duct leakage airflows can significantly impact energy use in large commercial buildings: our measurements indicate that adding 15% duct leakage at operating conditions leads to an increase in fan power of about 25 to 35%. This finding is consistent with impacts of increased duct leakage airflows on fan power that have been predicted by previous simulations. Other project outcomes include the definition of a new metric for distribution system efficiency, the demonstration of a reliable test for determining duct leakage airflows, and the development of new techniques for duct sealing. We expect that the project outcomes will lead to new requirements for commercial thermal distribution system efficiency in future revisions of California's Title 24.

8

Potential benefits of distributed PCM thermal  

DOE Green Energy (OSTI)

This report examines the benefits of passive thermal storage by means of phase change material (PCM) distributed throughout the wall and ceiling surfaces of a building, as would occur if the wallboard were impregnated with PCM. Surface heat transfer is expected to be adequate for thermal storage capacity up to 40-Btu/ft/sup 2/ of surface area. Sums of daily energy balances during the heating season indicate that use of PCM-impregnated wallboard with a 40-Btu/ft/sup 2/ capacity would provide adequate storage for direct gain systems with the largest practical window area in Denver, Boston, and Fort Worth. It is shown that distributed PCM thermal storage offers the opportunity to obtain several ton-hours of ventilative cooling per night throughout much of the US during July. 17 refs., 9 figs.

Neeper, D.A.

1989-01-01T23:59:59.000Z

9

FUTURE DIRECTIONS FOR THERMAL DISTRIBUTION STANDARDS  

SciTech Connect

This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

10

Progress in solar thermal distributed receiver technology  

DOE Green Energy (OSTI)

The author reports the status of research on distributed receivers, which are solar thermal collectors which concentrate sunlight on an absorber and do not employ the central receiver concept. Point-focusing collectors such as the parabolic dish, line-focusing collectors such as the parabolic trough, and the fixed-mirror distributed-focus of hemispheric bowl collectors are the most common receivers. Following an overview of fundamental principals, there is a description of several installations and of the organic Rankine Cycle engine and the Solarized Automotive Gas Turbine projects. Future development will explore other types of power cycles, new materials, and other components and designs. 5 references, 6 figures.

Leonard, J.A.; Otts, J.V.

1985-08-01T23:59:59.000Z

11

Modeling and Optimizing the Thermal Stress Distribution in a ...  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2012 ... Presentation Title, Modeling and Optimizing the Thermal Stress Distribution in a Plasma Spray System for ... and analyzed for an applied thermal load in COMSOL® Multiphysics®.

12

Obtaining a bimodal grain size distribution via thermal means  

Science Conference Proceedings (OSTI)

Presentation Title, Obtaining a bimodal grain size distribution via thermal means ... manipulating thermal history, a family of bimodal grain size distributions may be formed. ... Mild Carbon Steel Quenche in Coconut Water, Fresh urine, Nigerian unadultrated up-wine, ... Multi-scale modeling of phase transformations in steels.

13

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

14

Distributed Solar-Thermal Combined Heat and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Solar-Thermal Combined Heat and Power Speaker(s): Zack Norwood Date: February 22, 2007 - 12:00pm Location: 90-3122 This seminar will examine the potential for the mild...

15

Predicting the distribution of thermal comfort votes  

Science Conference Proceedings (OSTI)

Maximizing occupant comfort and minimizing energy costs are two challenging tasks in the efficient operation of any office building. Often these objectives cannot be achieved simultaneously which asks for methods that resolve this trade-off in the best ... Keywords: decision support systems, intelligent systems, thermal comfort

Anika Schumann; Nic Wilson

2011-06-01T23:59:59.000Z

16

Proceedings of the 1992 DOE-industry thermal distribution conference  

Science Conference Proceedings (OSTI)

The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE's current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

Andrews, J.W. (ed.)

1992-06-01T23:59:59.000Z

17

Proceedings of the 1992 DOE-industry thermal distribution conference  

Science Conference Proceedings (OSTI)

The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE`s current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

Andrews, J.W. [ed.

1992-06-01T23:59:59.000Z

18

Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system  

E-Print Network (OSTI)

Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system X dependence of the thermal stability factor, the width of the thermal energy barrier distribution- ropy energy distribution and the interaction and the thermal energy barrier distribution determined

Laughlin, David E.

19

Correcting Thermal Distribution Problems for a Large University Campus  

E-Print Network (OSTI)

Texas A&M University main campus in College Station consists of 114 buildings served by two central plants. The two main campus loops are more than 50 years old with a total piping length for each loop in excess of 13 miles. The main campus has long had a problem with thermal distribution to the 114 buildings served by the central plants. Pressure problems were encountered in the chilled water and hot water distribution system during peak demand periods. The differential pressure between supply and return headers at buildings far from the central plants was negative, in the middle area was neutral, and close to the plant was positive. Various modifications were performed over the years without completely solving this problem. Discovering the real cause could help improve the thermal distribution and help determine how to best operate the system. This paper presents the causes and recommendations for the correction of the thermal distribution problems, which include not only malfunctioning automatic building hydraulic controls, but also some building hydraulic configurations themselves. Based on the findings, the thermal distribution problems will be solved by repairing the controls and retrofitting building hydraulic configurations as needed.

Chen, H.; Deng, S.; Bruner, H. L.; Claridge, D. E.; Turner, W. D.

2002-01-01T23:59:59.000Z

20

Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices  

E-Print Network (OSTI)

We study numerically time evolution in classical lattices with weak or moderate nonlinearity which leads to interactions between linear modes. Our results show that in a certain strength range a moderate nonlinearity generates a dynamical thermalization process which drives the system to the quantum Gibbs distribution of probabilities, or average oscillation amplitudes. The effective dynamical temperature of the lattice varies from large positive to large negative values depending on energy of initially excited modes. This quantum Gibbs distribution is drastically different from usually expected energy equipartition over linear modes corresponding to a regime of classical thermalization. Possible experimental observations of this dynamical thermalization are discussed for cold atoms in optical lattices, nonlinear photonic lattices and optical fiber arrays.

Leonardo Ermann; Dima L. Shepelyansky

2013-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

3 Thermal Distribution Design Load and Electricity Intensities, by Building Activity Education 0.5 1.3 Food Sales 1.1 6.4 Food Service 1.5 6.4 Health Care 1.5 5.6 Lodging 0.5 1.9...

22

Commercial thermal distribution systems, Final report for CIEE/CEC  

Science Conference Proceedings (OSTI)

According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

1999-12-01T23:59:59.000Z

23

Commercial thermal distribution systems, Final report for CIEE/CEC  

SciTech Connect

According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

1999-12-01T23:59:59.000Z

24

Performance of thermal distribution systems in large commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of thermal distribution systems in large commercial buildings Performance of thermal distribution systems in large commercial buildings Title Performance of thermal distribution systems in large commercial buildings Publication Type Journal Article LBNL Report Number LBNL-44331 Year of Publication 2002 Authors Xu, Tengfang T., François Rémi Carrié, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Duo Wang, and Mark P. Modera Journal Energy and Buildings Volume 34 Start Page Chapter Pagination 215-226 Abstract This paper presents major findings of a field study on the performance of five thermal distribution systems in four large commercial buildings. The five systems studied are typical single-duct or dual-duct constant air volume (CAV) systems and variable air volume (VAV) systems, each of which serves an office building or a retail building with floor area over 2,000 m2. The air leakage from ducts are reported in terms of effective leakage area (ELA) at 25 Pa reference pressure, the ASHRAE-defined duct leakage class, and air leakage ratios. The specific ELAs ranged from 0.7 to 12.9 cm2 per m2 of duct surface area, and from 0.1 to 7.7 cm2 per square meter of floor area served. The leakage classes ranged from 34 to 757 for the five systems and systems sections tested. The air leakage ratios are estimated to be up to one-third of the fan- supplied airflow in the constant-air-volume systems. The specific ELAs and leakage classes indicate that air leakage in large commercial duct systems varies significantly from system to system, and from system section to system section even within the same thermal distribution system. The duct systems measured are much leakier than the ductwork specified as "unsealed ducts" by ASHRAE. Energy losses from supply ducts by conduction (including convection and radiation) are found to be significant, on the scale similar to the losses induced by air leakage in the duct systems. The energy losses induced by leakage and conduction suggest that there are significant energy-savings potentials from duct-sealing and insulation practice in large commercial buildings

25

Spin and the Thermal Equilibrium Distribution of Wave Functions  

E-Print Network (OSTI)

Consider a quantum system $S$ weakly interacting with a very large but finite system $B$ called the heat bath, and suppose that the composite $S\\cup B$ is in a pure state $\\Psi$ with participating energies between $E$ and $E+\\delta$ with small $\\delta$. Then, it is known that for most $\\Psi$ the reduced density matrix of $S$ is (approximately) equal to the canonical density matrix. That is, the reduced density matrix is universal in the sense that it depends only on $S$'s Hamiltonian and the temperature but not on $B$'s Hamiltonian, on the interaction Hamiltonian, or on the details of $\\Psi$. It has also been pointed out that $S$ can also be attributed a random wave function $\\psi$ whose probability distribution is universal in the same sense. This distribution is known as the "Scrooge measure" or "Gaussian adjusted projected (GAP) measure"; we regard it as the thermal equilibrium distribution of wave functions. The relevant concept of the wave function of a subsystem is known as the "conditional wave function". In this paper, we develop analogous considerations for particles with spin. One can either use some kind of conditional wave function or, more naturally, the "conditional density matrix", which is in general different from the reduced density matrix. We ask what the thermal equilibrium distribution of the conditional density matrix is, and find the answer that for most $\\Psi$ the conditional density matrix is (approximately) deterministic, in fact (approximately) equal to the canonical density matrix.

Viraj Pandya; Roderich Tumulka

2013-06-07T23:59:59.000Z

26

Improving Energy Efficiency of Auxiliaries  

DOE Green Energy (OSTI)

The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines.

Carl T. Vuk

2001-12-12T23:59:59.000Z

27

Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance  

E-Print Network (OSTI)

Inc. , 2004. ASHRAE Fundamentals Handbook, Chapter 14,distribution (UFAD) systems: Fundamentals and influence onwas used to explain the fundamentals of thermal decay, to

Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

2012-01-01T23:59:59.000Z

28

Auxiliary resonant DC tank converter  

SciTech Connect

An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

Peng, Fang Z. (Knoxville, TN)

2000-01-01T23:59:59.000Z

29

Simulation of thermal plant optimization and hydraulic aspects of thermal distribution loops for large campuses  

E-Print Network (OSTI)

Following an introduction, the author describes Texas A&M University and its utilities system. After that, the author presents how to construct simulation models for chilled water and heating hot water distribution systems. The simulation model was used in a $2.3 million Ross Street chilled water pipe replacement project at Texas A&M University. A second project conducted at the University of Texas at San Antonio was used as an example to demonstrate how to identify and design an optimal distribution system by using a simulation model. The author found that the minor losses of these closed loop thermal distribution systems are significantly higher than potable water distribution systems. In the second part of the report, the author presents the latest development of software called the Plant Optimization Program, which can simulate cogeneration plant operation, estimate its operation cost and provide optimized operation suggestions. The author also developed detailed simulation models for a gas turbine and heat recovery steam generator and identified significant potential savings. Finally, the author also used a steam turbine as an example to present a multi-regression method on constructing simulation models by using basic statistics and optimization algorithms. This report presents a survey of the author??s working experience at the Energy Systems Laboratory (ESL) at Texas A&M University during the period of January 2002 through March 2004. The purpose of the above work was to allow the author to become familiar with the practice of engineering. The result is that the author knows how to complete a project from start to finish and understands how both technical and nontechnical aspects of a project need to be considered in order to ensure a quality deliverable and bring a project to successful completion. This report concludes that the objectives of the internship were successfully accomplished and that the requirements for the degree of Degree of Engineering have been satisfied.

Chen, Qiang

2005-05-01T23:59:59.000Z

30

Heat Pump Thermal Distribution Systems, Volumes 1 and 2: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

The thermal distribution system significantly affects the first cost and the operating cost of heat pumps. A detailed study has identified central and zoned systems that promise performance and cost benefits. This report discusses the thermal distribution system's applicability to air-source, ground-coupled, nonazeotropic refrigerant mixture and dual-fuel heat pumps.

1990-06-28T23:59:59.000Z

31

Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems  

E-Print Network (OSTI)

Proc. ASHRAE/DOE/BTECC/CIBSE Thermal Performance of theProc. ASHRAE/DOE/BTECC/CIBSE Thermal Performance of the

Walker, Iain; Sherman, M.; Siegel, J.

1999-01-01T23:59:59.000Z

32

Radiant vessel auxiliary cooling system  

DOE Patents (OSTI)

In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

Germer, John H. (San Jose, CA)

1987-01-01T23:59:59.000Z

33

A prototype data archive for the PIER "thermal distribution systems in  

NLE Websites -- All DOE Office Websites (Extended Search)

A prototype data archive for the PIER "thermal distribution systems in A prototype data archive for the PIER "thermal distribution systems in commercial buildings" project Title A prototype data archive for the PIER "thermal distribution systems in commercial buildings" project Publication Type Report LBNL Report Number LBNL-54191 Year of Publication 2004 Authors Diamond, Richard C., Craig P. Wray, Brian V. Smith, Darryl J. Dickerhoff, Nance Matson, and Skylar A. Cox Date Published 01/2004 Publisher Lawrence Berkeley National Laboratory Abstract A prototype archive for a selection of building energy data on thermal distribution systems in commercial buildings was developed and pilot tested. While the pilot demonstrated the successful development of the data archive prototype, several questions remain about the usefulness of such an archive. Specifically, questions on the audience, frequency of use, maintenance, and updating of the archive would need to be addressed before this prototype is taken to the next level.

34

A consideration of cycle selection for meso-scale distributed solar-thermal power .  

E-Print Network (OSTI)

??Thermodynamic and thermoeconomic aspects of 12.5 kW residential solar-thermal power generating systems suitable for distributed, decentralized power generation paradigm are presented in this thesis. The… (more)

Price, Suzanne

2009-01-01T23:59:59.000Z

35

Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos  

E-Print Network (OSTI)

The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

1998-11-24T23:59:59.000Z

36

Dynamical and thermal descriptions in parton distribution functions  

Science Conference Proceedings (OSTI)

We suggest a duality between the standard (dynamical) and statistical distributions of partons in the nucleons. The temperature parameter entering into the statistical form for the quark distributions is estimated. It is found that this effective temperature is practically the same for the dependence on longitudinal and transverse momenta and, in turn, it is close to the freeze-out temperature in high-energy heavy-ion collisions.

Cleymans, J., E-mail: Jean.Cleymans@uct.ac.za [University of Cape Town, UCT-CERN Research Centre and Department of Physics (South Africa); Lykasov, G. I., E-mail: lykasov@jinr.ru; Sorin, A. S., E-mail: sorin@theor.jinr.ru; Teryaev, O. V., E-mail: teryaev@theor.jinr.ru [JINR (Russian Federation)

2012-06-15T23:59:59.000Z

37

The energy distribution of atoms in the field of thermal blackbody radiation  

E-Print Network (OSTI)

Using the principle of detailed balance and the assumption on the absorption cross-section consistent with available astrophysical data, we obtain the energy distribution of atoms in the field of thermal blackbody radiation and show that this distribution diverges from the Boltzmann law.

F. V. Prigara

2002-02-06T23:59:59.000Z

38

The energy distribution of atoms in the field of thermal radiation  

E-Print Network (OSTI)

Using the principle of detailed balance and the assumption on the absorption cross-section consistent with available astrophysical data, we obtain the energy distribution of atoms in the field of thermal blackbody radiation and show that this distribution diverges from the Boltzmann law. There is an inversion of the high energy level population at sufficiently high temperatures.

F. V. Prigara

2003-11-24T23:59:59.000Z

39

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

SciTech Connect

The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.

Freifeld, B.; Finsterle, S.

2010-12-10T23:59:59.000Z

40

Software optimization for performance, energy, and thermal distribution: Initial case studies  

Science Conference Proceedings (OSTI)

As an initial step in our Green Software research, this paper investigates whether software optimization at the application level can help achieve higher energy efficiency and better thermal behavior. We use both direct measurements and modeling to quantify ... Keywords: system-level energy consumption, software optimization, performance-energy-thermal distribution, green software, energy efficiency, power estimator, multicore systems, regressing measurements, custom-designed suite, microbenchmarks, software tuning, scalability, parallel application

M. A. Khan; C. Hankendi; A. K. Coskun; M. C. Herbordt

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies  

E-Print Network (OSTI)

Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies Md and modeling to quantify power, energy and temperature for a given software method. The infrastructure includes two case studies. In the first one, we use software tuning for improving the scalability and energy

Coskun, Ayse

42

A delta configured auxiliary resonant snubber inverter  

SciTech Connect

A delta ({Delta}) configured auxiliary resonant snubber inverter is developed to overcome the voltage floating problem in a wye (Y) configured resonant snubber inverter. The proposed inverter is to connect auxiliary resonant branches between phase outputs to avoid a floating point voltage which may cause over-voltage failure of the auxiliary switches. Each auxiliary branch consists of a resonant inductor and a reverse blocking auxiliary switch. Instead of using an anti-paralleled diode to allow resonant current to flow in the reverse direction, as in the Y-configured version, the resonant branch in the {Delta}-configured version must block the negative voltage, typically done by a series diode. This paper shows single-phase and three-phase versions of {Delta}-configured resonant snubber inverters and describes in detail the operating principle of a single-phase version. The extended three-phase version is proposed with non-adjacent state space vector modulation. For hardware implementation, a single-phase 1-kW unit and a three-phase 100-kW unit were built to prove the concept. Experimental results show the superiority of the proposed topology.

Lai, J.S.; Young, R.W.; Ott, G.W. Jr.; McKeever, J.W. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

1995-09-01T23:59:59.000Z

43

Leakage diagnostics, sealant longevity, sizing and technologytransfer in residential thermal distribution systems: Part II.Residential thermal Distribution Systesm, Phase VI FinalReport  

SciTech Connect

This report builds on and extends our previous efforts as described in "Leakage Diagnostics, Sealant Longevity, Sizing and Technology Transfer in Residential Thermal Distribution Systems- CIEE Residential Thermal Distribution Systems Phase V Final Report, October 1997". New developments include defining combined duct and equipment efficiencies in a concept called "Tons At the Register" and on performance issues related to field use of the aerosol sealant technology. Some of the key results discussed in this report include: o Register, boot and air handler cabinet leakage can often represent a significant fraction of the total duct leakage in new construction. Because of the large range of pressures in duct systems an accurate characterization may require separating these components through improved leakage testing. o Conventional duct tape failed our accelerated longevity testing and is not, therefore, considered generally acceptable for use in sealing duct systems. Many other tapes and sealing approaches are available and practical and have passed our longevity tests. o Simulations of summer temperature pull-down time have shown that duct system improvements can be combined with equipment downsizing to save first cost, energy consumption, and peak power and still provide equivalent or superior comfort. o Air conditioner name plate capacity ratings alone are a poor indicator of how much cooling will actually be delivered to the conditioned space. Duct system efficiency can have as large an impact on performance as variations in SEER. o Mechanical duct cleaning techniques do not have an adverse impact on the ducts sealed with the Aerosol sealant. The material typically used in Aerosol sealing techniques does not appear to present a health or safety hazard. Results from this study were used by the California Energy Commission in the formation of the current Energy Efficiency Standards for Low-Rise Residential Buildings (CEC, (1998)), often referred to as Title 24. Current information on ducts and thermal distribution research can be found at http://ducts.lbl.gov

Buchanan, C.; Modera, M.; Sherman, M.; Siegel, J.; Walker, I.; Wang, D.

1998-12-01T23:59:59.000Z

44

Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object  

DOE Patents (OSTI)

The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

Crane, Thomas W. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

45

Study on Relay Protection Coordination in Complex Auxiliary Power System  

Science Conference Proceedings (OSTI)

In many large-scale power plants, the structure of its auxiliary power system are complex, and the coordination of its relay protections is difficult. The Three Gorges Hydropower Plant is the largest installed capacity of power plants with complex auxiliary ... Keywords: auxiliary power system, relay protection, coordination

Yawen Yi; Jun Xie; Na Yi

2010-06-01T23:59:59.000Z

46

1 2Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90 % capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the

Sarah Bashadi; Howard Herzog; Dava J. Newman; Sarah Bashadi

2010-01-01T23:59:59.000Z

47

Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor  

Science Conference Proceedings (OSTI)

We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

2008-10-10T23:59:59.000Z

48

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

E-Print Network (OSTI)

and end of the cooling periods for both thermal perturbationduring cooling period are used for estimation of thermal andduring cooling period are used for estimation of thermal and

Freifeld, B.

2011-01-01T23:59:59.000Z

49

Solid Oxide Fuel Cell Auxiliary Power Unit  

SciTech Connect

Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market.

J. Weber

2001-12-12T23:59:59.000Z

50

Heat exchanger with auxiliary cooling system  

DOE Patents (OSTI)

A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

Coleman, John H. (Salem Township, Westmoreland County, PA)

1980-01-01T23:59:59.000Z

51

Optimization of Auxiliaries Consumption in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Operators of nuclear power plants face significant challenges to produce power more cost-effectively. One approach to producing power more cost-effectively is to reduce power consumption by auxiliary systems in the plant, leading to more power available for the grid. This report provides guidance for assessing auxiliary system performance and recommends approaches to reduce their power consumption. The report also presents results from questionnaires on auxiliary system consumption and, in some cases, ac...

2005-02-08T23:59:59.000Z

52

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and installed DG equipment (PV, solar thermal, natural gas5. a low storage, PV, and solar thermal price run; and 6. aenergy sources such as PV or solar thermal. However, this

Stadler, Michael

2008-01-01T23:59:59.000Z

53

Auxiliary power supply with kinetic energy storage  

SciTech Connect

Alternating current is supplied to an auxiliary load on a from a power supply comprised of a dc-energized inverter and a synchronous machine coupled to the inverter. The inverter supplies the alternating current requirements of the load up to the normal steady state load current magnitude. The synchronous machine stores kinetic energy when the load current load does not exceed its normal steady state magnitude, and converts kinetic energy into electrical energy to supply the load current requirements in excess of its normal steady-state load magnitude and to supply load current whenever the dc source inverter connection is interrupted. Frequency and amplitude of load voltage are regulated by operator commands through control apparatus coupled to the inverter and the synchronous machine.

Plunkett, A.B.; Turnbull, F.G.

1982-03-23T23:59:59.000Z

54

Numerical calculation of thermal field distribution in oil immersed power transformer: a comparison of methods  

Science Conference Proceedings (OSTI)

This paper summarise a few computational methods and engineering models proposed for transformer thermal analysis and the accurate prediction of transformer thermal characteristics. The paper presents different approach for numerical calculation of thermal ... Keywords: hot-spot temperature, numerical calculation, power transformer, thermal field

Vlado Madzarevic; Izudin Kapetanovic; Majda Tesanovic; Mensur Kasumovic

2011-02-01T23:59:59.000Z

55

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and N. Zhou, “Distributed Generation with Heat Recovery andattractiveness of distributed generation with storage. Thecosts for distributed generation (DG) investments. The

Stadler, Michael

2008-01-01T23:59:59.000Z

56

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

57

Utility rate structures and distributed thermal energy storage: a cost/benefit analysis. Basic research report, October 1978-February 1979  

SciTech Connect

This paper examines three alternative methods by which electric utilities might take advantage of distributed thermal energy storage to smooth out their load profiles. These three methods are: time-specific rates, time-invariant rates with subsidized storage, and direct load controls. The optimal form of each of these policies is determined, and formulas indicating the relative desirability of each policy are developed.

Koening, E.F.; Cambel, A.B.

1979-02-01T23:59:59.000Z

58

Thermal cycling effect on the nanoparticle distribution and specific heat of a carbonate eutectic with alumina nanoparticles  

E-Print Network (OSTI)

The objective of this research was to measure the effect of thermal cycling on the nanoparticle distribution and specific heat of a nanocomposite material consisting of a eutectic of lithium carbonate and potassium carbonate and 1% by mass alumina nanoparticles. The material was subjected to thermal cycling in a stainless steel tube using a temperature controlled furnace. After thermal cycling, the stainless steel tube was sectioned into three equal parts – top, middle and bottom. Composite material samples were taken from the central region and near the wall region of each section. The specific heat of this material in the temperature range of 290°C-397°C was measured using the Modulated Differential Scanning Calorimeter (MDSC) method. The concentration of alumina nanoparticles in this material was measured using neutron activation analysis. The average specific heat of the uncycled material was found to be 1.37 J/g°C.The average specific heat of the thermally cycled material was between 1.7-2.1 J/g°C. It was found that the concentration of the nanoparticle varied along the height of the sample tube. The nanoparticles tended to settle towards the bottom of the tube with thermal cycling. There was also migration of nanoparticles towards the wall of the sample tube with thermal cycling. Despite these gross movements of nanoparticles, there was no significant change in the specific heat of the nanocomposite due to thermal cycling.

Shankar, Sandhya

2011-05-01T23:59:59.000Z

59

Analyzing auxiliary system in nuclear generating stations  

Science Conference Proceedings (OSTI)

The design for most nuclear generating stations took place before the widespread use of computerized engineering tools. The manual design basis calculations that were performed vary in quantity from only a few feet of shelf space for some of the first stations to bookcases full for stations that are now receiving their operating licenses. Some of the following issues may apply to the manual calculation files of any nuclear station: Errors and lack of detail in hand calculations; Calculations that may not document the required safety functions; Calculations that lag behind the as-built condition of the station; Documentation that does not add up to a coherent whole; and incomplete auditability and traceability of data. The increasing use of computerized tools in nuclear generating station analysis has helped address the hand-calculation problems. The use of a master system model to study various scenarios also ensures that uniform assumptions are being used for all related analyses. This article presents an overview of how computerized tools are being used for both ac and dc auxiliary system calculations. Problems that may be created by the use of these tools are discussed, along with a review of those issues specific to nuclear generating stations.

Jancauskas, J.R. (Gilber/Commonwealth (US))

1992-07-01T23:59:59.000Z

60

Auxiliary Signal Processing System for a Multiparameter Radar  

Science Conference Proceedings (OSTI)

The design of an auxiliary signal processor for a multiparameter radar is described with emphasis on low cost, quick development, and minimum disruption of radar operations. The processor is based around a low-cost digital signal processor card ...

V. Chandrasekar; G. R. Gray; I. J. Caylor

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Minimizing electricity costs with an auxiliary generator using stochastic programming  

E-Print Network (OSTI)

This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

Rafiuly, Paul, 1976-

2000-01-01T23:59:59.000Z

62

Auxiliary power controls on the Nelson River HVDC scheme  

SciTech Connect

This paper describes the auxiliary power controls on the Nelson River HVDC scheme. It shows how the fast control feature of the HVDC link can be utilized to enhance the operation of an integrated ac/dc power system.

Chand, J. (Manitoba Hydro, Winnipeg, Manitoba (CA))

1992-02-01T23:59:59.000Z

63

Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor  

E-Print Network (OSTI)

with homogeneous thermal properties, to invert cooling data.thermal simulations of DTPS testing showing modeled coolingand cooling. The match between measured and modeled thermal

Freifeld, B.M.

2009-01-01T23:59:59.000Z

64

A prototype data archive for the PIER 'thermal distribution systems in commercial buildings' project  

SciTech Connect

A prototype archive for a selection of building energy data on thermal distribution systems in commercial buildings was developed and pilot tested. While the pilot demonstrated the successful development of the data archive prototype, several questions remain about the usefulness of such an archive. Specifically, questions on the audience, frequency of use, maintenance, and updating of the archive would need to be addressed before this prototype is taken to the next level.

Diamond, Rick C.; Wray, Craig P.; Smith, Brian V.; Dickerhoff, Darryl J.; Matson, Nance E.; Cox, Skylar A.

2004-01-01T23:59:59.000Z

65

Test procedures and protocols: Their relevance to the figure of merit for thermal distribution systems. Volume 1: Informal report  

Science Conference Proceedings (OSTI)

A conceptual framework is developed that categorizes measurement protocols for forced-air thermal distribution systems in small buildings. This framework is based on the distinction between two generic approaches. The {open_quote}system-comparison{close_quote} approach seeks to determine, via a pair of whole-house energy-use measurements, the difference in energy use between the house with the as-found duct system and the same house with no energy losses attributable to the thermal distribution system. The {open_quote}component loss-factor{close_quote} approach identifies and measures the individual causes of duct losses, and then builds up a value for the net overall duct efficiency, usually with the help of computer simulation. Examples of each approach are analyzed and related to a proposed Figure of Merit for thermal distribution systems. This Figure of Merit would serve as the basis for a Standard Method of Test analogous to those already in place for furnaces, boilers, air conditioners, and heat pumps.

Andrews, J.W.

1993-09-01T23:59:59.000Z

66

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and heat-driven absorption chillers. Figure 1 shows a high-contains also heat for absorption chillers, and therefore,storage 11 flow battery absorption chiller solar thermal

Stadler, Michael

2008-01-01T23:59:59.000Z

67

A Radiation Algorithm with Correlated-k Distribution. Part I: Local Thermal Equilibrium  

Science Conference Proceedings (OSTI)

A new radiation scheme is proposed that uses the correlated-k distribution (CKD) method. The definition of the k-distribution function, the transformation between frequency space and k space, and the upper limit of the absorption coefficient in ...

J. Li; H. W. Barker

2005-02-01T23:59:59.000Z

68

Results of a field test of heating system efficiency and thermal distribution system efficiency in a manufactured home  

SciTech Connect

A two-day test using electric coheating was performed on a manufactured home in Watertown, New York. The main objective of the test was to evaluate planned procedures for measuring thermal distribution system efficiency. (Thermal distribution systems are the ductwork or piping used to transport heat or cooling effect from the equipment that produces it to the building spaces in which it is used.) These procedures are under consideration for a standard method of test now being prepared by a special committee of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers. The ability of a coheating test to give a credible and repeatable value for the overall heating system efficiency was supported by the test data. Distribution efficiency is derived from system efficiency by correcting for energy losses from the equipment. Alternative means for achieving this were tested and assessed. The best value for system efficiency in the Watertown house was 0.53, while the best value for distribution efficiency was 0.72.

Andrews, J.W.; Krajewski, R.F.; Strasser, J.J. [Brookhaven National Lab., Upton, NY (United States); Kinney, L.; Lewis, G. [Synertech Systems Corp., Syracuse, NY (United States)

1995-05-01T23:59:59.000Z

69

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

DOE Green Energy (OSTI)

Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

Kuss, M.; Markel, T.; Kramer, W.

2011-01-01T23:59:59.000Z

70

Auxiliary Cooling Loads in Passively Cooled Buildings: An Experimental Research Study  

E-Print Network (OSTI)

Currently accepted methods of passive cooling offset only sensible building loads. In the warm, humid southeastern gulf coast climates the latent building load can comprise 35% of the building load in the typical residence. As the sensible load on residences in these climates is reduced or offset by passive cooling techniques, this latent cooling load percentage increases rapidly. In such residences the auxiliary cooling load cannot be effectively met by conventional cooling equipment . The Florida Solar Energy Center (FSEC) is examining the auxiliary cooling requirements of residences in warm, humid climates. The study addresses both the thermal and moisture response of buildings. A total of eight wall systems, three frame wall types and five concrete block wall types are under test at the FSEC Passive Cooling Laboratory (PCL) in Cape Canaveral. Moisture studies involve examination of the absorption and desorption rates of building materials and furnishings and the development of improved moisture migration modeling techniques for inclusion in building energy analysis programs. TARP (Thermal Analysis Research program), developed at NBS by George Walton, and FLOAD, by FCHART Software, have been chosen as the analysis programs with which cooling examined.

Fairey, P.; Vieira, R.; Chandra, S.; Kerestecioglu, A.; Kalaghchy, S.

1984-01-01T23:59:59.000Z

71

Distribution and chemical analyses of thermal springs in Alaska. [Data compilation  

DOE Green Energy (OSTI)

Interest in geothermal systems as potential sources of energy has been increasing in the past decade. Thermal or hot springs commonly occur as surface manifestation of geothermal systems. One of the first steps in evaluating the potential of such systems is the compilation of an inventory of known thermal springs and available chemical data. The only previous such compilation in Alaska has been by Waring (1917) who listed 75 known hot springs and 22 chemical analyses; a later world-wide summary by Waring (1965), which included Alaska, listed a total of 79 thermal springs. These publications, both now out of print, are excellent summaries of known thermal springs as of about 1963. In the last 10 years, however, previously unreported occurrences of thermal springs have been published in various geologic reports and topographic maps and additional chemical analyses are now available. The purpose of this compilation, therefore, is to supplement Waring's earlier reports with the more recent data. In a few cases springs reported by Waring have been deleted since later work has cast doubt on their existence. Only those springs whose temperatures are significantly (i.e., 15 to 20/sup 0/C) above mean annual surface temperature have been included in this compilation.

Miller, T.P. (comp.)

1973-01-01T23:59:59.000Z

72

History of Sandia National Laboratories` auxiliary closure mechanisms  

SciTech Connect

An essential component of a horizontal, underground nuclear test setup at the Nevada Test Site is the auxiliary closure system. The massive gates that slam shut immediately after a device has been detonated allow the prompt radiation to pass, but block debris and hot gases from continuing down the tunnel. Thus, the gates protect experiments located in the horizontal line-of-sight steel pipe. Sandia National Laboratories has been the major designer and developer of these closure systems. This report records the history of SNL`s participation in and contributions to the technology of auxiliary closure systems used in horizontal tunnel tests in the underground test program.

Weydert, J.C. [Sandia National Labs., Albuquerque, NM (United States); Ponder, G.M. [Geo-Centers, Inc., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

73

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Systems, forthcoming 2008. Microgrid Symposium. Held atand carbon emissions, a microgrid’s distributed energyIn this paper, a microgrid is defined as a cluster of

Stadler, Michael

2008-01-01T23:59:59.000Z

74

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of Distribution Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

75

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Green Energy (OSTI)

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

76

Electric co-heating in the ASHRAE standard method of test for thermal distribution efficiency: Test results on two New York State homes  

SciTech Connect

Electric co-heating tests on two single-family homes with forced-air heating systems were carried out in March 1995. The goal of these tests was to evaluate procedures being considered for incorporation in a Standard Method of Test for thermal distribution system efficiency now being developed by ASHRAE. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the building equipment that produces this thermal energy to the spaces in which it is used. Furthering the project goal, the first objective of the tests was to evaluate electric co-heating as a means of measuring system efficiency. The second objective was to investigate procedures for obtaining the distribution efficiency, using system efficiency as a base. Distribution efficiencies of 0.63 and 0.70 were obtained for the two houses.

Andrews, J.W.; Krajewski, R.F.; Strasser, J.J.

1995-10-01T23:59:59.000Z

77

Optimum utilization of site energy sources for all-season thermal comfort in new residential construction for single-family attached (rowhouse/townhouse) designs  

DOE Green Energy (OSTI)

A proposed design analysis is presented of a passive solar energy efficient system for a typical three-level, three bedroom, two story, garage-under townhouse. The design incorporates the best, most performance-proven and cost effective products, materials, processes, technologies, and sub-systems which are available today. Seven distinct categories recognized for analysis are identified as: the exterior environment; the interior environment; conservation of energy; natural energy utilization; auxiliary energy utilization; control and distribution systems; and occupant adaptation. Preliminary design features, fenestration sysems, the plenum-supply system, the thermal-storage party-fire walls, direct gain storage, the radiant comfort system, and direct passive cooling systems are briefly described. Features of the design under analysis and on which conclusions have not yet been formulated are: the energy reclamation system, auxiliary energy back-up systems, the distribution system and operating modes, the control systems, and non-comfort energy systems and inputs. (MCW)

Not Available

1981-02-26T23:59:59.000Z

78

Human Operational Errors Involving Control, Relay, and Auxiliary Equipment  

Science Conference Proceedings (OSTI)

This report describes the objectives, information gathering and analysis, and findings of a research effort related to human operational errors involving control, relay, and auxiliary equipment. This research is conducted by the Switching Safety and Reliability Project of EPRI8217s Substations Program. The project consists of three separate studies: 8226 an analysis of relay-related incidents attributed to human errors, 8226 a compilation of work practices when planning and performing work on relays, an...

2006-12-08T23:59:59.000Z

79

Thermal Power Systems, Point-Focusing Distributed Receiver Technology Project. Annual technical report, Fiscal Year 1978. Volume II. Detailed report  

DOE Green Energy (OSTI)

Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. This Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change it to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs. Accomplishments on point-focusing technology in FY 1978 are detailed.

Not Available

1979-03-15T23:59:59.000Z

80

Auxiliary/Master microprocessor CAMAC Crate Controller applications  

SciTech Connect

The need for further sophistication of an already complex serial CAMAC control system at Fermilab led to the development of an Auxilary/Master CAMAC Crate Controller. The controller contains a Motorola 6800 microprocessor, 2K bytes of RAM, and 8K bytes of PROM memory. Bussed dataway lines are time shared with CAMAC signals to provide memory expansion and direct addressing of peripheral devices without the need of external cabling. The Auxiliary/Master Crate Controller (A/MCC) can function as either a Master, i.e., stand alone, crate controller or as an Auxiliary controller to Fermilab's Serial Crate Controller (SCC). Two modules, one single- and one double-width, make up an A/ MCC. The microprocessor has one nonmaskable and one maskable vectored interrupt. Time sharing the dataway between SCC programmed and block transfer generated dataway cycles and A/MCC operations still allows a 99 percent microprocessor CPU busy time. Since the conception of the A/MCC, there has been an increasing number of control system-related projects proposed which would not have been possible or would have been very difficult to implement without such a device. The first such application now in use at Fermilab is a stand-alone control system for a mass spectrometer experiment in the Main Ring Internal Target Area. This application in addition to other proposed A/MCC applications, both stand-alone and auxiliary, is discussed. (auth)

Barsotti, E.

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Efficient Low-Lift cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls  

DOE Green Energy (OSTI)

The U.S. Department of Energy’s Building Technologies Program goal is to develop cost-effective technologies and building practices that will enable the design and construction of net-zero energy buildings by 2025. To support this goal, Pacific Northwest National Laboratory evaluated an integrated technology that through utilization of synergies between emerging heating, ventilation and air conditioning systems can significantly reduce energy consumption in buildings. This set consists of thermal storage, dedicated outdoor air system, radiant heating/cooling with a variable speed low-lift-optimized vapor compression system. The results show that the low-lift cooling system provides significant energy savings in many building types and climates locations. This market represents well over half of the entire U.S. commercial building sector. This analysis shows that significant cooling system efficiency gains can be achieved by integrating low-lift cooling technologies. The cooling energy savings for a standard-performance building range from 37% to 84% and, for a high-performance building, from -9% to 70%.

Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas

2010-05-31T23:59:59.000Z

82

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

83

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

84

Dual Path HVAC System Demonstration in School: Leveraging Thermal Energy Storage and Cold Air Distribution to Enhance System Perform ance in a Florida Elementary School  

Science Conference Proceedings (OSTI)

This document reports on a novel dual-path, low-temperature air distribution system demonstrated in a Florida elementary school. This system addresses high humidity levels and indoor air quality problems normally found in schools due to their large ventilation requirements, especially in humid climates. The dual-path system is also integrated with synergistic use of thermal energy storage and low-temperature air distribution, reduced energy use, and initial cost. The field data confirmed that the system ...

2002-10-21T23:59:59.000Z

85

Spatial Distribution of -Crystals in Metallocene-Made Isotactic Polypropylene Crystallized under Combined Thermal and Flow Fields  

SciTech Connect

The present Article reports the relationships between molecular orientation, formation, and spatial distribution of {gamma}-crystals in metallocene-made isotactic polypropylene (m-iPP) samples prepared by two industrial processes: conventional injection molding (CIM) and oscillatory shear injection molding (OSIM), in which combined thermal and flow fields typically exist. In particular, spatial distributions of crystallinity, fraction of {gamma}-crystal (f{gamma}) with respect to {alpha}-crystal, and lamella-branched shish-kebab structure in the shaped samples were characterized by synchrotron two-dimensional (2D) wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. The results showed that the crystallinity in any given region of OSIM samples was always higher than that of CIM samples. The value of f{gamma} increased monotonously from skin to core in CIM samples, whereas the corresponding f{gamma} increased nonmonotonically in OSIM samples. The spatial distribution of {gamma}-crystal in OSIM samples can be explained by the epitaxial arrangement between {gamma}- and {alpha}-crystal in a lamella-branched shish-kebab structure. In the proposed model, the parent lamellae of {alpha}-crystal provide secondary nucleation sites for daughter lamellae of {alpha}-crystal and {gamma}-crystal, and the different content of parent lamellae results in varying amounts of {gamma}-crystal. In OSIM samples, the smallest parent-daughter ratio ([R] = 1.38) in the core region led to the lowest fraction of {gamma}-crystal (0.57), but relatively higher {gamma}-crystal content (0.69) at 600 and 1200 {micro}m depth of the samples (corresponding to [R] of 4.5 and 5.8, respectively). This is consistent with the proposed model where more parent lamellae provide more nucleation sites for crystallization, thus resulting in higher content of {gamma}-crystal. The melting behavior of CIM and OSIM samples was studied by differential scanning calorimetery (DSC). The observed double-melting peaks could be explained by the melting of {gamma}- and {alpha}-crystal of the shaped samples. The f{gamma} distribution calculated from the relative areas of the peaks in the DSC scans was also consistent with the WAXD results.

Wang, Y.; Pan, J; Mao, Y; Li, Z; Li, L; Hsiao, B

2010-01-01T23:59:59.000Z

86

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Patents (OSTI)

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

87

Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons  

SciTech Connect

The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

Montoya, M. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru); Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34, Apartado Postal 14-0149, Lima 1 (Peru); Lobato, I. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)

2010-08-04T23:59:59.000Z

88

Improving continuous-variable entanglement distribution by separable states  

E-Print Network (OSTI)

We investigate the physical mechanism behind the counterintuitive phenomenon, the distribution of continuous-variable entanglement between two distant modes by sending a third separable auxiliary mode between them. For this purpose, we propose a new more simple and more efficient protocol resulting in distributed entanglement with more than an order of the magnitude higher logarithmic negativity than in the previously proposed protocol. This new protocol shows that the distributed entanglement originates from the entanglement of one mode and the auxiliary mode used for distribution which is first destroyed by local correlated noises and restored subsequently by the interference of the auxiliary mode with the second distant separable correlated mode.

Ladislav Mišta, Jr.; Natalia Korolkova

2013-04-30T23:59:59.000Z

89

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

J. , Gottesfeld, S. , 1999. Direct methanol fuel cells.Fuel cells for transportation. 1999 Annual Progress Report.Auxiliary power units; Fuel cells 1. Introduction A large

2002-01-01T23:59:59.000Z

90

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

Fuel cells for transportation. 1999 Annual Progress Report.J. , Gottesfeld, S. , 1999. Direct methanol fuel cells.Auxiliary power units; Fuel cells 1. Introduction A large

2002-01-01T23:59:59.000Z

91

Technical safety requirements for the Auxiliary Hot Cell Facility (AHCF).  

Science Conference Proceedings (OSTI)

These Technical Safety Requirements (TSRs) identify the operational conditions, boundaries, and administrative controls for the safe operation of the Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, in compliance with 10 CFR 830, 'Nuclear Safety Management.' The bases for the TSRs are established in the AHCF Documented Safety Analysis (DSA), which was issued in compliance with 10 CFR 830, Subpart B, 'Safety Basis Requirements.' The AHCF Limiting Conditions of Operation (LCOs) apply only to the ventilation system, the high efficiency particulate air (HEPA) filters, and the inventory. Surveillance Requirements (SRs) apply to the ventilation system, HEPA filters, and associated monitoring equipment; to certain passive design features; and to the inventory. No Safety Limits are necessary, because the AHCF is a Hazard Category 3 nuclear facility.

Seylar, Roland F.

2004-02-01T23:59:59.000Z

92

Distribution:  

Office of Legacy Management (LM)

JAN26 19% JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive and possess the special nuclear material designated below; to use such special nuclear mat&ial for the purpose(s) and at the place(s) designated below; and to transfer such material to per&s authorized to receive it in accordance with the regula,tions in said Part.

93

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal

94

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network (OSTI)

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project calculation, it illuminates that the post-located auxiliary heat source cheaper and superior to the fore-located one.

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

95

Turbine Generator Auxiliary Systems Volume 1: Turbine Generator Lubrication System Maintenance Guide -- 2012 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current maintenance information on lubrication system components and specifications, treatment, and analysis of the lubricating oil.BackgroundInput from member utilities indicated that maintenance guides were needed for the turbine-generator auxiliary systems. The first auxiliary system selected was the turbine-generator lubrication system used in nuclear and ...

2012-12-12T23:59:59.000Z

96

What`s new in building energy research: Thermal distribution technology. DOE looks at cutting energy losses in a building`s heating and cooling distribution system  

SciTech Connect

The Department of Energy takes a look at cutting energy losses in a building`s heating and cooling distribution system.

1995-11-01T23:59:59.000Z

97

LARGO hot water system thermal performance test report  

DOE Green Energy (OSTI)

The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions are presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The tests and evaluation were performed at the Marshall Space Flight Center solar test facility. The Solar Hot Water system is termed a ''Dump-type'' because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

Not Available

1978-11-01T23:59:59.000Z

98

Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U  

SciTech Connect

The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

Montoya, M. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru); Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34, Apartado Postal 14-0149, Lima 1 (Peru); Saetone, E. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)

2007-10-26T23:59:59.000Z

99

Predictions of thermal comfort and pollutant distributions for a thermostatically-controlled, air-conditioned, partitioned room: Numerical results and enhanced graphical presentation  

SciTech Connect

An index of local thermal comfort and pollutant distributions have been computed with the TEMPEST computer code, in a transient simulation of an air-conditioned enclosure with an incomplete partition. This complex three-dimensional air conditioning problem included forced ventilation through inlet veins, flow through a partition, remote return air vents, and infiltration source, a pollutant source, and a thermostatically controlled air conditioning system. Five forced ventilation schemes that varied in vent areas and face velocities were simulated. Thermal comfort was modeled as a three-dimensional scalar field dependent on the fluid velocity and temperature fields; where humidity activity levels, and clothing were considered constants. Pollutants transport was incorporated through an additional constituent diffusion equation. Six distinct graphic techniques for the visualization of the three-dimensional data fields of air velocity, temperature, and comfort index were tested. 4 refs., 7 figs., 1 tab.

White, M.D.; Eyler, L.L.

1989-05-01T23:59:59.000Z

100

Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale  

E-Print Network (OSTI)

by the thermal cracking process of the El-Lujjan oil shale showed that the yield of oil was around 12 wt of the boiling point for different distillate fractions. Sulfur in Jordanian oil shale was found to be mainly the dominant phases in these fractions. q 2005 Published by Elsevier Ltd. 1. Introduction Oil shale

Shawabkeh, Reyad A.

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

102

Hydro Life Extension Modernization Guides: Volumes 4 and 5: Auxiliary Mechanical and Electrical Systems  

Science Conference Proceedings (OSTI)

These guidelines are the fourth and fifth volumes in a series for assessing the needs and benefits and evaluating the cost and economic justification of life extension and modernization alternatives at hydroelectric plants and for implementing the selected plan. They specifically address the plant auxiliary mechanical systems (Volume 4) and auxiliary electrical systems (Volume 5). They also provide a screening procedure and criteria to enable utility personnel to identify where there are opportunities fo...

2001-12-17T23:59:59.000Z

103

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

104

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

105

Indentation of a Punch with Chemical or Heat Distribution at Its Base into Transversely Isotropic Half-Space: Application to Local Thermal and Electrochemical Probes  

SciTech Connect

The exact solution to the coupled problem of indentation of the punch, subjected to either heat or chemical substance distribution at its base, into three-dimensional semi-infinite transversely isotropic material is presented. The entire set of field components are derived in terms of integrals of elementary functions using methods of the potential theory and recently obtained, by the authors, results for the general solution of the field equations in terms of four harmonic potential functions. The exact solution for the stiffness relations that relate applied force, total chemical diffusion/heat flux in the domain of the contact, with indenter displacement, temperature, or chemical substance distribution of diffusing species at the base, and materials' chemo/thermo-elastic properties are obtained in closed form and in terms of elementary functions. These results can be used to understand the image formation mechanisms in techniques such as thermal scanning probe microscopy and electrochemical strain microscopy

Karapetian, E. [Suffolk University, Boston; Kalinin, Sergei V [ORNL

2013-01-01T23:59:59.000Z

106

Maximizing Real-Time Distribution of Wind-Electricity to Electrical Thermal Storage Units for Residential Space Heating.  

E-Print Network (OSTI)

??Wind-electricity is unpredictable in both intensity and duration. This thesis presents the design and implementation of Client-pull and Server-push architectures for the distribution of wind-electricity… (more)

Barnes, Andrew

2011-01-01T23:59:59.000Z

107

Electronic distribution backup apparatus  

SciTech Connect

An electric distribution backup apparatus is described comprising an electronic distributor for sequentially distributing an ignition signal to each of igniter disposed so as to correspond to respective cylinders of an engine on the basis of a reference position signal for each of the cylinders generated by a revolution sensor in accordance with the revolution of the engine and on the basis of a rotating angle signal generated by the revolution sensor. The improvement comprising: an auxiliary revolution sensor for detecting another reference position signal of each of the cylinders when the revolution sensor for generating the two signals is out of order; control means for outputting a failure judging signal in response to detection of the failure of the revolution sensor on the basis of the two signals from revolution sensor; and a pseudo reference position signal generator for generating a pseudo reference position signal in place of the reference position signal on the basis of the auxiliary reference cylinder signal.

Sasaki, S.

1988-07-19T23:59:59.000Z

108

Human comfort and auxiliary control considerations in passive solar structures  

DOE Green Energy (OSTI)

Energy consumption and human comfort implications of various passive solar and energy conservation strategies are investigated for single-family, one-story, slab-on-grade residences in Albuquerque, NM and Washington, DC. The building energy analysis computer program BLAST is used to perform annual dynamic heating and cooling load calculations for a building in which the glazing area, glazing location, and thermal mass are varied systematically. The impacts on building performance of forced-flow ventilative cooling and nighttime and weekday thermostat setpoint adjustments are investigated. The results indicate that the annual heating and cooling loads are highly sensitive to glazing area, glazing location, and thermostatic controls. Annual cooling loads are substantially reduced by increased thermal mass in the walls. In contrast, annual heating loads are fairly insensitive to increased thermal mass in the walls, unless very large areas of south glazing are involved. BLAST calculates the air temperatures (T/sub a/) and mean radiant temperatures (T/sub mr/) in each zone for every hour of the year; a weighted average of T/sub a/ and T/sub mr/ is used to evaluate comfort conditions under various circumstances.

Place, W.; Kammerud, R.; Andersson, B.; Curtis, B.; Carroll, W.; Christensen, C.; Hannifan, M.

1980-10-01T23:59:59.000Z

109

Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers  

E-Print Network (OSTI)

Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities' lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully transfer longitudinal control of the system from the auxiliary laser to the measurement laser.

Mullavey, Adam J; Miller, John; Evans, Matthew; Fritschel, Peter; Sigg, Daniel; Waldman, Sam J; Shaddock, Daniel A; McClelland, David E

2011-01-01T23:59:59.000Z

110

Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers  

E-Print Network (OSTI)

Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities' lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully transfer longitudinal control of the system from the auxiliary laser to the measurement laser.

Adam J. Mullavey; Bram J. J. Slagmolen; John Miller; Matthew Evans; Peter Fritschel; Daniel Sigg; Sam J. Waldman; Daniel A. Shaddock; David E. McClelland

2011-12-14T23:59:59.000Z

111

HYDRONIC BASEBOARD THERMAL DISTRIBUTION SYSTEM WITH OUTDOOR RESET CONTROL TO ENABLE THE USE OF A CONDENSING BOILER.  

SciTech Connect

Use of condensing boilers in residential heating systems offers the potential for significant improvements in efficiency. For these to operate in a condensing mode the return water temperature needs to be about 10 degrees below the saturation temperature for the flue gas water vapor. This saturation temperature depends on fuel type and excess air and ranges from about 110 F to 135 F. Conventional baseboard hydronic distribution systems are most common and these are designed for water temperatures in the 180 F range, well above the saturation temperature. Operating strategies which may allow these systems to operate in a condensing mode have been considered in the past. In this study an approach to achieving this for a significant part of the heating season has been tested in an instrumented home. The approach involves use of an outdoor reset control which reduces the temperature of the water circulating in the hydronic loop when the outdoor temperature is higher than the design point for the region. Results showed that this strategy allows the boiler to operate in the condensing region for 80% of the winter heating season with oil, 90% with propane, and 95% with gas, based on cumulative degree days. The heating system as tested combines space heating and domestic hot water loads using an indirect, 40 gallon tank with an internal heat exchanger. Tests conducted during the summer months showed that the return water temperature from the domestic hot water tank heat exchanger is always below a temperature which will provide condensing operation of the boiler. In the field tests both the condensing boiler and the conventional, non-condensing boiler were in the test home and each was operated periodically to provide a direct performance comparison.

BUTCHER,T.A.

2004-10-01T23:59:59.000Z

112

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks  

E-Print Network (OSTI)

SOFC Technology R& D Needs Steven Shaffer Chief Engineer ­ Fuel Cell Development DOE Pre) to define system level requirements for a Fuel Cell (SOFC) based Auxiliary Power Unit (APU SOFC X #12;9 DOE Pre-Solicitation Workshop, Golden CO Field Office SOFC Stack Development Key Stack

113

iCon: utilizing everyday objects as additional, auxiliary and instant tabletop controllers  

Science Conference Proceedings (OSTI)

This work describes a novel approach to utilizing everyday objects of users as additional, auxiliary, and instant tabletop controllers. Based on this approach, a prototype platform, called iCon, is developed to explore the possible design. Field studies ... Keywords: everyday object, tabletop controller, tangible user interface

Kai-Yin Cheng; Rong-Hao Liang; Bing-Yu Chen; Rung-Huei Laing; Sy-Yen Kuo

2010-04-01T23:59:59.000Z

114

DIRECT ENERGY CONVERSION DEVICES AND SYSTEMS FOR NUCLEAR AUXILIARY POWER (SNAP). A Literature Search  

SciTech Connect

A total of 553 references are listed on the SNAP program and related topics. The references were taken from Nuclear Science Abstracts to Dec. 31, 1962. The contents are arranged in sections on radioisotope-fueled units, reactorfueled units, direct energy conversion, and general topics on nuclear auxiliary power. (J.R.D.)

Lanier, S.F.; Raleigh, H.D.

1963-01-01T23:59:59.000Z

115

SYSTEMS FOR NUCLEAR AUXILIARY POWER. A REPORT BY THE COMMISSION, 1964  

SciTech Connect

The uses and possible systems for auxiliary power, particularly for space applications, are indicated; and the extent to which nuclear systems meet the requirements is discussed. The current and planned development programs are outlined, and the AEC's conclusions on the overall SNAP program are presented. The status, characteristics, and uses of various SNAP generators are tabulated. (D.C.W.)

1964-10-31T23:59:59.000Z

116

Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles  

DOE Green Energy (OSTI)

This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

Krause, T.; Kumar, R.; Krumpelt, M.

2000-05-15T23:59:59.000Z

117

Dual to ratio-cumproduct estimator using known parameters of auxiliary variables  

E-Print Network (OSTI)

This paper deals with the dual to ratio-cum-product estimator for population mean using known parameters of auxiliary variables. In this paper, dual to ratio-cum-product estimator of Singh and Tailor (2005) has been suggested. The Bias and mean squared error expressions have also been obtained up to the first degree of approximation. Suggested estimator has been compared theoretically as well as empirically.

Rajesh Tailor; Ritesh Tailor; Rajesh Parmar; Manish Kumar

2012-01-01T23:59:59.000Z

118

Mitigation of Human Operational Errors Involving Control, Relay, and Auxiliary Equipment  

Science Conference Proceedings (OSTI)

This report describes the objectives and current status of a research effort related to human operational errors involving control, relay, and auxiliary equipment. This research is conducted by the Switching Safety and Reliability Project of EPRI's Substations Program. The report describes the data collection process for three ongoing studies on the above-named subject, and preliminary findings based on data collected from participating utilities by the end of November 2005. The project is expected to be...

2005-12-23T23:59:59.000Z

119

Short-Term Shutdown Guidance for Steam Turbine-Generators and Auxiliary Systems  

Science Conference Proceedings (OSTI)

This report provides guidelines on the methods that utilities should consider to protect operating equipment when it is removed from service for short periods of time. The equipment and systems considered in this report include the steam turbine, generator, exciter, feedwater heaters, and related auxiliaries. The timeframe for this report includes outage periods from a weekend to six months. Improper layup can cause long-term equipment damage and premature failure. Increased shutdown frequency and durati...

2010-11-12T23:59:59.000Z

120

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network (OSTI)

the application of thermal energy storage for off-peakbuildings that combine thermal energy ice storage with coldair distribution without thermal energy storage; and (3) TES

Bauman, F.S.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems  

E-Print Network (OSTI)

an auxiliary heater supplies the consumers with warm water even in the case of failures. In order to assureQuality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal of standard solar thermal systems usually don't recognise failures affecting the solar yield, because

122

Experimental and analytical systems studies of a combined thermal-photovoltaic residential solar system. Technical status report No. 3  

DOE Green Energy (OSTI)

Technical progress reported included testing of the corrosion resistance of a turbine flow meter and parametric studies using computerized simulation of a combined thermal-photovoltaic concentrating collector, thermal storage tank, absorption air conditioner with auxiliary heater, and a load. Also, work on a test facility, including data processing equipment and a cooling load simulator, is reported. (LEW)

Not Available

1980-01-01T23:59:59.000Z

123

Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables  

SciTech Connect

Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervised assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.

Harvey, Neal R [Los Alamos National Laboratory; Ruggiero, Christy E [Los Alamos National Laboratory; Pawley, Norma H [Los Alamos National Laboratory; Brumby, Steven P [Los Alamos National Laboratory; Macdonald, Brian [Los Alamos National Laboratory; Balick, Lee [Los Alamos National Laboratory; Oyer, Alden [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

124

Apparatus and methods for supplying auxiliary steam in a combined cycle system  

SciTech Connect

To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

125

Nuclear Maintenance Application Center: Development and Analysis of an Open Phase Detection Scheme for Various Configurations of Auxiliary Transformers  

Science Conference Proceedings (OSTI)

Two recent failures have highlighted the need to detect open-phase conditions that can occur in the power delivery system. The analysis described in this report was performed to determine the response of system auxiliary transformers during open-phase conditions to aid in the development of system protection schemes to detect such conditions.BackgroundIn January 2012, an auxiliary component tripped due to a bus under-voltage. The cause of the event was the ...

2013-05-10T23:59:59.000Z

126

The Application and Verification of ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) to DOE-2-1e Simulation Program  

E-Print Network (OSTI)

This report describes the application and verification of duct model on DOE 2.1e version 119 using ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems). It begins with a concept of duct model which is developed by ASHRAE and shows the application and the verification of the duct model to DOE 2.1e version 119 simulation program.

Kim, S.; Haberl, J. S.

2008-06-01T23:59:59.000Z

127

Thermal masses in leptogenesis  

E-Print Network (OSTI)

We investigate the validity of using thermal masses in the kinematics of final states in the decay rate of heavy neutrinos in leptogenesis calculations. We find that using thermal masses this way is a reasonable approximation, but corrections arise through quantum statistical distribution functions and leptonic quasiparticles.

Kiessig, Clemens P

2009-01-01T23:59:59.000Z

128

Measuring Advances in HVAC Distribution System Design  

E-Print Network (OSTI)

of this "thermal mixing", the heating and cooling loadsyear) Cooling Plant Heating Plant Fans Total Thermal Tobllthermal distribution system includes the components that carry the heating and cooling

Franconi, E.

2011-01-01T23:59:59.000Z

129

Mathematical model for the bridge-type auxiliary impulse commutated power inverter  

SciTech Connect

This paper presents analytical picture for the utilization of the auxiliary impulse commutated inverter in connection with various direct energy conversion devices. To ensure effective inversion, V-A switching characteristics as well as power handling capacities with respect to interconnected modules have to be matched with loading conditions at the inverter output. Mathematical model for this inverter could be used as the basic criterion for expressing the time varying voltage output with respect to the specific applied from the direct energy conversion device. Pure sinusoidal inverter output voltage could be secured through total neutralization of impulse and DC components by filtering.

Denno, K.

1980-12-01T23:59:59.000Z

130

Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit  

DOE Green Energy (OSTI)

Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

M. Namazian, S. Sethuraman and G. Venkataraman

2004-12-31T23:59:59.000Z

131

The effects of aircraft noise at Williams Air Force Base Auxiliary Field on residential property values  

Science Conference Proceedings (OSTI)

This report considers the environmental consequences of moving the flight training operations of the US Air Force's 82nd Flying Training Wing from the auxiliary airfield, Coolidge-Florence Municipal Airport (CFMA), to a more remote location in Pinal County, Arizona. It examines how actual noise from touch-and-go flights of T-37 aircraft and perceived (anticipated) noise affect the market value of residential property near CFMA. Noise, measured by a noise index, is correlated with market values through a regression analysis applied to a hedonic price model of the Coolidge-Florence housing market. Prices and characteristics of 42 residential properties sold in 1987 and 1988 were used to estimate a perceived noise effect. The report finds that the coefficient on the measure of perceived noise, based on the noise exposure forecast (NEF) index, is statistically insignificant, even though the sign and value are consistent with those estimated in other studies. It concludes that current flights do not have a significant effect on residential property values, partially because there is no housing near CFMA. This and larger studies indicate that flight operations at a new auxiliary airfield would not affect property values if runways were at least 12,000 feet away from housing. 12 refs., 2 tabs.

Morey, M.J.

1990-11-01T23:59:59.000Z

132

Measuring Advances in HVAC Distribution System Design  

E-Print Network (OSTI)

Gabel and Andresen, HVAC Secondary Toolkil. Atlanta: ASHRAE,P_02 Measuring Advances in HVAC Distribution System Designdesign and operation of the HVAC thermal distribution system

Franconi, E.

2011-01-01T23:59:59.000Z

133

Hybrid photovoltaic/thermal solar energy system  

DOE Green Energy (OSTI)

Heating and cooling systems that use hybrid solar energy collectors (combination photovoltaic-thermal) have the potential for considerable energy savings, particularly when the system includes a heat pump. Economic evaluations show that photovoltaic systems are potentially most economical, but results depend critically on future collector costs as well as energy prices. Results are based on a specially developed computer program that predicted the total auxiliary energy required for five different solar heating/cooling systems. Performance calculations for a modeled residence and small office building were made using meteorological data from four geographic locations. Annual system costs were also calculated.

Kern, E.C. Jr.; Russell, M.C.

1978-03-27T23:59:59.000Z

134

THERMAL RECOVERY  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMAL RECOVERY Thermal recovery comprises the techniques of steamflooding, cyclic steam stimulation, and in situ combustion. In steamflooding, high-temperature steam is injected...

135

Control system analysis for off-peak auxiliary heating of passive solar systems  

DOE Green Energy (OSTI)

A computer simulation method is presented for the design of an electrical auxiliary energy system for passive solar heated structures. The system consists of electrical mats buried in the ground underneath the structure. Energy is stored in the ground during utility off-peak hours and released passively to the heated enclosure. An optimal control strategy is used to determine the system design parameters of depth of mat placement and minimum instaled electrical heating capacity. The optimal control applies combinations of fixed duration energy pulses to the heater, which minimize the room temperature error-squared for each day, assuming advance knowledge of the day's weather. Various realizable control schemes are investigated in an attempt to find a system that approaches the performance of the optimal control system.

Murray, H.S.; Melsa, J.L.; Balcomb, J.D.

1980-01-01T23:59:59.000Z

136

Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise  

E-Print Network (OSTI)

LIGO, the Laser Interferometer Gravitational-wave Observatory, has been designed and constructed to measure gravitational wave strain via differential arm length. The LIGO 4-km Michelson arms with Fabry-Perot cavities have auxiliary length control servos for suppressing Michelson motion of the beam-splitter and arm cavity input mirrors, which degrades interferometer sensitivity. We demonstrate how a post-facto pipeline called AMPS improves a data sample from LIGO Science Run~6 with feedforward subtraction. Dividing data into 1024-second windows, AMPS numerically fits filter functions representing the frequency-domain transfer functions from Michelson length channels into the gravitational-wave strain data channel for each window, then subtracts the filtered Michelson channel noise (witness) from the strain channel (target). In this paper we describe the algorithm, assess achievable improvements in sensitivity to astrophysical sources, and consider relevance to future interferometry.

Meadors, Grant David; Riles, Keith

2013-01-01T23:59:59.000Z

137

Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise  

E-Print Network (OSTI)

LIGO, the Laser Interferometer Gravitational-wave Observatory, has been designed and constructed to measure gravitational wave strain via differential arm length. The LIGO 4-km Michelson arms with Fabry-Perot cavities have auxiliary length control servos for suppressing Michelson motion of the beam-splitter and arm cavity input mirrors, which degrades interferometer sensitivity. We demonstrate how a post-facto pipeline called AMPS improves a data sample from LIGO Science Run~6 with feedforward subtraction. Dividing data into 1024-second windows, AMPS numerically fits filter functions representing the frequency-domain transfer functions from Michelson length channels into the gravitational-wave strain data channel for each window, then subtracts the filtered Michelson channel noise (witness) from the strain channel (target). In this paper we describe the algorithm, assess achievable improvements in sensitivity to astrophysical sources, and consider relevance to future interferometry.

Grant David Meadors; Keita Kawabe; Keith Riles

2013-11-26T23:59:59.000Z

138

Frozen-orbital and downfolding calculations with auxiliary-field quantum Monte Carlo  

E-Print Network (OSTI)

We describe the implementation of the frozen-orbital and downfolding approximations in the auxiliary-field quantum Monte Carlo (AFQMC) method. These approaches can provide significant computational savings compared to fully correlating all the electrons. While the many-body wave function is never explicit in AFQMC, its random walkers are Slater determinants, whose orbitals may be expressed in terms of any one-particle orbital basis. It is therefore straightforward to partition the full N-particle Hilbert space into active and inactive parts to implement the frozen-orbital method. In the frozen-core approximation, for example, the core electrons can be eliminated in the correlated part of the calculations, greatly increasing the computational efficiency, especially for heavy atoms. Scalar relativistic effects are easily included using the Douglas-Kroll-Hess theory. Using this method, we obtain a way to effectively eliminate the error due to single-projector, norm-conserving pseudopotentials in AFQMC. We also i...

Purwanto, Wirawan; Krakauer, Henry

2013-01-01T23:59:59.000Z

139

Scaling Analysis for the Direct Reactor Auxiliary Cooling System for AHTRs  

Science Conference Proceedings (OSTI)

The Direct Reactor Auxiliary Cooling System (DRACS), shown in Fig. 1 [1], is a passive heat removal system proposed for the Advanced High-Temperature Reactor (AHTR). It features three coupled natural circulation/convection loops completely relying on the buoyancy as the driving force. A prototypic design of the DRACS employed in a 20-MWth AHTR has been discussed in our previous work [2]. The total height of the DRACS is usually more than 10 m, and the required heating power will be large (on the order of 200 kW), both of which make a full-scale experiment not feasible in our laboratory. This therefore motivates us to perform a scaling analysis for the DRACS to obtain a scaled-down model. In this paper, theory and methodology for such a scaling analysis are presented.

Yoder Jr, Graydon L [ORNL; Wilson, Dane F [ORNL; Wang, X. NMN [Ohio State University; Lv, Q. NMN [Ohio State University; Sun, X NMN [Ohio State University; Christensen, R. N. [Ohio State University; Blue, T. E. [Ohio State University; Subharwall, Piyush [Idaho National Laboratory (INL)

2011-01-01T23:59:59.000Z

140

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The inverse scattering problem at fixed energy based on the Marchenko equation for an auxiliary Sturm-Liouville operator  

E-Print Network (OSTI)

A new approach is proposed to the solution of the quantum mechanical inverse scattering problem at fixed energy. The method relates the fixed energy phase shifts to those arising in an auxiliary Sturm-Liouville problem via the interpolation theory of the Weyl-Titchmarsh m-function. Then a Marchenko equation is solved to obtain the potential.

Palmai, Tamas

2012-01-01T23:59:59.000Z

142

Chatterjee et. al. Page 1 of 13 An auxiliary capacitor based ultra-fast drive circuit for shear  

E-Print Network (OSTI)

frequently require large voltage changes on very short time scales. Since piezos behave electrically stage, and auxiliary capacitor. This circuit can drive piezoelectric motors at higher speeds and lower of nanoscale precision over millimeter ranges of motion, have come into common usage. Although a number

Hudson, Eric

143

Efficient Low-Lift Cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls Part I: Component and Subsystem Models  

DOE Green Energy (OSTI)

this paper develops component and subsystem models used to evaluat4e the performance of a low-lift cooling system with an air-colled chiller optimized for variable-speed and low-pressure-ratio operation, a hydronic radient distribution system, variable-speed transport miotor controls, and peak-shifting controls.

Armstrong, Peter; Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Norford, L. K.; Willingham, ryan

2009-03-31T23:59:59.000Z

144

Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization  

Science Conference Proceedings (OSTI)

The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

PACQUET, E.A.

2000-07-20T23:59:59.000Z

145

Auxiliary feedwater system risk-based inspection guide for the Maine Yankee Nuclear Power Plant  

SciTech Connect

In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. The information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Maine Yankee was selected as one of a series of plants for study. ne product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Maine Yankee plant.

Gore, B.F.; Vo, T.V.; Moffitt, N.E.; Bumgardner, J.D. (Pacific Northwest Lab., Richland, WA (United States))

1992-10-01T23:59:59.000Z

146

Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico  

Science Conference Proceedings (OSTI)

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

1999-12-01T23:59:59.000Z

147

Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant  

Science Conference Proceedings (OSTI)

In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant.

Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1993-12-01T23:59:59.000Z

148

Staff Analysis of Proposed Installation of Two New Selective Catalytic Reduction (SCR) Units on the Project’s Two Auxiliary  

E-Print Network (OSTI)

The modification(s) proposed in the petition would install two new Selective Catalytic Reduction (SCR) units on the project’s two auxiliary boilers. The addition of a SCR system on each boiler would allow the project to comply with recent changes to the Bay Area Air Quality Management District regulations for emissions of nitrogen oxides (NOx) for auxiliary boilers. The Bay Area Air Quality Management District has determined that the project proposal would result in new permit to operate requirements from the district. The Gilroy Cogeneration Project is a 115-megawatt, natural gas-fired power plant located in the City of Gilroy in Santa Clara County. The project was certified by the

Edmund G. Brown

2013-01-01T23:59:59.000Z

149

Using auxiliary gas power for CCS energy needs in retrofitted coal power plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

Bashadi, Sarah (Sarah Omer)

2010-01-01T23:59:59.000Z

150

Validation of the RVACS (Reactor Vessel Auxiliary Cooling System)/RACS (Reactor Air Cooling System) model in SASSYS-1  

SciTech Connect

The SASSYS-1 LMR systems analysis code contains a model for transient analysis of heat removal by a RVACS (Reactor Vessel Auxiliary Cooling System) or a RACS (Reactor Air Cooling System) in an LMR (Liquid Metal Reactor). This model has been validated by comparisons of model predictions with experimental data from a large scale RVACS/RACS simulation experiment performed at Argonne National Laboratory. 4 refs., 1 fig.

Dunn, F.E.

1987-01-01T23:59:59.000Z

151

Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications  

Science Conference Proceedings (OSTI)

Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

Daniel T. Hennessy

2010-06-15T23:59:59.000Z

152

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

153

Husimi distribution function and one-dimensional Ising model  

E-Print Network (OSTI)

Husimi distribution function for the one-dimensional Ising model is obtained. One-point and joint distribution functions are calculated and their thermal behaviour are discussed.

F. Kheirandish

2005-12-24T23:59:59.000Z

154

Balance of Power: Dynamic Thermal Management for Internet Data Centers  

Science Conference Proceedings (OSTI)

The advent of Internet-based applications and their resulting multitier distributed architecture has changed the focus of design for large-scale Internet computing. Internet server applications execute in a horizontally scalable topology across hundreds ... Keywords: dynamic thermal management, thermal-load balancing, Internet data center, row-wise and regional thermal management, thermal policies

Ratnesh K. Sharma; Cullen E. Bash; Chandrakant D. Patel; Richard J. Friedrich; Jeffrey S. Chase

2005-01-01T23:59:59.000Z

155

Investigation of Auxiliary Power Substation 95A4 fault and fire, Portsmouth Gaseous Diffusion Plant, March 24, 1982  

SciTech Connect

On March 24, 1982, an electrical fault and resultant fire in the 480 volt Auxiliary Power Substation 95A4 at the Portsmouth Gaseous Diffusion Plant destroyed that substation. There were no personal injuries, the overall loss was limited to the Substation, and the cost of replacing the Substation with repaired and new components has been estimated at $184,000. At the time of the incident, Goodyear was involved in a project to replace the obsolete 480 volt circuit breaker of the Auxiliary Power System. This project involved the disassembly, refurishing, and reassembly of 480 volt circuit breaker carriages by Goodyear personnel. The fault occurred in a circuit breaker upgraded under this project. The investigation of this accident is reported. The evidence suggests the fault resulted from the improper assembly of an upgraded 480 volt circuit breaker. Compounding the problem and leading to the extensive damage was the failure of the transformer secondary breaker to trip open as designed and interrupt the flow of power to the substation. It is surmised that inadequate testing during preventive maintenance contributed to this condition. Additional factors which may have contributed to the accident included: no requirements for assuring the competence of the electricians who installed the circuit breakers, no specific assembly instructions to the electricians, inadequate procedure instructions, and an inadequate procedure governing operational or load testing of the breaker. (LCL)

1982-06-01T23:59:59.000Z

156

Commercial Thermal Distribution Systems FINAL REPORT  

E-Print Network (OSTI)

by the Lawrence Berkeley National Laboratory (LBNL) and Center for Environmental Design Research (CEDR Offerman of IEESF, and Graham Carter of Ove Arup, Cliff Federspiel and Nora Watanabe (CEDR) for their contributions to the CEDR project on fan research. #12;LBNL-44320 Disclaimer This document was prepared

157

Thermal Properties  

Science Conference Proceedings (OSTI)

Table 12   Thermal conductivities of polymers and other materials...40,000 2.8 Aluminum 24,000 1.7 Steel 5000 0.35 Granite 350 0.02 Crown glass (75 wt% silica) 90 0.006 Source: Ref 4...

158

Thermal performance of the Brookhaven natural thermal storage house  

DOE Green Energy (OSTI)

In the Brookhaven natural thermal storage house, an energy-efficient envelope, passive solar collectors, and a variety of energy conservation methods are incorporated. The thermal characteristics of the house during the tested heating season are evaluated. Temperature distributions at different zones are displayed, and the effects of extending heating supply ducts only to the main floor and heating return ducts only from the second floor are discussed. The thermal retrievals from the structure and the passive collectors are assessed, and the total conservation and passive solar contributions are outlined. Several correlation factors relating these thermal behaviors are introduced, and their diurnal variations are displayed. Finally, the annual energy requirements, and the average load factors are analyzed and discussed.

Ghaffari, H.T.; Jones, R.F.

1981-01-01T23:59:59.000Z

159

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

160

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Unglazed transpired solar collector having a low thermal ...  

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance ...

162

TEMPEST II--A NEUTRON THERMALIZATION CODE  

SciTech Connect

The TEMPEST II neutron thermalization code in Fortran for IBM 709 or 7090 calculates thermal neutron flux spectra based upon the Wigner-Wilkins equation, the Wilkins equation, or the Maxwellian distribution. When a neutron spectrum is obtained, TEMPEST II provides microscopic and macroscopic cross section averages over that spectrum. Equations used by the code and sample input and output data are given. (auth)

Shudde, R.H.; Dyer, J.

1962-06-01T23:59:59.000Z

163

Figure 1. Current-sensing calibration circuit consisting of an auxiliary switch Qa and a precision sensing resistor Rs in parallel with a main  

E-Print Network (OSTI)

Using a power MOSFET with built-in current-sensing mirror ("SenseFet") CT Using a current transformer Qa and a precision sensing resistor Rs in parallel with a main power switch Q. The auxiliary switch-line Calibration of Lossless Current Sensing Yang Zhang, Regan Zane, Dragan Maksimovic Colorado Power Electronics

164

Growth of fuel cell applications for specialty vehicles, portable power, auxiliary power, backup power, and stationary power are expected to generate a range of new jobs in the  

E-Print Network (OSTI)

Growth of fuel cell applications for specialty vehicles, portable power, auxiliary power, backup engineers · Power plant operators · Power plant maintenance staff · Bus, truck and other fleet drivers power, and stationary power are expected to generate a range of new jobs in the near term

165

Distributed Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems. Distributed energy offers solutions to many of the nation's most pressing energy and electric power problems, including blackouts and brownouts, energy security concerns, power quality issues, tighter emissions standards, transmission bottlenecks, and the desire for greater control over energy costs.

166

TEMPEST. Transient 3-D Thermal-Hydraulic  

SciTech Connect

TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence is treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.

Eyler, L.L. [Pacific Northwest Lab., Richland, WA (United States)

1992-01-31T23:59:59.000Z

167

Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria  

Science Conference Proceedings (OSTI)

In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

Weening, R. H. [Department of Radiologic Sciences, Thomas Jefferson University, 901 Walnut Street, Philadelphia, Pennsylvania 19107-5233 (United States)

2012-06-15T23:59:59.000Z

168

3D thermal-aware floorplanner using a MOEA approximation  

Science Conference Proceedings (OSTI)

Two of the major concerns in 3D stacked technology are heat removal and power density distribution. In our work, we propose a novel 3D thermal-aware floorplanner. Our contributions include:1.A novel multi-objective formulation to consider the thermal ... Keywords: 3D architecture, Evolutionary algorithm, Hot spots, Reliability, Temperature, Thermal-aware floorplan, Through silicon vias optimization

David Cuesta; José L. Risco-Martin; José L. Ayala; J. Ignacio Hidalgo

2013-01-01T23:59:59.000Z

169

Distributed Generation Heat Recovery  

Science Conference Proceedings (OSTI)

Economic and environmental drivers are promoting the adoption of combined heat and power (CHP) systems. Technology advances have produced new and improved distributed generation (DG) units that can be coupled with heat recovery hardware to create CHP systems. Performance characteristics vary considerably among DG options, and it is important to understand how these characteristics influence the selection of CHP systems that will meet both electric and thermal site loads.

2002-03-06T23:59:59.000Z

170

Overview of the small engine component technology (SECT) studies. [Commuter, rotorcraft, cruise missile and auxiliary power applications in year 2000  

SciTech Connect

The objectives of the joint NASA/Army SECT studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications. 5 references.

Vanco, M.R.; Wintucky, W.T.; Niedwiecki, R.W.

1986-01-01T23:59:59.000Z

171

Copper Heat Exchanger for the External Auxiliary Bus-Bars Routing Line in the LHC Insertion Regions  

E-Print Network (OSTI)

The corrector magnets and the main quadrupoles of the LHC dispersion suppressors are powered by a special superconducting line (called auxiliary bus-bars line N), external to the cold mass and housed in a 50 mm diameter stainless steel tube fixed to the cold mass. As the line is periodically connected to the cold mass, the same gaseous and liquid helium cools both the magnets and the line. The final sub-cooling process (from around 4.5 K down to 1.9 K) consists in the phase transformation from liquid to superfluid helium. Heat is extracted from the line through the magnets via their point of junction. In dispersion suppressor zones, approximately 40 m long, the sub-cooling of the line is slightly delayed with respect to the magnets. This might have an impact on the readiness of the accelerator for operation. In order to accelerate the process, a special heat exchanger has been designed. It is located in the middle of the dispersion suppressor portion of the line. Its main function consists in providing a loca...

Garion, C; Seyvet, F; Sitko, M; Skoczen, B; Tock, J P

2006-01-01T23:59:59.000Z

172

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

173

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating.

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

174

Revised?Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, California  

Science Conference Proceedings (OSTI)

During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

W. C. Adams

2007-12-07T23:59:59.000Z

175

Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, CA  

Science Conference Proceedings (OSTI)

During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

W. C. Adams

2007-12-07T23:59:59.000Z

176

Cornell University Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Comfort Thermal Comfort Thermal comfort in the CUSD home is a top priority for our team. Accordingly, we designed a redundant HVAC system that would carefully manage the comfort of our decathletes and guests throughout the competition and the life of the house. The CUSD home's HVAC system was optimized for Washington, DC, with the cold Ithaca climate in mind. Our design tools included a schematic energy-modeling interface called TREAT, which was built off of the SuNREL platform. TREAT was used to passively condition the space. Our schematic energy modeling helped us properly size window areas, overhangs, and building mass distribution. We used a computation fluid dynamics (CFD) package called AirPak, to refine our design. The home was modeled in both

177

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

178

Thermal Analysis and Stress Analysis of the Heat-Exchange Pipe Based on ANSYS  

Science Conference Proceedings (OSTI)

ANSYS to be as a finite element analysis software has powerful features in thermal analysis and structural analysis. Based on ANSYS thermal analysis function, this paper selects SOLID90 unit, for thermal analysis on the heat-exchange pipe of heat exchanger ... Keywords: ANSYS, temperature distribution, stress distribution

Fenhua Li; Jian Xing; Yuan Liu

2011-04-01T23:59:59.000Z

179

Equitable distribution  

Science Conference Proceedings (OSTI)

The problem of distributing available resources occurs in a great variety of networks, each with peculiarities of its own. Coal from mines has to be distributed to central dumps and to small yards. Ice cream must be distributed only to refrigerated stores ...

John A. Gosden

1963-05-01T23:59:59.000Z

180

Chapter 5. Auxiliary Windows  

Science Conference Proceedings (OSTI)

... simultaneously. New ones are created by the New command in the Messages submenu in any OOF2 window's OOF.Windows menu. ...

2013-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lighting system with heat distribution face plate  

DOE Patents (OSTI)

Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

2013-09-10T23:59:59.000Z

182

Distribution Screening for Distributed Generation  

Science Conference Proceedings (OSTI)

As the deployment of renewable distributed generation increases, the need for traditional energy providers to interact with these resources increases. Detailed modeling and simulation of the distribution and distributed resources is a critical element to better analyze, understand and predict these interactions. EPRI has developed a tool for such analysis called OpenDSS. In addition, as part of the renewable integration program an applet was created for screening distributed generation (DG). This report ...

2009-12-23T23:59:59.000Z

183

Cesium capsule thermal analysis  

SciTech Connect

Double-walled stainless steel capsules, produced by the Hanford Waste Encapsulation and Storage Facility (WESF), were designed to facilitate storage of radioactive cesium chloride (CsCl). The capsules were later determined to be a useful resource for irradiation facilities (IFs), and are currently being used at several commercial IFs. A capsule at one of these facilities recently failed, resulting in a release of the CsCl. A thermal analysis of a WESF capsule was performed by Pacific Northwest Laboratory (PNL) at the request of Westinghouse Hanford Company. In this analysis, parametric calculations demonstrates the impact that various parameters have on the temperature distribution within a capsule in a commercial irradiation facility. Specifically, the effect of varying the gas gap conductivity, the exterior heat sink temperatures, the exterior heat transfer distribution, the stainless steel emissivity, and the gamma heating rate were addressed. In addition, a calculation was performed to estimate the highest temperatures likely to have been encountered in one of these capsules. 8 refs., 17 figs., 4 tabs.

Eyler, L.L.; Dodge, R.E.

1989-12-01T23:59:59.000Z

184

Sensitive interferometric video thermal wave imager  

Science Conference Proceedings (OSTI)

A new method of parallel thermal wave imaging is demonstrated in which the thermal wave image of a heated sample is converted into an optical phase image which is sensitively probed by a Twyman–Green interferometer. The sample is mounted onto an assembly of optical layers which acts as a temperature sensitive mirror.Heat conduction from the sample to this mirror results in a two?dimensional distribution of optical phase which is probed broadfield by the interferometer. The resulting transmission thermal wave image has characteristics analogous to those of photopyroelectric images. The interferogram produced in the interferometer may be recorded by videography

J. F. Power

1996-01-01T23:59:59.000Z

185

The Interaction of Horizontal Eddy Transport and Thermal Drive in the Stratosphere  

Science Conference Proceedings (OSTI)

The interaction of horizontal eddy motions and thermal drive in the stratosphere is investigated in equivalent barotropic calculations on the sphere. Eddy advection tends to homogenize the distribution of potential vorticity Q while thermal ...

Murry L. Salby; Rolando R. Garcia; Donal O'sullivan; Patrick Callaghan

1990-07-01T23:59:59.000Z

186

Distribution Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

187

A LUMPED-PARAMETER DYNAMIC MODEL OF A THERMAL REGENERATOR FOR FREE-PISTON STIRLING ENGINES  

E-Print Network (OSTI)

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

Barth, Eric J.

188

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

189

Solar Thermal Reactor Materials Characterization  

DOE Green Energy (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

190

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network (OSTI)

of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

191

Thermal contact resistance  

E-Print Network (OSTI)

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

192

Thermal Management of Solar Cells  

E-Print Network (OSTI)

phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

193

Unclassified Distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

63 1 Unclassified Distribution UNIVERSITY :OF CALIFORNU Radiation Lab oratory Contract No, W-7405-eng-48 THE DETECTION OF U T I F I C I B L L Y PRODUCED WOTOMESONS WITH COUNTERS *...

194

Thermal Spray Coatings  

Science Conference Proceedings (OSTI)

Table 35   Thermal spray coatings used for hardfacing applications...piston ring (internal combustion);

195

Plasma-Thermal Synthesis  

INL’s Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

196

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

197

Nanocomposite Thermal Spray Coatings.  

Science Conference Proceedings (OSTI)

Long-Term Surface Restoration Effect Introduced by Advanced Lubricant Additive · Nanocomposite Thermal Spray Coatings. New Hardfacing Overlay Claddings ...

198

Thermally-Forced Mean Mass Circulations in the Northern Hemisphere  

Science Conference Proceedings (OSTI)

A diagnostic approach to infer three-dimensional distribution of the thermally-forced, time-averaged horizontal mass and energy transport (Johnson and Townsend, 1981), which was previously applied in the Southern Hemisphere (Zillman, 1972), is ...

Bette L. Otto-Bliesner; Donald R. Johnson

1982-08-01T23:59:59.000Z

199

Cause of super-thermal electron heating during magnetotail reconnection  

E-Print Network (OSTI)

[1] We present a candidate mechanism for the energization of super-thermal electrons during magnetic reconnection in the Earth's magnetotail. By analyzing in-situ measurements of electron distribution functions we characterize ...

Egedal-Pedersen, Jan

200

Special Distribution  

Office of Legacy Management (LM)

Special Distribution Special Distribution Issued: December 1977 ',, Radiological Survey and Decontamination of the Former Main Technical Area (TA-1) at Los Alamos, New Mexico Compiled by A. John Ahlquist Alan K. Stoker Linda K. Trocki c laboratory of, the University of California LOS ALAMOS, NEW MEXICO 87545 An Alfirmdve Action/Equal Opportunity Employer ..-_- .-- .--.-. c T -,--... _ _._-r..l __,.. - .-,_.. ..- _._ -- .--. " . . _ . - . c- - . . . _ -. . _ . - . - . _ - - n - _ _~ ~_. __ _ ~~_ --..&e+ L.';; CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._____ 1 EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._... _._ 2 I. BACKGROUND .............................................. 15

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

202

Building Energy Software Tools Directory: Thermal Comfort  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Comfort Thermal Comfort logo. Provides a user-friendly interface for calculating thermal comfort parameters and making thermal comfort predictions using several thermal...

203

User's manual for computer code SOLTES-1 (simulator of large thermal energy systems). [For CDC 6600  

DOE Green Energy (OSTI)

SOLTES simulates the steady-state response of thermal energy systems to time-varying data such as weather and loads. Thermal energy system models of both simple and complex systems can easily be modularly constructed from a library of routines. These routines mathematically model solar collectors, pumps, switches, thermal energy storage, thermal boilers, auxiliary boilers, heat exchangers, extraction turbines, extraction turbine/generators, condensers, regenerative heaters, air conditioners, heating and cooling of buildings, process vapor, etc.; SOLTES also allows user-supplied routines. The analyst need only specify fluid names to obtain readout of property data for heat-transfer fluids and constants that characterize power-cycle working fluids from a fluid property data bank. A load management capability allows SOLTES to simulate total energy systems that simultaneously follow heat and power loads and demands. Generalized energy accounting is available, and values for system performance parameters may be automatically determined by SOLTES. Because of its modularity and flexibility, SOLTES can be used to simulate a wide variety of thermal energy systems such as solar power/total energy, fossil fuel power plants/total energy, nuclear power plants/total energy, solar energy heating and cooling, geothermal energy, and solar hot water heaters.

Fewell, M.E.; Grandjean, N.R.; Dunn, J.C.; Edenburn, M.W.

1978-09-01T23:59:59.000Z

204

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

205

Catalytic thermal barrier coatings  

Science Conference Proceedings (OSTI)

A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

2009-06-02T23:59:59.000Z

206

THE THERMAL SUNYAEV-ZEL'DOVICH TOMOGRAPHY  

Science Conference Proceedings (OSTI)

The thermal Sunyaev-Zel'dovich (tSZ) effect directly measures the thermal pressure of free electrons integrated along the line of sight and thus contains valuable information on the thermal history of the universe. However, the redshift information is entangled in the projection along the line of sight. This projection effect severely degrades the power of the tSZ effect to reconstruct the thermal history. We investigate the tSZ tomography technique to recover this otherwise lost redshift information by cross-correlating the tSZ effect with galaxies of known redshifts, or alternatively with matter distribution reconstructed from weak-lensing tomography. We investigate in detail the three-dimensional distribution of the gas thermal pressure and its relation with the matter distribution, through our adiabatic hydrodynamic simulation and the one with additional gastrophysics including radiative cooling, star formation, and supernova feedback. (1) We find a strong correlation between the gas pressure and matter distribution, with a typical cross-correlation coefficient r {approx}> 0.7 at k {approx}tight correlation will enable robust cross-correlation measurement between SZ surveys such as Planck, ACT, and SPT and lensing surveys such as DES and LSST, at {approx}>20{sigma}-100{sigma} level. (2) We propose a tomography technique to convert the measured cross-correlation into the contribution from gas in each redshift bin to the tSZ power spectrum. Uncertainties in gastrophysics may affect the reconstruction at {approx}2% level, due to the {approx}1% impact of gastrophysics on r found in our simulations. However, we find that the same gastrophysics affects the tSZ power spectrum at {approx}40% level, so it is robust to infer the gastrophysics from the reconstructed redshift-resolved contribution.

Shao Jiawei; Zhang Pengjie; Lin Weipeng; Jing Yipeng, E-mail: jwshao@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China)

2011-04-01T23:59:59.000Z

207

Proceedings of the solar thermal technology conference  

SciTech Connect

The Solar Thermal Technology Conference was held on August 26-28, 1987, at the Marriott Hotel, Albuquerque, New Mexico. The meeting was sponsored by the United States Department of Energy and Sandia National Laboratories. Topics covered during the conference included a status summary of the Sandia Solar Thermal Development Project, perspectives on central and distributed receiver technology including energy collection and conversion technologies, systems analyses and applications experiments. The proceedings contain summaries (abstracts and principal visual aids) of the presentations made at the conference.

Tyner, C.E. (ed.)

1987-08-01T23:59:59.000Z

208

Thermally Conductive Graphite Foam  

oriented graphite planes, similar to high performance carbon fibers, which have been estimated to exhibit a thermal conductivity greater than 1700 ...

209

Thermal Barrier Coatings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States...

210

DISTRIBUTION CATEGORY  

Office of Scientific and Technical Information (OSTI)

DISTRIBUTION CATEGORY DISTRIBUTION CATEGORY uc-11 I A W E N C E LIVERMORE IABORATORY University of Cahfmia/Livermore, California/94550 UCRL-52658 CALCULATION OF CHEMICAL EQUILIBRIUM BETWEEN AQUEOUS SOLUTION AND MINERALS: THE EQ3/6 - - SOFTWARE PACKAGE T. J. Wolery MS. date: February 1, 1979 . . - . . - . Tho rcpon rn prepared as an account of work sponsored by the United Stater Government. Seither Lhc Urutcd Stater nor the Umted Stater Department of Energy, nor any of their employees. nor any of their E O ~ ~ ~ B C I O I S . rubcontracton. o r their employees. makes any warranr)., exprcs or !mplwd. or assumes any legal liability or respanability io: the ~ c c u o c y . complctencn or uvfulneu of any miormarlon. apparatcr. product or p r o m s dtwlorcd. or r c p r e v n u that its UP would not infringe privately owned r

211

Thermal imaging diagnostics of high-current electron beams  

SciTech Connect

The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm{sup 2}, the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm{sup 2} (or with current density over 10 A/cm{sup 2}, pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

Pushkarev, A.; Kholodnaya, G.; Sazonov, R.; Ponomarev, D. [Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

2012-10-15T23:59:59.000Z

212

An Innovative High Thermal Conductivity Fuel Design  

SciTech Connect

Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

Jamil A. Khan

2009-11-21T23:59:59.000Z

213

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

1994-01-01T23:59:59.000Z

214

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

215

Thermal imaging experiments on ANACONDA ion beam generator  

Science Conference Proceedings (OSTI)

The thermal imaging technique was used in two experimental measurements. First, the ion intensity distribution on the anode surface was observed from different angles by using a multi-pinhole camera. Second, the plume from a target intercepting the beam was visualized by observing the distribution of temperature increase on a thin plate hit by the plume.

Jiang, W.; Yatsui, K. [Nagaoka Univ. of Technology (Japan). Lab. of Beam Technology; Olson, J.C.; Davis, H.A. [Los Alamos National Lab., NM (United States)

1996-12-31T23:59:59.000Z

216

Integrated Thermal Analysis of the FRIB Cryomodule Design  

SciTech Connect

Thermal analysis of the FRIB cryomodule design is performed to determine the heat load to the cryogenic plant, to minimize the cryogenic plant load, to simulate thermal shield cool down as well as to determine the pressure relief sizes for failure conditions. Static and dynamic heat loads of the cryomodules are calculated and the optimal shield temperature is determined to minimize the cryogenic plant load. Integrated structural and thermal simulations of the 1100-O aluminium thermal shield are performed to determine the desired cool down rate to control the temperature profile on the thermal shield and to minimize thermal expansion displacements during the cool down. Pressure relief sizing calculations for the SRF helium containers, solenoids, helium distribution piping, and vacuum vessels are also described.

Y. Xu, M. Barrios, F. Casagrande, M.J. Johnson, M. Leitner, D. Arenius, V. Ganni, W.J. Schneider, M. Wiseman

2012-07-01T23:59:59.000Z

217

Thermal protection apparatus  

DOE Patents (OSTI)

An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

218

Thermal protection apparatus  

DOE Patents (OSTI)

The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

Bennett, G.A.; Elder, M.G.; Kemme, J.E.

1984-03-20T23:59:59.000Z

219

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

220

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermal treatment wall  

DOE Patents (OSTI)

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

222

Solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

223

Thermal and non-thermal emission in the Cygnus X region  

E-Print Network (OSTI)

Radio continuum observations detect non-thermal synchrotron and thermal bremsstrahlung radiation. Separation of the two different emission components is crucial to study the properties of diffuse interstellar medium. The Cygnus X region is one of the most complex areas in the radio sky which contains a number of massive stars and HII regions on the diffuse thermal and non-thermal background. More supernova remnants are expected to be discovered. We aim to develop a method which can properly separate the non-thermal and thermal radio continuum emission and apply it to the Cygnus X region. The result can be used to study the properties of different emission components and search for new supernova remnants in the complex. Multi-frequency radio continuum data from large-scale surveys are used to develop a new component separation method. Spectral analysis is done pixel by pixel for the non-thermal synchrotron emission with a realistic spectral index distribution and a fixed spectral index of beta = -2.1 for the t...

Xu, W F; Han, J L; Liu, F S

2013-01-01T23:59:59.000Z

224

Light beam dynamics in materials with radially-inhomogeneous thermal conductivity  

E-Print Network (OSTI)

We study the properties of bright and vortex solitons in thermal media with nonuniform thermal conductivity and homogeneous refractive index, whereby the local modulation of the thermal conductivity strongly affects the entire refractive index distribution. While regions where the thermal conductivity is increased effectively expel light, self-trapping may occur in the regions with reduced thermal conductivity, even if such regions are located close to the material boundary. As a result, strongly asymmetric self-trapped beams may form inside a ring with reduced thermal conductivity and perform persistent rotary motion. Also, such rings are shown to support stable vortex solitons, which may feature strongly non-canonical shapes.

Kartashov, Yaroslav V; Torner, Lluis

2013-01-01T23:59:59.000Z

225

Thermally-related safety issues associated with thermal batteries.  

DOE Green Energy (OSTI)

Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

Guidotti, Ronald Armand

2006-06-01T23:59:59.000Z

226

Efficient thermal management for multiprocessor systems  

E-Print Network (OSTI)

2.2.4 Thermal Modeling . . . . . . . .63 Table 4.3: Thermal Hot Spots . . . . . . . . . . . . . .Performance-Efficient Thermal Management . . . . . . . . . .

Co?kun, Ay?e K?v?lc?m

2009-01-01T23:59:59.000Z

227

Damage Evolution in Thermal Barrier Coatings with Thermal Cycling  

Science Conference Proceedings (OSTI)

Abstract Scope, Thermal barrier coatings typically fail on cooling after prolonged thermal cycling by the growth of sub-critical interface separations. Observations ...

228

COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual  

Science Conference Proceedings (OSTI)

COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

1986-11-01T23:59:59.000Z

229

Distribution Category:  

Office of Legacy Management (LM)

- - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist Radiological Survey Group Health Physics Section Occupational Health and Safety Division April 1984 Work Performed under Budget Activity DOE KN-03-60-40 and ANL 73706 iii PREFACE AND EXECUTIVE SUMMARY This is one in a series of reports resulting from a program initiated

230

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Delivered to Consumers by State, 1996 Table State Residential Commercial Industrial Vehicle Fuel Electric Utilities Alabama..................................... 1.08 0.92 2.27 0.08 0.23 Alaska ........................................ 0.31 0.87 0.85 - 1.16 Arizona....................................... 0.53 0.92 0.30 3.91 0.70 Arkansas.................................... 0.88 0.98 1.59 0.11 1.24 California.................................... 9.03 7.44 7.82 43.11 11.64 Colorado .................................... 2.12 2.18 0.94 0.58 0.20 Connecticut................................ 0.84 1.26 0.37 1.08 0.38 D.C............................................. 0.33 0.52 - 0.21 - Delaware.................................... 0.19 0.21 0.16 0.04 0.86 Florida........................................

231

Parton distributions.  

E-Print Network (OSTI)

-section for the virtual photon-proton interaction can be written in the factorized form ?(ep ? eX) = ? i CDISi (x, ?s(Q2))? fi(x,Q2) where Q2 is the photon virtuality, x = Q22m? , the mo- mentum fraction of parton (?=energy transfer in the lab frame), and the fi(x,Q2... distribution comes from inclusive jet measure- ments by D0 and CDF at Tevatron. They mea- 0 50 100 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Dc 2 k Valence quarks Figure 6. ??2 against the isospin violating parameter ?. sure d?/dET d? for central rapidity CDF...

Thorne, Robert S

232

Multilayer thermal barrier coating systems  

DOE Patents (OSTI)

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

233

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

234

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

235

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

236

Ocean Thermal | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ocean Thermal Jump to: navigation, search TODO: Add description List of Ocean Thermal Incentives...

237

Comparison of Thermal Insulation Materials.  

E-Print Network (OSTI)

??This thesis is about comparing of different thermal insulation materials of different manufactures. In our days there are a lot of different thermal insulation materials… (more)

Chaykovskiy, German

2010-01-01T23:59:59.000Z

238

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

associated with sealing duct air leakage in commercialassociated with sealing duct air leakage in the commercialby the air punctures the glue bridge sealing the leak. The

Xu, T.

2011-01-01T23:59:59.000Z

239

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

Implications Specify actual fan design kW/CFM if desired. Ifconstant flow rate fan design power part-load-ratiorelevant than the original fan design data. Similarly, if

Xu, T.

2011-01-01T23:59:59.000Z

240

Performance of thermal distribution systems in large commercial buildings  

E-Print Network (OSTI)

sizing and design, e.g. , excessive fan-power requirement,fan-power and energy savings could be realized by better design

Xu, T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

1997).1997 ASHRAE Handbook: Fundamentals, American Society1997a.1997 ASHRAE Handbook: Fundamentals, Chapter 3, "Heat1997b. 1997 ASHRAE Handbook: Fundamentals, Chapter 32, ''

Xu, T.

2011-01-01T23:59:59.000Z

242

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

7 1999 AC Adjustable-Speed Drive Population Horsepower Range 1 - 5 70% 5.1 - 20 23% 21 - 50 4% 51 - 100 1% 101 - 200 1% 200 + 1% Total 100% Source(s): Electrical Apparatus Service...

243

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

6 1999 Energy Efficient Motors, Replacements and Sales, by Horsepower Class | Units in Use Horsepower | Energy Efficient Horsepower Range (106) | % Retired 1 - 5 | 17% 5.1 - 20 |...

244

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

infiltration rates, space conditioning energy use, and peakgas consumption. Space conditioning accounts for roughlymajority of this space conditioning energy passes through

Xu, T.

2011-01-01T23:59:59.000Z

245

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

Design Research, Berkeley, CEDR-02-98. California EnergyDesign Research (CEDR), University of California; Berkeley.Design Research (CEDR), University of California, Berkeley.

Xu, T.

2011-01-01T23:59:59.000Z

246

Localized Thermal Distribution for Office Buildings; Final Report - Phase III  

E-Print Network (OSTI)

E.A. , F.S. Bauman, L.P. Johnston and FL Zhang CEDR-R06-91and E . A . Arens Bauman, F. CEDR-R01-91 Bauman, F. and M .C.C. Benton 2:35 P M 1/6/98 CEDR-R07-94 CEDR-R01-94 CEDR-

1994-01-01T23:59:59.000Z

247

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

Design." Atlanta, American Society of Heating, Refrigeration, andRefrigeration, and Air Conditioning Engineers Brake horsepower Building Management System Constant air volume Center for Environmental Design

Xu, T.

2011-01-01T23:59:59.000Z

248

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

CAV Packaged CAV Condenser Fan 0.3 0.2 Cooling Tower Fan 0.2 0.1 0.2 0.0 Condenser Water Pump 0.2 0.3 0.3 0.0 Chilled Water Pump 0.2 0.1 0.2 0.0 Supply & Return Fans 0.7 0.5...

249

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

air leakage, and heat conduction gains," Lawrence Berkeleyheat conduction losses due to both heat conduction through duct walls and

Xu, T.

2011-01-01T23:59:59.000Z

250

Performance of thermal distribution systems in large commercial buildings  

E-Print Network (OSTI)

Air Leakage, and Heat Conduction Gains." Final Report ofof air leakage and heat conduction may lead to inappropriatethermal losses due to heat conduction through duct walls

Xu, T.

2011-01-01T23:59:59.000Z

251

Efficient Thermal Energy Distribution in Commercial Final Report  

E-Print Network (OSTI)

cconolllic studics havc shown, dccp rcductions in CO2 cmissions can nc achicvcd with cxisting tcchnologics cconomy or today's c.lrs thaI havc thc salnc pcrrormanl:C. nut lhcy would c(}sl 11()morc to own control for fucl-hound nitrogen would hc Icss costly for hiomass than for coal. Typical co.lls havc

252

Low-cost distributed solar-thermal-electric power generation  

E-Print Network (OSTI)

Symmetry Ulrich Kr¨ahmer University of Glasgow RI Masterclass Stirling 2013 Ulrich Kr¨ahmer (University of Glasgow) Symmetry RI Masterclass Stirling 2013 1 / 23 #12;Problem 1: geometry Given two points Kr¨ahmer (University of Glasgow) Symmetry RI Masterclass Stirling 2013 2 / 23 #12;Problem 2: algebra

Sanders, Seth

253

Commercial thermal distribution systems, Final report for CIEE/CEC  

E-Print Network (OSTI)

for the top story of a building, insulation located at theplenum. The building had R-11 insulation located above thebuildings for sealing ducts and encapsulating internal duct insulation.

Xu, T.

2011-01-01T23:59:59.000Z

254

Distribution Categories: Magnetic Fusion Energy (UC-20)  

E-Print Network (OSTI)

Distribution Categories: Magnetic Fusion Energy (UC-20) MFE--Plasma Systems (UC-20a) MFE Temperature Response 4-7 4.6 Thermal Storage Requirements 4-16 4.6.1 Pressurized Water/Steam System 4-19 4

Harilal, S. S.

255

Integrability vs Quantum Thermalization  

E-Print Network (OSTI)

Non-integrability is often taken as a prerequisite for quantum thermalization. Still, a generally accepted definition of quantum integrability is lacking. With the basis in the driven Rabi model we discuss this careless usage of the term "integrability" in connection to quantum thermalization. The model would be classified as non-integrable according to the most commonly used definitions, for example, the only preserved quantity is the total energy. Despite this fact, a thorough analysis conjectures that the system will not thermalize. Thus, our findings suggest first of all (i) that care should be paid when linking non-integrability with thermalization, and secondly (ii) that the standardly used definitions for quantum integrability are unsatisfactory.

Jonas Larson

2013-04-12T23:59:59.000Z

256

Contact thermal lithography  

E-Print Network (OSTI)

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

257

Properties of Thermal Glueballs  

E-Print Network (OSTI)

We study the properties of the 0++ glueball at finite temperature using SU(3) quenched lattice QCD. We find a significant thermal effects near T_c. We perform the \\chi^2 fit analyses adopting two Ansaetze for the spectral function, i.e., the conventional narrow-peak Ansatz and an advanced Breit-Wigner Ansatz. The latter is an extension of the former, taking account of the appearance of the thermal width at T>0. We also perform the MEM analysis. These analyses indicate that the thermal effect on the glueball is a significant thermal-width broadening \\Gamma(T_c) \\sim 300 MeV together with a modest reduction in the peak center \\Delta\\omega_0(T_c) \\sim 100 MeV.

Noriyoshi Ishii; Hideo Suganuma

2003-12-27T23:59:59.000Z

258

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

259

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

260

Solar Thermal Manufacturing Activities  

Reports and Publications (EIA)

This report, Solar Thermal Collector Manufacturing Activities, providesan overview and tables with historical data spanning 2000-2009. These tables willcorrespond to similar tables to be presented in the Renewable Energy Annual 2009 andare numbered accordingly.

Michele Simmons

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Texas Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal comfort thermal comfort Too often, the systems in our houses are both physically and intellectually inaccessible. In the SNAP House, HVAC components are integrated into the overall structure, and act as an experiential threshold between public and private spaces. They are located in a central, structural chase that supports the clerestory and gives the systems a functional presence within the interior. Each individual component is contained within a single chase

262

Photovoltaic-thermal collectors  

DOE Patents (OSTI)

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

263

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

264

The Effect of Vertical Upward Flow on Thermal Plumes  

NLE Websites -- All DOE Office Websites (Extended Search)

The Effect of Vertical Upward Flow on Thermal Plumes The Effect of Vertical Upward Flow on Thermal Plumes Speaker(s): Pierre S. Farrugia Date: November 18, 2010 - 12:05pm Location: 90-3122 Seminar Host/Point of Contact: David Lorenzetti Thermal plumes have been widely investigated in a variety of scenarios, including natural convection and stratified environments. The resulting theory may be used to predict ventilation flow rates in, for example, natural and displacement ventilation, and under-floor air distribution (UFAD) systems. However, there has been little effort in investigating how uniform upward flows affect the plume velocity, rate of growth, and thermal profile. Such situations can arise if, for example, the diffusers of a UFAD system are evenly distributed. In order to study such situations, analytical expressions for the velocity and temperature profiles of a plume

265

Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating  

DOE Green Energy (OSTI)

This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

Feng Jin

2009-01-07T23:59:59.000Z

266

Auxiliary Ligand-Dependent Assembly of Several Ni/Ni-Cd Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand  

DOE Green Energy (OSTI)

Several low-dimensional Ni/Ni-Cd complexes containing N2O2 donor tetradentate symmetrical Schiff base ligand bis(acetylacetone)ethylene-diamine (sy-H2L2), namely, [Ni(sy-L2)]2?HLa?ClO4 (2), (HLa)2?(ClO4)?(NO3) (3), [Ni(sy-L2)X]2](4,4’-bipy) (where La = 5,7-dimethyl-3,6-dihydro-2H-1,4-diazepine, X = ClO4 (4), X=NO3 (5), [Ni(sy-L2)Cd(SCN)2]n (6) and [Ni(sy-L2)?Cd(N3)2]n (7) have been synthesized from [Ni(sy-L2)]2?H2O (1). Complex 2, is three component discrete assembly generated from (HLa)+ moiety bridged with [Ni(sy-L2)] unit and ClO4- anion. A solution containing complex 2 and Cd(NO3)2 results in a mixture of 1 and 3. Further re-crystallization of 1 and 3 with various auxiliary ligands, provides coordination complexes 4 – 7 stabilized by weak hydrogen bonds in which 6 and 7 represent the first 1D heteronuclear complexes based on symmetric acacen-base Schiff base ligand.

Ge, Ying Ying; Li, Guo-Bi; Fang, Hua-Cai; Zhan, Xu Lin; Gu, Zhi-Gang; Chen, Jin Hao; Sun, Feng; Cai, Yue-Peng; Thallapally, Praveen K.

2010-09-18T23:59:59.000Z

267

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...

268

Thermal Performance Engineer's Handbook: Introduction to Thermal Performance  

Science Conference Proceedings (OSTI)

The two-volume Thermal Performance Engineer Handbook will assist thermal performance engineers in identifying and investigating the cause of megawatt (MWe) losses as well as in proposing new ways to increase MWe output. Volume 1 contains a thermal performance primer to provide a brief review of thermodynamic principles involved in the stream power plant thermal cycle. The primer also contains brief descriptions of the equipment and systems in the cycle that can be sources of thermal losses. Also in Volum...

1998-04-01T23:59:59.000Z

269

Thermal Management of Solar Cells  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA RIVERSIDE Thermal Management ofUniversity of California, Riverside Acknowledgments First, I

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

270

Multilayer Nanoscale Thermal Barrier Coatings  

Science Conference Proceedings (OSTI)

Advanced high-efficiency gas turbines require thermal barrier coatings (TBCs) with low thermal conductivity and excellent thermal-cycling resistance. The multilayer TBC developed in this project has a thermal conductivity about half that of conventional TBCs and also rejects up to 70 percent of incoming radiant energy.

1999-05-26T23:59:59.000Z

271

Center-to-Limb Variation of Radio Emissions from Thermal-Rich and Thermal-Poor Solar Flares  

E-Print Network (OSTI)

A statistical analysis of radio flare events was performed by using the event list of Nobeyama Radioheliograph in 1996-2009. We examined center-to-limb variations of 17GHz and 34GHz flux by dividing the flare events into different groups with respect to the 'thermal plasma richness' (ratio of the peak flux of soft X-ray to non-thermal radio emissions) and the duration of radio bursts. It is found that peak flux of 17 and 34GHz tend to be higher toward the limb for thermal-rich flares with short durations. We propose that the thermal-rich flares, which are supposed to be associated with an efficient precipitation of high energy particles into the chromosphere, have a pitch angle distribution of non-thermal electrons with a higher population along the flare loop.

Kawate, Tomoko; Kiyoshi, Ichimoto

2011-01-01T23:59:59.000Z

272

Article for thermal energy storage  

DOE Patents (OSTI)

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

273

Solar-thermal technology  

DOE Green Energy (OSTI)

Solar-thermal technology converts sunlight into thermal energy. It stands alongside other solar technologies including solar-electric and photovoltaic technologies, both of which convert sunlight into electricity. Photovoltaic technology converts by direct conversion, and solar-electric converts by using sunlight`s thermal energy in thermodynamic power cycles. The numerous up-and-running solar energy systems prove solar-thermal technology works. But when is it cost-effective, and how can HVAC engineers and facility owners quickly identify cost-effective applications? This article addresses these questions by guiding the reader through the basics of solar-thermal technology. The first section provides an overview of today`s technology including discussions of collectors and typical systems. The next section presents an easy method for identifying potentially cost-effective applications. This section also identifies sources for obtaining more information on the technology--collector ratings and performance, solar manufacturers, and solar design and analysis tools. The article discusses only those collectors and systems that are most often used. Many others are on the market--the article does not, by omission, mean to infer that one is better than the other.

Bennett, C. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

274

Thermal regimes of high burn-up nuclear fuel rod  

E-Print Network (OSTI)

The temperature distribution in the nuclear fuel rods for high burn-up is studied. We use the numerical and analytical approaches. It is shown that the time taken to have the stationary thermal regime of nuclear fuel rod is less than one minute. We can make the inference that the behavior of the nuclear fuel rod can be considered as a stationary task. Exact solutions of the temperature distribution in the fuel rods in the stationary case are found. Thermal regimes of high burn-up the nuclear fuel rods are analyzed.

Kudryashov, Nikolai A; Chmykhov, Mikhail A; 10.1016/j.cnsns.2009.05.063

2012-01-01T23:59:59.000Z

275

Integrated system for control and monitoring in real time of efficient electrical and thermal energy production  

Science Conference Proceedings (OSTI)

The integrated monitoring and driving system is made of main distributed components: - first level:_one or two computers placed in the control room which monitors the thermal and electrical processes based on the datas provided by the second level via ... Keywords: cogenerative gas power plant, control of distributed parameter systems, distribution management system, electric power systems, optimization, process control, real time systems, simulation

Ion Miciu; Florin Hartescu

2008-08-01T23:59:59.000Z

276

Ant Colony Optimisation solution to distribution transformer planning problem  

Science Conference Proceedings (OSTI)

This paper proposes a stochastic optimisation method, based on Ant Colony Optimisation (ACO), for the optimal choice of transformer sizes to be installed in a distribution network. This method is properly introduced to the solution of the Optimal ... Keywords: ACO, OTS, ant colony optimisation, distribution network planning, energy loss cost, optimal transformer sizing, thermal loading, transformers

Eleftherios I. Amoiralis; Pavlos S. Georgilakis; Marina A. Tsili; Antonios G. Kladas

2010-11-01T23:59:59.000Z

277

Analysis Model for Domestic Hot Water Distribution Systems: Preprint  

DOE Green Energy (OSTI)

A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

Maguire, J.; Krarti, M.; Fang, X.

2011-11-01T23:59:59.000Z

278

Thermal insulated glazing unit  

SciTech Connect

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

1991-01-01T23:59:59.000Z

279

THERMAL NEUTRON BACKSCATTER IMAGING.  

DOE Green Energy (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

280

Thermal insulated glazing unit  

DOE Patents (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

1988-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

282

Thermal test options  

SciTech Connect

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

283

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

284

Thermal Insulation Systems  

E-Print Network (OSTI)

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy cost reduction programs. One of the best places to start with energy conservation is to employ proper insulation systems. This article discusses the significant properties of thermal insulation materials primarily for industrial application. Some of the information is applicable to commercial and residential insulation. Only hot service conditions will be covered.

Stanley, T. F.

1982-01-01T23:59:59.000Z

285

Solar thermal financing guidebook  

DOE Green Energy (OSTI)

This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

1983-05-01T23:59:59.000Z

286

Thermal Reactor Safety  

Science Conference Proceedings (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

287

Thermal barrier coating  

SciTech Connect

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

288

Cylindrical thermal contact conductance  

E-Print Network (OSTI)

Thermal contact conductance is highly important in a wide variety of applications, from the cooling of electronic chips to the thermal management of spacecraft. The demand for increased efficiency means that components need to withstand higher temperatures and heat transfer rates. Many situations call for contact heat transfer through nominally cylindrical interfaces, yet relatively few studies of contact conductance through cylindrical interfaces have been undertaken. This study presents a review of the experimental and theoretical investigations of the heat transfer characteristics of composite cylinders, presenting data available in open literature in comparison with relevant correlations. The present investigation presents a study of the thermal contact conductance of cylindrical interfaces. The experimental investigation of sixteen different material combinations offers an opportunity to develop predictive correlations of the contact conductance, in conjunction with an analysis of the interface pressure as a function of the thermal state of the individual cylindrical shells. Experimental results of the present study are compared with previously published conductance data and conductance models.

Ayers, George Harold

2003-08-01T23:59:59.000Z

289

Preliminary requirements for thermal storage subsystems in solar thermal applications  

DOE Green Energy (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

290

Survey of solar thermal test facilities  

DOE Green Energy (OSTI)

The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

Masterson, K.

1979-08-01T23:59:59.000Z

291

National Solar Thermal Test Facility  

SciTech Connect

This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

Cameron, C.P.

1989-12-31T23:59:59.000Z

292

Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems  

E-Print Network (OSTI)

was installed to supply cooling for the test cell, which was built to validate the heat balance and radiant time series cooling load calculation procedures. However, some instrumentation has been added which provides and a Brief Description of Experimental Apparatus The experimental apparatus is in a test cell building

293

Distribution effectiveness and impacts on equipment sizing for residential thermal distribution systems  

SciTech Connect

This report was prepared as a result of work sponsored by the California Energy Commission (Commission), through a contract with the Regents of the University of California, California Institute for Energy Efficiency (CIEE). It does not necessarily represent the views of the Commission, its employees, the State of California, The Regents, or CIEE. The Commission, the Regents, the State of California, CIEE, their employees, contractors, and subcontractors, make no warranty, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the use of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Commission or CIEE, nor has the Commission or CIEE passed upon the accuracy or adequacy of the information in this report.

Walker, Iain; Sherman, M.; Siegel, J.

1999-06-01T23:59:59.000Z

294

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

295

Thermal Transport in Graphene Multilayers and Nanoribbons  

E-Print Network (OSTI)

1 CHAPTER 2 Thermal transport atvalues of graphene’s thermal conductivity and different1 Thermal conductivity : metals and non - metallic

Subrina, Samia

2011-01-01T23:59:59.000Z

296

Modeling thermal comfort in stratified environments  

E-Print Network (OSTI)

Arens E. , and Wang D. 2004. "Thermal sensation and comfortin transient non-uniform thermal environments", European7730, 1994, Moderate Thermal Environments – Determination of

Zhang, H.; Huizenga, C.; Arens, Edward A; Yu, T.

2005-01-01T23:59:59.000Z

297

Thermal Conduction in Graphene and Graphene Multilayers  

E-Print Network (OSTI)

1 1.2 Thermal transport atxv Introduction xii 1.1 Thermal conductivity and65 4.13 Thermal conductivity of graphene as a function of

Ghosh, Suchismita

2009-01-01T23:59:59.000Z

298

Indoor Thermal Comfort, an Evolutionary Biology Perspective  

E-Print Network (OSTI)

ASHRAE Standard 55-2004: Thermal environmental conditionsA behavioural approach to thermal comfort assessment inBerger, X. , 1998. Human thermal comfort at Nimes in summer

Stoops, John L.

2006-01-01T23:59:59.000Z

299

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

300

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermal fluctuations of granular gas under HCS using two-point kinetic theory  

E-Print Network (OSTI)

Thermal fluctuations of the granular gas under the homogeneous cooling state (HCS) are estimated using two-point kinetic theory by Tsuge-Sagara. Thermal fluctuations of the elastic gas are modified for the granular gas by nonequilibrium moments, which defines the distribution function under the HCS. The deviations of thermal fluctuations for the granular gas from those for the elastic gas obtained by the fluctuation-dissipation theorem are calculated as a function of the restitution coefficient.

Yano, Ryosuke

2011-01-01T23:59:59.000Z

302

THERMAL INSULATION MATERIALS TEST METHOD ...  

Science Conference Proceedings (OSTI)

... _____ 01/W01 CAN/CGSB-51.2-M88 Thermal Insulation, Calcium Silicate, for Piping, Machinery and Boilers _____ ...

2012-05-22T23:59:59.000Z

303

Liquid metal thermal electric converter  

DOE Patents (OSTI)

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

304

NVLAP Thermal Insulation Materials LAP  

Science Conference Proceedings (OSTI)

... for thermal insulation materials. The final report for Round 31 was released in February 2010. Proficiency testing is on hold ...

2013-07-18T23:59:59.000Z

305

Satellite Estimation of the Surface Energy Balance, Moisture Availability and Thermal Inertia  

Science Conference Proceedings (OSTI)

A method for inferring the distribution of surface heat and evaporative fluxes and the ground moisture availability and thermal inertia (ground conductive capacity) is used to analyze two urbanized areas, Los Angeles and St. Louis. The technique ...

Toby N. Carlson; Joseph K. Dodd; Stanley G. Benjamin; James N. Cooper

1981-01-01T23:59:59.000Z

306

A novel thermal optimization flow using incremental floorplanning for 3D ICs  

Science Conference Proceedings (OSTI)

Thermal issue is a critical challenge in 3D IC design. To eliminate hotspots, physical layouts are always adjusted by shifting or duplicating hot blocks. However, these modifications may degrade the packing area as well as interconnect distribution greatly. ...

Xin Li; Yuchun Ma; Xianlong Hong

2009-01-01T23:59:59.000Z

307

The Response of a Zonally Symmetric Atmosphere to Subtropical Thermal Forcing: Threshold Behavior  

Science Conference Proceedings (OSTI)

We consider the response of a zonally symmetric atmosphere to a thermal forcing that is localized in the subtropics. Specifically, the equilibrium temperature distribution has a local subtropical peak and is flat elsewhere, including at the ...

R. Alan Plumb; Arthur Y. Hou

1992-10-01T23:59:59.000Z

308

Optimal detection of losses by thermal probes  

E-Print Network (OSTI)

We consider the discrimination of lossy bosonic channels and focus to the case when one of the values for the loss parameter is zero, i.e., we address the detection of a possible loss against the alternative hypothesis of an ideal lossless channel. This discrimination is performed by inputting one-mode or two-mode squeezed thermal states with fixed total energy. By optimizing over this class of states, we find that the optimal inputs are pure, thus corresponding to single- and two-mode squeezed vacuum states. In particular, we show that for any value of the damping rate smaller than a critical value there is a threshold on the energy that makes the two-mode squeezed vacuum state more convenient than the corresponding single-mode state, whereas for damping larger than this critical value two-mode squeezed vacua are always better. We then consider the discrimination in realistic conditions, where it is unlikely to have pure squeezing. Thus by fixing both input energy and squeezing, we show that two-mode squeezed thermal states are always better than their single- mode counterpart when all the thermal photons are directed into the dissipative channel. Besides, this result also holds approximately for unbalanced distribution of the thermal photons. Finally, we also investigate the role of correlations in the improvement of detection. For fixed input squeezing (single-mode or two-mode), we find that the reduction of the quantum Chernoff bound is a monotone function of the two-mode entanglement as well as the quantum mutual information and the quantum discord. We thus verify that employing squeezing in the form of correlations (quantum or classical) is always a resource for loss detection whenever squeezed thermal states are taken as input.

Carmen Invernizzi; Matteo G. A. Paris; Stefano Pirandola

2010-11-11T23:59:59.000Z

309

STATISTICAL ANALYSES ON THERMAL ASPECTS OF SOLAR FLARES  

SciTech Connect

The frequency distribution of flare energies provides a crucial diagnostic to calculate the overall energy residing in flares and to estimate the role of flares in coronal heating. It often takes a power law as its functional form. We have analyzed various variables, including the thermal energies E{sub th} of 1843 flares at their peak time. They were recorded by both Geostationary Operational Environmental Satellites and Reuven Ramaty High-Energy Solar Spectroscopic Imager during the time period from 2002 to 2009 and are classified as flares greater than C 1.0. The relationship between different flare parameters is investigated. It is found that fitting the frequency distribution of E{sub th} to a power law results in an index of -2.38. We also investigate the corrected thermal energy E{sub cth}, which represents the flare total thermal energy including the energy loss in the rising phase. Its corresponding power-law slope is -2.35. Compilation of the frequency distributions of the thermal energies from nanoflares, microflares, and flares in the present work and from other authors shows that power-law indices below -2.0 have covered the range from 10{sup 24} to 10{sup 32} erg. Whether this frequency distribution can provide sufficient energy to coronal heatings in active regions and the quiet Sun is discussed.

Li, Y. P.; Gan, W. Q.; Feng, L., E-mail: wqgan@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China)

2012-03-10T23:59:59.000Z

310

Secondary concentrators for parabolic dish solar thermal power systems  

SciTech Connect

One approach to production of electricity or high-temperature process heat from solar energy is to use point-focusing, two-axis pointing concentrators in a distributed-receiver solar thermal system. This paper discusses some of the possibilities and problems in using compound concentrators in parabolic dish systems. 18 refs.

Jaffe, L.D.; Poon, P.T.

1981-01-01T23:59:59.000Z

311

Use of Activated Charcoal for Rn-220 Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility  

SciTech Connect

Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of {sup 220}Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm s{sup -1} (20, 35, 47, and 65 ft min{sup -1}) with a continuous input concentration of {sup 220}Rn in the range of 9 x 10{sup 3} pCi L{sup -1}. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of {sup 220}Rn. In addition to measuring the effectiveness of activated charcoal as a {sup 220}Rn adsorption media, the source term for available {sup 220}Rn and gaseous fission products was evaluated and compared to what is believed to be present in the deposit. The results indicate that only a few percent of the total {sup 220}Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to {sup 220}Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall {sup 220}Rn activity reduction factor of about 1 x 10{sup 9} for such a design; however, two measurements collected at a flow velocity of 18 cm s{sup -1} (35 ft min{sup -1}) indicated that the reduction factor could be as low as 1 x 10{sup 6}. The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a {sup 220}Rn activity on the order of 10{sup 10} Ci has been processed. It was therefore concluded that degradation of performance would most likely occur as the result of causes other than filling by radon progeny.

Coleman, R.L.

1999-03-17T23:59:59.000Z

312

Use of Activated Charcoal for {sup 220}Rn Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility  

SciTech Connect

Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of {sup 220}Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm/s (20, 35, 47, and 65 ft/min) with a continuous input concentration of {sup 220}Rn in the range of 9 x 10{sup 3} pCi/L. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of {sup 220}Rn. In addition to measuring the effectiveness of activated charcoal as a {sup 220}Rn adsorption media, the source term for available {sup 220}Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to {sup 220}Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall 220Rn activity reduction factor of about 1 x 10{sup 9} for such a design; however, two measurements collected at a flow velocity of 18 cm/s (35 ft/min) indicated that the reduction factor could be as low as 1 x 10{sup 6}. The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a {sup 220}Rn activity on the order of 10{sup 10} Ci has been processed. It was therefore concluded that degradation of performance would likely occur as the result of causes other than filling by radon progeny.

Coleman, R.L.

1999-03-01T23:59:59.000Z

313

CRADA Final Report for CRADA Number ORNL98-0521 : Development of an Electric Bus Inverter Based on ORNL Auxiliary Resonant Tank (ART) Soft-Switching Technology  

SciTech Connect

The Power Electronics and Electric Machinery Research Center (PEEMRC) of Oak Ridge National Laboratory (ORNL) has for many years been developing technologies for power converters for motor drives and many other applications. Some of the research goals are to improve efficiency and reduce audible and electromagnetic interference noise generation for inverters and the driven loads. The converters are being required to produce more power with reduced weight and volume, which requires improvements in heat removal from the electronics, as well as improved circuit designs that have fewer electrical losses. PEEMRC has recently developed and patented a soft-switching inverter topology called an Auxiliary Resonant Tank (ART), and this design has been tested and proven at ORNL using a 10-kW laboratory prototype. The objective of this project was to develop, test, and install the ART inverter technology in an electric transit bus with the final goal of evaluating performance of the ORNL inverter under field conditions in a vehicle. A scaled-up inverter with the capacity to drive a 22-e bus was built based on the 10-kW ORNL laboratory prototype ART soft-switching inverter. Most (if not all) commercially available inverters for traction drive and other applications use hard-switching inverters. A Cooperative Research and Development Agreement was established with the Chattanooga Area Regional Transit Authority (CARTA), the Electric Transit Vehicle Institute (ETVI), and Advanced Vehicle Systems (AVS), all of Chattanooga, along with ORNL. CARTA, which maintains and operates the public transit system in Chattanooga, provided an area for testing the vehicle alongside other similar vehicles in the normal operating environment. ETVI offers capabilities in standardized testing and reporting and also provides exposure in the electric transit vehicle arena for ORNL's technologies. The third Chattanooga partner, (AVS) manufactures all-electric and hybrid electric transit buses using inverter drive systems from several manufacturers. AVS provided help in field installation, and parts for laboratory testing. A 100-kW field-ready unit was developed, tested in an ORNL laboratory, and installed and successfully operated in a CARTA bus in Chattanooga. The tests on the vehicle were performed at a CARTA maintenance facility and at a l-mile test track in Chattanooga managed by CARTA.

Ayers, C.W.

2001-05-08T23:59:59.000Z

314

Holographic Thermal Helicity  

E-Print Network (OSTI)

We study the thermal helicity, defined in arXiv:1211.3850, of a conformal field theory with anomalies in the context of AdS$_{2n+1}$/CFT$_{2n}$. To do so, we consider large charged rotating AdS black holes in the Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant using fluid/gravity expansion. We compute the anomaly-induced current and stress tensor of the dual CFT in leading order of the fluid/gravity derivative expansion and show their agreement with the field theoretical replacement rule for the thermal helicity. Such replacement rule is reflected in the bulk by new replacement rules obeyed by the Hall currents around the black hole.

Tatsuo Azeyanagi; R. Loganayagam; Gim Seng Ng; Maria J. Rodriguez

2013-11-12T23:59:59.000Z

315

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

316

Thermally stable diamond brazing  

DOE Patents (OSTI)

A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

Radtke, Robert P. (Kingwood, TX)

2009-02-10T23:59:59.000Z

317

Thermal spallation drilling  

DOE Green Energy (OSTI)

Thermal spallation drilling is an underdeveloped process with great potential for reducing the costs of drilling holes and mining shafts and tunnels in most very hard rocks. Industry has used this process to drill blast holes for emplacing explosives and to quarry granite. Some theoretical work has been performed, and many signs point to a great future for this process. The Los Alamos National Laboratory has studied the theory of the spallation process and is conducting experiments to prove out the system and to adapt it for use with a conventional rotary rig. This report describes work that has been accomplished at the Laboratory on the development of thermal spallation drilling and some work that is projected for the future on the system. 3 references, 3 figures.

Williams, R.E.

1985-01-01T23:59:59.000Z

318

Solar thermal power  

DOE Green Energy (OSTI)

Solar thermal power is produced by three types of concentrating systems, which utilize parabolic troughs, dishes, and heliostats as the solar concentrators. These systems are at various levels of development and commercialization in the United States and in Europe. The U.S. Industry is currently developing these systems for export at the end of this century and at the beginning of the next one for remote power, village electrification, and grid-connected power. U.S. utilities are not forecasting to need power generation capacity until the middle of the first decade of the 21{sup st} century. At that time, solar thermal electric power systems should be cost competitive with conventional power generation in some unique U.S. markets. In this paper, the authors describe the current status of the development of trough electric, dish/engine, and power tower solar generation systems. 46 refs., 20 figs., 8 tabs.

Mancini, T.R.; Kolb, G.J.; Prairie, M.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

319

Thermal Stabilization Blend Plan  

SciTech Connect

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

320

Pretzelosity distribution function  

E-Print Network (OSTI)

The 'pretzelosity' distribution is discussed. Theoretical properties, model results, and perspectives to access experimental information on this leading twist, transverse momentum dependent parton distribution function are reviewed. Its relation to helicity and transversity distributions is highlighted.

H. Avakian; A. V. Efremov; P. Schweitzer; F. Yuan

2008-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Thermal stress analysis of eccentric tube receiver using concentrated solar radiation  

SciTech Connect

In the parabolic trough concentrator with tube receiver system, the heat transfer fluid flowing through the tube receiver can induce high thermal stress and deflection. In this study, the eccentric tube receiver is introduced with the aim to reduce the thermal stresses of tube receiver. The ray-thermal-structural sequential coupled numerical analyses are adopted to obtain the concentrated heat flux distributions, temperature distributions and thermal stress fields of both the eccentric and concentric tube receivers. During the sequential coupled numerical analyses, the concentrated heat flux distribution on the bottom half periphery of tube receiver is obtained by Monte-Carlo ray tracing method, and the fitting function method is introduced for the calculated heat flux distribution transformation from the Monte-Carlo ray tracing model to the CFD analysis model. The temperature distributions and thermal stress fields are obtained by the CFD and FEA analyses, respectively. The effects of eccentricity and oriented angle variation on the thermal stresses of eccentric tube receiver are also investigated. It is recommended to adopt the eccentric tube receiver with optimum eccentricity and 90 oriented angle as tube receiver for the parabolic trough concentrator system to reduce the thermal stresses. (author)

Wang, Fuqiang; Shuai, Yong; Yuan, Yuan; Yang, Guo; Tan, Heping [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)

2010-10-15T23:59:59.000Z

322

Concentrating Solar Thermal Technology  

Science Conference Proceedings (OSTI)

After nearly 20 years of commercial dormancy, concentrating solar thermal (CST) power development and investment activity is heating up globally. Encouraged by volatile energy prices, carbon markets, and renewable-friendly policies, an increasing number of established companies, newcomers, utilities, and government agencies are planning to deploy CST systems to tap the technologies' improving conversion efficiencies and low-cost electricity production potential. This renewable energy technology perspecti...

2009-03-27T23:59:59.000Z

323

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

324

Thermal reactor safety  

SciTech Connect

Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

1980-06-01T23:59:59.000Z

325

Thermally actuated thermionic switch  

DOE Patents (OSTI)

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

326

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

327

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution...

328

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network (OSTI)

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program...........................................................................................................................11 #12;Table of Contents California Solar Initiative Thermal Program Handbook ii 2.5 Surface

329

Smart Distribution Applications for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

P180.014 Smart Distribution Applications for Distributed Energy Resources (070625)The factors listed below all support the proliferation of Distributed Generating (DG) units in electric utility systems. The growing rate of DG deployment suggests that alternative energy-based solutions play an increasingly important role in the smart grid and modern utility.Deregulation of the electric utility industry in some countriesEnvironmental ...

2013-08-16T23:59:59.000Z

330

RHESSI MICROFLARE STATISTICS. II. X-RAY IMAGING, SPECTROSCOPY, AND ENERGY DISTRIBUTIONS I. G. Hannah, S. Christe,1  

E-Print Network (OSTI)

RHESSI MICROFLARE STATISTICS. II. X-RAY IMAGING, SPECTROSCOPY, AND ENERGY DISTRIBUTIONS I. G distribution of RHESSI flares and compare it to previous thermal energy distributions of transient events. We flares down to nanoflares. The fre- quency distribution of the energy in these events has been studied

California at Berkeley, University of

331

Thermal transient anemometer  

DOE Patents (OSTI)

A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

Bailey, J.L.; Vresk, J.

1989-07-18T23:59:59.000Z

332

Thermal indicator for wells  

DOE Patents (OSTI)

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

333

Multispectral thermal imaging  

SciTech Connect

Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Sciences Group; Garrett, A.; Pendergast, M.M. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; Kay, R.R. [Sandia National Lab., Albuquerque, NM (United States). Monitoring Systems and Technology Center

1998-12-01T23:59:59.000Z

334

Manipulation of Thermal Phonons  

E-Print Network (OSTI)

Developing materials that can conduct electricity easily, but block the motion of phonons is necessary in the applications of thermoelectric devices, which can generate electricity from temperature differences. In converse, a key requirement as chips get faster is to obtain better ways to dissipate heat. Controlling heat transfer in these crystalline materials devices — such as silicon — is important. The heat is actually the motion or vibration of atoms known as phonons. Finding ways to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many fields of physical sciences and engineering, acoustic wave propagation in solids attracts many researchers. Wave propagation phenomena can be analyzed by mathematically solving the acoustic wave equation. However, wave propagation in inhomogeneous media with various geometric structures is too complex to find an exact solution. Hence, the Finite Difference Time Domain method is developed to investigate these complicated problems. In this work, the Finite-Difference Time-Domain formula is derived from acoustic wave equations based on the Taylor’s expansion. The numerical dispersion and stability problems are analyzed. In addition, the convergence conditions of numerical acoustic wave are stated. Based on the periodicity of phononic crystal, the Bloch’s theorem is applied to fulfill the periodic boundary condition of the FDTD method. Then a wide-band input signal is used to excite various acoustic waves with different frequencies. In the beginning of the calculation process, the wave vector is chosen and fixed. By means of recording the displacement field and taking the Fourier transformation, we can obtain the eigenmodes from the resonance peaks of the spectrum and draw the dispersion relation curve of acoustic waves. With the large investment in silicon nanofabrication techniques, this makes tungsten/silicon phononic crystal a particularly attractive platform for manipulating thermal phonons. Phononic crystal makes use of the fundamental properties of waves to create band gap over which there can be no propagation of acoustic waves in the crystal. This crystal can be applied to deterministically manipulate the phonon dispersion curve affected by different crystal structures and to modify the phonon thermal conductivity accordingly. We can expect this unique metamaterial is a promising route to creating unprecedented thermal properties for highly-efficient energy harvesting and thermoelectric cooling.

Hsu, Chung-Hao

2013-05-01T23:59:59.000Z

335

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix A. A table is included in Appendix A which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. This Revision of the Blend Plan adds items of lesser dose rate to lower the exposure of the workers until additional shielding can be added to the gloveboxes.

RISENMAY, H.R.

2000-04-20T23:59:59.000Z

336

Advanced solar thermal technology  

SciTech Connect

The application of dish solar collectors to industrial process heat (IPH) has been reviewed. IPH represents a market for displacement of fossil fuels (10 quads/y). A 10% market penetration would indicate a substantial market for solar thermal systems. Apparently, parabolic dish systems can produce IPH at a lower cost than that of troughs or compound parabolic concentrators, even though dish fabrication costs per unit area are more expensive. Successful tests of point-focusing collectors indicate that these systems can meet the energy requirements for process heat applications. Continued efforts in concentrator and transport technology development are needed. 7 figures.

Leibowitz, L.P.; Hanseth, E.; Liu, T.M.

1982-06-01T23:59:59.000Z

337

Ocean Thermal Energy Conversion power system development. Phase I. Final report  

DOE Green Energy (OSTI)

This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials, biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.

Not Available

1978-12-04T23:59:59.000Z

338

Hard thermal effective action in QCD through the thermal operator  

E-Print Network (OSTI)

Through the application of the thermal operator to the zero temperature retarded Green's functions, we derive in a simple way the well known hard thermal effective action in QCD. By relating these functions to forward scattering amplitudes for on-shell particles, this derivation also clarifies the origin of important properties of the hard thermal effective action, such as the manifest Lorentz and gauge invariance of its integrand.

Ashok Das; J. Frenkel

2007-03-08T23:59:59.000Z

339

2 Technology Description: Solar Thermal Parabolic Trough Solar Thermal  

E-Print Network (OSTI)

– Parabolic troughs track sun, concentrate incident light onto a centralized, tubular receiver that runs length of each trough – Thermal fluid circulates through all receivers in solar field – Thermal fluid brought to one or more centralized power production facilities – Heat transferred to a steam cycle, drives a steam turbine to generate power – Cooled thermal fluid is then recirculated th through h solar fi field ld – Wet cooling is common, dry cooling possible

Timothy J. Skone; Risks Of Implementation

2012-01-01T23:59:59.000Z

340

Thermal and Structural Equilibrium Studies of Organic Thermal ...  

Science Conference Proceedings (OSTI)

These organic materials undergo a solid-solid state phase transition before melting which will store large amounts of thermal energy. The binary system of ...

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)  

SciTech Connect

This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

Rugh, J. P.; Pesaran, A.; Smith, K.

2013-07-01T23:59:59.000Z

342

THERMALLY DRIVEN ATMOSPHERIC ESCAPE  

Science Conference Proceedings (OSTI)

Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

Johnson, Robert E., E-mail: rej@virginia.ed [Engineering Physics, Thornton Hall B102, University of Virginia, Charlottesville, VA 22902 (United States); Physics Department, New York University, New York, NY 10003 (United States)

2010-06-20T23:59:59.000Z

343

Advanced thermally stable jet fuels. Technical progress report, April 1995--June 1995  

Science Conference Proceedings (OSTI)

Research continued on thermally stable jet fuel from coal liquids and petroleum distillates. The oxidative and thermal stabilities of ten fuels have been studied by differential scanning calorimetry and in microautoclave reactors. The compositions of the stressed fuels (as well as the unreacted fuels) were characterized by gas chromatography and gas chromatography/mass spectrometry. In addition, simulated distillation curves were determined by thermogravimetric analysis. The product distributions and reaction mechanisms for the thermal decomposition of n-alkanes in near-critical and supercritical regions were studied. The emphasis of the work in this reporting period has been placed on reaction mechanisms and product distributions. Work is continuing on obtaining additional {sup 13}C-labeled jet fuel components for future thermal stressing studies. Compounds of current interest include 6-{sup 13}C-dodecane and 1-cyclohexyl-1-{sup 13}C-hexane. Further analysis of the formation of solids from the thermal stressing of decane and decalin has been performed.

Schobert, H.H.; Eser, S.; Boehman, A.; Song, C. [and others

1995-08-01T23:59:59.000Z

344

Thermal Flipping of Interstellar Grains  

E-Print Network (OSTI)

In interstellar dust grains, internal processes dissipate rotational kinetic energy. The dissipation is accompanied by thermal fluctuations, which transfer energy from the vibrational modes to rotation. Together, these processes are known as internal relaxation. For the past several years, internal relaxation has been thought to give rise to thermal flipping, with profound consequences for grain alignment theory. I show that thermal flipping is not possible in the limit that the inertia tensor does not vary with time.

Joseph C. Weingartner

2008-08-27T23:59:59.000Z

345

Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area,  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah Abstract Chemical interaction of thermal brines with reservoir rock in the Roosevelt Hot Springs thermal area has resulted in the development of distinctive trace element signatures. Geochemical analysis of soil sample, shallow temperature gradient drill hole cuttings and deep drill hole cutting provides a three dimensional perspective of trace element distributions within the system. Distributions of As, Hg and Li provide the clearest expression of hydrothermal activity. Comparison of these distribution

346

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

347

Liquid metal thermal-electric converter electrode development  

DOE Green Energy (OSTI)

This report describes work done in support of distributed receiver technology development. Dish-electric systems are being pursued in an effort to circumvent the need for energy transport by providing for heat-to-electricity energy conversion by individual heat engines at the focal point of parabolic dish concentrators. The Liquid Metal Thermal-Electric Converter is an engine that can convert thermal energy to electricity without the need for moving parts. The report documents the results of contracted work in the development of a long-lifetime, high-performance electrode for LMTEC, including the materials prepared for it. 17 refs., 20 figs., 3 tabs.

Martinez, J.I. (ed.)

1988-02-01T23:59:59.000Z

348

Thermal bremsstrahlung probing the nuclear liquid-gas phase transition  

E-Print Network (OSTI)

We present the results of the analysis of the hard photon production in the $^{129}${Xe}+$^{\\rm nat}${Sn} at 50{\\it A} MeV system studied in the GANIL E300 experiment. The energy and angular hard photon distributions confirm the existence of a thermal component which follows the recently measured thermal bremsstrahlung systematics. Exploiting the performances of our complete detection system, consisting of TAPS and 3 charged particle multidetectors, we have also measured the hard photon multiplicity as a function of the charged particle multiplicity.

R. Ortega; D. d'Enterria; F. Fernandez; G. Martinez

2002-02-28T23:59:59.000Z

349

Actively driven thermal radiation shield  

DOE Patents (OSTI)

A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

2002-01-01T23:59:59.000Z

350

Shock waves in thermal lensing  

E-Print Network (OSTI)

We review experimental investigation on spatial shock waves formed by the self-defocusing action of a laser beam propagation in a disordered thermal nonlinear media.

Gentilini, S; DeRe, E; Conti, C

2013-01-01T23:59:59.000Z

351

Thermal Barrier Coating Systems II  

Science Conference Proceedings (OSTI)

Oct 26, 2009... on the application requirements and not on substrate physical properties such as thermal expansion rate Esp. within the same class of alloys.

352

Thermal Oxidation of Titanium Wires  

Science Conference Proceedings (OSTI)

Structural and Thermal Study of Al2O3 Produced by Oxidation of Al-Powders Mixed with Corn Starch · Study of Silicon Carbide/Silicon Nitride Composite ...

353

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

354

Thermally activated miniaturized cooling system.  

E-Print Network (OSTI)

??A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test… (more)

Determan, Matthew Delos

2008-01-01T23:59:59.000Z

355

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

356

Phase-change thermal energy storage: Final subcontract report  

DOE Green Energy (OSTI)

The research and development described in this document was conducted within the US Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100{degree}C in low-temperature troughs to over 1500{degree}C in dish and central receiver systems. 12 refs., 119 figs., 4 tabs.

Not Available

1989-11-01T23:59:59.000Z

357

Thermal sensation and comfort in transient non-uniform thermal environments  

E-Print Network (OSTI)

cooling applied cooling removed Thermal Sensation Skincooling = 14°C cooling removed Thermal Sensation We measureda hand cooling test Models to predict thermal sensation and

Zhang, Hui; Huizenga, Charlie; Arens, Edward; Wang, Danni

2004-01-01T23:59:59.000Z

358

Thermal sensation and comfort in transient non-uniform thermal environments  

E-Print Network (OSTI)

environments. and evaluating thermal 6.0 References AttiaM, Engel P (1981) Thermal alliesthesial response in man isof vehicle climate with a thermal manikin - the relationship

Zhang, Hui; Huizenga, Charlie; Arens, Edward; Wang, Danni

2004-01-01T23:59:59.000Z

359

Determination of thermal parameters of one-dimensional nanostructures through a thermal transient method  

E-Print Network (OSTI)

of heat capacity and thermal conductivity measurements bythe heat pulse method for thermal transport measurements ofG. Speci?c heat and thermal conductivity measurements on

Arriagada, A.; Yu, E. T.; Bandaru, P. R.

2009-01-01T23:59:59.000Z

360

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submittedConcentrated Solar Thermal Power Plants by Corey Lee Hardin

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

362

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARMaterials for Thermal Energy Storage in Concentrated SolarMaterials for Thermal Energy Storage in Concentrated Solar

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

363

Nanoscale thermal transport and the thermal conductance of interfaces  

E-Print Network (OSTI)

absorption depends on temperature of the nanotube · Assume heat capacity is comparable to graphite · Cooling conductance · Pump probe apparatus · Transient absorption ­ Carbon nanotubes and thermal transport at hard optical absorption of nanoparticles and nanotubes in liquid suspensions. ­ Measure the thermal relaxation

Braun, Paul

364

Thermal conductivity depth-profile reconstruction of multilayered cylindrical solids using the thermal-wave Green function method  

Science Conference Proceedings (OSTI)

In this paper, a theoretical model for characterizing solid multi-layered cylindrical samples illuminated by a modulated uniform incident beam is developed by means of the Green function method. The specific Green function for the multi-layered cylindrical structure is derived and an analytical expression for the thermal-wave field in such a cylindrical sample is presented. The thermal-wave field of an inhomogeneous cylindrical sample irradiated with incident light of arbitrary angular and/or radial intensity distribution was obtained using this theoretical model. Furthermore, experimental validation is also presented in the form of experimental results with steel cylinders of various diameters.

Xie Guangxi [Key Lab of Modern Optical Technologies of Jiangsu Province, Institute of Modern Optical Technologies, Soochow University, Suzhou, Jiangsu, 215006 (China); Department of Physics, Jiangnan University, Wuxi, Jiangsu, 214122 (China); Zhang Jie; Liu Liwang; Wang Chinhua [Key Lab of Modern Optical Technologies of Jiangsu Province, Institute of Modern Optical Technologies, Soochow University, Suzhou, Jiangsu, 215006 (China); Mandelis, Andreas [Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto M5S 3G8, Ontario (Canada)

2011-06-01T23:59:59.000Z

365

Thermal barrier coatings  

DOE Patents (OSTI)

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

366

Inhomogeneous holographic thermalization  

E-Print Network (OSTI)

The sudden injection of energy in a strongly coupled conformal field theory and its subsequent thermalization can be holographically modeled by a shell falling into anti-de Sitter space and forming a black brane. For a homogeneous shell, Bhattacharyya and Minwalla were able to study this process analytically using a weak field approximation. Motivated by event-by-event fluctuations in heavy ion collisions, we include inhomogeneities in this model, obtaining analytic results in a long wavelength expansion. In the early-time window in which our approximations can be trusted, the resulting evolution matches well with that of a simple free streaming model. Near the end of this time window, we find that the stress tensor approaches that of second-order viscous hydrodynamics. We comment on possible lessons for heavy ion phenomenology.

V. Balasubramanian; A. Bernamonti; J. de Boer; B. Craps; L. Franti; F. Galli; E. Keski-Vakkuri; B. Müller; A. Schäfer

2013-07-26T23:59:59.000Z

367

Thermal protection apparatus  

DOE Patents (OSTI)

An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar holding the heat sensitive components. The Dewar has spaced-apart inside walls, an open top end and a bottom end. A plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

Bennett, G.A.; Moore, T.K.

1986-08-20T23:59:59.000Z

368

SUPERFAST THERMALIZATION OF PLASMA  

DOE Patents (OSTI)

A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

Chang, C.C.

1962-06-12T23:59:59.000Z

369

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

370

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix B. A table is included in Appendix B which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. There is no chance of exceeding the 15 watt limit with items starting with the designations ''LAO'' or ''PBO.'' All items starting with the designations ''BO,'' ''BLO,'' and ''DZ0'' are at risk of exceeding the 15 watt specification if the can were to be filled.

RISENMAY, H.R.

1999-08-19T23:59:59.000Z

371

Thermally stabilized heliostat  

DOE Patents (OSTI)

An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

Anderson, Alfred J. (Littleton, CO)

1983-01-01T23:59:59.000Z

372

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

373

Raindrop Size Distribution  

Science Conference Proceedings (OSTI)

This paper reviews some of the published results relating to raindrop-size distributions and couples this with some of the authors' results in order to show that the mathematical description of the distribution can be divided into three ...

M. C. Hodson

1986-07-01T23:59:59.000Z

374

Holographic thermalization in N=4 Super Yang-Mills theory at finite coupling  

E-Print Network (OSTI)

We investigate the behavior of the energy momentum tensor correlators in holographic N=4 Super Yang-Mills plasma, taking finite coupling corrections into account. In the thermal limit we determine the flow of the quasinormal modes as a function of the 't Hooft coupling. Then we use a specific model of holographic thermalization to study the deviation of the spectral density from its thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the plasma constituents approach their thermal distribution as the coupling constant decreases from the infinite coupling limit. All obtained results point towards a weakening of the usual top-down thermalization pattern.

Stricker, Stefan A

2013-01-01T23:59:59.000Z

375

Transversity Parton Distribution  

E-Print Network (OSTI)

Transversity distribution is one of the three fundamental parton distributions that completely describe polarized spin 1/2 nucleon. Its chiral odd nature prevented for many years its experimental exploration, however presently we have obtained great deal of information about this distribution. This includes experimental data from Semi Inclusive Deep Inelastic Scattering, knowledge of scale dependence and phenomenological extractions. I will discuss main features of this distribution and indicate the future improvements of our knowledge.

Alexei Prokudin

2013-04-01T23:59:59.000Z

376

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

377

Thermal conductivity Measurements of Kaolite  

Science Conference Proceedings (OSTI)

Testing was performed to determine the thermal conductivity of Kaolite 1600, which primarily consists of Portland cement and vermiculite. The material was made by Thermal Ceramics for refractory applications. Its combination of light weight, low density, low cost, and noncombustibility made it an attractive alternative to the materials currently used in ES-2 container for radioactive materials. Mechanical properties and energy absorption tests of the Kaolite have been conducted at the Y-12 complex. Heat transfer is also an important factor for the application of the material. The Kaolite samples are porous and trap moisture after extended storage. Thermal conductivity changes as a function of moisture content below 100 C. Thermal conductivity of the Kaolite at high temperatures (up to 700 C) are not available in the literature. There are no standard thermal conductivity values for Kaolite because each sample is somewhat different. Therefore, it is necessary to measure thermal conductivity of each type of Kaolite. Thermal conductivity measurements will help the modeling and calculation of temperatures of the ES-2 containers. This report focuses on the thermal conductivity testing effort at ORNL.

Wang, H

2003-02-21T23:59:59.000Z

378

Thermal conductivity of aqueous foam  

Science Conference Proceedings (OSTI)

Thermal conductivity plays an important part in the response of aqueous foams used as geothermal drilling fluids. The thermal conductivity of these foams was measured at ambient conditions using the thermal conductivity probe technique. Foam densities studied were from 0.03 to 0.2 g/cm/sup 3/, corresponding to liquid volume fractions of the same magnitude. Microscopy of the foams indicated bubble sizes in the range 50 to 300 ..mu..m for nitrogen foams, and 30 to 150 ..mu..m for helium foams. Bubble shapes were observed to be polyhedral at low foam densities and spherical at the higher densities. The measured conductivity values ranged from 0.05 to 0.12 W/m-K for the foams studied. The predicted behavior in foam conductivity caused by a change in the conductivity of the discontinuous gas phase was observed using nitrogen or helium gas in the foams. Analysis of the probe response data required an interpretation using the full intergral solution to the heat conduction equation, since the thermal capacity of the foam was small relative to the thermal mass of the probe. The measurements of the thermal conductivity of the foams were influenced by experimental effects such as the probe input power, foam drainage, and the orientation of the probe and test cell. For nitrogen foams, the thermal conductivity vs liquid volume fraction was observed to fall between predictions based on the parallel ordering and Russell models for thermal conduction in heterogeneous materials.

Drotning, W.D.; Ortega, A.; Havey, P.E.

1982-05-01T23:59:59.000Z

379

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

380

Solar Thermal Electric Technology: 2009  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2009. It addresses relevant policies in the United States and internationally, technology status, trends, companies and organizations involved in the field, and modeling activities supported by the Electric Power Research Institute (EPRI) and the Solar Thermal Electric Project (STEP).

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar Thermal Electric Technology: 2008  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2008. It addresses technology status, trends, companies and organizations involved in the field, and modeling activities supported by EPRI and the Solar Thermal Electric Project (STEP).

2009-03-31T23:59:59.000Z

382

Facility location: distributed approximation  

Science Conference Proceedings (OSTI)

In this paper, we initiate the study of the approximability of the facility location problem in a distributed setting. In particular, we explore a trade-off between the amount of communication and the resulting approximation ratio. We give a distributed ... Keywords: distributed approximation, facility location, linear programming, primal-dual algorithms

Thomas Moscibroda; Rogert Wattenhofer

2005-07-01T23:59:59.000Z

383

Near-field thermal transistor  

E-Print Network (OSTI)

Using a block of three separated solid elements, a thermal source and drain together with a gate made of an insulator-metal transition material exchanging near-field thermal radiation, we introduce a nanoscale analog of a field-effect transistor which is able to control the flow of heat exchanged by evanescent thermal photons between two bodies. By changing the gate temperature around its critical value, the heat flux exchanged between the hot body (source) and the cold body (drain) can be reversibly switched, amplified, and modulated by a tiny action on the gate. Such a device could find important applications in the domain of nanoscale thermal management and it opens up new perspectives concerning the development of contactless thermal circuits intended for information processing using the photon current rather than the electric current.

Ben-Abdallah, Philippe

2013-01-01T23:59:59.000Z

384

Energy Efficiency of Distributed Environmental Control Systems  

SciTech Connect

In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant’s thermal dissatisfaction below a given threshold. The DECS energy usage was calculated using the simplified thermal model. OSFA control; providing a uniform temperature to the entire building, and occupant-selected HIYW control with a thermostat at each workstation were implemented for 3 cities representing 3 different climatic regions and control scenarios. It is shown that optimization allows DECS to deliver a higher level of individual and population thermal comfort while achieving annual energy savings between 14 and 26% compared to OSFA. The optimization model also allowed us to study the influence of the partitions’ thermal resistance and the variability of internal loads at each office. These influences didn’t make significant changes in the optimized energy consumption relative to OSFA. The results show that it is possible to provide thermal comfort for each occupant while saving energy compared to OSFA Furthermore, to simplify the implementation of this approach, a fuzzy logic system has been developed to generalize the overall optimization strategy. Its performance was almost as good as the gradient system. The fuzzy system provided thermal comfort to each occupant and saved energy compared to OSFA. The energy savings of the fuzzy system were not as high as for the gradient-optimized system, but the fuzzy system avoided complete connectivity, and the optimization did not have to be repeated for each population. 3. We employed a detailed CFD model of adjacent occupied cubicles to extend the thermal-circuit model in three significant ways: (a) relax the “office wall” requirement by allowing energy to flow between zones via advection as well as conduction, (b) improve the comfort model to account both for radiation as well as convection heat transfer, and (c) support ventilation systems in which the temperature is stratified, such as in underfloor air distribution systems. Initially, three-dimensional CFD simulations of several cubicle configurations, with an adjoining corridor, were performed both to understand the advection between cubicles and the

Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

2011-02-23T23:59:59.000Z

385

Structural-Damage Detection by Distributed Piezoelectric Transducers and Tuned Electric Circuits  

E-Print Network (OSTI)

A novel technique for damage detection of structures is introduced and discussed. It is based on purely electric measurements of the state variables of an electric network coupled to the main structure through a distributed set of piezoelectric patches. The constitutive parameters of this auxiliary network are optimized to increase the sensitivity of global measurements- as the frequency, response functions relative to selected electric degrees of freedom-with respect to a given class of variations in the structural-mechanical properties. Because the proposed method is based on purely electric input and output measurements, it allows for accurate results in the identification and localization of damages. Use of the electric frequency-response function to identify the mechanical damage leads to nonconvex optimization problems; therefore the proposed sensitivity-enhanced identification procedure becomes computationally efficient if an a priori knowledge about the damage is available.

dell'Isola, F; Vidoli, S

2010-01-01T23:59:59.000Z

386

Structural-Damage Detection by Distributed Piezoelectric Transducers and Tuned Electric Circuits  

E-Print Network (OSTI)

A novel technique for damage detection of structures is introduced and discussed. It is based on purely electric measurements of the state variables of an electric network coupled to the main structure through a distributed set of piezoelectric patches. The constitutive parameters of this auxiliary network are optimized to increase the sensitivity of global measurements- as the frequency, response functions relative to selected electric degrees of freedom-with respect to a given class of variations in the structural-mechanical properties. Because the proposed method is based on purely electric input and output measurements, it allows for accurate results in the identification and localization of damages. Use of the electric frequency-response function to identify the mechanical damage leads to nonconvex optimization problems; therefore the proposed sensitivity-enhanced identification procedure becomes computationally efficient if an a priori knowledge about the damage is available.

F. dell'Isola; F. Vestroni; S. Vidoli

2010-07-13T23:59:59.000Z

387

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

388

Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy  

Open Energy Info (EERE)

Valley Geothermal Project Thermal Gradient Wells Valley Geothermal Project Thermal Gradient Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Pumpernickel Valley Geothermal Project Thermal Gradient Wells Details Activities (4) Areas (1) Regions (0) Abstract: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault,

389

Solar thermal bowl concepts and economic comparisons for electricity generation  

DOE Green Energy (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

1988-04-01T23:59:59.000Z

390

Solar thermal bowl concepts and economic comparisons for electricity generation  

SciTech Connect

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

1988-04-01T23:59:59.000Z

391

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

392

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents (OSTI)

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

393

Performance improvement of a solar heating system utilizing off-peak electric auxiliary. Semi-annual progress report, June 18, 1979-December 31, 1979  

SciTech Connect

During the period 18 June 1979 through December 1979, a solar assisted heat pump system was designed, installed and operated in the University of Toledo Experimental Solar House. The heat pump system is capable of operating in a wide range of temperatures which is needed in a solar house utilizing off-peak storage from the electric utility. The complete system consists of 584.1 square feet of Libbey-Owens-Ford's flat plate solar collectors, a 5 horsepower compressor (Victaulic Corp.), an evaporator (Dunham-Bush), a condensor (Dunham-Bush), thermal storage units, and associated equipment. During the installation and initial operation of the system, numerous aspects of the feasibility of this system design have been evaluated. Many of these aspects point to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility.

Eltimsahy, A.H.

1979-12-01T23:59:59.000Z

394

Preliminary investigations of the thermal energy grid concept  

SciTech Connect

This study examines, in a preliminary manner, the feasibility of the thermal grid concept. This concept essentially envisions the supply of heat to a long-distance transmission line from a dual-purpose nuclear or coal-fired power plant. The transmission line delivers heat to a subregion distribution network which delivers it to the consumer. District chilled water supply is also considered, using heat from the grid to power steam-turbine-driven water chillers. Candidate technologies for generation, transmission, and distribution of thermal energy are identified and assessed. Potential applications, including both industrial use and residential space conditioning and hot water supply, are evaluated. Results indicate that high-temperature hot-water transmission lines are favored for longer distances, while steam lines may be acceptable for shorter distances. It is also evident that thermal grid heat is more economically competitive for new applications, as opposed to retrofit situations, in the residential-commercial sector. The two applications are about equally feasible in the industrial sector. The results further indicate that thermal grid heat is most competitive in areas of high-heat-load density and expensive fuel costs. It appears that the thermal grid service area should include the industrial sector as a base load. The multifamily residential-commercial sector space and water heating loads can be added to the service area to maximize utilization of the transmission line and maintain low transmission costs. Supply of chilled water to the multifamily residential-commercial sector can also be included for new applications to increase the transmission line use factor. The thermal grid concept appears to be economically and technically feasible, when compared to oil and electric systems in the multifamily residential-commercial sector and coal- or oil-fired systems in the industrial sector, and should be explored in greater detail.

Olszewski, M.

1977-10-01T23:59:59.000Z

395

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network (OSTI)

6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

396

The Synchrotron Boiler: a Thermalizer in Seyfert Galaxies  

E-Print Network (OSTI)

There are difficulties in understanding what keeps the plasma thermalized in compact sources, especially during rapid variations of the emitted flux. Particle-particle collisions are too inefficient in hot rarefied plasmas, and a faster process is called for. Synchrotron absorption is such a process. We show that relativistic electrons can thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium distribution is a Maxwellian at low energies, with a high energy power law tail when Compton cooling is important. Assuming that the particles emit completely self absorbed synchrotron radiation while they at the same time Compton scatter ambient UV photons, we calculate the time dependent behavior of the distribution function, and the final high energy spectra.

Gabriele Ghisellini; Francesco Haardt; Roland Svensson

1996-12-09T23:59:59.000Z

397

The Synchrotron Boiler a Thermalizer in Seyfert Galaxies  

E-Print Network (OSTI)

There are difficulties in understanding what keeps the plasma thermalized in compact sources, especially during rapid variations of the emitted flux. Particle-particle collisions are too inefficient in hot rarefied plasmas, and a faster process is called for. Synchrotron absorption is such a process. We show that relativistic electrons can thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium distribution is a Maxwellian at low energies, with a high energy power law tail when Compton cooling is important. Assuming that the particles emit completely self absorbed synchrotron radiation while they at the same time Compton scatter ambient UV photons, we calculate the time dependent behavior of the distribution function, and the final high energy spectra.

Ghisellini, G; Svensson, R; Ghisellini, Gabriele; Haardt, Francesco; Svensson, Roland

1996-01-01T23:59:59.000Z

398

Solar Thermal Demonstration Project  

SciTech Connect

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

399

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

400

Advanced nanofabrication of thermal emission devices  

E-Print Network (OSTI)

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

402

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersA. 1957. Steady State Free Thermal Convection of Liquid in a1958. An Experiment on Free Thermal Convection of Water in

Authors, Various

2011-01-01T23:59:59.000Z

403

The Development of Thermals from Rest  

Science Conference Proceedings (OSTI)

Conventional techniques for releasing a thermal in laboratory experiments induce enough initial motion to affect seriously the thermal's subsequent evolution. We have invented a mechanism for releasing thermals from very close to a state of rest. ...

Odòn Sànchez; David J. Raymond; Larry Libersky; Albert G. Petschek

1989-07-01T23:59:59.000Z

404

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network (OSTI)

alpha1=k1/(density1*cp1); %Thermal diffusivity of PMMA B1=Simon R. Phillpot, “Nanoscale Thermal Transport”, Journal of9] E.T. Swartz, R.O. Pohl, “Thermal Boundary Resistance”,

Yuen, Taylor S.

405

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

solar power plants, thermal power plants(fuel, nuclear),reject heat from thermal power plants can only be re-protection is the thermal electric power plant. Electric

Authors, Various

2011-01-01T23:59:59.000Z

406

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

407

Parallel implementation of a steady state thermal and hydraulic analysis of pipe networks in OpenMP  

Science Conference Proceedings (OSTI)

The considerable computation time of a practical application of sequential algorithms for simulating thermal and flow distribution in pipe networks is the motivating factor to study their parallel implementation. The mathematical model formulated and ... Keywords: OpenMP, flow and thermal analysis, parallel implementation, pipe networks, steady state

Mykhaylo Fedorov

2009-09-01T23:59:59.000Z

408

Ceramic thermal barrier coating for rapid thermal cycling applications  

DOE Patents (OSTI)

A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

Scharman, Alan J. (Hebron, CT); Yonushonis, Thomas M. (Columbus, IN)

1994-01-01T23:59:59.000Z

409

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

410

Rapid thermal processing by stamping  

DOE Patents (OSTI)

A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

Stradins, Pauls; Wang, Qi

2013-03-05T23:59:59.000Z

411

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

generation, absorption cooling, solar thermal collection,activated cooling, photovoltaics, solar thermal collectors,activated cooling, solar electric and thermal equipment, and

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

412

Simulation and design of solar thermal processes  

DOE Green Energy (OSTI)

Methods of simulation and design of solar thermal processes have been developed and used in process system studies. During the period of this contract, new process component model formulations have been developed, including: transient LiBr--H/sub 2/O absorption cooler; CPC and other ''advanced'' collectors; and windows, storage wall and shading devices for passive solar heating. Systems studies have included: parallel and series solar/heat pump combinations; phase change storage in solar heating; absorption cooling with and without cooler transients. The general solar process simulation program, TRNSYS, has been further developed, documented, distributed and supported. Design procedure studies have led to development of a method for calculating the phi, the average solar radiation availability, and the development of the phi, f-chart method for design of closed-loop solar heating systems which (a) can have load temperatures other than 20/sup 0/C, and (b) have approximately constant COP of any energy converters between storage and load.

Not Available

1978-12-01T23:59:59.000Z

413

Systems analysis of solar thermal power systems. Report on Task 1: determination and characterization of solar thermal conversion options  

SciTech Connect

Seven general solar thermal conversion concepts were selected initially. The literature review confirmed that these are the only concepts that are developed to a level suitable for inclusion in the comparative analysis to be performed. A summary of information pertaining to these concepts is given and the concepts are briefly described. The information presented is abstracted from applicable references presented in the bibliography. The bibliography and a list of the major contacts established are included in appendices. The seven concepts are: point-focusing distributed receiver system; point focusing, central receiver systems; fixed mirror/distributed focus system; line-focus central receiver system; line-focus distributed receiver system; fixed mirror line-focus distributed receiver system, and low concentrator non-tracking systems. (WHR)

Apley, W.J.

1978-07-01T23:59:59.000Z

414

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

415

Nanosecond time resolved thermal emission measurements during...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanosecond time resolved thermal emission measurements during pulse excimer laser interaction with materials Title Nanosecond time resolved thermal emission measurements during...

416

Environmental Energy Technologies Division Thermal Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Field Tests Joseph H. Klems, LBNL DOE PEER Review San Francisco, CA April 20, 1999 Environmental Energy Technologies Division Current Work l Skylight Thermal Performance *...

417

Definition: Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

Gradient Holes Jump to: navigation, search Dictionary.png Thermal Gradient Holes "A hole logged by a temperature probe to determine the thermal gradient. Usually involves a hole...

418

Stewart Thermal Ltd | Open Energy Information  

Open Energy Info (EERE)

Stewart Thermal Ltd Jump to: navigation, search Name Stewart Thermal Ltd Place United Kingdom Sector Biomass Product Provides specialist advice in the field of biomass energy....

419

Solar Thermal Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalElectric&o...

420

Development of Low Thermal Expansion Superalloys  

Science Conference Proceedings (OSTI)

For heat resistant alloys it is useful to decrease the thermal expansion for improved adherance of low thermal expansion ceramic coatings like silicon nitride,.

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Process Heat Jump to: navigation, search TODO: Add description List of Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalPr...

422

Nextreme Thermal Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

Nextreme Thermal Solutions Inc Jump to: navigation, search Name Nextreme Thermal Solutions Inc Place North Carolina Zip 27709-3981 Product String representation "Manufactures ad...

423

Thermal Transport in Graphene Multilayers and Nanoribbons  

E-Print Network (OSTI)

1 CHAPTER 2 Thermal transport atxix List of Tables Phonon transport regimes – Length scaleRIVERSIDE Thermal Transport in Graphene Multilayers and

Subrina, Samia

2011-01-01T23:59:59.000Z

424

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

425

California Solar Initiative - Solar Thermal Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Program California Solar Initiative - Solar Thermal Program Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family...

426

Electrospun Polymer Nanofiber Composite as Thermal Neutron ...  

Science Conference Proceedings (OSTI)

Lithium-6 isotope has a significant thermal neutron cross-section and produces high energy charged particles on thermal neutron absorption. In this research ...

427

Thermal field theories and shifted boundary conditions  

E-Print Network (OSTI)

The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedure.

Leonardo Giusti; Harvey B. Meyer

2013-10-29T23:59:59.000Z

428

Thermal field theories and shifted boundary conditions  

E-Print Network (OSTI)

The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedur...

Giusti, Leonardo

2013-01-01T23:59:59.000Z

429

Thermalization and the chromo-Weibel instability  

E-Print Network (OSTI)

Despite the apparent success of ideal hydrodynamics in describing the elliptic flow data which have been produced at Brookhaven National Lab's Relativistic Heavy Ion Collider, one lingering question remains: is the use of ideal hydrodynamics at times t < 1 fm/c justified? In order to justify its use a method for rapidly producing isotropic thermal matter at RHIC energies is required. One of the chief obstacles to early isotropization/thermalization is the rapid longitudinal expansion of the matter during the earliest times after the initial nuclear impact. As a result of this expansion the parton distribution functions become locally anisotropic in momentum space. In contrast to locally isotropic plasmas anisotropic plasmas have a spectrum of soft unstable modes which are characterized by exponential growth of transverse chromo-magnetic/-electric fields at short times. This instability is the QCD analogue of the Weibel instability of QED. Parametrically the chromo-Weibel instability provides the fastest method for generation of soft background fields and dominates the short-time dynamics of the system.

Michael Strickland

2007-01-29T23:59:59.000Z

430

REACTOR GROUT THERMAL PROPERTIES  

DOE Green Energy (OSTI)

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

431

EIS Distribution | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS Distribution EIS Distribution This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a...

432

Advanced Distribution Monitoring  

Science Conference Proceedings (OSTI)

Advanced Distribution Automation (ADA) is a concept for a fully controllable and flexible distribution system that will facilitate the exchange of electrical energy AND information between participants and system components. Advances in the monitoring of system parameters like voltages, currents and breaker/switch positions as well as environmental variables like temperature and wind speed will be required in order to fully implement ADA. This report presents background information on distribution monito...

2005-12-05T23:59:59.000Z

433

Distributed Resource Integration Framework  

Science Conference Proceedings (OSTI)

This report defines a framework for assessing current issues and considerations associated with the deployment and operation of distributed resources. The framework is a guide that can assist utility personnel, distributed resource owners, and other stakeholders in planning integration projects and in relating different integration projects to one another. The framework provides a structured organization of the various elements associated with distributed resource integration, including regulatory, busin...

2009-12-23T23:59:59.000Z

434

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

435

Measuring advances in HVAC distribution system designs  

Science Conference Proceedings (OSTI)

Substantial commercial building energy savings have been achieved by improving the performance of the HVAC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

Franconi, Ellen

1998-07-01T23:59:59.000Z

436

Measuring Advances in HVAC Distribution System Design  

SciTech Connect

Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

Franconi, E.

1998-05-01T23:59:59.000Z

437

Photon Generalized Parton Distributions  

E-Print Network (OSTI)

We present a calculation of the generalized parton distributions of the photon using overlaps of photon light-front wave functions.

Asmita Mukherjee; Sreeraj Nair

2011-09-30T23:59:59.000Z

438

Photon Generalized Parton Distributions  

E-Print Network (OSTI)

We present a calculation of the generalized parton distributions of the photon using overlaps of photon light-front wave functions.

Mukherjee, Asmita

2011-01-01T23:59:59.000Z

439

Cooling water distribution system  

DOE Patents (OSTI)

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

Orr, Richard (Pittsburgh, PA)

1994-01-01T23:59:59.000Z

440

Distribution reliability analysis.  

E-Print Network (OSTI)

??This thesis presents an example for optimization of distribution maintenance scheduling of a recloser. It applies a risk reduction technique associated with maintenance of the… (more)

Bhusal, Prabodh

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MEMORANDUM FOR DISTRIBUTION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Department of Energy Washington, DC 20585 December 20, 2007 MEMORANDUM FOR DISTRIBUTION FROM: MICHAEL W. OWEN

442

Essays on wealth distribution.  

E-Print Network (OSTI)

?? The U.S. wealth distribution has three prominent features: a fat tail, skewness to the right, and a high Gini coefficient. Among these three features… (more)

Zhu, Shenghao

2010-01-01T23:59:59.000Z

443

Email Distribution Lists  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Distribution Lists The NSLS maintains several email lists to disseminate information to BNL staff and users as well as DOE officials and other interested people. The...

444

The Beta Maxwell Distribution.  

E-Print Network (OSTI)

??In this work we considered a general class of distributions gener- ated from the logit of the beta random variable. We looked at various works… (more)

Amusan, Grace Ebunoluwa

2010-01-01T23:59:59.000Z

445

Thermal Management of Solar Cells  

E-Print Network (OSTI)

as a source of photovoltaic energy is rapidly increasingphotovoltaic cells under concentrated illumination: a critical review," Solar Energyphotovoltaic/thermal collector, PV/T, and it utilizes both electrical and heat energies

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

446

Thermal insulation of window glass  

SciTech Connect

The thermal insulation of window glass can be increased by a factor of two using spray-on semiconductive SnO/sub 2/: Sb or IN/sub 2/O/sub 3/: Sn coatings. (auth)

Sievers, A.J.

1973-11-01T23:59:59.000Z

447

Research Article Building Thermal, Lighting,  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Building Thermal, Lighting, and Acoustics Modeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST...

448

Thermal Equilibration of Planetary Waves  

Science Conference Proceedings (OSTI)

Equilibration of planetary waves toward free-mode forms, steady solutions of the unforced, undamped equations of motion, is studied in a three-level quasi-geostrophic model on the hemisphere. A thermal mechanism is invoked, parameterized as a ...

John Marshall; Damon W. K. So

1990-04-01T23:59:59.000Z

449

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

450

Solar thermal electric hybridization issues  

DOE Green Energy (OSTI)

Solar thermal electric systems have an advantage over many other renewable energy technologies because the former use heat as an intermediate energy carrier. This is an advantage as it allows for a relatively simple method of hybridization by using heat from fossil-fuel. Hybridization of solar thermal electric systems is a topic that has recently generated significant interest and controversy and has led to many diverse opinions. This paper discusses many of the issues associated with hybridization of solar thermal electric systems such as what role hybridization should play; how it should be implemented; what are the efficiency, environmental, and cost implications; what solar fraction is appropriate; how hybrid systems compete with solar-only systems; and how hybridization can impact commercialization efforts for solar thermal electric systems.

Williams, T A; Bohn, M S; Price, H W

1994-10-01T23:59:59.000Z

451

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

452

Thermal performance and economics of solar space and hot water heating system on Long Island, New York. [F-chart method  

DOE Green Energy (OSTI)

A practical method for designing solar space and water heating systems, called the ''f-chart'' method, is described with the results calculated for Long Island, New York. The solar heating systems to be considered consist of a solar collector which uses either liquid or air, an energy storage which can be either a water tank or a pebble bed, and an auxiliary energy source which supplies heat when solar energy is not available. Solar heated water from storage can be used either for space heating or for preheating the domestic hot water. The results of the ''f-chart'' analysis can simply be expressed as follows. For the thermal performance, Annual Load Fraction Supplied by Solar Energy versus Collector Area, and for the economic performance, Life Cycle Cost Savings versus Collector Area.

Auh, P C

1978-06-01T23:59:59.000Z

453

Lih thermal energy storage device  

DOE Patents (OSTI)

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

1994-01-01T23:59:59.000Z

454

Thermal Batteries for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

455

Thermal Faults Modeling using a RC model with an Application to Web Farms  

E-Print Network (OSTI)

Today’s CPUs consume a significant amount of power and generate a high amount of heat, requiring an active cooling system to support reliable operations. In case of cooling system failures, these CPUs can reduce clock speed to prevent damage due to overheating. Unfortunately, when these CPUs are used in a real-time system, a clock control based on frequency-throttling can cause missed deadlines. In this paper, we first develop and validate a system-wide thermal model that can account for various thermal fault types such as failure of a CPU fan, faults in the case fan and air-conditioning malfunctions. Then we validate the thermal model through experimentation and measurements in AMD Linux boxes. Our soft real-time power-aware load-distribution algorithm for data centers incorporates a thermal model to minimize the number of missed deadlines that can be caused by thermal faults. We implemented the algorithm in a webserver farm simulator to test the efficacy of thermal-aware load-balancing. Our results show that the new algorithm helps keep CPU temperatures within the desired thermal envelope, even in the presence of thermal faults. When thermal faults occur, our algorithm improves the QoS, at the expense of higher energy consumption. 1

Re P. Ferreira; Daniel Mossé

2007-01-01T23:59:59.000Z

456

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot  

Open Energy Info (EERE)

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Details Activities (3) Areas (1) Regions (0) Abstract: Chemical interaction of thermal fluids with reservoir rock in the Roosevelt Hot Springs thermal area, Utah, has resulted in the development of characteristic trace-element dispersion patterns. Multielement analyses of surface rock samples, soil samples and drill cuttings from deep exploration wells provide a three-dimensional perspective of chemical redistribution within this structurally-controlled hot-water geothermal system. Five distinctive elemental suites of chemical enrichment are

457

Recent National Solar Thermal Test Facility activities, in partnership with industry  

DOE Green Energy (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

458

Duct thermal performance models for large commercial buildings  

SciTech Connect

Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

Wray, Craig P.

2003-10-01T23:59:59.000Z

459

Measuring Advances in HVAC Distribution System Design  

E-Print Network (OSTI)

thermal based index EDE and thermal energy end-use indices.Thus mechanical and thermal energy sources can be combinedproposed to assess thermal energy use in commercial building

Franconi, E.

2011-01-01T23:59:59.000Z

460

Modeling the Loss Distribution  

Science Conference Proceedings (OSTI)

In this paper, we focus on modeling and predicting the loss distribution for credit risky assets such as bonds and loans. We model the probability of default and the recovery rate given default based on shared covariates. We develop a new class of default ... Keywords: Basel II, default prediction, loss distribution, recovery rates

Sudheer Chava; Catalina Stefanescu; Stuart Turnbull

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Distribution Arc Flash  

Science Conference Proceedings (OSTI)

Arc flash from faults on 480-V circuits is a safety issue that can impact utility work. This report covers results from tests of arc flash and fabric performance from faults in 480-V network protectors and padmounted transformers. It supplements EPRI report 1018694, Distribution Arc Flash: Industry Practices and EPRI report 1018693, Distribution Arc Flash: Analysis Methods and Arc Characteristics.

2009-08-31T23:59:59.000Z

462

Fitting an Exponential Distribution  

Science Conference Proceedings (OSTI)

Exponential distributions of the type N = N0 exp(??t) occur with a high frequency in a wide range of scientific disciplines. This paper argues against a widely spread method for calculating the ? parameter in this distribution. When the ln ...

Roberto Fraile; Eduardo García-Ortega

2005-10-01T23:59:59.000Z

463

Advanced Thermal Simulator Testing: Thermal Analysis and Test Results  

SciTech Connect

Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

464

SIMULATING THE EFFECTS OF INITIAL PITCH-ANGLE DISTRIBUTIONS ON SOLAR FLARES  

SciTech Connect

In this work, we model both the thermal and non-thermal components of solar flares. The model we use, HYLOOP, combines a hydrodynamic equation solver with a non-thermal particle tracking code to simulate the thermal and non-thermal dynamics and emission of solar flares. In order to test the effects of pitch-angle distribution on flare dynamics and emission, a series of flares is simulated with non-thermal electron beams injected at the loop apex. The pitch-angle distribution of each beam is described by a single parameter and allowed to vary from flare to flare. We use the results of these simulations to generate synthetic hard and soft X-ray emissions (HXR and SXR). The light curves of the flares in Hinode's X-ray Telescope passbands show a distinct signal that is highly dependent on pitch-angle distribution. The simulated HXR emission in the 3-6 keV bandpass shows the formation and evolution of emission sources that correspond well to the observations of pre-impulsive flares. This ability to test theoretical models of thermal and non-thermal flare dynamics directly with observations allows for the investigation of a wide range of physical processes governing the evolution of solar flares. We find that the initial pitch-angle distribution of non-thermal particle populations has a profound effect on loop top HXR and SXR emission and that apparent motion of HXR is a natural consequence of non-thermal particle evolution in a magnetic trap.

Winter, Henry D.; Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); Martens, Petrus, E-mail: hwinter@cfa.harvard.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

2011-07-10T23:59:59.000Z

465

The impact of magnetic field on the thermal evolution of neutron stars  

E-Print Network (OSTI)

The impact of strong magnetic fields B>10e13 G on the thermal evolution of neutron stars is investigated, including crustal heating by magnetic field decay. For this purpose, we perform 2D cooling simulations with anisotropic thermal conductivity considering all relevant neutrino emission processes for realistic neutron stars. The standard cooling models of neutron stars are called into question by showing that the magnetic field has relevant (and in many cases dominant) effects on the thermal evolution. The presence of the magnetic field significantly affects the thermal surface distribution and the cooling history of these objects during both, the early neutrino cooling era and the late photon cooling era. The minimal cooling scenario is thus more complex than generally assumed. A consistent magneto-thermal evolution of magnetized neutron stars is needed to explain the observations.

Deborah N. Aguilera; José A. Pons; Juan A. Miralles

2007-12-09T23:59:59.000Z

466

The impact of magnetic field on the thermal evolution of neutron stars  

E-Print Network (OSTI)

The impact of strong magnetic fields B>10e13 G on the thermal evolution of neutron stars is investigated, including crustal heating by magnetic field decay. For this purpose, we perform 2D cooling simulations with anisotropic thermal conductivity considering all relevant neutrino emission processes for realistic neutron stars. The standard cooling models of neutron stars are called into question by showing that the magnetic field has relevant (and in many cases dominant) effects on the thermal evolution. The presence of the magnetic field significantly affects the thermal surface distribution and the cooling history of these objects during both, the early neutrino cooling era and the late photon cooling era. The minimal cooling scenario is thus more complex than generally assumed. A consistent magneto-thermal evolution of magnetized neutron stars is needed to explain the observations.

Aguilera, Deborah N; Miralles, Juan A

2007-01-01T23:59:59.000Z

467

Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence  

E-Print Network (OSTI)

The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population.

Steven A. Balbus; Christopher S. Reynolds

2008-06-05T23:59:59.000Z

468

The importance of thermal loading conditions to waste package performance at Yucca Mountain  

SciTech Connect

Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period.

Buscheck, T.A.; Nitao, J.J.

1994-10-01T23:59:59.000Z

469

The Nature of Thermal Blackbody Radiation  

E-Print Network (OSTI)

It was shown recently that thermal radio emission has a stimulated character, and it is quite possible that thermal black body radiation in other spectral ranges also has an induced origin. The induced origin of thermal black body emission leads to important astrophysical consequences, such as the existence of laser type sources and thermal harmonics in stellar spectra.

F. V. Prigara

2002-01-11T23:59:59.000Z

470

Thermal storage module for solar dynamic receivers  

DOE Patents (OSTI)

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

471

Thermal Modeling of Hybrid Storage Clusters  

Science Conference Proceedings (OSTI)

There is a lack of thermal models for storage clusters; most existing thermal models do not take into account the utilization of hard drives (HDDs) and solid state disks (SSDs). To address this problem, we build a thermal model for hybrid storage clusters ... Keywords: Cluster, Hybrid, Model, Storage, Thermal

Xunfei Jiang; Maen M. Al Assaf; Ji Zhang; Mohammed I. Alghamdi; Xiaojun Ruan; Tausif Muzaffar; Xiao Qin

2013-09-01T23:59:59.000Z

472

Battery Thermal Management System Design Modeling (Presentation)  

DOE Green Energy (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

473

Solar thermal power systems. Program summary  

DOE Green Energy (OSTI)

Each of DOE's solar Thermal Power Systems projects funded and/or in existence during FY 1978 is described and the status as of September 30, 1978 is reflected. These projects are divided as follows: small thermal power applications, large thermal power applications, and advanced thermal technology. Also included are: 1978 project summary tables, bibliography, and an alphabetical index of contractors. (MHR)

Not Available

1978-12-01T23:59:59.000Z

474

Ant Colony System-Based Algorithm for Optimal Multi-stage Planning of Distribution Transformer Sizing  

Science Conference Proceedings (OSTI)

This paper proposes a stochastic optimization method, based on ant colony optimization, for the optimal choice of transformer sizes to be installed in a distribution network. This method is properly introduced to the solution of the optimal transformer ... Keywords: Ant Colony Optimization, Distribution Network Planning, Energy Loss Cost, Optimal Transformer Sizing, Thermal Loading, Transformers

Eleftherios I. Amoiralis; Pavlos S. Georgilakis; Marina A. Tsili; Antonios G. Kladas

2008-09-01T23:59:59.000Z

475

Device for thermal transfer and power generation  

SciTech Connect

A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

2011-04-19T23:59:59.000Z

476

High Performance Thermal Interface Technology Overview  

E-Print Network (OSTI)

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

R. Linderman; T. Brunschwiler; B. Smith; B. Michel

2008-01-07T23:59:59.000Z

477

Second thermal storage applications workshop  

DOE Green Energy (OSTI)

On February 7 and 8, 1980, approximately 20 persons representing the management of both the Solar Thermal Power Systems Program (TPS) of the US Department of Energy (DOE) Division of Central Solar Technology (CST) and the Thermal Energy Storage Program (TES) of the DOE Division of Energy Storage Systems (STOR) met in San Antonio, Texas, for the Second Thermal Storage Applications Workshop. The purpose of the workshop was to review the joint Thermal Energy Storage for Solar Thermal Applications (TESSTA) Program between CST and STOR and to discuss important issues in implementing it. The meeting began with summaries of the seven major elements of the joint program (six receiver-related, storage development elements, and one advanced technology element). Then, a brief description along with supporting data was given of several issues related to the recent joint multiyear program plan (MYPP). Following this session, the participants were divided into three smaller groups representing the program elements that mainly supported large power, small power, and advanced technology activities. During the afternoon of the first day, each group prioritized the program elements through program budgets and discussed the issues defined as well as others of concern. On the morning of the second day, representatives of each group presented the group's results to the other participants. Major conclusions arising from the workshop are presented regarding program and budget. (LEW)

Wyman, C.E.; Larson, R.W.

1980-06-01T23:59:59.000Z

478

The Wigner Distribution  

E-Print Network (OSTI)

In contrast to classical physics, the language of quantum mechanics involves operators and wave functions (or, more generally, density operators). However, in 1932, Wigner formulated quantum mechanics in terms of a distribution function $W(q,p)$, the marginals of which yield the correct quantum probabilities for $q$ and $p$ separately \\cite{wigner}. Its usefulness stems from the fact that it provides a re-expression of quantum mechanics in terms of classical concepts so that quantum mechanical expectation values are now expressed as averages over phase-space distribution functions. In other words, statistical information is transferred from the density operator to a quasi-classical (distribution) function.

R. F. O'Connell

2010-09-22T23:59:59.000Z

479

Coupled Electromagnetic and Thermal Modeling of Microwave Tissue Processing  

E-Print Network (OSTI)

This study deals with 3D finite element modeling of microwave tissue processing using Comsol software 4.0. Maxwell’s equations are coupled with heat conduction equation to determine electromagnetic field distribution and temperature profile within tissue sample in a reagent inside a domestic microwave oven. The microwave power generation term is calculated. Also, temperature distribution obtained is compared with experimental point measurements recorded in the centre of the tissue using a shielded K type thermocouple. Good agreement is found between numerical and experimental data. The effect of size of both reagent and tissue as well as tissue type on microwave heating patterns within tissue sample is investigated. Studies shows that the reagent volume has greater effect than other factors. The results of the study is considered as a basic foundation for development of coupled electromagnetic thermal models of microwave heating of tissue specimens. The model assists in choosing appropriate process parameters for achieving uniform temperature distribution within tissue specimen.

Osama A Hassan; Ahmed H K; Il Ences; Ahmed M El Bialy

2013-01-01T23:59:59.000Z

480

solar thermal | OpenEI  

Open Energy Info (EERE)

thermal thermal Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU solar solar PV solar thermal world Data application/vnd.ms-excel icon Excel spreadsheet, summary solar energy data on multiple tabs (xls, 145.9 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

Note: This page contains sample records for the topic "thermal distribution auxiliary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Invert Effective Thermal Conductivity Calculation  

SciTech Connect

The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m {center_dot} K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations.

M.J. Anderson; H.M. Wade; T.L. Mitchell

2000-03-17T23:59:59.000Z

482

Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Tech Team Grid Tech Team Discussion Summary Electricity Distribution System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Common Themes ...................................................................................................................................... 5 Discussion Topic Tables ............................................................................................................................. 8

483

Ductless Hydronic Distribution  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DUCTLESS HYDRONIC DUCTLESS HYDRONIC DISTRIBUTION Alliance for Residential Building Innovation David Springer, Davis Energy Group Context  Target: Builders of high performance new homes & deep retrofits  Why is this technology key to meeting performance goals of future homes?  Distribution Efficiency * Distribution efficiency for well insulated, tight ducts in attics ≈ 85% * Duct energy losses drives placement of ducts inside conditioned space, which adds cost and interferes with structure and architecture * Ductless hydronic systems can approach 100% distribution efficiency; piping needs little space  Delivery Energy * Fans: 0.58 W/cfm or 9 (heating) to 27 (cooling) W/kBtuh * Pumps: 8 W/gpm, or 0.8 W/kBtuh Context  Sizing * Conventional systems tend to be too large for low load homes

484

Financing Distributed Generation  

DOE Green Energy (OSTI)

This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

Walker, A.

2001-06-29T23:59:59.000Z

485

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

486

CONSULTANT REPORT DISTRIBUTED GENERATION  

E-Print Network (OSTI)

, renewables, interconnection, integration, electricity, distribution, transmission, costs. Please use Coldwell Project Manager Ivin Rhyne Office Manager Electricity Analysis Office Sylvia Bender Deputy Director Electricity Supply Analysis Division Robert P. Oglesby Executive Director DISCLAIMER

487

A distributed Hash table  

E-Print Network (OSTI)

DHash is a new system that harnesses the storage and network resources of computers distributed across the Internet by providing a wide-area storage service, DHash. DHash frees applications from re-implementing mechanisms ...

Dabek, Frank (Frank Edward), 1977-

2006-01-01T23:59:59.000Z

488

Distributed service composition  

E-Print Network (OSTI)

In this paper we explore the use of action systems for distributed service composition. Distributed systems can be composed out of a basic computation and a set of services. Even though this way of designing a system out of components helps in managing the derivation task, formal description techniques are needed due to the complexity of distributed systems. We propose a method where services, or features as they are often called, are speci ed in isolation by the service provider. The services when available are used by clients in a distributed manner. Reasoning about the services and their interactions with each other and with the basic computation of the clients is carried out within the re nement calculus. To exemplify the proposed methodology we study feature composition and feature interaction in telecommunications software.

Joost N. Kok; Kaisa Sere

1999-01-01T23:59:59.000Z

489