National Library of Energy BETA

Sample records for thermal depletion model

  1. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect (OSTI)

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  2. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  3. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    SciTech Connect (OSTI)

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, the capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.

  4. Application of thermal depletion model to geothermal reservoirs...

    Open Energy Info (EERE)

    method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed. Authors...

  5. Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Betzler, Benjamin R; Ade, Brian J; Chandler, David; Ilas, Germina; Sunny, Eva E

    2015-01-01

    Monte Carlo based depletion tools used for the high-fidelity modeling and simulation of the High Flux Isotope Reactor (HFIR) come at a great computational cost; finding sufficient approximations is necessary to make the use of these tools feasible. The optimization of the neutronics and depletion model for the HFIR is based on two factors: (i) the explicit representation of the involute fuel plates with sets of polyhedra and (ii) the treatment of depletion mixtures and control element position during depletion calculations. A very fine representation (i.e., more polyhedra in the involute plate approximation) does not significantly improve simulation accuracy. The recommended representation closely represents the physical plates and ensures sufficient fidelity in regions with high flux gradients. Including the fissile targets in the central flux trap of the reactor as depletion mixtures has the greatest effect on the calculated cycle length, while localized effects (e.g., the burnup of specific isotopes or the power distribution evolution over the cycle) are more noticeable consequences of including a critical control element search or depleting burnable absorbers outside the fuel region.

  6. Optimization of Depletion Modeling and Simulation for the High...

    Office of Scientific and Technical Information (OSTI)

    for the high-fidelity modeling and simulation of the ... Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, ...

  7. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  8. W-320 Project thermal modeling

    SciTech Connect (OSTI)

    Sathyanarayana, K., Fluor Daniel Hanford

    1997-03-18

    This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.

  9. VERA Modeling and Simulation of the AP1000 PWR Cycle 1 Depletion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CASL-U-2015-0302-000 VERA Modeling and Simulation of the AP1000 PWR Cycle 1 Depletion L3:VMA.AMA.P11.06 David Salazar, Westinghouse Fausto Franceschini, Westinghouse September 30, 2015 L3:VMA.AMA.P11.06 Official Use Only ii Protected under CASL Master NDA CASL-U-2015-0302-000 REVISION LOG Revision Date Affected Pages Revision Description 0 09/30/2015 All Initial issuance Document pages that are: Export Controlled ____________No______________________________________ IP/Proprietary/NDA

  10. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov ... Advanced simulation is viewed as critical in bringing fast reactor technology to fruition ...

  11. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the

  12. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect (OSTI)

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  13. IDENTIFICATION OF AN {sup 84}Sr-DEPLETED CARRIER IN PRIMITIVE METEORITES AND IMPLICATIONS FOR THERMAL PROCESSING IN THE SOLAR PROTOPLANETARY DISK

    SciTech Connect (OSTI)

    Paton, Chad; Schiller, Martin; Bizzarro, Martin E-mail: schiller@snm.ku.dk

    2013-02-01

    The existence of correlated nucleosynthetic heterogeneities in solar system reservoirs is now well demonstrated for numerous nuclides. However, it has proven difficult to discriminate between the two disparate processes that can explain such correlated variability: incomplete mixing of presolar material or secondary processing of a well-mixed disk. Using stepwise acid-leaching of the Ivuna CI-chondrite, we show that unlike other nuclides such as {sup 54}Cr and {sup 50}Ti, Sr-isotope variability is the result of a carrier depleted in {sup 84}Sr. The carrier is most likely presolar SiC, which is known to have both high Sr-concentrations relative to solar abundances and extremely depleted {sup 84}Sr compositions. Thus, variability in {sup 84}Sr in meteorites and their components can be attributed to varying contributions from presolar SiC. The observed {sup 84}Sr excesses in calcium-aluminum refractory inclusions (CAIs) suggest their formation from an SiC-free gaseous reservoir, whereas the {sup 84}Sr depletions present in differentiated meteorites require their formation from material with an increased concentration of SiC relative to CI chondrites. The presence of a positive correlation between {sup 84}Sr and {sup 54}Cr, despite being hosted in carriers of negative and positive anomalies, respectively, is not compatible with incomplete mixing of presolar material but instead suggests that the solar system's nucleosynthetic heterogeneity reflects selective thermal processing of dust. Based on vaporization experiments of SiC under nebular conditions, the lack of SiC material in the CAI-forming gas inferred from our data requires that the duration of thermal processing of dust resulting in the vaporization of CAI precursors was extremely short-lived, possibly lasting only hours to days.

  14. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of ... Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization ...

  15. Thermal, chemical, and mechanical cookoff modeling

    SciTech Connect (OSTI)

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  16. Aqueous Solution Vessel Thermal Model Development II

    SciTech Connect (OSTI)

    Buechler, Cynthia Eileen

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  17. Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Enhanced Geothermal System Development and Production | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Project objective: Develop a novel Thermal-Hydrological-Mechanical-Chemical (THMC) modeling tool.

  18. Modelling the microstructure of thermal barrier coatings

    SciTech Connect (OSTI)

    Cirolini, S.; Marchese, M.; Jacucci, G.; Harding, J.H.; Mulheran, P.A.

    1994-12-31

    Thermal barrier coatings produced by plasma spraying have a characteristic microstructure of lamellae, pores and cracks. The lamellae are produced by the splashing of particles onto the substrate. As the coating grows, the lamellae pile on top of each other, producing an interlocking structure. In most cases the growth is rapid and chaotic. The result is a microstructure characterized by pores and cracks. The authors present an improved model for the deposition process of thermal barrier coatings. The task of modeling the coating growth is split into two parts: first the authors consider a description of the particle on arrival at the film, based on the available theoretical, numerical and experimental findings. Second they define and discuss a set of physically-based rules for combining these events to obtain the film. The splats run along the surface and are permitted to curl up (producing pores) or interlock. The computer model uses a mesh to combine these processes and build the coating. They discuss the use of the proposed model in predicting microstructures and hence in correlating the properties of these coatings with the parameters of the process used to make them.

  19. Multidimensional thermal-chemical cookoff modeling

    SciTech Connect (OSTI)

    Baer, M.R.; Gross, R.J.; Gartling, D.K.; Hobbs, M.L.

    1994-08-01

    Multidimensional thermal/chemical modeling is an essential step in the development of a predictive capability for cookoff of energetic materials in systems subjected to abnormal thermal environments. COYOTE II is a state-of-the-art two- and three-dimensional finite element code for the solution of heat conduction problems including surface-to-surface thermal radiation heat transfer and decomposition chemistry. Multistep finite rate chemistry is incorporated into COYOTE II using an operator-splitting methodology; rate equations are solved element-by-element with a modified matrix-free stiff solver, CHEMEQ. COYOTE II is purposely designed with a user-oriented input structure compatible with the database, the pre-processing mesh generation, and the post-processing tools for data visualization shared with other engineering analysis codes available at Sandia National Laboratories. As demonstrated in a companion paper, decomposition during cookoff in a confined or semi-confined system leads to significant mechanical behavior. Although mechanical effect are not presently considered in COYOTE II, the formalism for including mechanics in multidimensions is under development.

  20. Data Collection for Improved Cold Temperature Thermal Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling and Strategy Development Data Collection for Improved Cold Temperature Thermal Modeling and Strategy Development 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  1. Review of computational thermal-hydraulic modeling

    SciTech Connect (OSTI)

    Keefer, R.H.; Keeton, L.W.

    1995-12-31

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix.

  2. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  3. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  4. Thermal model of solar absorption HVAC systems

    SciTech Connect (OSTI)

    Bergquam, J.B.; Brezner, J.M.

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  5. Electro-Thermal Modeling to Improve Battery Design: Preprint

    SciTech Connect (OSTI)

    Bharathan, D.; Pesaran, A.; Kim, G.; Vlahinos, A.

    2005-09-01

    Operating temperature greatly affects the performance and life of batteries in electric and hybrid electric vehicles (HEVs). Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. This study describes an electro-thermal finite element approach that predicts the thermal performance of a battery cell or module with realistic geometry.

  6. Improving Battery Design with Electro-Thermal Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Kim, G.-H.; Duong, T.

    2005-08-01

    Temperature greatly affects the performance and life of batteries in electric and hybrid vehicles under real driving conditions, so increased attention is being paid to battery thermal management. Sophisticated electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry, material properties, loads, and boundary conditions.

  7. Combination Effect of Regulatory T-Cell Depletion and Ionizing Radiation in Mouse Models of Lung and Colon Cancer

    SciTech Connect (OSTI)

    Son, Cheol-Hun; Bae, Jae-Ho; Shin, Dong-Yeok; Lee, Hong-Rae; Jo, Wol-Soon; Yang, Kwangmo; Park, You-Soo

    2015-06-01

    Purpose: To investigate the potential of low-dose cyclophosphamide (LD-CTX) and anti-CD25 antibody to prevent activation of regulatory T cells (Tregs) during radiation therapy. Methods and Materials: We used LD-CTX and anti-CD25 monoclonal antibody as a means to inhibit Tregs and improve the therapeutic effect of radiation in a mouse model of lung and colon cancer. Mice were irradiated on the tumor mass of the right leg and treated with LD-CTX and anti-CD25 antibody once per week for 3 weeks. Results: Combined treatment of LD-CTX or anti-CD25 antibody with radiation significantly decreased Tregs in the spleen and tumor compared with control and irradiation only in both lung and colon cancer. Combinatorial treatments resulted in a significant increase in the effector T cells, longer survival rate, and suppressed irradiated and distal nonirradiated tumor growth. Specifically, the combinatorial treatment of LD-CTX with radiation resulted in outstanding regression of local and distant tumors in colon cancer, and almost all mice in this group survived until the end of the study. Conclusions: Our results suggest that Treg depletion strategies may enhance radiation-mediated antitumor immunity and further improve outcomes after radiation therapy.

  8. Modeling The Potential For Thermal Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

    2010-10-25

    In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

  9. Note: A simple model for thermal management in solenoids

    SciTech Connect (OSTI)

    McIntosh, E. M. Ellis, J.

    2013-11-15

    We describe a model of the dynamical temperature evolution in a solenoid winding. A simple finite element analysis is calibrated by accurately measuring the thermally induced resistance change of the solenoid, thus obviating the need for accurate knowledge of the mean thermal conductivity of the windings. The model predicts quasi thermal runaway for relatively modest current increases from the normal operating conditions. We demonstrate the application of this model to determine the maximum current that can be safely applied to solenoids used for helium spin-echo measurements.

  10. A Geothermal Field Model Based On Geophysical And Thermal Prospectings...

    Open Energy Info (EERE)

    Field Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  11. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal

  12. RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles

    SciTech Connect (OSTI)

    Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I.

    2012-07-01

    The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

  13. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    SciTech Connect (OSTI)

    Pannala, S; D'Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  14. Conceptual Model At Salton Sea Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    of thermal depletion model to geothermal reservoirs with fracture and pore permeability Additional References Retrieved from "http:en.openei.orgwindex.php?titleConcep...

  15. NREL: Transportation Research - Vehicle Thermal Management Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models and Tools image of three models of semi truck cabs. Truck cab models drawn from CAD geometry using CoolCalc (left and center), and a model with overlay of computational fluid dynamics flow (right) indicate areas of heat absorption and loss. Illustrations by Jason Lustbader, Matt Jeffers, and Larry Chaney, NREL The National Renewable Energy Laboratory's (NREL's) vehicle thermal management modeling tools allow researchers to assess the trade-offs and calculate the potential benefits of

  16. Thermal-stress modeling of an optical microphone at high temperature...

    Office of Scientific and Technical Information (OSTI)

    Thermal-stress modeling of an optical microphone at high temperature. Citation Details In-Document Search Title: Thermal-stress modeling of an optical microphone at high ...

  17. HIGHLY DEPLETED ETHANE AND MILDLY DEPLETED METHANOL IN COMET 21P/GIACOBINI-ZINNER: APPLICATION OF A NEW EMPIRICAL {nu}{sub 2}-BAND MODEL FOR CH{sub 3}OH NEAR 50 K

    SciTech Connect (OSTI)

    DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Mumma, M. J.

    2013-01-20

    We obtained infrared spectra of Comet 21P/Giacobini-Zinner (hereafter 21P/GZ) using NIRSPEC at Keck II on UT 2005 June 3, approximately one month before perihelion, that simultaneously sampled H{sub 2}O, C{sub 2}H{sub 6}, and CH{sub 3}OH. Our production rate for H{sub 2}O (3.885 {+-} 0.074 Multiplication-Sign 10{sup 28} molecules s{sup -1}) was consistent with that measured during other apparitions of 21P/GZ as retrieved from optical, infrared, and radio observations. Our analysis also provided values for rotational temperature (T {sub rot} = 51 {+-} 3 K) and the abundance ratio of ortho and para spin populations for water (OPR = 2.99 {+-} 0.23, implying a spin temperature exceeding 50 K). Six Q-branches in the {nu}{sub 7} band of C{sub 2}H{sub 6} provided a production rate (5.27 {+-} 0.90 Multiplication-Sign 10{sup 25} s{sup -1}) that corresponded to an abundance ratio of 0.136 {+-} 0.023 Multiplication-Sign 10{sup -2} relative to H{sub 2}O, confirming the previously reported strong depletion of C{sub 2}H{sub 6} from IR observations during the 1998 apparition, and in qualitative agreement with the depletion of C{sub 2} known from optical studies of 21P/GZ. For CH{sub 3}OH, we applied our recently published quantum model for the {nu}{sub 3} band to obtain a rotational temperature (48{sup +10}/{sub -7} K) consistent with that obtained for H{sub 2}O. In addition, we developed a new empirical model for the CH{sub 3}OH {nu}{sub 2} band, based on observations of Comet 8P/Tuttle with NIRSPEC. The application of our {nu}{sub 2} model to 21P/GZ yielded a production rate in agreement with that obtained from the {nu}{sub 3} band. Combining results from both {nu}{sub 2} and {nu}{sub 3} bands provided a production rate (47.5 {+-} 4.4 Multiplication-Sign 10{sup 25} s{sup -1}) that corresponded to an abundance ratio of 1.22 {+-} 0.11 Multiplication-Sign 10{sup -2} relative to H{sub 2}O in 21P/GZ, indicating mild depletion of CH{sub 3}OH. Together with observations of 21P/GZ in

  18. Modeling of horizontal well and lifting mechanisms to improve ultimate recovery in a depleted field in Lake Maracaibo, Venezuela

    SciTech Connect (OSTI)

    Saputelli, L.; Mata, T.; Jimenez, Z.

    1995-12-31

    Recovery of the remaining reserve of millions of oil barrels is inhibited by depleted reservoir pressures and existing exploitation policies in Lower Lagunillas Reservoir in Lake Maracaibo, Venezuela. Numerical simulation results indicated that proper production and reservoir management policies such as, controlled drawdown, producing wells at rates below the critical rates, low gas-oil-ratio production will promote efficient gravity segregation process, and subsequent optimum final recovery. Combination of infill horizontal wells and adequate lifting mechanisms yielded the recovery of additional reserves.

  19. LES Modeling of High Resolution Satellite Cloud Spatial and Thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure at ARM-SGP site: How well can we Simulate Clouds from Space? LES Modeling of High Resolution Satellite Cloud Spatial and Thermal Structure at ARM-SGP site: How well can we Simulate Clouds from Space? Dubey, Manvendra DOE/Los Alamos National Laboratory Chylek, Petr DOE/Los Alamos National Laboratory Reisner, Jon Los Alamos National Laboratory Porch, William Los Alamos National Laboratory Category: Cloud Properties We report high fidelity observations of the spatial and thermal

  20. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Temperature distribution illustrating thermal striping in a T-junction. Computed on Intrepid with Nek5000 and visualized on Eureka with VisIt at the ALCF. Paul Fischer (ANL), Aleks Obabko (ANL), and Hank Childs (LBNL) Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 25 Million Year: 2012 Research Domain: Energy Technologies The DOE Nuclear

  1. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect (OSTI)

    Munekane, Fuminori; Yamaguchi, Yukio; Tanioka, Seiichi

    1997-12-31

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  2. Argonne Bubble Experiment Thermal Model Development

    SciTech Connect (OSTI)

    Buechler, Cynthia Eileen

    2015-12-03

    This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiation. It is based on the model used to calculate temperatures and volume fractions in an annular vessel containing an aqueous solution of uranium . The experiment was repeated at several electron beam power levels, but the CFD analysis was performed only for the 12 kW irradiation, because this experiment came the closest to reaching a steady-state condition. The aim of the study is to compare results of the calculation with experimental measurements to determine the validity of the CFD model.

  3. Thermal Modeling of A Friction Bonding Process

    SciTech Connect (OSTI)

    John Dixon; Douglas Burkes; Pavel Medvedev

    2007-10-01

    A COMSOL model capable of predicting temperature evolution during nuclear fuel fabrication is being developed at the Idaho National Laboratory (INL). Fuel plates are fabricated by friction bonding (FB) uranium-molybdenum (U-Mo) alloy foils positioned between two aluminum plates. The ability to predict temperature distribution during fabrication is imperative to ensure good quality bonding without inducing an undesirable chemical reaction between U-Mo and aluminum. A three-dimensional heat transfer model of the FB process implementing shallow pin penetration for cladding monolithic nuclear fuel foils is presented. Temperature distribution during the FB process as a function of fabrication parameters such as weld speed, tool load, and tool rotational frequency are predicted. Model assumptions, settings, and equations are described in relation to standard friction stir welding. Current experimental design for validation and calibration of the model is also demonstrated. Resulting experimental data reveal the accuracy in describing asymmetrical temperature distributions about the tool face. Temperature of the bonded plate drops beneath the pin and is higher on the advancing side than the retreating side of the tool.

  4. Mathematical model of testing of pipeline integrity by thermal fields

    SciTech Connect (OSTI)

    Vaganova, Nataliia

    2014-11-18

    Thermal fields testing at the ground surface above a pipeline are considered. One method to obtain and investigate an ideal thermal field in different environments is a direct numerical simulation of heat transfer processes taking into account the most important physical factors. In the paper a mathematical model of heat propagation from an underground source is described with accounting of physical factors such as filtration of water in soil and solar radiation. Thermal processes are considered in 3D origin where the heat source is a pipeline with constant temperature and non-uniform isolated shell (with 'damages'). This problem leads to solution of heat diffusivity equation with nonlinear boundary conditions. Approaches to analysis of thermal fields are considered to detect damages.

  5. Thermal mechanical stress modeling of GCtM seals

    SciTech Connect (OSTI)

    Dai, Steve Xunhu; Chambers, Robert

    2015-09-01

    Finite-element thermal stress modeling at the glass-ceramic to metal (GCtM) interface was conducted assuming heterogeneous glass-ceramic microstructure. The glass-ceramics were treated as composites consisting of high expansion silica crystalline phases dispersed in a uniform residual glass. Interfacial stresses were examined for two types of glass-ceramics. One was designated as SL16 glass -ceramic, owing to its step-like thermal strain curve with an overall coefficient of thermal expansion (CTE) at 16 ppm/C. Clustered Cristobalite is the dominant silica phase in SL16 glass-ceramic. The other, designated as NL16 glass-ceramic, exhibited clusters of mixed Cristobalite and Quartz and showed a near-linear thermal strain curve with a same CTE value.

  6. Coupling Mechanical with Electrochemical-Thermal Models for Batteries under Abuse

    SciTech Connect (OSTI)

    Wierzbicki, Tomasz; Sahraei, Elham; Dajka, Stephen; Li, Genong; Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Sprague, Michael A.

    2015-06-09

    This presentation provides an update on coupled mechanical-electrochemical-thermal models for batteries under abuse.

  7. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    SciTech Connect (OSTI)

    Gharagozloo, Patricia E.; Goodson, Kenneth E.

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  8. A computational model for thermal fluid design analysis of nuclear thermal rockets

    SciTech Connect (OSTI)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated.

  9. Modeling thermal/chemical/mechanical response of energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  10. AEETES---A solar reflux receiver thermal performance numerical model

    SciTech Connect (OSTI)

    Hogan, R.E. Jr.

    1991-01-01

    Reflux solar receivers for dish-Stirling electric power generation systems are currently being investigated by several companies and laboratories. In support of these efforts, the AEETES thermal performance numerical model has been developed to predict thermal performance of pool-boiler and heat-pipe reflux receivers. The formulation of the AEETES numerical model, which is applicable to axisymmetric geometries with asymmetric incident fluxes, is presented in detail. Thermal efficiency predictions agree to within 4.1% with test data from on-sun tests of a pool-boiler reflux receiver. Predicted absorber and sidewall temperatures agree with thermocouple data to within 3.3.% and 7.3%, respectively. The importance of accounting for the asymmetric incident fluxes is demonstrated in comparisons with predictions using azimuthally averaged variables. The predicted receiver heat losses are characterized in terms of convective, solar and infrared radiative, and conductive heat transfer mechanisms. 27 refs., 9 figs., 4 tabs.

  11. Chaos vs thermalization in the nuclear shell model

    SciTech Connect (OSTI)

    Horoi, M.; Zelevinsky, V.; Brown, B.A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States)] [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States); [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116 (United States); [Institute of Atomic Physics, Bucharest (Romania); [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    1995-06-26

    Generic signatures of quantum chaos found in realistic shell model calculations are compared with thermal statistical equilibrium. We show the similarity of the informational entropy of individual eigenfunctions in the mean-field basis to the thermodynamical entropy found from the level density. Mean occupation numbers of single-particle orbitals agree with the Fermi-Dirac distribution despite the strong nucleon interaction.

  12. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    SciTech Connect (OSTI)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  13. Modeling Reactor Coolant Systems Thermal-Hydraulic Transients

    SciTech Connect (OSTI)

    Johnson, Gary W.

    1999-10-05

    RELAP5/MOD3.2* is used to model reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transients without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal-hydraulic systems. Control system and secondary system components are included to allow modeling of the plant controls, turbines, condensers, and secondary feedwater systems.

  14. Modeling Reactor Coolant Systems Thermal-Hydraulic Transients

    Energy Science and Technology Software Center (OSTI)

    1999-10-05

    RELAP5/MOD3.2* is used to model reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transients without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal-hydraulic systems. Control system and secondary system components are included to allow modeling of themore » plant controls, turbines, condensers, and secondary feedwater systems.« less

  15. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Lin, E.I.

    1997-12-31

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  16. Thermal modeling of Bakken Formation of Williston basin

    SciTech Connect (OSTI)

    Anderson, D.

    1986-08-01

    Organic geochemical analyses provide a quantitative basis on which conceptual models of thermal maturation may be built. Contour maps of maturation indices of the Mississippian-Devonian Bakken Formation of the Williston basin show anomalous patterns that are not dependent on burial depth. One such area is on the western side of the Nesson anticline. One-dimensional modeling incorporating a uniform, constant heat flow, lithology-dependent thermal conductivities, and decompaction factors indicates that these areas are less mature than surrounding regions. This is due primarily to decreasing burial depth and thinning of low-thermal-conductivity Tertiary and Cretaceous shales. Additional heat transfer to these regions may be due in part to heat transfer by fluid movement through aquifers or vertical fractures. The influence of these fluid systems is simulated through the use of a two-dimensional finite difference program. Basic assumptions are made concerning heat flow, thermal properties, and ground-water flow rates through time. Modeling of the time-temperature history is simplified by restricting the study to the time of greatest maturation, the post-Jurassic.

  17. Model of a nuclear thermal test pipe using ATHENA

    SciTech Connect (OSTI)

    Dibben, M.J.

    1992-03-01

    Nuclear thermal propulsion offers significant improvements in rocket engine specific impulse over rockets employing chemical propulsion. The computer code ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) was used in a parametric analysis of a fuelpipe. The fuelpipe is an annular particle bed fuel element of the reactor with radially inward flow of hydrogen through it. The outlet temperature of the hydrogen is parametrically related to key effects, including the effect of reactor power at two different pressure drops, the effect of the power coupling factor of the Annular Core Research Reactor, and the effect of hydrogen flow. Results show that the outlet temperature is linearly related to the reactor power and nonlinearly to the change in pressure drop. The linear relationship at higher temperatures is probably not valid due to dissociation of hydrogen. Once thermal properties of hydrogen become available, the ATHENA model for this study could easily be modified to test this conjecture.

  18. Duct thermal performance models for large commercial buildings

    SciTech Connect (OSTI)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of

  19. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    Energy Science and Technology Software Center (OSTI)

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  20. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  1. Thermal modeling of an indirectly heated E-beam gun

    SciTech Connect (OSTI)

    Jallouk, P.A.

    1994-12-31

    Uranium atomic vapor for the Atomic Vapor Laser Isotope Separation (AVLIS) process is produced by magnetically steering a high-power electron beam to the surface of the uranium melt. The electron beam is produced by a Pierce-type axial E-beam gun with an indirectly heated emitter (IDHE)-the industry standard for high-power melting and vaporization. AVLIS process design requirements for the E-beam gun are stringent, particularly in the areas of modularity, compactness, and lifetime. The gun assembly details are complex, geometric clearances are tight, and operating temperatures and stress levels are at the upper limits of acceptability. Detailed three-dimensional finite-element thermal models of the E-beam gun have been developed to address this challenging thermal packaging issue. These models are used in conjunction with design and testing activities to develop a gun exhibiting a high level of reliability for acceptable operation in a plant environment.

  2. Modeling of thermal plasma arc technology FY 1994 report

    SciTech Connect (OSTI)

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.

  3. Views on the future of thermal hydraulic modeling

    SciTech Connect (OSTI)

    Ishii, M.

    1997-07-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.

  4. Nonlinear model for thermal effects in free-electron lasers

    SciTech Connect (OSTI)

    Peter, E. Endler, A. Rizzato, F. B.

    2014-11-15

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12?3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precede the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.

  5. Scaling issues associated with thermal and structural modeling and testing

    SciTech Connect (OSTI)

    Thomas, R.K.; Moya, J.L.; Skocypec, R.D.

    1993-10-01

    Sandia National Laboratories (SNL) is actively engaged in research to characterize abnormal environments, and to improve our capability to accurately predict the response of engineered systems to thermal and structural events. Abnormal environments, such as impact and fire, are complex and highly nonlinear phenomena which are difficult to model by computer simulation. Validation of computer results with full scale, high fidelity test data is required. The number of possible abnormal environments and the range of initial conditions are very large. Because full-scale tests are very costly, only a minimal number have been conducted. Scale model tests are often performed to span the range of abnormal environments and initial conditions unobtainable by full-scale testing. This paper will discuss testing capabilities at SNL, issues associated with thermal and structural scaling, and issues associated with extrapolating scale model data to full-scale system response. Situated a few minutes from Albuquerque, New Mexico, are the unique test facilities of Sandia National Laboratories. The testing complex is comprised of over 40 facilities which occupy over 40 square miles. Many of the facilities have been designed and built by SNL to simulate complex problems encountered in engineering analysis and design. The facilities can provide response measurements, under closely controlled conditions, to both verify mathematical models of engineered systems and satisfy design specifications.

  6. Source Term Modeling for Evaluating the Potential Impacts to Groundwater of Fluids Escaping from a Depleted Oil Reservoir Used for Carbon Sequestration

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Brown, Christopher F.

    2014-06-13

    In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Two model scenarios were conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The first case consisted of 50 wt.% oil and 50 wt.% water; the second case was 90 wt.% CO2 and 10 wt.% oil. Several key organic compounds were selected for special attention in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng-Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for a typical set of oil reservoir conditions (75°C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the oil

  7. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    SciTech Connect (OSTI)

    Warneford, Emma S. Dellar, Paul J.

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [Equatorial superrotation in shallow atmospheres, Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  8. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F.; Bandhauer, Todd; Garimella, Srinivas

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  9. Energy Storage R&D: Thermal Management Studies and Modeling (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2009-05-01

    Here we summarize NREL's FY09 energy storage R&D studies in the areas of 1. thermal characterization and analysis, 2. cost, life, and performance trade-off studies, and 3. thermal abuse modeling.

  10. Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

    2008-11-01

    To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

  11. Modeling the thermal deformation of TATB-based explosives. Part 1: Thermal expansion of neat-pressed polycrystalline TATB

    SciTech Connect (OSTI)

    Luscher, Darby J.

    2014-05-08

    We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of neat-pressed polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructural characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial die-pressed specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of thermal

  12. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  13. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  14. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  15. Spatial confinement and thermal deconfinement in the Gross-Neveu model

    SciTech Connect (OSTI)

    Malbouisson, J. M. C.; Khanna, F. C.; Malbouisson, A. P. C.

    2007-06-19

    We discuss the occurrence of spatial confinement and thermal deconfinement in the massive, D-dimensional, Gross-Neveu model with compactified spatial dimensions.

  16. Subgrid models for mass and thermal diffusion in turbulent mixing

    SciTech Connect (OSTI)

    Sharp, David H; Lim, Hyunkyung; Li, Xiao - Lin; Gilmm, James G

    2008-01-01

    We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without resolving the

  17. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  18. THERMAL MODELING ANALYSIS OF SRS 70 TON CASK

    SciTech Connect (OSTI)

    Lee, S.; Jordan, J.; Hensel, S.

    2011-03-08

    The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

  19. Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.

    SciTech Connect (OSTI)

    Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G.

    2012-04-04

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

  20. Battery Thermal Modeling and Testing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es110smith2011p.pdf (852.63 KB) More Documents & Publications NREL Battery Thermal and Life Test ...

  1. Modeling of thermal storage systems in MILP distributed energy resource models

    SciTech Connect (OSTI)

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.

  2. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    SciTech Connect (OSTI)

    Cressault, Y.

    2015-05-15

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.

  3. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  4. Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

    2008-12-01

    NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

  5. Modelling aging effects on a thermal cycling absorption process column

    SciTech Connect (OSTI)

    Laquerbe, C.; Contreras, S.; Demoment, J.

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  6. Optimizing the transverse thermal conductivity of 2D-SiCf/SiC composites, I. Modeling

    SciTech Connect (OSTI)

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2002-12-31

    For potential fusion applications, considerable fabrication efforts have been directed to obtaining transverse thermal conductivity (Keff) values in excess of 30 W/mK (unirradiated) in the 800-1000°C temperature range for 2D-SiCf/SiC composites. To gain insight into the factors affecting Keff, at PNNL we have tested three different analytic models for predicting Keff in terms of constituent (fiber, matrix and interphase) properties. The tested models were: the Hasselman-Johnson (H-J) “2-Cylinder” model, which examines the effects of fiber-matrix (f/m) thermal barriers; the Markworth “3-Cylinder” model, which specifically examines the effects of interphase thickness and thermal conductivity; and a newly-developed Anisotropic “3-Square” model, which examines the potential effect of introducing a fiber coating with anisotropic properties to enhance (or diminish) f/m thermal coupling. The first two models are effective medium models, while the third model is a simple combination of parallel and series conductances. Model predictions suggest specific designs and/or development efforts directed to optimize the overall thermal transport performance of 2D-SiCf/SiC.

  7. New thermal model with distinct freeze-out temperatures for baryons and mesons

    SciTech Connect (OSTI)

    De Assis, Leonardo P. G.; Duarte, Sergio B.; Chiapparini, Marcelo; Hirsch, Luciana R.; Delfino, Antonio Jr.

    2013-05-06

    A significant amount of experimental data for particle production in high-energy heavy ion collisions (10 - 200 GeV/A at center of mass) has been accumulated during last years. Many different theoretical attempts have tried to describe these data using thermal models in the approximation of global thermal equilibrium considering only one freeze-out temperature. However the thermal models often are not able to describe adequately the whole multiplicities of hadrons. For instance, the abundance of strange particles is overestimate and the pion yields are underestimated. In this work is presented a thermal hadronic model with two different temperatures in order to describe the baryonic and mesonic chemical freeze-out in ultra-relativistic heavy ion collisions. The model is used to fit the particle population ratios of the hadrons produced in the reaction. The proposal is not merely to incorporate one additional degree of freedom in the adjustment procedure of data, but to present and alternative scenario for the freeze out stage in the collisional proces s. This new reformulated version of thermal model was applied to a set of data, offering a rather good improvement in the fitting of the calculated particle ratios to the data. The results suggest that the introduced model makes the thermal approach more robust to handle with a larger number of colliding systems and a more comprehensive set of reaction observables.

  8. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations aremore » based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  9. Thermal-hydraulic modeling needs for passive reactors

    SciTech Connect (OSTI)

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  10. Modelling of the thermal behaviour of 48 inch cylinders

    SciTech Connect (OSTI)

    Clayton, D.G.; Hayes, T.J.; Livesey, E.; Lomas, J.; Price, M.

    1991-12-31

    This paper describes the current state of the analytical models being developed by British Nuclear Fuels plc (BNFL) to improve the understanding of the response of Uranium Hexafluoride containers engulfed in a fire. Details are given of the modeling methods used and physical processes simulated, together with some predictions from the models. Explanations for the differences between the predictions are presented as well as an outline for future development of the models.

  11. Remarks on a model of thermal transport in nanofluids (Journal...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; HEAT TRANSFER; FLOW MODELS; FLUIDS; NANOSTRUCTURES...

  12. Depletion Aggregation > Batteries & Fuel Cells > Research > The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries & Fuel Cells In This Section Battery Anodes Battery Cathodes Depletion Aggregation Membranes Depletion Aggregation We are exploring a number of synthetic strategies to ...

  13. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... purpose of this slide is to provide some context for evaluating your project. * Please ... Project and a DOE FOA project on model development for nontraditional isotopes - ...

  14. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling for Accelerated Design of EV Batteries Shriram Santhanagopalan, Chao Zhang, ... provide insight to design improved batteries for electric vehicles III. Work funded ...

  15. Investigations on Repository Near-Field Thermal Modeling - Repository Science/Thermal Load Management & Design Concepts (M41UF033302)

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Fratoni, M; Greenberg, H R; Ross, A D

    2011-07-15

    The various layers of material from the waste package (such as components of the engineered barrier system and the host rock surface) to a given distance within the rock wall at a given distance can be described as concentric circles with varying thermal properties (see Figure 5.1-1). The selected model approach examines the contributions of the waste package, axial waste package neighbors and lateral neighboring emplacement drifts (see Section 5.2.1 and Appendix H, Section 2). In clay and deep borehole media, the peak temperature is driven by the central waste package whereas, in granite and salt, the contribution to the temperature rise by adjacent (lateral) waste packages in drift or emplacement borehole lines is dominant at the time of the peak temperature. Mathematical models generated using Mathcad software provide insight into the effects of changing waste package spacing for six waste forms, namely UOX, MOX, co-extraction, new extraction, E-Chem ceramic and E-Chem metal in four different geologic media (granite, clay, salt and deep borehole). Each scenario includes thermal conductivity and diffusivity for each layer between the waste package and the host rock, dimensions of representative repository designs (such as waste package spacing, drift or emplacement borehole spacing, waste package dimensions and layer thickness), and decay heat curves generated from knowledge of the contents of a given waste form after 10, 50, 100 and 200 years of surface storage. Key results generated for each scenario include rock temperature at a given time calculated at a given radius from the central waste package (Section 5.2.1 and Appendix H, Section 3), the corresponding temperature at the interface of the waste package and EBS material, and at each EBS layer in between (Section 5.2.2 and Appendix H, Section 4). This information is vital to understand the implications of repository design (waste package capacity, surface storage time, waste package spacing, and emplacement

  16. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect (OSTI)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  17. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; Berndt, Markus; Garimella, Rao; Moulton, J. David; Svyatskiy, Daniil; Wilson, Cathy J.

    2016-08-11

    The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less

  18. A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings

    SciTech Connect (OSTI)

    Nair, B. G.; Singh, J. P.; Grimsditch, M.

    2000-02-28

    Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

  19. Modeling the spatio-temporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape: Modeling Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Peter E. Thornton; Jitendra Kumar; Colleen M. Iversen; Richard T. Mills; Gautam Bisht; Nathan Collier; Vladimir Romanovsky

    2016-01-27

    This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at http://www.the-cryosphere-discuss.net/tc-2016-29/. Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies.

  20. Electrochemical Thermal Network Model for Multi-Cell Lithium Ion Battery

    Energy Science and Technology Software Center (OSTI)

    2009-02-28

    Increasing the numbers and size of cells in a battery pack complicates electrical and thermal control of the system. In addition to keeping a battery pack in the optimal temperature range, maintaining temperature uniformity among all cells in a pack is important to prolong life and enhance safety. Electrical, electrochemical, and thermal responses of a lithium ion battery are closely coupled through macroscopic design factors of the cells and module or pack. The model hasmore » to resolve complex interaction between cell characteristics, pack design, and load conditions. Safe and durable battery pack design requires a battery thermal model that can be coupled with a battery performance more and/or safety model with good accuracy and simulation time. The model is proposed to be used for various technical purposes: Design optimization for safety and/or performance, On-board control.« less

  1. Electrochemical Thermal Network Model for Multi-Cell Lithium Ion Battery

    SciTech Connect (OSTI)

    2009-02-28

    Increasing the numbers and size of cells in a battery pack complicates electrical and thermal control of the system. In addition to keeping a battery pack in the optimal temperature range, maintaining temperature uniformity among all cells in a pack is important to prolong life and enhance safety. Electrical, electrochemical, and thermal responses of a lithium ion battery are closely coupled through macroscopic design factors of the cells and module or pack. The model has to resolve complex interaction between cell characteristics, pack design, and load conditions. Safe and durable battery pack design requires a battery thermal model that can be coupled with a battery performance more and/or safety model with good accuracy and simulation time. The model is proposed to be used for various technical purposes: Design optimization for safety and/or performance, On-board control.

  2. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    SciTech Connect (OSTI)

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; Hales, Jason D.

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.

  3. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; Hales, Jason D.

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctlymore » predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  4. Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes

    SciTech Connect (OSTI)

    Griffith, B.

    2006-11-01

    This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

  5. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  6. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC`s current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  7. Fully depleted back illuminated CCD

    DOE Patents [OSTI]

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  8. Thermal Management Studies and Modeling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Storage | Department of Energy Presentation on the Theory and Modeling of Weakly Bound/Physisorbed Materials for Hydrogen Storage given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006. storage_theory_session_williamson.pdf (836.55 KB) More Documents & Publications Summary Report from Theory Focus Session on Hydrogen Storage Materials Materials Go/No-Go Recommendation Document Summary Report from DOE Theory Focus Session on Hydrogen Storage Materials

    i T T

  9. Reduced order models for thermal analysis : final report : LDRD Project No. 137807.

    SciTech Connect (OSTI)

    Hogan, Roy E., Jr.; Gartling, David K.

    2010-09-01

    This LDRD Senior's Council Project is focused on the development, implementation and evaluation of Reduced Order Models (ROM) for application in the thermal analysis of complex engineering problems. Two basic approaches to developing a ROM for combined thermal conduction and enclosure radiation problems are considered. As a prerequisite to a ROM a fully coupled solution method for conduction/radiation models is required; a parallel implementation is explored for this class of problems. High-fidelity models of large, complex systems are now used routinely to verify design and performance. However, there are applications where the high-fidelity model is too large to be used repetitively in a design mode. One such application is the design of a control system that oversees the functioning of the complex, high-fidelity model. Examples include control systems for manufacturing processes such as brazing and annealing furnaces as well as control systems for the thermal management of optical systems. A reduced order model (ROM) seeks to reduce the number of degrees of freedom needed to represent the overall behavior of the large system without a significant loss in accuracy. The reduction in the number of degrees of freedom of the ROM leads to immediate increases in computational efficiency and allows many design parameters and perturbations to be quickly and effectively evaluated. Reduced order models are routinely used in solid mechanics where techniques such as modal analysis have reached a high state of refinement. Similar techniques have recently been applied in standard thermal conduction problems e.g. though the general use of ROM for heat transfer is not yet widespread. One major difficulty with the development of ROM for general thermal analysis is the need to include the very nonlinear effects of enclosure radiation in many applications. Many ROM methods have considered only linear or mildly nonlinear problems. In the present study a reduced order model is

  10. High fidelity modeling of thermal relaxation and dissociation of oxygen

    SciTech Connect (OSTI)

    Andrienko, Daniil A. Boyd, Iain D.

    2015-11-15

    A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O{sub 2}–O transition rates, generated by extensive trajectory simulations. Both O{sub 2}–O and O{sub 2}–O{sub 2} collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O{sub 2}–O{sub 2} collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O{sub 3} complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O{sub 2} vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.

  11. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    SciTech Connect (OSTI)

    Spencer, Benjamin W.; Huang, Hai; Dolbow, John E.; Hales, Jason D.

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  12. Performance Modeling of an Air-Based Photovoltaic/Thermal (PV/T) Collector

    SciTech Connect (OSTI)

    Casey, R. D.; Brandemuehl, M. J.; Merrigan, T.; Burch, J.

    2010-01-01

    This paper studies a collector design that utilizes unglazed photovoltaic/thermal (PV/T) collectors preheating air for glazed air heating modules. The performance modeling of these collectors is examined both individually and in series. For each collector type, a dynamic, finite difference, first-law model has been created using literature correlations for friction. The models were compared to performance data, calibrating the models by scaling of friction terms for best fit. The calibrated models generally agree well with the experimental data; even during sudden changes to ambient conditions. The root mean square error between the unglazed PV/T model and experiment results for the useful thermal energy gain and the outlet air temperature are 7.12 W/m{sup 2} and 1.07 C, respectively. The annual source energy performance of the building-integrated PV/T (BIPV/T) array is then simulated for residential applications in seven climate zones of the United States of America. The performance of the BIPV/T array is characterized by the amount of net electrical energy and useful thermal energy produced. The useful thermal energy is defined as the amount of energy offset by the BIPV/T system for water heating and space conditioning. A BIPV/T system composed 87.5% of PV modules, and 12.5% of glazed air heating modules, offsets the same amount of source energy as a roof-mounted PV system of the same area. This array composition increases the thermal energy gain by 47% over a BIPV/T array composed solely of PV modules.

  13. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    SciTech Connect (OSTI)

    Pérez, Juan J.; Pérez-Cajaraville, Juan J.; Muñoz, Víctor; Berjano, Enrique

    2014-07-15

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup −1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of

  14. NSR&D FY15 Final Report. Modeling Mechanical, Thermal, and Chemical Effects of Impact

    SciTech Connect (OSTI)

    Long, Christopher Curtis; Ma, Xia; Zhang, Duan Zhong

    2015-11-02

    The main goal of this project is to develop a computer model that explains and predicts coupled mechanical, thermal and chemical responses of HE under impact and friction insults. The modeling effort is based on the LANL-developed CartaBlanca code, which is implemented with the dual domain material point (DDMP) method to calculate complex and coupled thermal, chemical and mechanical effects among fluids, solids and the transitions between the states. In FY 15, we have implemented the TEPLA material model for metal and performed preliminary can penetration simulation and begun to link with experiment. Currently, we are working on implementing a shock to detonation transition (SDT) model (SURF) and JWL equation of state.

  15. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks

    2011-06-01

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  16. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  17. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Pesaran, A.

    2007-05-15

    The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

  18. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  19. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Amanda J.; Gardner, Levi D.; Casella, Andrew M.; Huber, Tanja K.; Breitkreutz, Harald

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  20. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    SciTech Connect (OSTI)

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-10-22

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%.

  1. Thermal analysis of pentaerythritol tetranitrate and development of a powder aging model

    SciTech Connect (OSTI)

    Brown, Geoffrey W; Sandstrom, Mary M; Giambra, Anna M; Archuleta, Jose G; Monroe, Deirde C

    2009-01-01

    We have applied a range of different physical and thermal analysis techniques to characterize the thermal evolution of the specific surface area of pentaerythritol tetranitrate (PETN) powders. Using atomic force microscopy we have determined that the mass transfer mechanism leading to powder coarsening is probably sublimation and redeposition of PETN. Using thermogravimetric analysis we have measured vapor pressures of PETN powders whose aging will be simulated in future work. For one specific powder we have constructed an empirical model of the coarsening that is fit to specific surface area measurements at 60 C to 70 C to provide predictive capability of that powder's aging. Modulated differential scanning calorimetry and mass spectroscopy measurements highlight some of the thermal behavior of the powders and suggest that homologue-based eutectics and impurities are localized in the powder particles.

  2. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect (OSTI)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  3. A new model for thermal volatilization of solid particles undergoing flash-pyrolysis

    SciTech Connect (OSTI)

    Villermaux, J.; Antoine, B.; Lede, J.; Soulignac, F.

    1983-01-01

    The authors propose a new model describing the volatilization of a solid by thermal penetration (VTP model). This model was initially imagined for interpreting flash-pyrolysis of sawdust particles. Actually, it could be applied to any kind of solid reactions where volatilization is controlled by heat conduction from the outer surface. Although relying on very simple assumptions, the VTP model makes it possible to estimate the rate of consumption of solid particles as a function of physicochemical parameters. Evidence for the existence of two volatilization regimes is provided, depending on the value of the thermal Thiele Modulus M and the thermal Biot number B. The ablation regime is achieved if both M = t /SUB T/ /t /SUB R/ and B = hL /SUB o/ /lambda are large (M, B > 100). In this regime, the shrinking velocity is constant and the reaction takes place only in a thin layer at the solid surface. Experimental data on wood pyrolysis obtained with sawdust or with massive rods confirm the existence of these two regimes (see companion paper). Total consumption times estimated in a cyclone reactor or direct measurement of ablation velocities are in agreement with theoretical predictions of the VPT model. These preliminary results have been obtained with very simple numerical methods which are not best adapted to the ''stiff'' conditions encountered in the ablation regime (M and B both large). Further improvements are in progress, which will make it possible to perform more accurate simulations in a broader range of variation of parameters.

  4. Evolution of a voltage-time model of thermal batteries. Technical memo

    SciTech Connect (OSTI)

    Knight, J.

    1991-02-01

    A temperature time model of thermal batteries has almost been completed and validated against experimental data. This Memorandum first summarises early attempts to integrate a voltage-time model into this, taking advantage of the instantaneous predictions of temperature, thermodynamic potentials, and internal resistance which the thermal model provides. It then describes how recent refinements of the voltage-time model have led to improved simulation of the discharges of a wide range of sizes and types of thermal battery under an equally wide range of test conditions. The semi-empirical approach adopted has been to provide a universally-applicable framework based on logical concepts to cover various effects such as polarisation etc, but with adjustable numerical parameters. It is shown that a moderately good simulation may be obtained for the majority of available discharge curves, using this one set of equations and without altering parameter values. Further improvements can be obtained when parameter values are optimised for one particular type of battery. Comparisons of model simulations against a body of experimental data have pinpointed remaining discrepancies which will guide further refinement efforts.

  5. Modeling the Influence of Interaction Layer Formation on Thermal Conductivity of UMo Dispersion Fuel

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    The Global Threat Reduction Initiative Program continues to develop existing and new plate- and rod-type research and test reactor fuels with maximum attainable uranium loadings capable of potentially converting a number of the worlds remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of an even higher density fuel type consisting of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel plate and can be influenced by interaction layer formation between the fuel and matrix, porosity that forms during fabrication of the fuel plates, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation and conductivity, fuel particle size, and volume fraction of fuel dispersed in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be important in determining the overall conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the fuel particle distribution by minimizing interaction layer formation and preserving the higher thermal conductivity matrix.

  6. Thermal Hydraulic Modeling: Cross-Verification, Validation and Co-design |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility computed on Intrepid with Nek5000 Velocity magnitude distribution in a flow through the 25-pin swirl-vane spacer grid of Matis benchmark. Computed on Intrepid with Nek5000 and visualized on Eureka with VisIt at the ALCF. Aleks Obabko, Paul Fischer, and Tim Tautges, Argonne National Laboratory Thermal Hydraulic Modeling: Cross-Verification, Validation and Co-design PI Name: Paul F. Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne National

  7. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect (OSTI)

    Omar, M.S.

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  8. EOI: Offsite Depleted Uranium Metalworking | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offsite Depleted ... EOI: Offsite Depleted Uranium Metalworking Consolidated Nuclear ... of Depleted Uranium, for the Y-12 National Security Complex in Oak Ridge, Tennessee. ...

  9. Neural network modelling of thermal stratification in a solar DHW storage

    SciTech Connect (OSTI)

    Geczy-Vig, P.; Farkas, I.

    2010-05-15

    In this study an artificial neural network (ANN) model is introduced for modelling the layer temperatures in a storage tank of a solar thermal system. The model is based on the measured data of a domestic hot water system. The temperatures distribution in the storage tank divided in 8 equal parts in vertical direction were calculated every 5 min using the average 5 min data of solar radiation, ambient temperature, mass flow rate of collector loop, load and the temperature of the layers in previous time steps. The introduced ANN model consists of two parts describing the load periods and the periods between the loads. The identified model gives acceptable results inside the training interval as the average deviation was 0.22 C during the training and 0.24 C during the validation. (author)

  10. Simplified models of growth, defect formation, and thermal conductivity in diamond chemical vapor deposition

    SciTech Connect (OSTI)

    Coltrin, M.E.; Dandy, D.S.

    1996-04-01

    A simplified surface reaction mechanism is presented for the CVD of diamond thin films. The mechanism also accounts for formation of point defects in the diamond lattice, an alternate, undesirable reaction pathway. Both methyl radicals and atomic C are considered as growth precursors. While not rigorous in all details, the mechanism is useful in describing the CVD diamond process over a wide range of reaction conditions. It should find utility in reactor modeling studies, for example in optimizing diamond growth rate while minimizing defect formation. This report also presents a simple model relating the diamond point-defect density to the thermal conductivity of the material.

  11. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  12. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  13. New model for thermal volatilization of solid particles undergoing flash-pyrolysis

    SciTech Connect (OSTI)

    Villermaux, J.; Antoine, B.; Lede, J.; Soulignac, F.

    1983-01-01

    Many industrial processes involve the consumption of solid particles immersed in a reacting medium. Among these, the gasification of coal and biomass in fixed, fluidized or moving beds is of special interest. A great number of models describing gas-solid reactions can be found in the literature. Models dealing with the thermal volatilization of a solid controlled by heat transfer between the surrounding medium and the inner volume of the particle are more scarce. In addition, existing models often rely on the concept of a surface reaction, which is questionable, because deeper layers also contribute to the reaction as heat penetrates into the solid. A new model is proposed describing the volatilization of a solid by thermal penetration. This model was initially imagined for interpreting flash-pyrolysis of sawdust particles. Actually, it could be applied to any kind of solid reactions where volatilization is controlled by heat conduction from the outer surface. Only a few preliminary but significant results are presented in this paper. (Refs. 6)>

  14. New model for thermal volatilization of solid particles undergoing flash-pyrolysis

    SciTech Connect (OSTI)

    Villermaux, J.; Antoine, B.; Lede, J.; Soulignac, F.

    1983-01-01

    Many industrial processes involve the consumption of solid particles immersed in a reacting medium. Among these, the gasification of coal and biomass in fixed, fluidized or moving beds is of special interest. A great number of models describing gas-solid reactions can be found in the literature. Models dealing with the thermal volatilization of a solid controlled by heat transfer between the surrounding medium and the inner volume of the particle are more scarce. In addition, existing models often rely on the concept of a ''surface reaction'', which is questionable, because deeper layers also contribute to the reaction as heat penetrates into the solid. A new model is proposed describing the volatilization of a solid by thermal penetration. This model was initially imagined for interpreting flash-pyrolysis of sawdust particles. Actually, it could be applied to any kind of solid reactions where volatilization is controlled by heat conduction from the outer surface. Only a few preliminary but significant results are presented in this paper. (6 figs., 6 refs.)

  15. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    SciTech Connect (OSTI)

    Travis, Adam R

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  16. Thermal aging modeling and validation on the Mo containing Fe-Cr-Ni alloys

    SciTech Connect (OSTI)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-04-01

    Thermodynamics of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical knowledge to understand thermal aging effect on the phase stability of Mo-containing austenitic steels, which subsequently facilitates alloy design/improvement and degradation mitigation of these materials for reactor applications. Among the intermetallic phases, Chi (χ), Laves, and Sigma (σ) are often of concern because of their tendency to cause embrittlement of the materials. The focus of this study is thermal stability of the Chi and Laves phases as they were less studied compared to the Sigma phase. Coupled with thermodynamic modeling, thermal stability of intermetallic phases in Mo containing Fe-Cr-Ni alloys was investigated at 1000, 850 and 700 C for different annealing times. The morphologies, compositions and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Three key findings resulted from this study. First, the Chi phase is stable at high temperature, and with decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. Thirdly, in situ transformation from Chi phase to Laves phase was directly observed, which increased the local strain field, generated dislocations in the intermetallic phases, and altered the precipitate phase orientation relationship with the austenitic matrix. The thermodynamic models that were developed and validated were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  17. Integrated modeling/analyses of thermal-shock effects in SNS targets

    SciTech Connect (OSTI)

    Taleyarkhan, R.P.; Haines, J.

    1996-06-01

    In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies, especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.

  18. Clustering and Mechanics in Dense Depletion and Thermal Gels...

    Office of Scientific and Technical Information (OSTI)

    (ANL), Argonne, IL (US) Sponsoring Org: DOE - BASIC ENERGY SCIENCES Country of Publication: United States Language: ENGLISH Word Cloud More Like This Full Text Journal Articles ...

  19. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling[Thermoelectric (TE) HVAC

    Broader source: Energy.gov [DOE]

    Discusses results from TE HVAC project to add detail to a human thermal comfort model and further allow load reduction in the climate control energy through a distributed TE network

  20. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect (OSTI)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this works calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the CIPS Validation Data Plan at the Consortium for Advanced Simulation of LWRs to enable

  1. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    SciTech Connect (OSTI)

    Cuta, Judith M.; Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.

    2013-08-15

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. Three specific areas of interest were identified for this study. degradation of the canister backfill gas from pure helium to a mixture of air and helium, resulting from postulated leakage due to stress corrosion cracking (SCC) of canister welds changes in surface emissivity of system components, resulting from corrosion or other aging mechanisms, which could cause potentially significant changes in temperatures and temperature distributions, due to the effect on thermal radiation exchange between components changes in fuel and basket temperatures due to changes in fuel assembly position within the basket cells in the canister The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  2. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect (OSTI)

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu [Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Min Kim, Hyung [Department of Mechanical System Engineering, Kyonggi University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  3. Thermal Hydraulic Modeling: Cross-Verification, Validation, and Co-Design |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Velocity magnitude distribution in a flow through the 25-pin swirl-vane spacer grid of Matis benchmark Velocity magnitude distribution in a flow through the 25-pin swirl-vane spacer grid of Matis benchmark. Computed on Intrepid with Nek5000 and visualized on Eureka with VisIt at the ALCF. Aleks Obabko, Paul Fischer, and Tim Tautges, Argonne National Laboratory Thermal Hydraulic Modeling: Cross-Verification, Validation, and Co-Design PI Name: Paul Fischer

  4. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  5. Spatial and temporal modeling of sub- and supercritical thermal energy storage

    SciTech Connect (OSTI)

    Tse, LA; Ganapathi, GB; Wirz, RE; Lavine, AS

    2014-05-01

    This paper describes a thermodynamic model that simulates the discharge cycle of a single-tank thermal energy storage (TES) system that can operate from the two-phase (liquid-vapor) to supercritical regimes for storage fluid temperatures typical of concentrating solar power plants. State-of-the-art TES design utilizes a two-tank system with molten nitrate salts; one major problem is the high capital cost of the salts (International Renewable Energy Agency, 2012). The alternate approach explored here opens up the use of low-cost fluids by considering operation at higher pressures associated with the two-phase and supercritical regimes. The main challenge to such a system is its high pressures and temperatures which necessitate a relatively high-cost containment vessel that represents a large fraction of the system capital cost. To mitigate this cost, the proposed design utilizes a single-tank TES system, effectively halving the required wall material. A single-tank approach also significantly reduces the complexity of the system in comparison to the two-tank systems, which require expensive pumps and external heat exchangers. A thermodynamic model is used to evaluate system performance; in particular it predicts the volume of tank wall material needed to encapsulate the storage fluid. The transient temperature of the tank is observed to remain hottest at the storage tank exit, which is beneficial to system operation. It is also shown that there is an optimum storage fluid loading that generates a given turbine energy output while minimizing the required tank wall material. Overall, this study explores opportunities to further improve current solar thermal technologies. The proposed single-tank system shows promise for decreasing the cost of thermal energy storage. (C) 2014 Elsevier Ltd. All rights reserved.

  6. Specification for the VERA Depletion Benchmark Suite

    SciTech Connect (OSTI)

    Kim, Kang Seog

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  7. Seasonal thermal energy storage in unsaturated soils: Model development and field validation

    SciTech Connect (OSTI)

    Doughty, C.; Nir, Aharon, Tsang, Chin-Fu

    1991-06-01

    This report summarizes ten years of activity carried out at the Earth Sciences Division of the Lawrence Berkeley Laboratory (LBI) in the subject of seasonal storage of thermal energy in unsaturated soils. The objectives of the work were to make a conceptual study of this type of storage, to offer guidelines for planning and evaluation of the method, to produce models and simulation for an actual field experiment, to participate in an on-line data analysis of experimental results. and to evaluate the results in terms of the validation of the concept, models and the experimental techniques. The actual field experiments were performed in Beer-Sheva, Israel. Details of engineering and field operations are not included in this report.

  8. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

  9. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  10. Prediction of Thermal Conductivity for Irradiated SiC/SiC Composites by Informing Continuum Models with Molecular Dynamics Data

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it studies the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal ?-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  11. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  12. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    SciTech Connect (OSTI)

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes of the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.

  13. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  14. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  15. Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

    2012-10-01

    As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

  16. Revisited reaction-diffusion model of thermal desorption spectroscopy experiments on hydrogen retention in material

    SciTech Connect (OSTI)

    Guterl, Jerome Smirnov, R. D.; Krasheninnikov, S. I.

    2015-07-28

    Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samples exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.

  17. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  18. A Combined Neutronic-Thermal Hydraulic Model of CERMET NTR Reactor

    SciTech Connect (OSTI)

    Jonathan A. Webb; Brian Gross; William T. Taitano

    2011-02-01

    Abstract. Two different CERMET fueled Nuclear Thermal Propulsion reactors were modeled to determine the optimum coolant channel surface area to volume ratio required to cool a 25,000 lbf rocket engine operating at a specific impulse of 940 seconds. Both reactor concepts were computationally fueled with hexagonal cross section fuel elements having a flat-to-flat distance of 3.51 cm and containing 60 vol.% UO2 enriched to 93wt.%U235 and 40 vol.% tungsten. Coolant channel configuration consisted of a 37 coolant channel fuel element and a 61 coolant channel model representing 0.3 and 0.6 surface area to volume ratios respectively. The energy deposition from decelerating fission products and scattered neutrons and photons was determined using the MCNP monte carlo code and then imported into the STAR-CCM+ computational fluid dynamics code. The 37 coolant channel case was shown to be insufficient in cooling the core to a peak temperature of 3000 K; however, the 61 coolant channel model shows promise for maintaining a peak core temperature of 3000 K, with no more refinements to the surface area to volume ratio. The core was modeled to have a power density of 9.34 GW/m3 with a thrust to weight ratio of 5.7.

  19. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL

    SciTech Connect (OSTI)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2012-06-20

    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model 'Enthalpy-based Thermal Evolution of Loops' (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  20. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    SciTech Connect (OSTI)

    Steven K. Logan

    2012-08-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its depletion

  1. Laser Assisted Crystallization of Ferromagnetic Amorphous Ribbons: A Multimodal Characterization and Thermal Model Study

    SciTech Connect (OSTI)

    Katakam, Shravana K.; Devaraj, Arun; Bowden, Mark E.; Santhanakrishnan, S.; Smith, Casey; Ramanujan, Raju; Thevuthasan, Suntharampillai; Banerjee, Rajarshi; Dahotre, Narendra B.

    2013-11-14

    This paper focuses on laser-based de-vitrification of amorphous soft magnetic Fe-Si-B ribbons and its consequent influence on the magnetic properties. Laser processing resulted in a finer scale of crystallites due to rapid heating and cooling during laser annealing compared to conventional furnace annealing process. A significant increase in saturation magnetization is observed for laser-annealed ribbons compared to both as-received and furnace annealed samples coupled with an increase in coercivity compared to as received sample. The combined effect of thermal histories and stresses developed during laser annealing results in the formation of nano-crystalline phase along the laser track. The phase evolution is traced with the aid of micro-XRD and TEM analysis. The solute partitioning and compositional variation within the phases are obtained by Local Electrode Atom probe analysis. The evolution of microstructure is rationalized using a Finite Element based heat transfer multi-physics model.

  2. HYDRODYNAMIC THERMAL MODELING OF 9-CELL ILC CAVITY ELECTROPOLISHING AND IMPLICATIONS FOR IMPROVING THE EP PROCESS

    SciTech Connect (OSTI)

    Charles Reece; John Mammosser; Jun Ortega

    2008-02-12

    Multi-cell niobium cavities often obtain the highest performance levels after having been subjected to an electropolishing (EP) process. The horizontal EP process first developed at KEK/Nomura Plating for TRISTAN[1] cavities is being applied to TESLA-style cavities and other structures for the XFEL and ILC R&D. Jefferson Lab is presently carrying this activity in the US. Because the local electropolishing current density is highly temperature dependent, we have created using CFDesign a full-scale hydrodynamic model which simulates the various thermal conditions present during 9-cell cavity electropolishing. The results of these simulations are compared with exterior surface temperature data gathered during ILC cavity EP at JLab. Having benchmarked the simulation, we explore the affect of altered boundary conditions in order to evaluate potentially beneficial modifications to the current standard process.

  3. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  4. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  5. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  6. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect (OSTI)

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  7. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  8. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  9. Investigation of approximations in thermal-hydraulic modeling of core conversions

    SciTech Connect (OSTI)

    Garner, Patrick L.; Hanan, Nelson A.

    2008-07-15

    Neutronics analyses for core conversions are usually fairly detailed, for example representing all 4 flats and all 4 corners of all 6 tubes of all 20 IRT-3M or -4M fuel assemblies in the core of the VVR-SM reactor in Uzbekistan. The coupled neutronics and thermal-hydraulic analysis for safety analysis transients is usually less detailed, for example modeling only a hot and an average fuel plate and the associated coolant. Several of the approximations have been studied using the RELAP5 and PARET computer codes in order to provide assurance that the lack of full detail is not important to the safety analysis. Two specific cases studied are (1) representation of a core of same- type fuel assemblies by a hot and an average assembly each having multiple channels as well as by merely a hot and average channel and (2) modeling a core containing multiple fuel types as the sum of fractional core models for each fuel type. (author)

  10. The relative variational model: A topological view of matter and its properties: Thermal expansion

    SciTech Connect (OSTI)

    Dias, M. S.; De Vasconcelos, V.; Mattos, J. R. L.; Jordao, E.

    2012-07-01

    Formal definitions of convergence, connected-ness and continuity were established to characterize and describe the crystalline solid and its properties as a unified notion in the topological space. The crystalline solid is a previously empty space that has been filled with atoms and phonons, i.e., the crystal is built with packages of matter and energy in a regular and orderly repetitive pattern along three orthogonal dimensions of the space. The spatial occupation of the atom in the crystal structure is determined by its mean vibrational volume. Thus, the changes of volume and the changes of internal energy are intrinsically linked. In fact, physical and material properties are the interdependent and bijective quantifications associated with variations of the internal energy. These properties are modeled by means of an intrinsic and invariable form function: the Relative Variational Model. In this paper, the experimental data of the thermal expansion for the oxides Al{sub 2}O{sub 3} and UO{sub 2} were analytically depicted by means of this model in the temperature range of 0 K up to the melting point. (authors)

  11. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  12. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  13. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  14. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    SciTech Connect (OSTI)

    Nabili, Marjan; Geist, Craig E-mail: zderic@gwu.edu; Zderic, Vesna E-mail: zderic@gwu.edu

    2015-10-15

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm{sup 2}, and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm{sup 2} (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety

  15. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  16. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  17. A steady state thermal duct model derived by fin-theory approach and applied on an unglazed solar collector

    SciTech Connect (OSTI)

    Stojanovic, B.; Hallberg, D.; Akander, J.

    2010-10-15

    This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no 'or negligible' temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer course of

  18. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production ...

  19. DOE Extends Contract to Operate Depleted Uranium Hexafluoride...

    Energy Savers [EERE]

    Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - ...

  20. VERA Core Simulator Methodology for PWR Cycle Depletion (Conference...

    Office of Scientific and Technical Information (OSTI)

    VERA Core Simulator Methodology for PWR Cycle Depletion Citation Details In-Document Search Title: VERA Core Simulator Methodology for PWR Cycle Depletion Authors: Kochunas, ...

  1. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  2. Ion-heated thermal Comptonization models and x-ray spectral correlations in active galactic nuclei

    SciTech Connect (OSTI)

    Dermer, C.D.

    1989-11-01

    Recent Ginga observations of the Seyfert 1 galaxies NGC 4051 and MCG 6-30-15 show a positive correlation between the 2-10 keV luminosity and photon spectral index {alpha}. Similar behavior has also been reported in Exosat and Einstein observations of other active galactic nuclei, and is suggested in hard x-ray low-state data of the galactic black-hole candidate Cygnus X-1. A two-temperature thermal Comptonization model with internal soft-photon production provides a simple explanation for this correlation. The electron temperature, determined by a balance between ion heating and radiative cooling, decreases in response to an enhancement of the soft photon flux, resulting in a softening of the spectrum and an increase in the soft x-ray luminosity. The bulk of the soft photons are produced through pion production in collisions between the hot ions. Pivoting of the spectrum at photon energies {var epsilon} > 50 keV is a consequence of variations in the ion temperature. An important test of the model would be time correlations between soft and hard x-ray bands. 17 refs., 9 figs., 1 tab.

  3. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab

    SciTech Connect (OSTI)

    Chen, Yuxiang; Galal, Khaled; Athienitis, A.K.

    2010-11-15

    This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

  4. THREE-DIMENSIONAL THERMAL MODELING ANALYSIS OF CST MEDIA FOR THE SMALL ION EXCHANGE PROJECT

    SciTech Connect (OSTI)

    Lee, S.; King, W.

    2011-09-12

    The Small Column Ion Exchange (SCIX) project is designed to accelerate closure of High Level Waste (HLW) tanks at the Savannah River Site (SRS). The SRS tanks store HLW in three forms: sludge, saltcake, and supernate. An in-tank ion exchange process is being designed to treat supernate and dissolved saltcake waste. Through this process, radioactive cesium from the salt solution is adsorbed into Crystalline Silicotitanate (CST) ion exchange media packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. The waste supernate solution within the ion exchange bed will boil around 120 C. Solution superheating above the boiling point within the column could lead to violent hazardous energy releases. System heating from loaded CST is also of concern in other process modules, such as the waste tank. Due to tank structural integrity concerns, the wall temperature limit for the SRS waste tanks is 100 C. The transfer of cesium-loaded CST to the tank could result in localized hot spots on the tank floor and walls which may exceed this limit. As a result, thermal modeling calculations have been conducted to predict the maximum temperatures achievable both in the column and in the waste tank. As specified in the associated Technical Task Plan, one objective of the present work was to compute temperature distributions within the ion exchange column module under accident scenarios including loss of salt solution flow through the bed and loss of coolant system flow. The column modeling domain and the scope of the calculations in this case were broadened relative to previous two-dimensional calculations to include vertical temperature distributions within the packed bed of ion exchange media as well as the upper column plenum region containing only fluid. The baseline design conditions and in-column modeling domain for the ion-exchange column module are shown in Figure 1. These evaluations assumed the maximum

  5. Thermal-stress modeling of an optical microphone at high temperature...

    Office of Scientific and Technical Information (OSTI)

    To help determine the capability range of a MEMS optical microphone design in harsh ... of thermal expansion mismatch between the polysilicon device and alumina packaging. ...

  6. Alignment of gold nanorods by angular photothermal depletion

    SciTech Connect (OSTI)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M.

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range of aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.

  7. Neutral depletion and the helicon density limit

    SciTech Connect (OSTI)

    Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E.

    2013-12-15

    It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

  8. THERMAL MODELING ANALYSIS OF CST MEDIA IN THE SMALL COLUMN ION EXCHANGE PROJECT

    SciTech Connect (OSTI)

    Lee, S.

    2010-11-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. One salt processing scenario includes the transport of the loaded (and possibly ground) CST media to the treatment tank floor. Therefore, additional thermal modeling calculations were conducted using a three-dimensional approach to evaluate temperature distributions for the entire in-tank domain including distribution of the spent CST media either as a mound or a flat layer on the tank floor. These calculations included mixtures of CST with HLW sludge or loaded Monosodium Titanate (MST) media used for strontium/actinide sorption. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds

  9. A THERMAL MODEL OF THE IMMOBILIZATION OF LOW-LEVEL RADIOACTIVE WASTE AS GROUT IN CONCRETE VAULTS

    SciTech Connect (OSTI)

    Shadday, M

    2008-10-27

    Salt solution will be mixed with cement and flyash/slag to form a grout which will be immobilized in above ground concrete vaults. The curing process is exothermic, and a transient thermal model of the pouring and curing process is herein described. A peak temperature limit of 85 C for the curing grout restricts the rate at which it can be poured into a vault. The model is used to optimize the pouring.

  10. Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments

    SciTech Connect (OSTI)

    Dr. Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

    2012-10-01

    As part of the Research and Development program for Next Generation High Temperature Reactors (HTR), a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. The data representing the crucial test fuel conditions (e.g., temperature, neutron fast fluence, and burnup) while impossible to obtain from direct measurements are calculated by physics and thermal models. The irradiation and post-irradiation examination (PIE) experimental data are used in model calibration effort to reduce the inherent uncertainty of simulation results. This paper is focused on fuel temperature predicted by the ABAQUS code’s finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for improving qualification of AGR-1 thermocouple data. The present work exercises the idea that the abnormal trends of measured data observed from statistical analysis may be caused by either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. As an example, the uneven reduction of the control gas gap in Capsule 5 revealed by the capsule metrology measurements in PIE helps justify the reduction in TC readings instead of TC drift. This in turn prompts modification of thermal model to better fit with experimental data, thus help increase confidence, and in other word reduce model uncertainties in thermal simulation results of the AGR-1 test.

  11. Fighting Fire with Fire: Modeling the Datacenter-Scale Effects of Targeted Superlattice Thermal Management

    SciTech Connect (OSTI)

    Biswas, S; Tiwari, M; Theogarajan, L; Sherwood, T P; Chong, F T

    2010-11-11

    Local thermal hot-spots in microprocessors lead to worst case provisioning of global cooling resources, especially in large-scale systems. However, efficiency of cooling solutions degrade non-linearly with supply temperature, resulting in high power consumption and cost in cooling - 50 {approx} 100% of IT power. Recent advances in active cooling techniques have shown on-chip thermoelectric coolers (TECs) to be very efficient at selectively eliminating small hot-spots, where applying current to a superlattice film deposited between silicon and the heat spreader results in a Peltier effect that spreads the heat and lowers the temperature of the hot-spot significantly to improve chip reliability. In this paper, we propose that hot-spot mitigation using thermoelectric coolers can be used as a power management mechanism to allow global coolers to be provisioned for a better worst case temperature leading to substantial savings in cooling power. In order to quantify the potential power savings from using TECs in data center servers, we present a detailed power model that integrates on-chip dynamic and leakage power sources, heat diffusion through the entire chip, TEC and global cooler efficiencies, and all their mutual interactions. Our multiscale analysis shows that, for a typical data center, TECs allow global coolers to operate at higher temperatures without degrading chip lifetime, and thus save {approx}27% cooling power on average while providing the same processor reliability as a data center running at 288K.

  12. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    SciTech Connect (OSTI)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.

  13. An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2010-10-01

    Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zubers hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools.

  14. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  15. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    SciTech Connect (OSTI)

    Watney, W. Lynn; Rush, Jason; Raney, Jennifer

    2014-09-30

    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  16. Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments

    SciTech Connect (OSTI)

    Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

    2014-05-01

    As part of the High Temperature Reactors (HTR) R&D program, a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. While not possible to obtain by direct measurements in the tests, crucial fuel conditions (e.g., temperature, neutron fast fluence, and burnup) are calculated using core physics and thermal modeling codes. This paper is focused on AGR test fuel temperature predicted by the ABAQUS code's finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for qualification of AGR-1 thermocouple data. Abnormal trends in measured data revealed by the statistical analysis are traced to either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. The main thrust of this work is to exploit the variety of data obtained in irradiation and post-irradiation examination (PIE) for assessment of modeling assumptions. As an example, the uneven reduction of the control gas gap in Capsule 5 found in the capsule metrology measurements in PIE helps identify mechanisms other than TC drift causing the decrease in TC readings. This suggests a more physics-based modification of the thermal model that leads to a better fit with experimental data, thus reducing model uncertainty and increasing confidence in the calculated fuel temperatures of the AGR-1 test.

  17. Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Smith K.; Kim, G. H.

    2011-04-01

    This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

  18. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor

  19. Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer- Aided Engineering of Batteries under Abuse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer- Aided Engineering of Batteries under Abuse P.I.: Ahmad Pesaran Team: Tomasz Wierzbicki and Elham Sahraei (MIT) Genong Li and Lewis Collins (ANSYS) M. Sprague, G.H. Kim and S. Santhangopalan (NREL) June 17, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project ID: ES199 NREL/PR-5400-61885 2 Overview * Project Start: October 2013 * Project

  20. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  1. Depleted uranium plasma reduction system study

    SciTech Connect (OSTI)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  2. Carbon sequestration in depleted oil shale deposits

    SciTech Connect (OSTI)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  3. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  4. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  5. Preliminary Thermal Modeling of HI-STORM 100 Storage Modules at Diablo Canyon Power Plant ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2014-04-17

    Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for two modules at the Diablo Canyon Power Plant ISFSI identified as candidates for inspection. These are HI-STORM 100 modules of a site-specific design for storing PWR 17x17 fuel in MPC-32 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these storage systems, with the following boundary conditions and assumptions. • storage module overpack configuration based on FSAR documentation of HI-STORM100S-218, Version B; due to unavailability of site-specific design data for Diablo Canyon ISFSI modules • Individual assembly and total decay heat loadings for each canister, based on at-loading values provided by PG&E, “aged” to time of inspection using ORIGEN modeling o Special Note: there is an inherent conservatism of unquantified magnitude – informally estimated as up to approximately 20% -- in the utility-supplied values for at-loading assembly decay heat values • Axial decay heat distributions based on a bounding generic profile for PWR fuel. • Axial location of beginning of fuel assumed same as WE 17x17 OFA fuel, due to unavailability of specific data for WE17x17 STD and WE 17x17 Vantage 5 fuel designs • Ambient conditions of still air at 50°F (10°C) assumed for base-case evaluations o Wind conditions at the Diablo Canyon site are unquantified, due to unavailability of site meteorological data o additional still-air evaluations performed at 70°F (21°C), 60°F (16°C), and 40°F (4°C), to cover a range of possible conditions at the time of the inspection. (Calculations were also performed at

  6. SINGLE-SHELL TANK INTEGRITY PROJECT ANALYSIS OF RECORD-PRELIMINARY MODELING PLAN FOR THERMAL AND OPERATING LOADS

    SciTech Connect (OSTI)

    RAST RS; RINKER MW; BAPANAALLI SK; DEIBLER JE; GUZMAN-LEONG CE; JOHNSON KI; KARRI NK; PILLI SP; SANBORN SE

    2010-10-22

    This document is a Phase I deliverable for the Single-Shell Tank Analysis of Record effort. This document is not the Analysis of Record. The intent of this document is to guide the Phase II detailed modeling effort. Preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. The preliminary analysis document reviews and preliminary modeling analysis results are reported herein. In addition, this report provides recommendations for the next phase of the SST AOR project, SST detailed modeling. Efforts and results discussed in this report do not include seismic modeling as seismic modeling is covered by a separate report. The combined results of both static and seismic models are required to complete this effort. The SST AOR project supports the US Department of Energy's (DOE) Office of River Protection (ORP) mission for obtaining a better understanding of the structural integrity of Hanford's SSTs. The 149 SSTs, with six different geometries, have experienced a range of operating histories which would require a large number of unique analyses to fully characterize their individual structural integrity. Preliminary modeling evaluations were conducted to determine the number of analyses required for adequate bounding of each of the SST tank types in the Detailed Modeling Phase of the SST AOR Project. The preliminary modeling was conducted in conjunction with the Evaluation Criteria report, Johnson et al. (2010). Reviews of existing documents were conducted at the initial stage of preliminary modeling. These reviews guided the topics that were

  7. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  8. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    SciTech Connect (OSTI)

    Phadke, Manali; Krynetskaia, Natalia; Mishra, Anurag; Krynetskiy, Evgeny; Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  9. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier A.

    2016-07-20

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agreemore » well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.« less

  10. Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-05-01

    Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

  11. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept

    SciTech Connect (OSTI)

    Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled

    2010-11-15

    This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

  12. A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design

    SciTech Connect (OSTI)

    Qu, Ming; Yin, Hongxi; Archer, David H.

    2010-02-15

    A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

  13. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less

  14. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    SciTech Connect (OSTI)

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill out a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.

  15. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect (OSTI)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability

  16. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    SciTech Connect (OSTI)

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) #12;eld distributions as well as the grain scale #12;eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local #12;elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  17. Thermally activated dislocation creep model for primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect (OSTI)

    Hall, M.M., Jr

    1995-12-31

    There is a growing awareness that awareness that environmentally assisted creep plays an important role in integranular stress corrosion cracking (IGSCC) of NiCrFe alloys in the primary coolant water environment of a pressurized water reactor (PWR). The expected creep mechanism is the thermally activated glide of dislocations. This mode of deformation is favored by the relatively low temperature of PWR operation combined with the large residual stresses that are most often identified as responsible for the SCC failure of plant components. Stress corrosion crack growth rate (CGR) equations that properly reflect the influence of this mechanism of crack tip deformation are required for accurate component life predictions. A phenomenological IGSCC-CGR model, which is based on an apriori assumption that the IGSCC-CGR is controlled by a low temperature dislocation creep mechanism, is developed in this report. Obstacles to dislocation creep include solute atoms such as carbon, which increase the lattice friction force, and forest dislocations, which can be introduced by cold prestrain. Dislocation creep also may be environmentally assisted due to hydrogen absorption at the crack tip. The IGSCC-CGR model developed here is based on an assumption that crack growth occurs by repeated fracture events occurring within an advancing crack-tip creep-fracture zone. Thermal activation parameters for stress corrosion cracking are obtained by fitting the CGR model to IGSCC-CGR data obtained on NiCrFe alloys, Alloy X-750 and Alloy 600. These IGSCC-CGR activation parameters are compared to activation parameters obtained from creep and stress relaxation tests. Recently reported CGR data, which exhibit an activation energy that depends on yield stress and the applied stress intensity factor, are used to benchmark the model. Finally, the effects of matrix carbon concentration, grain boundary carbides and absorbed hydrogen concentration are discussed within context of the model.

  18. Multi-Dimensional Electrochemical-Thermal Coupled Model of Large Format Cylindrical Lithium Ion Cells (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Smith, K.

    2007-10-01

    Presentation on 3-D modeling of lithium-ion cells used in plug-in hyybrid electric vehicle batteries. 3-D models provide better understanding of cell design, operation, and management.

  19. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; Pannetier, Romain; Harp, Dylan; Frampton, Andrew; Painter, Scott L.; Lyon, Steve W.

    2016-02-05

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels weremore » observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.« less

  20. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect (OSTI)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  1. Modeling the thermal and structural response of engineered systems to abnormal environments

    SciTech Connect (OSTI)

    Skocypec, R.D.; Thomas, R.K.; Moya, J.L.

    1993-10-01

    Sandia National Laboratories (SNL) is engaged actively in research to improve the ability to accurately predict the response of engineered systems to thermal and structural abnormal environments. Abnormal environments that will be addressed in this paper include: fire, impact, and puncture by probes and fragments, as well as a combination of all of the above. Historically, SNL has demonstrated the survivability of engineered systems to abnormal environments using a balanced approach between numerical simulation and testing. It is necessary to determine the response of engineered systems in two cases: (1) to satisfy regulatory specifications, and (2) to enable quantification of a probabilistic risk assessment (PRA). In a regulatory case, numerical simulation of system response is generally used to guide the system design such that the system will respond satisfactorily to the specified regulatory abnormal environment. Testing is conducted at the regulatory abnormal environment to ensure compliance.

  2. Testing of and model development for double-walled thermal tubular

    SciTech Connect (OSTI)

    Satchwell, R.M.; Johnson, L.A. Jr.

    1992-08-01

    Insulated tubular products have become essential for use in steam injection projects. In a steam injection project, steam is created at the surface by either steam boilers or generators. During this process, steam travels from a boiler through surface lines to the wellhead, down the wellbore to the sandface, and into the reservoir. For some projects to be an economic success, cost must be reduced and oil recoveries must be increased by reducing heat losses in the wellbore. With reduced heats losses, steam generation costs are lowered and higher quality steam can be injected into the formation. To address this need, work under this project consisted of the design and construction of a thermal flow loop, testing a double-walled tubular product that was manufactured by Inter-Mountain Pipe Company, and the development and verification of a thermal hydraulic numerical simulator for steam injection. Four different experimental configurations of the double-walled pipe were tested. These configurations included: (1) bare pipe case, (2) bare pipe case with an applied annular vacuum, (3) insulated annular pipe case, and (4) insulated annular pipe case with an applied annular vacuum. Both the pipe body and coupling were tested with each configuration. The results of the experimental tests showed that the Inter-Mountain Pipe Company double-walled pipe body achieved a 98 percent reduction in heat loss when insulation was applied to the annular portion of the pipe. The application of insulation to the annular portion of the coupling reduced the heat losses by only 6 percent. In tests that specified the use of a vacuum in the annular portion of the pipe, leaks were detected and the vacuum could not be held.

  3. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses comfort model enhancement/validation, climate system efficiency parameters and system trade off, and powertrain mode operation changes to further vehicle energy saving while preserving occupant comfort.

  4. Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

  5. Efficient simulation and model reformulation of two-dimensional electrochemical thermal behavior of lithium-ion batteries

    SciTech Connect (OSTI)

    Northrop, Paul W. C.; Pathak, Manan; Rife, Derek; De, Sumitava; Santhanagopalan, Shriram; Subramanian, Venkat R.

    2015-03-09

    Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behavior of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.

  6. Efficient simulation and model reformulation of two-dimensional electrochemical thermal behavior of lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Northrop, Paul W. C.; Pathak, Manan; Rife, Derek; De, Sumitava; Santhanagopalan, Shriram; Subramanian, Venkat R.

    2015-03-09

    Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behaviormore » of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.« less

  7. Sheet beam model for intense space-charge: with application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam

    SciTech Connect (OSTI)

    Lund, Steven M.; Friedman, Alex; Bazouin, Guillaume

    2011-01-10

    A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet beam model is then applied to analyze several problems of fundamental interest. A sheet beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- d three-dimensional thermal equilibrium models in terms of the equilibrium structure and Deybe screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability.

  8. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - 10:00am Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities

  9. Monopolistic recycling of oil revenue and intertemporal bias in oil depletion and trade

    SciTech Connect (OSTI)

    Hillman, A.L.; Long, N.V.

    1985-08-01

    This paper investigates oil depletion and trade when monopolistic oil producers also exercise monopoly power in the capital market. A two-period model views collusively organized oil producers with an initial trade surplus and a subsequent deficit. When monopoly power in the capital market is applied to the disadvantage of borrowers, less oil is initially made available to oil importers than if the interest rate had been competitively determined. This depletion bias, however, is reversed if, because of incentives for capital accumulation, it is to the advantage of the oil producers to subsidize lending to the oil importers. In either case the bias in oil depletion due to monopolistic recycling of oil revenue is greater, the more vulnerable are oil importer's incomes to a curtailment of oil supplies. 25 references.

  10. Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term-Disposal Criticality Safety

    SciTech Connect (OSTI)

    DeHart, M.D.

    1999-08-01

    Utilization of burnup credit in criticality safety analysis for long-term disposal of spent nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile material that will be present in the repository. Burnup-credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents (in terms of criticality potential), followed by criticality calculations to assess the value of the effective neutron multiplication factor (k(sub)eff) for the a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models.

  11. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Energy Savers [EERE]

    Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites October 20, 2011 - 9:16am Addthis When Babcock & Wilcox Conversion ...

  12. University of Michigan adds Depletion Capability to MPACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Michigan researchers Ben Collins, Ang Zhu, Brendan Kochunas, and Tom Downar. The numerical methods to implement nuclide point depletion and integrate a time dependent...

  13. SFR with once-through depleted uranium breed & burn blanket ...

    Office of Scientific and Technical Information (OSTI)

    Title: SFR with once-through depleted uranium breed & burn blanket Authors: Zhang, Guanheng ; Greenspan, Ehud ; Jolodosky, Alejandra ; Vujic, Jasmina Publication Date: 2015-07-01 ...

  14. Gas generation matrix depletion quality assurance project plan

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The Los Alamos National Laboratory (LANL) is to provide the necessary expertise, experience, equipment and instrumentation, and management structure to: Conduct the matrix depletion experiments using simulated waste for quantifying matrix depletion effects; and Conduct experiments on 60 cylinders containing simulated TRU waste to determine the effects of matrix depletion on gas generation for transportation. All work for the Gas Generation Matrix Depletion (GGMD) experiment is performed according to the quality objectives established in the test plan and under this Quality Assurance Project Plan (QAPjP).

  15. General quantitative model for coal liquefaction kinetics: the thermal cleavage/hydrogen donor capping mechanism. [59 references

    SciTech Connect (OSTI)

    Gangwer, T

    1980-01-01

    A mechanism for coal liquefaction, based on the concept of thermal cleavage-hydrogen capping donor complexes, is proposed and the quantitative agreement between the derived rate laws and the kinetic data obtained from fifteen publications is presented. The mechanism provides rate laws which describe the preasphaltene, asphaltene, oil and gas time/yield curves for the coal liquefaction process. A simplistic dissolution model is presented and used to relate the proposed mechanism to the experimentally observed products. Based on the quality of the mechanistic fit to the reported coal liquefaction systems, which cover a diverse range of reaction conditions, coal types and donor solvent compositions, it is proposed that the donor solvent/thermal bond cleavage/hydrogen capping mechanism provides a good, quantitative description of the rate limiting process. Interpretation of the rate constant/temperature dependencies in terms of transition state theory indicates formation of the activated complex can involve either physically or chemically controlled steps. A uniform free energy of activation of 52 kcal was found for the diverse liquefaction systems indicating a common transition state describes the reactions. Thus the proposed mechanism unifies the diverse liquefaction kinetic data by using a set of uniform reaction sequences, which have a common transition state, to describe the conversion chemistry. The mechanism thereby creates a common base for intercomparison, interpretation and evaluation of coal conversion for the broad range of processes currently being investigated in the liquefaction field.

  16. First report on non-thermal plasma reactor scaling criteria and optimization models

    SciTech Connect (OSTI)

    Rosocha, L.A.; Korzekwa, R.A.

    1998-01-13

    The purpose of SERDP project CP-1038 is to evaluate and develop non-thermal plasma (NTP) reactor technology for Department of Defense (DoD) air emissions control applications. The primary focus is on oxides of nitrogen (NO{sub x}) and a secondary focus on hazardous air pollutants (HAPs), especially volatile organic compounds (VOCs). Example NO{sub x} sources are jet engine test cells (JETCs) and diesel engine powered electrical generators. Example VOCs are organic solvents used in painting, paint stripping, and parts cleaning. To design and build NTP reactors that are optimized for particular DoD applications, one must understand the basic decomposition chemistry of the target compound(s) and how the decomposition of a particular chemical species depends on the air emissions stream parameters and the reactor operating parameters. This report is intended to serve as an overview of the subject of reactor scaling and optimization and will discuss the basic decomposition chemistry of nitric oxide (NO) and two representative VOCs, trichloroethylene and carbon tetrachloride, and the connection between the basic plasma chemistry, the target species properties, and the reactor operating parameters (in particular, the operating plasma energy density). System architecture, that is how NTP reactors can be combined or ganged to achieve higher capacity, will also be briefly discussed.

  17. A model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

  18. Model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

  19. Dynamic model verification studies for the thermal response of the Fort St. Vrain HTGR Core

    SciTech Connect (OSTI)

    Ball, S J

    1980-01-01

    The safety research program for high-temperature gas-cooled reactors at ORNL is directed primarily at addressing licensing questions on the Fort St. Vrain reactor near Denver, CO. An important part of the program is to make use of experimental data from the reactor to at least partially verify the dynamic simulations that are used to predict the effects of postulated accident sequences. Comparisons were made of predictions with data from four different reactor scram (trip) events from operating power levels between 30 and 50%. An optimization program was used to rationalize the differences between predictions and measurements, and, in general, excellent agreement can be obtained by adjustment of models and parameters within their uncertainty ranges. Although the optimized models are not necessarily unique, results of the study have identified areas in which some of the models were deficient.

  20. A modeling study of the effect of depth of burial of depleted uranium and thorium on radon gas flux at a dry desert alluvial soil radioactive waste management site (RWMS)

    SciTech Connect (OSTI)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.

    1993-08-01

    An integral part of designing low-level waste (LLW) disposal pits and their associated closure covers in very dry desert alluvium is the use of a radon gas transport and fate model. Radon-222 has the potential to be a real heath hazard. The production of radon-222 results from the radioactive decay (a particle emission) of radium-226 in the uranium-235 and 238 Bateman chains. It is also produced in the thorium-230 series. Both long lived radionuclides have been proposed for disposal in the shallow land burial pits in Area 5 RWMS compound of Nevada Test Site (NTS). The constructed physics based model includes diffusion and barometric pressure-induced advection of an M-chain of radionuclides. The usual Bateman decay mechanics are included for each radionuclide. Both linear reversible and linear irreversible first order sorption kinetics are assumed for each radionuclide. This report presents the details of using the noble gas transport model, CASCADR9, in an engineering design study mode. Given data on the low-level waste stream, which constitutes the ultimate source of radon-222 in the RWMS, CASCADR9 is used to generate the surface flux (pCi/cm{sup 2}-sec) of radon-222 under the realistic atmospheric and alluvial soil conditions found in the RWMS at Area 5, of the NTS. Specifically, this study examines the surface flux of radon-222 as a function of the depth of burial below the land surface.

  1. Recovery of Depleted Uranium Fragments from Soil

    SciTech Connect (OSTI)

    Farr, C.P.; Alecksen, T.J.; Heronimus, R.S.; Simonds, M.H.; Farrar, D.R.; Baker, K.R.; Miller, M.L.

    2008-07-01

    A cost-effective method was demonstrated for recovering depleted uranium (DU) fragments from soil. A compacted clean soil pad was prepared adjacent to a pile of soil containing DU fragments. Soil from the contaminated pile was placed on the pad in three-inch lifts using conventional construction equipment. Each lift was scanned with an automatic scanning system consisting of an array of radiation detectors coupled to a detector positioning system. The data were downloaded into ArcGIS for data presentation. Areas of the pad exhibiting scaler counts above the decision level were identified as likely locations of DU fragments. The coordinates of these locations were downloaded into a PDA that was wirelessly connected to the positioning system. The PDA guided technicians to the locations where hand-held trowels and shovels were used to remove the fragments. After DU removal, the affected areas were re-scanned and the new data patched into the data base to replace the original data. This new data set along with soil sample results served as final status survey data. (authors)

  2. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational module for handling coupled effects of pressure, temperature, and induced rock deformations. Develop a reliable model of heat transfer and fluid flow in fractured rocks.

  3. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receivermore » and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  4. Modeling the Transverse Thermal Conductivity of 2-D SiCf/SiC Composites Made with Woven Fabric

    SciTech Connect (OSTI)

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2004-06-30

    The hierarchical two-layer (H2L) model was developed to describe the effective transverse thermal conductivity, Keff, of a 2D-SiCf/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that usually include a significant amount of interlayer porosity. Previously, H2L model predictions were compared to measured values of Keff for two versions of DuPont 2D-Hi NicalonÔ/PyC/ICVI-SiC composite, one with a “thin” (0.110 μm) and the other with a “thick” (1.040 μm) pyrocarbon (PyC) fiber coating, and for a 2D-TyrannoÔ SA/”thin” PyC/FCVI-SIC composite made by ORNL. In this study, H2L model predictions are compared to measured Keff-values for a 2D-SiCf/SiC composite made by GE Power Systems (formerly DuPont Lanxide) using the ICVI-process with Hi-NicalonÔ type S fabric. The values of Keff determined for the composite made with the Hi-NicalonÔ type S fabric were significantly greater than Keff-values determined for the composites made with either the Hi-NicalonÔor the TyrannoÔ SA fabrics. Differences in Keff-values were expected for using different fiber types, but major differences also were due to observed microstructural variations between the systems, and as predicted by the H2L model.

  5. Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy

    SciTech Connect (OSTI)

    Young, Sung; Nam, Tae-Hyun

    2013-12-15

    Graphical abstract: - Highlights: Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. Finite element calculation was conducted for B2B19? transformation of Ti44.5Ni5Cu0.5 V (at.%). Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti44.5Ni5Cu0.5 V (at.%) alloy under bias loading.

  6. Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor

    SciTech Connect (OSTI)

    Merrill, Brad J.

    2015-03-25

    The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump to avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.

  7. Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Merrill, Brad J.

    2015-03-25

    The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump tomore » avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.« less

  8. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Wang, D.P.

    1985-07-01

    Ocean thermal energy conversion (OTEC) plants discharge large volumes of cold water into the upper ocean. A three-dimensional, limited-area model was developed to investigate the regional influence of the far-field effluent plume created by the negatively buoyant discharge. The model was applied to discharges from a 40-MW/sub e/ OTEC plant into coastal waters characterized by various ambient ocean conditions. A typical ambient temperature structure and nutrient distribution, as well as the behavior of the effluent plume itself, were strongly modified by the discharge-induced circulation. Although temperature perturbations in the plume were small, upward entrainment of nutrients from below the thermocline was significant. The regional influence of discharges from an 80-MW/sub e/ OTEC plant, the interactions between the discharges from two adjacent 40-MW/sub e/ OTEC plants, and the effects of coastal boundary and bottom discharge were examined with respect to the regional influence of a 40-MW/sub e/ OTEC plant located in deep water off a coast (base case).

  9. Validation of detailed thermal hydraulic models used for LMR safety and for improvement of technical specifications

    SciTech Connect (OSTI)

    Dunn, F.E.

    1995-12-31

    Detailed steady-state and transient coolant temperatures and flow rates from an operating reactor have been used to validate the multiple pin model in the SASSYS-1 liquid metal reactor systems analysis code. This multiple pin capability can be used for explicit calculations of axial and lateral temperature distributions within individual subassemblies. Thermocouples at a number of axial locations and in a number of different coolant sub-channels m the XXO9 instrumented subassembly in the EBR-II reactor provided temperature data from the Shutdown Heat Removal Test (SHRT) series. Flow meter data for XXO9 and for the overall system are also available from these tests. Results of consistent SASSYS-1 multiple pin analyses for both the SHRT-45 loss-of-flow-without-scram-test and the S14RT-17 protected loss-of-flow test agree well with the experimental data, providing validation of the SASSYS-1 code over a wide range of conditions.

  10. A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits

    SciTech Connect (OSTI)

    Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D; Young II, Marcus Aaron; Rizy, D Tom; Stovall, John P; Overholt, Philip N

    2014-01-01

    Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess the performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.