Sample records for thermal cracking visbreaking

  1. Visbreaking-enhanced thermal recovery method utilizing high temperature steam

    SciTech Connect (OSTI)

    Shu, W.R.

    1984-06-26T23:59:59.000Z

    The displacement efficiency of a steam drive process is improved and steam override reduced by rapidly injecting a predetermined amount of high temperature steam via an injection well into the formation to visbreak a portion of the oil in the formation prior to a steam drive wherein steam is injected into the formation via the injection well to displace oil to a spaced-apart production well through which oil is recovered. The visbroken oil provides a more favorable transition of mobility ratio between the phases in the formation thereby reducing viscous fingering and increasing the displacement efficiency of the steam drive. In addition, after a predetermined amount of high temperature steam has been injected into the formation, the formation may be allowed to undergo a soak period prior to the steam drive. The high temperature steam injection and soaking steps may be sequentially repeated for a plurality of cycles.

  2. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

    2009-12-22T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  3. Prediction of thermal crack spacing D.H. Timm a

    E-Print Network [OSTI]

    Guzina, Bojan

    understanding of thin film coatings but an understanding of how so-called thermal cracks, a feature of cold

  4. Prediction of thermal reflection cracking in west Texas

    E-Print Network [OSTI]

    Chang, Hang-Sun

    1975-01-01T23:59:59.000Z

    for the stress intensity factor, Ck, following Barenblatt (53) is used. z 'e(')4' C = ? / k n o (3-11) where C is the distance away from crack tip and o (g) is the surface e stress inside the crack tip element, i. e. ? o is the thermal stress at the depth... of the studies being conducted on pavement temp- erature cracking have been mainly concerned with the fracture suscepti- bilityy of asphalt concrete under extremely low temperature (3, 4). Find- ings of these studies could not provide satisfactory...

  5. Thermal resistance of bridged cracks in fiber-reinforced ceramic John Dryden

    E-Print Network [OSTI]

    Zok, Frank

    -reinforced ceramic composites obtain high toughness is through the de- velopment of multiple matrix cracksThermal resistance of bridged cracks in fiber-reinforced ceramic composites John Dryden Department November 2000; accepted for publication 16 January 2001 The thermal resistance of a bridged matrix crack

  6. Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite

    E-Print Network [OSTI]

    Zok, Frank

    Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite of Engineering Science, University of Western Ontario, London, Ontario N6A 5B9, Canada Effects of matrix cracks conductances coupled with a unit cell model for a fiber composite containing a periodic array of matrix cracks

  7. Enlargement of concrete blocks of arch dams with allowance of the formation of radial thermal cracks

    SciTech Connect (OSTI)

    Verbetskii, G.P.; Chogovadze, G.I.; Daneliya, A.I.

    1988-04-01T23:59:59.000Z

    Considerable acceleration of the construction of arch dams with the use of highly productive continuous concreting mechanisms is possible with enlargement of the blocks and allowance of the formation of thermal radial cracks in them. A theoretical analysis and the results of on-site observations show that under the effect of the hydrostatic head of water, radial joints and cracks in compressed zones of an arch dam close and the dam in these zones works as a solid dam. Thermal cracking in concrete blocks of arch dams enlarged in plan should be controlled by making radial notches to concentrate tensile stresses providing the formation of radial cracks at prescribed places and through the usual methods of thermal regulation. The block size along the face of an arch dam is then no longer limited by the condition of crack resistance but is determined by the rate of concreting. The technical and economic effects from concreting arch dams are cited.

  8. Thermal cracking of rubber modified pavements, May 1995. Final report

    SciTech Connect (OSTI)

    Raad, L.; Yuan, X.; Saboundjian, S.

    1995-05-01T23:59:59.000Z

    In accordance with the original ISTEA mandate (1991) to use crumb tire rubber in pavements, Alaska would be required to use about 250 tons of used tire rubber starting in 1994 and increasing to about 1,000 tons of rubber in 1997 and each year thereafter. A number of pavements using crumb rubber modifiers have been built in the state and have been in service for periods of 8 to 15 years. Knowledge of the behavior of these rubber-modified pavements under extreme climate conditions, particularly in relation to their low temperature cracking resistance, is necessary for future design and construction of rubberized pavements in Alaska. This report presents results of a study to determine the low temperature cracking resistance of rubber modified pavements in Alaska in comparison with conventional asphalt concrete pavements.

  9. Roles of grain boundaries in cleavage cracking and thermal crack arrest experiments in iron-silicon alloy

    E-Print Network [OSTI]

    Qiao, Yu, 1972-

    2002-01-01T23:59:59.000Z

    High-angle grain boundaries in steel offer an important resistance to the propagation of cleavage cracks that affects the fracture toughness and can modulate the ductile-to-brittle transition temperature of fracture downward. ...

  10. Gamma prime embrittlement and thermal fatigue cracking of a hydrogen reformer burner end

    SciTech Connect (OSTI)

    Dias, O.C.; Mack, N.C. [Amoco Oil Co., Texas City, TX (United States)

    1994-12-31T23:59:59.000Z

    An investigation into the premature failure of an Alloy 800HT (UNS N08811) oxygen-gas mixer water jacketed end is discussed. Detailed metallurgical analyses showed that gamma prime [Ni{sub 3} (Al, Ti)] embrittlement and thermal fatigue cracking led to eventual leakage. The reduced lif e of the Alloy 800HT (UNS N08811) replacement (problems after only a year) was traced to its higher Al + Ti content (1.1%) compared to Alloy 800H (0.6% Al + Ti) which lasted over two years. While higher aluminum and titanium levels improve high temperature creep and stress rupture properties, both are sigma formers and, at levels > 0.6%, tend to form gamma prime with nickel. The choice of alternative metallurgies requires careful considerations of physical, mechanical and thermal properties as well as an understanding of complex stresses and stress distributions.

  11. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    by the thermal cracking process of the El-Lujjan oil shale showed that the yield of oil was around 12 wt of the boiling point for different distillate fractions. Sulfur in Jordanian oil shale was found to be mainly the dominant phases in these fractions. q 2005 Published by Elsevier Ltd. 1. Introduction Oil shale

  12. Process for the hydroformylation of sulfur-containing thermally cracked petroleum residue and novel products thereof

    SciTech Connect (OSTI)

    Oswald, A.A.; Bhatia, R.N.; Mozeleski, E.J.; Glivicky, A.P.; Brueggeman, B.G.; Hooten, J.R.; Smith, C.M.; Hsu, C.S.

    1991-07-09T23:59:59.000Z

    This patent describes a hydroformylation-hydrogenation process comprising reacting an olefinic cracked petroleum distillate feed, produced from petroleum residue by high temperature thermal cracking, and containing C{sub 5} to C{sub 35}-1-n-alkyl olefins as the major type of olefin components, and organic sulfur compounds in concentrations exceeding 0.1% sulfur. It comprises at first with carbon monoxide and hydrogen at temperatures between about 50 and 250{degrees} C and pressures in the range of 50 to 6000 psi; in the presence of a Group VIII transition metal carbonyl complex catalyst in effective amounts to produce aldehydes of a semilinear character having an average of less than one alkyl branch per molecule and 20% by weight or more linear isomers, then with molecular hydrogen at temperatures between 100 and 250{degrees} C and pressures between 200 psi and 5000 psi (13.6 and 340 atm) in the presence of a hydrogenation catalyst in effective amounts the catalyst being sulfur resistant cobalt, molybdenum, nickel, or tungsten or a sulfide thereof to produce the corresponding alcohols of a semilinear character having an average of less than one alkyl branch per molecule and 20% by weight or more linear isomers, then with molecular hydrogen at temperatures between 100 and 250{degrees} C and pressures between 200 psi and 5000 psi (13.6 and 340 atm) in the presence of a hydrogenation catalyst in effective amounts the catalyst being sulfur resistant cobalt, molybdenum, nickel, or tungsten or a sulfide thereof to produce the corresponding alcohols of a semilinear character having an average of less than one alkyl branch per molecule.

  13. WATTS TOWERS: THE EFFECTS OF THERMAL CYCLES ON THE FORMATION AND BEHAVIOR OF CRACKS

    E-Print Network [OSTI]

    Spencer, Matthew T

    2013-02-06T23:59:59.000Z

    The development of cracks in Portland Cement Concrete (PCC) and Grout has become a problem of rising concern in a country with an aging infrastructure. A detailed understanding of the causes as well as the behavior of these cracks is vital...

  14. Effects of thermal aging on Stress Corrosion Cracking and mechanical properties of stainless steel weld metals

    E-Print Network [OSTI]

    Hixon, Jeff

    2006-01-01T23:59:59.000Z

    Stress Corrosion Cracking (SCC) in and around primary loop piping welds in Boiling Water Reactors has been observed worldwide as plants continue to operate at temperatures and pressures near 2880C (5500F) and 6.9 MPa (1000 ...

  15. Crack detection using pulsed eddy current stimulated thermography

    SciTech Connect (OSTI)

    Kostson, E.; Weekes, B.; Almond, D. P. [RCNDE, Department of Mechanical Engineering, University of Bath (United Kingdom); Wilson, J.; Tian, G. Y. [School of Electrical, Electronic and Computer Engineering, Newcastle University (United Kingdom)

    2011-06-23T23:59:59.000Z

    This contribution presents results from studies investigating factors that influence the detection of surface breaking cracks using pulsed eddy current thermography. The influences of the current strength and crack orientation in both ferromagnetic and non-ferromagnetic metals have been investigated. It has been found that crack detection is far more sensitive to crack orientation in non-ferromagnetic metals than in ferromagnetic metals. The effects of crack size on detectability are presented for a large number of steel, nickel alloy and titanium samples. Results of studies comparing crack images obtained prior and after coating a nickel alloy sample with a thermal barrier coating are presented.

  16. Crack coalescence in granite

    E-Print Network [OSTI]

    Miller, James Thomas, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    This thesis experimentally investigates crack coalescence in prismatic Barre Granite specimens with two pre-cut, open flaws under uniaxial compression. Using a high-speed video system, crack initiation, propagation, and ...

  17. Application of the cracked pipe element to creep crack growth prediction

    SciTech Connect (OSTI)

    Brochard, J.; Charras, T.

    1997-04-01T23:59:59.000Z

    The modification of a computer code for leak before break analysis is very briefly described. The CASTEM2000 code was developed for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading. The modification extends the capabilities of the cracked pipe element to the determination of fracture parameters under creep conditions (C*, {phi}c and {Delta}c). The model has the advantage of evaluating significant secondary effects, such as those from thermal loading.

  18. Combination process for upgrading residual oils

    SciTech Connect (OSTI)

    Busch, L.E.; Walters, P.W.; Zandona, O.

    1990-01-16T23:59:59.000Z

    This patent describes a method for upgrading high boiling residual portions of crude oils comprising metal contaminants, porphyrins, asphaltenes and high molecular weight multi-ring hydrocarbon material. It comprises: charging a high boiling residual portion of crude oil admixed with diluent in contact with suspended upflowing substantially inert fluidizable solids particulate material at an elevated thermal visbreaking temperature in a riser contact zone for a time sufficient to recover therefrom a vaporous hydrocarbon product higher boiling than gasoline partially decarbonized and demetallized to a lower contaminating metals level, quenching the vaporous product of thermal visbreaking below its dew point after separation from solids, charging quenched thermally modified high boiling hydrocarbon product with a crystalline zeolite cracking catalyst under cracking conditions for a hydrocarbon residence time in a riser cracking zone; recovering a hydrocarbon conversion product; separating a combined C{sub 4} minus wet gas product stream of the visbreaking and zeolite catalyst cracking operating to recover a C{sub 3}-C{sub 4} rich fraction separately from a C{sub 2} minus dry gas product fraction, and regenerating the crystalline zeolite contcontaining catalyst.

  19. Application of the cracked pipe element to creep crack growth prediction

    SciTech Connect (OSTI)

    Brochard, J.; Charras, T. [C.E.A.-C.E.-Saclay DRN/DMT, Gif Sur Yvette (France); Ghoudi, M. [C.E.A.-C.E.-Saclay, Gif Sur Yvette (France)

    1997-04-01T23:59:59.000Z

    Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.

  20. Numerical simulation of oxidation and its effect on the crack growth resistance of titanium alloys

    E-Print Network [OSTI]

    Triharjanto, Robertus Heru

    1997-01-01T23:59:59.000Z

    . Such applications expose the MMC to highly variable mechanical and thermal loading and corrosive environments. The mechanical and thermal loading may introduce macrocracks, which may promote oxidation from the crack surfaces. Previous research has noted that even...

  1. Determination of crack morphology parameters from service failures for leak-rate analyses

    SciTech Connect (OSTI)

    Wilkowski, G.; Ghadiali, N.; Paul, D. [Battelle Memorial Institute, Columbus, OH (United States)] [and others

    1997-04-01T23:59:59.000Z

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  2. Automated pavement crack detection

    E-Print Network [OSTI]

    Rao, Ashok Madhava

    1991-01-01T23:59:59.000Z

    : Electrical Engineering AUTOMATED PAVEMENT CRACK DETECTION A Thesis by ASHOK MADHAVA RAO Approved as to style and content by . c Norman C. Grisw d (Chair of Committ ) Nasser Kehtarnavaz (Member) g, J~, Karan Watson Robert L. Lytt (Member) Jo W.... Howze (Head of Department) December 1991 111 ABSTRACT Automated Pavement Crack Detection. (December 1991) Ashok Madhava, Rao, B. E. , Mysore University Chair of Advisory Committee: Norman. C. Griswold Due to load, environmental and structural...

  3. Hydrocarbon cracking catalyst

    SciTech Connect (OSTI)

    Lochow, C.F.; Kovacs, D.B.

    1988-12-27T23:59:59.000Z

    This patent describes a catalyst composition for cracking hydrocarbons to maximize gasoline comprising: rare earth exchanged ''Y'' crystalline faujasite dispersed in a clay containing matrix material; and which has been subsequently further ion exchanged to contain 0.20 to 3.0 wt% yttrium, calculated as the oxide, whereby the yttrium is chemically combined in the catalyst composition.

  4. Causes and solutions for cracking of coextruded and weld overlay floor tubes in black liquor recovery boilers

    SciTech Connect (OSTI)

    Keiser, J.R.; Taljat, B.; Wang, X.L. [and others

    1998-09-01T23:59:59.000Z

    Cracking of coextruded, black liquor recovery boiler floor tubes is both a safety and an economic issue to mill operators. In an effort to determine the cause of the cracking and to identify a solution, extensive studies, described in this and three accompanying papers, are being conducted. In this paper, results of studies to characterize both the cracking and the chemical and thermal environment are reported. Based on the results described in this series of papers, a possible mechanism is presented and means to lessen the likelihood of cracking or to totally avoid cracking of floor tubes are offered.

  5. Crack-resistant siloxane molding compounds. [Patent application

    DOE Patents [OSTI]

    McFarland, J.W.; Swearngin, C.B.

    1980-11-03T23:59:59.000Z

    The crack resistance of phenyl silicone molding resins containing siliceous fillers is improved by incorporating therein about 0.5 to 5.5% by weight of ..beta..-eucryptite, a lithium aluminum silicate having a negative thermal expansion coefficient. These molding resins are particularly suitable for encapsulating electronic devices such as diodes, coils, resistors, and the like.

  6. Status Report on Studies of Recovery Boiler Composite Floor Tube Cracking

    SciTech Connect (OSTI)

    Eng, P.; Frederick, L.A.; Hoffmann, C.M.; Keiser, J.R.; Mahmood, J.; Maziasz, P.J.; Prescott, R.; Sarma, G.B.; Singbeil, D.L.; Singh, P.M.; Swindeman, R.W.; Wang, X.-L.

    1999-09-12T23:59:59.000Z

    Cracking of the stainless steel layer of co-extruded 304L stainless steel/SA210 Gd A 1 carbon steel black liquor recovery boiler floor tubes has been identified as one of the most serious material problems in the pulp and paper industry. A DOE-funded study was initiated in 1995 with the goal of determining the cause of and possible solutions to this cracking problem. These studies have characterized tube cracking as well as the chemical and thermal environment and stress state of floor tubes. Investigations of possible cracking mechanisms indicate that stress corrosion cracking rather than thermal fatigue is a more likely cause of crack initiation. The cracking mechanism appears to require the presence of hydrated sodium sulfide and is most likely active during shut-downs and/or start-ups. Based on these results and operating experience, certain alloys appear to be more resistant than others to cracking in the floor environment, and certain operating practices appear to significantly lessen the likelihood of cracking. This report is the latest in a series of progress reports presented on this project.

  7. Identifying and Understanding Environment-Induced Crack propagation Behavior in Ni-based Superalloy INCONEL 617

    SciTech Connect (OSTI)

    Ma, Longzhou

    2012-11-30T23:59:59.000Z

    The nickel-based superalloy INCONEL 617 is a candidate material for heat exchanger applications in the next-generation nuclear plant (NGNP) system. This project will study the crack propagation process of alloy 617 at temperatures of 650°C-950°C in air under static/cyclic loading conditions. The goal is to identify the environmental and mechanical damage components and to understand in-depth the failure mechanism. Researchers will measure the fatigue crack propagation (FCP) rate (da/dn) under cyclic and hold-time fatigue conditions, and sustained crack growth rates (da/dt) at elevated temperatures. The independent FCP process will be identified and the rate-controlled sustained loading crack process will be correlated with the thermal activation equation to estimate the oxygen thermal activation energy. The FCP-dependent model indicates that if the sustained loading crack growth rate, da/dt, can be correlated with the FCP rate, da/dn, at the full time dependent stage, researchers can confirm stress-accelerated grain-boundary oxygen embrittlement (SAGBOE) as a predominate effect. Following the crack propagation tests, the research team will examine the fracture surface of materials in various cracking stages using a scanning electron microscope (SEM) and an optical microscope. In particular, the microstructure of the crack tip region will be analyzed in depth using high resolution transmission electron microscopy (TEM) and electron energy loss spectrum (EELS) mapping techniques to identify oxygen penetration along the grain boundary and to examine the diffused oxygen distribution profile around the crack tip. The cracked sample will be prepared by focused ion beam nanofabrication technology, allowing researchers to accurately fabricate the TEM samples from the crack tip while minimizing artifacts. Researchers will use these microscopic and spectroscopic results to interpret the crack propagation process, as well as distinguish and understand the environment or SAGBOE damage process under hold-time fatigue and sustained loading conditions

  8. Crack Path Selection Fatigue crack path imaged via SEM

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Crack path selects secondary phases and interface Conclusions ·Nb-Si Alloys tested exhibited toughness phases fail in a brittle manner Fatigue Crack Growth ABSTRACT Advanced aerospace materials continue at high temperatures. An important property of any high temperature aerospace engineering material is its

  9. Stress corrosion crack growth in porous sandstones. 

    E-Print Network [OSTI]

    Ojala, Ira O

    Stress corrosion crack growth occurs when the chemical weakening of strained crack tip bonds facilitates crack propagation. I have examined the effect of chemical processes on the growth of a creack population by carrying out triaxial compression...

  10. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01T23:59:59.000Z

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  11. automated thermal cycling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IGBT failure mode, due to thermal fatigue, is the solder cracks between the copper base plate and the Direct Boyer, Edmond 28 The effects of controlled thermal cycling on...

  12. Peridynamic model for fatigue cracking.

    SciTech Connect (OSTI)

    Silling, Stewart A.; Abe Askari (Boeing)

    2014-10-01T23:59:59.000Z

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the %22remaining life%22 of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  13. Degradation of Structural Alloys Under Thermal Insulation

    E-Print Network [OSTI]

    McIntyre, D. R.

    1984-01-01T23:59:59.000Z

    Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

  14. Degradation of Structural Alloys Under Thermal Insulation 

    E-Print Network [OSTI]

    McIntyre, D. R.

    1984-01-01T23:59:59.000Z

    Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

  15. Parallel interacting edge cracks under pure bending

    E-Print Network [OSTI]

    Moran, Ivan

    1991-01-01T23:59:59.000Z

    specimens. . . 66 Table 6. 4 a SIFs for interactive cracks. Position 14. . 73 Table 6. 4 b SIFs for interactive cracks. Position 24 . . 79 Table 6. 4 c SIFs for interactive cracks. Position 13. . 83 Table 6. 5 a K~ff for position 14 Table 6. 5 b K... Table 5. 3 Models Dimensions SPECIMEN MODEL 1 MODEL 2 Length L (inches) Dimension m (in) 6. 50 6. 50 1. 25 1. 25 Spec. Width H (in) 1. 100 1. 276 Thickness t (in) 0. 238 0. 238 Crack Angle p (o) 90 54 Crack Width c (in) Crack Length a (in) 0...

  16. Nonlinear structural crack growth monitoring

    DOE Patents [OSTI]

    Welch, Donald E. (Oak Ridge, TN); Hively, Lee M. (Philadelphia, TN); Holdaway, Ray F. (Clinton, TN)

    2002-01-01T23:59:59.000Z

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  17. CrackTree: Automatic crack detection from pavement images Qin Zou a,b,c,

    E-Print Network [OSTI]

    Wang, Song

    CrackTree: Automatic crack detection from pavement images Qin Zou a,b,c, , Yu Cao c , Qingquan Li b t Pavement cracks are important information for evaluating the road condition and conducting the neces- sary pavement images. In practice, crack detection is a very challenging problem because of (1) low con- trast

  18. Original article Stem cracks in Norway spruce

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Stem cracks in Norway spruce in southern Scandinavia: causes and consequences Garpenberg, Sweden (Received 1st September 1992; accepted 17 June 1993) Summary — Stem cracks in Norway;INTRODUCTION Background During this century, the widespread crack- ing of Norway spruce (Picea abies L Karst

  19. Cracking Resistance of Asphalt Rubber Mix Versus

    E-Print Network [OSTI]

    Mobasher, Barzin

    . crack length curve for KR #12;Load vs. CMOD 0.0 0.5 1.0 1.5 2.0 Crack mouth opening, mm 0 500 1000 1500 non-linear fracture mechanics ·Compliance approach ·R-Curve approach #12;Conventional Fatigue Testing factor R-Curve approach Resistance to initiation & growth of cracks Evaluates fracture toughness

  20. Prediction of crack propagation paths in the unit cell of SOFC stacks

    SciTech Connect (OSTI)

    Joulaee, N.; Makradi, A.; Ahzi, Said; Khaleel, Mohammad A.; Koeppel, Brian J.

    2009-08-01T23:59:59.000Z

    Planar Solid Oxide Fuel Cells (SOFC) stacks are multi-material layered systems with different thermo-mechanical properties. Due to their severe thermal loading, these layers have to meet high demands to preserve their mechanical integrity without initiation and propagation of fracture. Here, we focus on a typical unit cell of the stack which consists of positive electrode-electrolyte-negative electrode (PEN). Based on the mechanical properties of each layer and their interfaces, an energy criterion as a function of crack length is used for the prediction of possible crack extensions in the PEN. This criterion is a pure local criterion, independent of applied loads and geometry of the specimen. An analysis of the competition between crack deflections in the interfaces and crack penetration in layers is presented.

  1. Environmentally assisted cracking of LWR materials

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1995-12-01T23:59:59.000Z

    Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289{degree}C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320{degree}C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections.

  2. Cascading of fluid cracking catalysts

    SciTech Connect (OSTI)

    Kovach, S.M.; Miller, C.B.

    1986-05-27T23:59:59.000Z

    A process is described for conversion of hydrocarbon feedstocks by cascading a cracking catalyst containing zeolite in an acidic matrix from one hydrocarbon processing unit to another, wherein there are at least three different interconnected hydrocarbon processing units comprising a first unit having a regeneration zone and a riser zone, a second unit having having a regeneration zone and a riser zone, and a third unit having a riser zone and a regeneration zone, each unit having different processing conditions.

  3. Methodology for predicting asphalt concrete overlay life against reflection cracking

    E-Print Network [OSTI]

    Jayawickrama, Priyantha Warnasuriya

    1985-01-01T23:59:59.000Z

    of thermal expansion = change in temperature E K - (so gT) vc/h F3(c/h) +(I-u ) By defining, !40) (41) Jc/h F3(c/h) T Kt (42 ) 29 ~Summa r The proper variables to be used in a design equation and the form of the equation to be used is best... obtained are presented in this chapter. The stress intensity factor computations were carr1ed out for different crack-tip positions and for different levels of aggregate interlock act1on. These results were obtained for each of the three mechanisms...

  4. Study on grain boundary character and strain distribution of intergranular cracking in the CGHAZ of T23 steel

    SciTech Connect (OSTI)

    Jin, Y.J.; Lu, H., E-mail: shweld@sjtu.edu.cn; Yu, C.; Xu, J.J.

    2013-10-15T23:59:59.000Z

    Intergranular reheat cracking in the coarse-grained heat-affected zone of T23 steel was produced by strain to fracture tests on a Gleeble 3500 thermal–mechanical simulator. Then the grain boundary character, as well as the strain distribution after reheat crack propagation, was studied by electron backscatter diffraction technique. The results showed that incoherent ?3 boundaries were seldom found on the prior austenite grain boundaries. Therefore, only the type of random high-angle boundaries played a crucial role in the intergranular cracking. Microstructurally cavities and small cracks were preferentially initiated from high-angle grain boundaries. Low-angle grain boundaries and high-angle ones with misorientation angles less than 15° were more resistant to the cracking. More importantly, the fraction of high-angle grain boundaries increased with the plastic strain induced by both temperature gradient and stress in the coarse-grained heat-affected zone, which contributed to the crack initiation and propagation. Furthermore, the strain distributions in the vicinity of cavities and cracks revealed the accommodation processes of plastic deformation during stress relaxation. It also reflected the strength differences between grain interior and grain boundary at different heat-treated temperatures, which had a large influence on the cracking mechanism. - Highlights: • The coincidence site lattice boundaries play little role in the reheat cracking. • Cavity and crack occur at high-angle grain boundaries rather than low-angle ones. • The strain leads low-angle grain boundaries to transform to high-angle ones. • Strain distribution differs for cavity and crack zones at different temperatures.

  5. Characterization of cracking restraint at sawcut joints using the German Cracking Frame

    E-Print Network [OSTI]

    Vepakomma, Shilpa

    2002-01-01T23:59:59.000Z

    Cracking of concrete slabs at sawcut notches is a major concern in the early stages of construction. Several factors affecting crack initiation are material strength parameters, method and quality of curing, slab/subbase stiffness, and concrete...

  6. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01T23:59:59.000Z

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  7. Fuel reforming for scramjet thermal management and combustion optimization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the composition of the cracked fuel entering the combustor, an accurate predictive model of the thermalFuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ of the main issues of hypersonic flight is the thermal management of the overall vehicle and more specifically

  8. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    reservoir crack patterns using shear-wave splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Characterization of geothermal reservoir...

  9. Slow crack growth in polycarbonate films

    E-Print Network [OSTI]

    Cortet, Pierre-Philippe; Vanel, Loic; Ciliberto, Sergio

    2005-01-01T23:59:59.000Z

    We study experimentally the slow growth of a single crack in polycarbonate films submitted to uniaxial and constant imposed stress. The specificity of fracture in polycarbonate films is the appearance of flame shaped macroscopic process zones at the tips of the crack. Supported by an experimental study of the mechanical properties of polycarbonate films, an analysis of the stress dependence of the mean ratio between the process zone and crack lengths, during the crack growth, show a quantitative agreement with the Dugdale-Barenblatt model of the plastic process zone. We find that the fracture growth curves obey strong scaling properties that lead to a well defined growth master curve.

  10. White Etching Cracks | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Etching Cracks Presented by Walter Holweger of Schaeffler at the Wind Turbine Tribology Seminar 2014. NREL Chicago291014Holweger26nosec...

  11. 7. Low temperature cracking in HMA Pavement Cracking Al-Qadi, Scarpas & Loizos (eds)

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    7. Low temperature cracking in HMA 367 #12;#12;Pavement Cracking ­ Al-Qadi, Scarpas & Loizos (eds, Storrs, Connecticut, USA ABSTRACT: Low temperature cracking remains one of the major pavement distresses in asphalt concrete pavements in cold regions. An integrated laboratory testing, field performance data

  12. Crack shape developments and leak rates for circumferential complex-cracked pipes

    SciTech Connect (OSTI)

    Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)

    1997-04-01T23:59:59.000Z

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  13. Development of crack shape: LBB methodology for cracked pipes

    SciTech Connect (OSTI)

    Moulin, D.; Chapuliot, S.; Drubay, B. [Commissariat a l Energie Atomique, Gif sur Yvette (France)

    1997-04-01T23:59:59.000Z

    For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.

  14. SciTech Connect: CRACK TIP PLASTICITY AND FRACTURE INITIATION...

    Office of Scientific and Technical Information (OSTI)

    N50000* --Metals, Ceramics, & Other Materials; CRACKS; FRACTURE PROPERTIES; METALS BUILDING MATERIALSfracture of metal, crack tip plasticity and initiation criteria for;...

  15. Life prediction for bridged fatigue cracks

    SciTech Connect (OSTI)

    Cox, B.N.

    1994-08-01T23:59:59.000Z

    One of the more promising classes of composites touted for high temperature applications, and certainly the most available, is that of relatively brittle matrices, either ceramic or intermetallic, reinforced by strong, aligned, continuous fibers. Under cyclic loading in the fiber direction, these materials develop matrix cracks that often run perpendicular to the fibers, while the fibers remain intact in the crack wake, supplying bridging tractions across the fracture surfaces. The bridging tractions shield the crack tip from the applied load, dramatically reducing the crack velocity from that expected in an unreinforced material subjected to the same value, {Delta}K{sub a}, of the cyclic applied stress intensity factor. An important issue in reliability is the prediction of the growth rates of the bridged cracks. The growth rates of matrix fatigue cracks bridged by sliding fibers are now commonly predicted by models based on the micromechanics of frictional interfaces. However, there exist many reasons, both theoretical and experimental, for suspecting that the most popular micromechanical models are probably wrong in detail in the context of fatigue cracks. Furthermore, a review of crack growth data reveals that the validity of the micromechanics-based predictive model has never been tested and may never be tested. In this paper, two alternative approaches are suggested to the engineering problem of predicting the growth rates of bridged cracks without explicit recourse to micromechanics. Instead, it is shown that the material properties required to analyze bridging effects can be deduced directly from crack growth data. Some experiments are proposed to test the validity of the proposals.

  16. Early stages in the development of stress corrosion cracks

    SciTech Connect (OSTI)

    Jones, R.H.; Simonen, E.P.

    1993-12-01T23:59:59.000Z

    Processes in growth of short cracks and stage I of long stress corrosion cracks were identified and evaluated. There is evidence that electrochemical effects can cause short stress corrosion cracks to grow at rates faster or slower than long cracks. Short cracks can grow at faster rates than long cracks for a salt film dissolution growth mechanism or from reduced oxygen inhibition of hydrolytic acidification. An increasing crack growth rate with increasing crack length could result from a process of increasing crack tip concentration of a critical anion, such as Cl{sup {minus}}, with increasing crack length in a system where the crack velocity is dependent on the Cl{sup {minus}} or some other anion concentration. An increasing potential drop between crack tip and mouth would result in an increased anion concentration at the crack tip and hence an increasing crack velocity. Stage I behavior of long cracks is another early development stage in the life of a stress corrosion crack which is poorly understood. This stage can be described by da/dt = AK{sup m} where da/dt is crack velocity, A is a constant, K is stress intensity and m ranges from 2 to 24 for a variety of materials and environments. Only the salt film dissolution model was found to quantitatively describe this stage; however, the model was only tested on one material and its general applicability is unknown.

  17. The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy

    SciTech Connect (OSTI)

    G.A. Young, Jr.; J.R. Scully

    2000-09-17T23:59:59.000Z

    The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

  18. Studies on fruit cracking of tomatoes

    E-Print Network [OSTI]

    Cotner, Sam Don

    1966-01-01T23:59:59.000Z

    calcium , 33 Means for naturally occurring cracks as influenced by foliar calcium applications 33 Analysis of variance for tomato fruit cracking as influended by foliar applications of CaC12 36 LIST QF TABLES CONTINUED 17. Analysis of variance...on of the cell contents oi' tomato fruits late in the season have been reported (10). Whatley (37) states that there is a 20 percent increase in osmot1c pressure from mature green to the red ripe stags. Radial cracking may be due to an increase...

  19. CRACK SPACING IN STRAINED FILMS B.B. Guzina1

    E-Print Network [OSTI]

    Guzina, Bojan

    , similar transverse cracking patterns are a feature of asphalt concrete pavements systems in cold climates

  20. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    SciTech Connect (OSTI)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01T23:59:59.000Z

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  1. Coding the cracks | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . October 3, 2014 Printer-friendly version Researchers use Mira to study stress-corrosion cracking in silicates Encased in the rocks that comprise much of Earth's crust and...

  2. Catalytic cracking of residual petroleum fractions

    SciTech Connect (OSTI)

    Moore, H.F.; Mayo, S.L.; Goolsby, T.L. (Research and Development Dept., Ashland Petroleum Co., Ashland, KY (US))

    1991-01-01T23:59:59.000Z

    This paper reports on Arabian Light crude oil vacuum bottoms fractionated into five high-boiling fractions by wiped film evaporation, and the fractions subjected to catalytic cracking in a fixed-fluidized bed using a commercial equilibrium cracking catalyst. Density, aromaticity, and heteroatom content generally increased with boiling point, as did metals content except for vanadium and iron which demonstrated possible bimodal distributions. The cracking response of these fractions showed increasing yields of dry gas and coke, with decreasing gasoline yields, as a function of increasing apparent boiling point as would normally be expected. Surprisingly, however, local maxima were observed for wet gas yield and total conversion, with local minima for cycle oil and slurry yields, in the region of the 1200-1263{degrees}F (650-680{degrees}C) middle fraction. All fractions showed significant response to cracking, with coke yields generally being the only negative factor observed.

  3. Cracking in reinforced concrete bent caps 

    E-Print Network [OSTI]

    Young, Bradley S.

    2000-01-01T23:59:59.000Z

    by studying the relationship between stresses in the longitudinal tension reinforcement, reinforcement detailing, shear resistance, and cracking of the bent cap during service loading through to failure. As a part of this investigation, sixteen full...

  4. Shrinkage - cracking characteristics of structural lightweight concrete

    E-Print Network [OSTI]

    McKeen, Robert Gordon

    1969-01-01T23:59:59.000Z

    1969 ABSTRACT Shrinkage-Cracking Characteristics of Structural Lightweight Concrete (August 1969) B. S. C. E. , Texas AERY University Directed by: if. B. Ledbetter Tests were conducted to det. trains the effect of coarse. s -gre- gate type...'csults indicated that both unrestrained shrinkage and concret. c water loss relate to restrained shrinkage stress. Unrestrained shrinks e did not indicate. cracking ter. dency while we+ er loss provided an indi cati on of cr cking tendency. ACRRO!Jr. ROOD. i...

  5. Crack-arrest behavior in SEN wide plates of low-upper-shelf base metal tested under nonisothermal conditions: WP-2 series

    SciTech Connect (OSTI)

    Naus, D.J.; Keeney-Walker, J.; Bass, B.R.; Robinson, G.C. Jr.; Iskander, S.K.; Alexander, D.J. [Oak Ridge National Lab., TN (United States); Fields, R.J.; deWit, R.; Low, S.R. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Schwartz, C.W. [Maryland Univ., College Park, MD (United States). Dept. of Mechanical Engineering; Johansson, I.B. [Royal Inst. of Tech., Stockholm (Sweden)

    1990-08-01T23:59:59.000Z

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory under the sponsorship of the Nuclear Regulatory Commission is conducting analytical and experimental studies aimed at understanding the circumstances that would initiate the growth of an existing crack in a reactor pressure vessel (RPV) and the conditions leading to arrest of a propagating crack. Objectives of these studies are to determine (1) if the material will exhibit crack-arrest behavior when the driving force on a crack exceeds the ASME limit, (2) the relationship between K{sub Ia} and temperature, and (3) the interaction of fracture modes (arrest, stable crack growth, unstable crack growth, and tensile instability) when arrest occurs at high temperatures. In meeting these objectives, crack-arrest data are being developed over an expanded temperature range through tests involving large thermally shocked cylinders, pressurized thermally shocked vessels, and wide-plate specimens. The wide-plate specimens provide the opportunity for a significant number of data points to be obtained at relatively affordable costs. These tests are designed to provide fracture-toughness measurements approaching or above the onset of the Charpy upper-shelf regime in a rising toughness region and with an increasing driving force. This document discusses test methodology and results. 23 refs., 92 figs., 25 tabs.

  6. The analysis of cracks in high-pressure piping and their effects on strength and lifetime of construction components at the Ignalina nuclear plant

    SciTech Connect (OSTI)

    Aleev, A.; Petkevicius, K.; Senkus, V. [and others

    1997-04-01T23:59:59.000Z

    A number of cracks and damages of other sorts have been identified in the high-pressure parts at the Ignalina Nuclear Plant. They are caused by inadequate production- and repair technologies, as well as by thermal, chemical and mechanical processes of their performance. Several techniques are available as predictions of cracks and other defects of pressurized vessels. The choice of an experimental technique should be based on the level of its agreement with the actual processes.

  7. Topology of desiccation crack patterns in clay and invariance of crack interface area with thickness

    E-Print Network [OSTI]

    Tajkera Khatun; Tapati Dutta; Sujata Tarafdar

    2014-12-09T23:59:59.000Z

    We study the crack patterns developed on desiccating films of an aqueous colloidal suspension of bentonite on a glass substrate. Varying the thickness of the layer $h$ gives the following new and interesting results: (i)We identify a critical thickness $h_{c}$, above which isolated cracks join each other to form a fully connected network. A topological analysis of the crack network shows that the Euler number falls to a minimum at $h_{c}$. (ii) We find further, that the total vertical surface area of the clay $A_v$, which has opened up due to cracking, is a constant independent of the layer thickness for $h \\geq h_c$. (iii) The total area of the glass substrate $A_s$, exposed by the hierarchical sequence of cracks is also a constant for $h \\geq h_c$. These results are shown to be consistent with a simple energy conservation argument, neglecting dissipative losses. (iv) Finally we show that if the crack pattern is viewed at successively finer resolution, the total cumulative area of cracks visible at a certain resolution, scales with the layer thickness. A suspension of Laponite in methanol is found to exhibit similar salient features (i)-(iv), though in this case the crack initiation process for very thin layers is quite different.

  8. Contstraint effects of shallow cracks in structures containing fillet weld toe cracks

    E-Print Network [OSTI]

    Neligon, Melinda T

    1995-01-01T23:59:59.000Z

    for structures containing a/W--O.l and a/W--O.5 fillet weld toe cracks. The Anderson-Dodds scaling model is applied to quantify the effects of finite size on J contour integral values for structures containing a/W=O.l and a/W=0.5 fillet weld toe cracks loaded...

  9. Contstraint effects of shallow cracks in structures containing fillet weld toe cracks 

    E-Print Network [OSTI]

    Neligon, Melinda T

    1995-01-01T23:59:59.000Z

    for structures containing a/W--O.l and a/W--O.5 fillet weld toe cracks. The Anderson-Dodds scaling model is applied to quantify the effects of finite size on J contour integral values for structures containing a/W=O.l and a/W=0.5 fillet weld toe cracks loaded...

  10. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    SciTech Connect (OSTI)

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

    1997-04-01T23:59:59.000Z

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  11. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect (OSTI)

    Langton, C.

    2012-05-11T23:59:59.000Z

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  12. STRESS CORROSION CRACKING IN TEAR DROP SPECIMENS

    SciTech Connect (OSTI)

    Lam, P; Philip Zapp, P; Jonathan Duffey, J; Kerry Dunn, K

    2009-05-01T23:59:59.000Z

    Laboratory tests were conducted to investigate the stress corrosion cracking (SCC) of 304L stainless steel used to construct the containment vessels for the storage of plutonium-bearing materials. The tear drop corrosion specimens each with an autogenous weld in the center were placed in contact with moist plutonium oxide and chloride salt mixtures. Cracking was found in two of the specimens in the heat affected zone (HAZ) at the apex area. Finite element analysis was performed to simulate the specimen fabrication for determining the internal stress which caused SCC to occur. It was found that the tensile stress at the crack initiation site was about 30% lower than the highest stress which had been shifted to the shoulders of the specimen due to the specimen fabrication process. This finding appears to indicate that the SCC initiation took place in favor of the possibly weaker weld/base metal interface at a sufficiently high level of background stress. The base material, even subject to a higher tensile stress, was not cracked. The relieving of tensile stress due to SCC initiation and growth in the HAZ and the weld might have foreclosed the potential for cracking at the specimen shoulders where higher stress was found.

  13. Environmentally assisted cracking of LWR materials.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Kassner, T. F.; Park, J. H.; Shack, W. J.; Zhang, J.; Brust, F. W.; Dong, P.

    1997-12-05T23:59:59.000Z

    The effect of dissolved oxygen level on fatigue life of austenitic stainless steels is discussed and the results of a detailed study of the effect of the environment on the growth of cracks during fatigue initiation are presented. Initial test results are given for specimens irradiated in the Halden reactor. Impurities introduced by shielded metal arc welding that may affect susceptibility to stress corrosion cracking are described. Results of calculations of residual stresses in core shroud weldments are summarized. Crack growth rates of high-nickel alloys under cyclic loading with R ratios from 0.2-0.95 in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 C are summarized.

  14. Crack detection using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Migliori, Albert (Santa Fe, NM); Bell, Thomas M. (Santa Fe, NM); Rhodes, George W. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

  15. Crack detection using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Migliori, A.; Bell, T.M.; Rhodes, G.W.

    1994-10-04T23:59:59.000Z

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

  16. Fast electromigration crack in nanoscale aluminum film

    SciTech Connect (OSTI)

    Emelyanov, O. A., E-mail: oaemel2@gmail.com; Ivanov, I. O. [St. Petersburg State Polytechnical University, Saint-Petersburg (Russian Federation)

    2014-08-14T23:59:59.000Z

    The current-induced breakage of 20?nm thin aluminum layers deposited onto capacitor grade polypropylene (PP) films is experimentally studied. Biexponential current pulses of different amplitude (10–15?A) and duration (0.1–1??s) were applied to the samples. Breakage occurred after fast development of electromigrating ?200?nm-wide cracks with initial propagation velocity of ?1?m/s under a high current density of ?10{sup 12?}A/m{sup 2}. The cracks stopped when their lengths reached 250–450??m. This behavior is explained by the balance of electromigration and stress-induced atomic fluxes.

  17. Environmentally assisted cracking in Light Water Reactors: Semiannual report, April 1993--September 1993. Volume 17

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Karlsen, T.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1994-06-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRS) during the six months from April 1993 to September 1993. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels; (b) EAC of cast stainless steels (SSs); and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions in simulated boiling-water reactor (BWR) water at 289{degree}C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section 11 of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy.

  18. Crack closure effects on fatigue crack growth thresholds and remaining life in an HSLA steel

    SciTech Connect (OSTI)

    Todd, J.A.; Mostovoy, S. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Mechanical, Materials and Aerospace Engineering; Chen, L. [Texas Instruments, Attleboro, MA (United States); Yankov, E.Y. [A. Finkl and Sons, Chicago, IL (United States)

    1997-02-01T23:59:59.000Z

    The effects of crack closure on the near-threshold corrosion fatigue crack growth behavior of Mil S-24645 HSLA steel and its weld metal have been investigated in air, ASTM seawater at the free corrosion potential, and ASTM seawater at {minus}0.8V and {minus}1.0V (SCE) using frequencies of 10, 2, and 0.2 Hz, and a stress ratio, R = 0.1. Remaining life, in the presence and absence of crack closure, has been estimated as a function of applied stress range for a structure containing a 3-mm-deep surface semi-elliptical flaw.

  19. Reflective Cracking Study: HVS Test Section Forensic Investigation

    E-Print Network [OSTI]

    Jones, David; Steven, B.; Harvey, John T

    2008-01-01T23:59:59.000Z

    the asphalt concrete. Summary of Testing on the Underlyingtesting performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the forensic investigation of the HVS rutting and reflective cracking testing

  20. Characterization of Fatigue Cracking and Healing of Asphalt Mixtures

    E-Print Network [OSTI]

    Luo, Xue

    2012-07-16T23:59:59.000Z

    mixtures using an energy-based mechanistic approach. A controlled-strain repeated direct tension (RDT) test is selected to generate both fatigue cracking and permanent deformation in an asphalt mixture specimen. Fatigue cracking is separated from...

  1. Grain Boundary Structure Effects on Intergranular Stress Corrosion Cracking of

    E-Print Network [OSTI]

    Olson, Tamara

    Grain Boundary Structure Effects on Intergranular Stress Corrosion Cracking of Alloy X­750 Y. Pan B­of­freedom) and correlations with intergranular stress corrosion cracking observed in Alloy X­750. Orientation imaging

  2. A dynamical law for slow crack growth in polycarbonate films

    E-Print Network [OSTI]

    Cortet, Pierre-Philippe; Ciliberto, Sergio

    2007-01-01T23:59:59.000Z

    We study experimentally the slow growth of a single crack in polycarbonate films submitted to uniaxial and constant imposed stress. For this visco-plastic material, we uncover a dynamical law that describes the dependence of the instantaneous crack velocity with experimental parameters. The law involves a Dugdale-Barenblatt static description of crack tip plastic zones associated to an Eyring's law and an empirical dependence with the crack length that may come from a residual elastic field.

  3. autogenous shrinkage cracking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Restrained Shrinkage Cracking of Concrete Materials," 15th International Glass Fibre Reinforced Concrete Association Engineering Websites Summary: . The experiments...

  4. CRACK STATISTIC OF CRYSTALLINE SILICON PHOTOVOLTAIC MODULES M. Kntges1

    E-Print Network [OSTI]

    the risk of cracks, as well as for statistical power loss assessment. Keywords: PV module, micro cracks separation, thus resulting in inactive cell parts. For this special case a clear assessment of the power loss this gap and provide a first statistic of cracks in PV modules for future power loss assessment

  5. RESEARCH Open Access Pavement crack characteristic detection based

    E-Print Network [OSTI]

    Joensuu, University of

    RESEARCH Open Access Pavement crack characteristic detection based on sparse representation Xiaoming Sun1 , Jianping Huang1 , Wanyu Liu1* and Mantao Xu2 Abstract Pavement crack detection plays an important role in pavement maintaining and management. The three- dimensional (3D) pavement crack detection

  6. Enhanced ultrasonic detection of fatigue cracks by laser-induced crack closure

    E-Print Network [OSTI]

    Nagy, Peter B.

    , corrosion, etc. . Sec- ond, it is important to distinguish small fatigue cracks as early as possible after threshold in aluminum, aluminum­ lithium, and titanium alloys.1 For example, extensive multiple-site fatigue

  7. Stress corrosion cracking and crack tip characterization of Alloy X-750 in light water reactor environments

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2011-01-01T23:59:59.000Z

    Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

  8. Stress Corrosion Cracking and Crack Tip Characterization of Alloy X-750 in Light Water Reactor Environments

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

  9. The true toughness of human cortical bone measured with realistically short cracks

    E-Print Network [OSTI]

    Ritchie, Robert

    crack-resistance curves. We find that after only 500 µm of cracking, the driving force for crack. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines mechanisms, which act primarily in the crack wake to `shield' the crack from the applied driving force

  10. Digital radiographic systems detect boiler tube cracks

    SciTech Connect (OSTI)

    Walker, S. [EPRI, Charlotte, NC (United States)

    2008-06-15T23:59:59.000Z

    Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

  11. Environmentally assisted cracking in light water reactors

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

    1996-07-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  12. Model of crack propagation in a clay soil

    E-Print Network [OSTI]

    Carriere, Patrick Edwidge

    1985-01-01T23:59:59.000Z

    in elevation of the soil surface were recorded over time of drying for each of the treatments. A logarithmic model to predict the crack depth, the crack width, and the drop in elevation of the soil surface expressed by the equation y = A + C*logt, was found... 2 MEANS procedure results for crack depth. 3 ANOVA results for crack depth. 19 29 30 4 Values of A and C obtained from linear regression analysis for crack depth. 35 5 Selection of combinations of independent variables for maximum R...

  13. Why Do Kraft Recovery Boiler Composite Floor Tubes Crack?

    SciTech Connect (OSTI)

    Keiser, J.R.

    2001-10-22T23:59:59.000Z

    Cracks were first reported in 1992 in co-extruded 304L stainless steel/SA210 Gd Al carbon steel floor tubes of North American black liquor recovery boilers. Since then, a considerable amount of information has been collected on the tube environment, crack characteristics, the stress state of the tubes, and the crack initiation and propagation mechanisms. These studies have identified both operating procedures that apparently can greatly lessen the likelihood of crack formation in the stainless steel layer and alternate materials that appear to be much more resistant to cracking than is 304L stainless.

  14. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    SciTech Connect (OSTI)

    Pennell, W.E.

    1991-01-01T23:59:59.000Z

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. This paper presents an overview of ongoing Heavy-Section Steel Technology (HSST) Program research aimed at refining the fracture toughness data used in the analysis of fracture margins under pressurized-thermal-shock loading conditions. 33 refs., 13 figs.

  15. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    SciTech Connect (OSTI)

    Das, Subodh K.

    2006-01-09T23:59:59.000Z

    A successful four-year project on the modeling and optimization of direct chill (DC) casting to reduce ingot cracking has been completed. The project involved close collaboration among private industries, national laboratories, and universities. During the four-year project, 16 quarterly meetings brought the industrial partners and the research team together for discussion of research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot. The collaborative research resulted in several major accomplishments or findings: (1) Surface cracks were shown to be a result of hot tearing rather than cold cracks, as was thought before this project. These cracks form on the surface of a DC cast ingot just above the impingement point of the secondary cooling water jets. The cracks form along dendrite and grain boundaries, where solute and impurity elements are highly segregated. This understanding led to the development of a new technique for determining the mechanical properties in the nonequilibrium mushy zone of alloys and to thermodynamic predictions of the hot tearing propensity of DC cast ingots. (2) The apparent heat transfer coefficient (HTC) at the ingot surface in the water cooling region during DC casting was determined on the basis of temperature measurements in commercial DC casting ingots and an inverse heat transfer analysis. HTCs were calculated as a function of temperature and time, and covered the different regimes of heat transfer expected during DC casting. The calculated values were extrapolated to include the effect of water flow rate. The calculated HTCs had a peak at around 200 C, corresponding to the high heat transfer rates during nucleate boiling, and the profile was consistent with similar data published in the literature. (3) A new method, termed the reheating-cooling method (RCM), was developed and validated for measuring mechanical properties in the nonequilibrium mushy zones of alloys. The new method captures the brittle nature of aluminum alloys at temperatures close to the nonequilibrium solidus temperature, while specimens tested using the reheating method exhibit significant ductility. The RCM has been used for determining the mechanical properties of alloys at nonequilibrium mushy zone temperatures. Accurate data obtained during this project show that the metal becomes more brittle at high temperatures and high strain rates. (4) The elevated-temperature mechanical properties of the alloy were determined. Constitutive models relating the stress and strain relationship at elevated temperatures were also developed. The experimental data fit the model well. (5) An integrated 3D DC casting model has been used to simulate heat transfer, fluid flow, solidification, and thermally induced stress-strain during casting. A temperature-dependent HTC between the cooling water and the ingot surface, cooling water flow rate, and air gap were coupled in this model. An elasto-viscoplastic model based on high-temperature mechanical testing was used to calculate the stress during casting. The 3D integrated model can be used for the prediction of temperature, fluid flow, stress, and strain distribution in DC cast ingots. (6) The cracking propensity of DC cast ingots can be predicted using the 3D integrated model as well as thermodynamic models. Thus, an ingot cracking index based on the ratio of local stress to local alloy strength was established. Simulation results indicate that cracking propensity increases with increasing casting speed. The composition of the ingots also has a major effect on cracking formation. It was found that copper and zinc increase the cracking propensity of DC cast ingots. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks in DC castings from a current level of 5% down to 2%. This could lead to energy savings

  16. Soil cracking modelling using the mesh-free SPH method

    E-Print Network [OSTI]

    Bui, H H; Kodikara, J; Sanchez, M

    2015-01-01T23:59:59.000Z

    The presence of desiccation cracks in soils can significantly alter their mechanical and hydrological properties. In many circumstances, desiccation cracking in soils can cause significant damage to earthen or soil supported structures. For example, desiccation cracks can act as the preference path way for water flow, which can facilitate seepage flow causing internal erosion inside earth structures. Desiccation cracks can also trigger slope failures and landslides. Therefore, developing a computational procedure to predict desiccation cracking behaviour in soils is vital for dealing with key issues relevant to a range of applications in geotechnical and geo-environment engineering. In this paper, the smoothed particle hydrodynamics (SPH) method will be extended for the first time to simulate shrinkage-induced soil cracking. The main objective of this work is to examine the performance of the proposed numerical approach in simulating the strong discontinuity in material behaviour and to learn about the crack ...

  17. SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS

    SciTech Connect (OSTI)

    Klein, J; Jeffrey Holder, J

    2007-07-16T23:59:59.000Z

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

  18. Screening tests for improved methane cracking materials

    SciTech Connect (OSTI)

    Klein, J. E.; Hoelder, J. S. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15T23:59:59.000Z

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{sup R} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 deg.C, 101.3 kPa (760 torr) with a 10 seem feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAESr getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas. (authors)

  19. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, R.D.

    1993-10-05T23:59:59.000Z

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  20. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, Richard D. (Lisle, IL)

    1993-01-01T23:59:59.000Z

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  1. Circumferential cracking of steam generator tubes

    SciTech Connect (OSTI)

    Karwoski, K.J.

    1997-04-01T23:59:59.000Z

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

  2. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  3. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    SciTech Connect (OSTI)

    Das, S.K.; Ningileri, S.; Long, Z.; Saito, K.; Khraisheh, M.; Hassan, M.H.; Kuwana, K.; Han, Q.; Viswanathan, S.; Sabau, A.S.; Clark, J.; Hyrn, J. (ANL)

    2006-08-15T23:59:59.000Z

    Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting process has been the mainstay of the aluminum industry for the production of ingots due largely to its robust nature and relative simplicity. Though the basic process of DC casting is in principle straightforward, the interaction of process parameters with heat extraction, microstructural evolution, and development of solidification stresses is too complex to analyze by intuition or practical experience. One issue in DC casting is the formation of stress cracks [1-15]. In particular, the move toward larger ingot cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies have increased industry efficiencies but have made it more difficult to predict the occurrence of stress crack defects. The Aluminum Industry Technology Roadmap [16] has recognized the challenges inherent in the DC casting process and the control of stress cracks and selected the development of 'fundamental information on solidification of alloys to predict microstructure, surface properties, and stresses and strains' as a high-priority research need, and the 'lack of understanding of mechanisms of cracking as a function of alloy' and 'insufficient understanding of the aluminum solidification process', which is 'difficult to model', as technology barriers in aluminum casting processes. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack incidence is important for improving product quality and consistency as well as for saving resources and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, by reducing the scalping thickness of the ingot before rolling, and by eliminating butt sawing. Full-scale industrial implementation of the results of the proposed research would lead to energy savings in excess of 6 trillion Btu by the year 2020. The research undertaken in this project aimed to achieve this objective by a collaboration of industry, university, and national laboratory personnel through Secat, Inc., a consortium of aluminum companies. During the four-year project, the industrial partners and the research team met in 16 quarterly meetings to discuss research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot production. The project focused on the development of a fundamental understanding of ingot cracking and detailed models of thermal conditions, solidification, microstructural evolution, and stress development during the initial transient in DC castings of the aluminum alloys 3004 and 5182. The microstructure of the DC casting ingots was systematically characterized. Carefully designed experiments were carried out at the national laboratory and university facilities as well as at the industrial locations using the industrial production facilities. The advanced computational capabilities of the national laboratories were used for thermodynamic and kinetic simulations of phase transformation, heat transfer and fluid flow, solidification, and stress-strain evolution during DC casting. The achievements of the project are the following: (1) Identified the nature of crack formation during DC casting; (2) Developed a novel method for determining the mechanical properties of an alloy at the nonequilibrium mushy zone of the alloy; (3) Measured heat transfer coefficients (HTCs) between the solidifying ingot and the cooling water jet; (4) Determined the material constitutive model at high temperatures; and (5) Developed computational capabilities for the simulation of cracking formation in DC casting ingot. The models and the database de

  4. CYCLIC PLASTICITY OF A CRACKED STRUCTURE SUBJECTED TO MIXED MODE LOADING

    E-Print Network [OSTI]

    CYCLIC PLASTICITY OF A CRACKED STRUCTURE SUBJECTED TO MIXED MODE LOADING Sylvie Pommier1, a 1 LMT, mixed mode crack propagation, plasticity, crack deflection. Abstract. Cyclic plasticity in the crack tip stresses in the overload's plastic zone. Moreover, if the overload's ratio is large enough, the crack may

  5. amplitude fatigue crack: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking CERN Preprints Summary: 1.1 This practice covers procedures for the design,...

  6. assisted cracking resistance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    video system, crack initiation, propagation, and ... Miller, James Thomas, Ph. D. Massachusetts Institute of Technology 2008-01-01 36 Dynamic fracture of compositionally...

  7. alligator cracking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    video system, crack initiation, propagation, and ... Miller, James Thomas, Ph. D. Massachusetts Institute of Technology 2008-01-01 40 A new alligator-clip compound for...

  8. P wave anisotropy, stress, and crack distribution at Coso geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: P wave anisotropy, stress, and crack distribution at Coso geothermal field, California...

  9. High-Resolution Crack Imaging Reveals Degradation Processes in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reveals Degradation Processes in Nuclear Reactor Structural Materials. Abstract: Corrosion and cracking represent critical failure mechanisms for structural materials in many...

  10. Tribological Analysis of White Etching Crack (WEC) Failures in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crack (WEC) Failures in Rolling Element Bearings Presented by Arnaud Ruellan, INSA de Lyon at the Wind Turbine Tribology Seminar 2014. 20141030NREL2014ArgonneRuellancomV...

  11. NORTHWESTERN UNIVERSITY Qualification of Autonomous Crack Monitoring Systems

    E-Print Network [OSTI]

    NORTHWESTERN UNIVERSITY Qualification of Autonomous Crack Monitoring Systems A Thesis Submitted Term or Static Testing Equipment Setup.............................................29 Long Term Response.....................................................................33 Dynamic Testing Equipment

  12. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    SciTech Connect (OSTI)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01T23:59:59.000Z

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

  13. Cracking in reinforced concrete bent caps

    E-Print Network [OSTI]

    Young, Bradley S.

    2000-01-01T23:59:59.000Z

    ) . . . . . . . . . . . . . . . . 4. 2 Group It2 Response (Specimens 3C, 3D, 4C, 4E, 5D, 5E) . . . 4. 3 Group tt3 Response (Specimens 6F, 6G, 7F, 7H, 8G, 8H) . . . 4. 4 General Response 4. 5 Sununary. . . . . 49 . . . . 58 . . . . 64 70 . . . 75 5. STRUT-AND-TIE MODELING... be expressed as the product of the steel strain (s, ) at that level multiplied by the crack spacing (s, ); 20 w =z*s C S C (2. 6) a linear strain gradient can be used to project the maximum strain occurring at the level of the flexural reinforcement...

  14. 3:2:1 Crack Spread

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand8)Commercial5 1:2:1 Crack

  15. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    SciTech Connect (OSTI)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01T23:59:59.000Z

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  16. A nanomechanical investigation of the crack tip process zone of marble

    E-Print Network [OSTI]

    Brooks, Zenzile (Zenzile Z.)

    2010-01-01T23:59:59.000Z

    This study explores the interaction between crack initiation and nanomechanical properties in the crack tip process zone (zone of microcracking at the tip of a propagating crack) of a brittle geomaterial. Samples of Carrara ...

  17. The displacement field characterization of two interacting parallel edge cracks in a finite body

    E-Print Network [OSTI]

    Keener, Todd Whitney

    1996-01-01T23:59:59.000Z

    The goals of this research were to: (1) develop a model to represent the displacement field surrounding two interacting, parallel edge cracks; and (2) use this model to investigate the influence of crack separation and relative crack length...

  18. Development of reduced crude cracking catalysts

    SciTech Connect (OSTI)

    Hettinger, W.P. Jr. (Ashland Petroleum Company, KY (USA))

    1987-08-01T23:59:59.000Z

    In 1974 OPEC imposed an embargo on oil to the United States and caused a rapid rise in the price of a barrel of oil. At the time of the embargo, Ashland imported a considerable portion of its oil from the Middle East, thus raising the question of oil availability. As the problem increased in severity, Messrs. George Meyer, Oliver Zandona and Llyod Busch, began to explore alternative ways of squeezing more product from a given barrel of crude. After considering many alternatives, they arrived at the innovative thought that it might be possible to catalytically crack the 1050{degree}F plus fraction of the barrel directly to gasoline which would in effect, give them an additional volume of crude oil. Also, if vacuum fractionation were eliminated and if the entire 650{degree}F plus (reduced crude) portion of the barrel processed, this would further reduce operating costs. With these objectives and some new process innovations in mind, they began reduced crude cracking experimentation in a small 12,000 B/D FCC operating unit at Louisville. It was from these goals, concepts and a small operating unit, that the RCC process was born.

  19. Field Manual for Crack Sealing in Asphalt Pavements

    E-Print Network [OSTI]

    Texas at Austin, University of

    Field Manual for Crack Sealing in Asphalt Pavements Yetkin Yildirim, Ahmed Qatan, and Jorge Prozzi January 2006 3208RedRiver Austin,TX78705 #12;Dr. Yetkin Yildirim, P.E. Director Texas Pavement for Crack Sealing in Asphalt Pavements #12;Performing Organization: Center for Transportation Research

  20. NORTHWESTERN UNIVERSITY Crack Response to Weather Effects, Blasting, and Construction

    E-Print Network [OSTI]

    NORTHWESTERN UNIVERSITY Crack Response to Weather Effects, Blasting, and Construction Vibrations Acknowledgements iii Abstract iv List of Figures v List of Tables xi Chapter 1- Introduction 1 Chapter 2- Blast Vibration Response, Southbury, Connecticut 5 Structural Description Instrumentation Blast Response Crack

  1. Crack-based analysis of concrete with brittle reinforcement

    E-Print Network [OSTI]

    Burgoyne, Chris

    { FaberMaunsell Ltd; University of Cambridge Brittle reinforcement (such as fibre-reinforced plastic to the surround- ing concrete, at a crack surface sL=sR s on the left/right side of a crack u increase in unbonded

  2. Experimental Verification of a Cracked Fuel Mechanical Model

    SciTech Connect (OSTI)

    Williford, R. E.

    1982-12-01T23:59:59.000Z

    This report describes the results of a series of laboratory experiments conducted to independently verify a model that describes the nonlinear mechanical behavior of cracked fuel in pelletized UO{sub 2}/Zircaloy nuclear fuel rods under normal operating conditions. After a brief description of the analytical model, each experiment is discussed in detail. Experiments were conducted to verify the general behavior and numerical values for the three primary independent modelling parameters (effective crack roughness, effective gap roughness, and total crack length), and to verify the model predictions that the effective Young's moduli for cracked fuel systems were substantially less than those for solid UO{sub 2} pellets. In general, the model parameters and predictions were confirmed, and new insight was gained concerning the complexities of cracked fuel mechanics.

  3. SciTech Connect: Stress corrosion cracking of alloy 600 using...

    Office of Scientific and Technical Information (OSTI)

    Stress corrosion cracking of alloy 600 using the constant strain rate test Citation Details In-Document Search Title: Stress corrosion cracking of alloy 600 using the constant...

  4. A Crack in the Pipeline: Why Female Underrepresented Racial Minority Students Leave Engineering

    E-Print Network [OSTI]

    Vazquez-Akim, Jenn

    2014-01-01T23:59:59.000Z

    Espinosa, Lorelle L. (2011). Pipelines and pathways: womenAngeles A Crack in the Pipeline: Why Female UnderrepresentedA Crack in the Pipeline: Why Female Underrepresented Racial

  5. Implications of early stages in the growth of stress corrosion cracking on component reliability

    SciTech Connect (OSTI)

    Jones, R.H.; Simonen, E.P.

    1995-04-01T23:59:59.000Z

    Environment-induced crack growth generally progresses through several stages prior to component failure. Crack initiation, short crack growth, and stage 1 growth are early stages in crack development that are summarized in this paper. The implications of these stages on component reliability, derive from the extended time that the crack exists in the early stages because crack velocity is slow. The duration of the early stages provides a greater opportunity for corrective action if cracks can be detected. Several important factors about the value of understanding short crack behavior include: (1) life prediction requires a knowledge of the total life cycle of the crack including the early stages, (2) greater reliability is possible if the transition between short and long crack behavior is known component life after this transition is short and (3) remedial actions are more effective for short than long cracks.

  6. Saber's heavy oil cracking refinery project

    SciTech Connect (OSTI)

    Benefield, C.S.; Glasscock, W.L.

    1983-03-01T23:59:59.000Z

    Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

  7. Reliability of steam generator tubes with axial cracks

    SciTech Connect (OSTI)

    Cizelj, L.; Mavko, B. [Jozef Stefan Inst., Ljubljana (Slovenia). Reactor Engineering Div.; Vencelj, P. [Univ. of Ljubljana (Slovenia). Faculty of Mathematics and Physics

    1996-11-01T23:59:59.000Z

    An approach for estimating the failure probability of tubes containing through-wall axial cracks has already been proposed by the authors. It is based on probabilistic fracture mechanics and accounts for scatter in tube geometry and material properties, scatter in residual and operational stresses responsible for crack propagation, and characteristics of nondestructive examination and plugging procedures (e.g., detection probability, sizing accuracy, human errors). Results of preliminary tests demonstrated wide applicability of this approach and triggered some improvements. The additions to the model are extensively discussed in this paper. Capabilities are demonstrated by results of analysis of steam generator no. 1 in Slovenian nuclear power plant located in Krsko after the 1992 inspection and plugging campaign. First, the number of cracked tubes and the crack length distribution were estimated using data obtained by the 100% motorized pancake coil inspection. The inspection and plugging activities were simulated in the second step to estimate the efficiency of maintenance in terms of single and multiple-tube rupture probabilities. They were calculated as a function of maximum allowable crack length. The importance of human errors and some limitations of present nondestructive examination techniques were identified. The traditional wall thickness and crack-length-based plugging criteria are compared. The crack-length-based criterion is shown to be more efficient and more safe, especially because of strong suppression effect on probability of multiple-tube rupture. The results are considered to be important for safety and maintenance of existing plants and for further research.

  8. Cracking blends of gas oil and residual oil

    SciTech Connect (OSTI)

    Myers, G.D.

    1988-03-01T23:59:59.000Z

    In a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking zone at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regeneration zone by burning coke of the catalyst, and catalyst is circulated between the cracking zone and the regeneration zone. The improvement is described for obtaining a naphtha product of improved octane number comprising introducing sufficient of a nickel and vanadium metals-containing heavy feedstock with the gas oil feed introduced into the cracking zone to deposit nickel and vanadium metals on the catalyst and raise the nickel and metals-content of the catalyst to a level ranging from about 1500 to about 6000 parts per million of the metals expressed as equivalent nickel, based on the weight of the catalyst, and maintaining the nickel and vanadium metals level on the catalyst by withdrawing high nickel and vanadium metals containing catalyst and adding low nickel and vanadium metals-containing catalyst to the regeneration zone.

  9. Standard test method for creep-fatigue crack growth testing

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This test method covers the determination of creep-fatigue crack growth properties of nominally homogeneous materials by use of pre-cracked compact type, C(T), test specimens subjected to uniaxial cyclic forces. It concerns fatigue cycling with sufficiently long loading/unloading rates or hold-times, or both, to cause creep deformation at the crack tip and the creep deformation be responsible for enhanced crack growth per loading cycle. It is intended as a guide for creep-fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. Therefore, this method requires testing of at least two specimens that yield overlapping crack growth rate data. The cyclic conditions responsible for creep-fatigue deformation and enhanced crack growth vary with material and with temperature for a given material. The effects of environment such as time-dependent oxidation in enhancing the crack growth ra...

  10. PLASMA Approximate Dynamic Programming finally cracks the locomotive optimization problem

    E-Print Network [OSTI]

    Powell, Warren B.

    PLASMA ­ Approximate Dynamic Programming finally cracks the locomotive optimization problem schedules and new operating policies. PLASMA is currently running at Norfolk Southern for strategic of PLASMA: Each locomotive is modeled individually, making it possible to capture both horsepower

  11. Automated crack control analysis for concrete pavement construction

    E-Print Network [OSTI]

    Jang, Se Hoon

    2005-11-01T23:59:59.000Z

    The focus of this research is on the control of random cracking in concrete paving by using sawcut notch locations in the early stages of construction. This is a major concern in concrete pavement construction. This research also addresses a...

  12. Shear-wave splitting and reservoir crack characterization: the...

    Open Energy Info (EERE)

    Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Shear-wave...

  13. Climate change: A crack in the natural-gas bridge

    E-Print Network [OSTI]

    Davis, SJ; Shearer, C

    2014-01-01T23:59:59.000Z

    J. D. & Wirth, T. E. Natural Gas: A Bridge Fuel for the 21stexpanding supplies of natural gas will not help us to avoidLIM ATE CHANGE A crack in the natural-gas bridge Integrated

  14. A crack in the natural-gas bridge

    E-Print Network [OSTI]

    Davis, SJ; Shearer, C

    2014-01-01T23:59:59.000Z

    J. D. & Wirth, T. E. Natural Gas: A Bridge Fuel for the 21stexpanding supplies of natural gas will not help us to avoidLIM ATE CHANGE A crack in the natural-gas bridge Integrated

  15. Modeling of crack initiation, propagation and coalescence in rocks

    E-Print Network [OSTI]

    Gonçalves da Silva, Bruno Miguel

    2009-01-01T23:59:59.000Z

    Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

  16. Crack coalescence in rock-like material under cycling loading

    E-Print Network [OSTI]

    Ko, Tae Young, 1973-

    2005-01-01T23:59:59.000Z

    A total of 170 tests (68 tests for monotonic loading, 102 tests for cyclic loading) have been performed to investigate crack initiation, propagation and coalescence. The specimens have two pre-existing flaws which are ...

  17. Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes Presented by Paul John Baker of FrontierPro Services at the Wind Turbine Tribology Seminar 2014. 141030 Axial...

  18. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect (OSTI)

    Chin-An Wang; Chin, B.A. [Auburn Univ., AL (United States). Dept. of Materials Engineering; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)

    1992-12-31T23:59:59.000Z

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  19. Assessment of crack opening area for leak rates

    SciTech Connect (OSTI)

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01T23:59:59.000Z

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

  20. Catastrophic Cracking Courtesy of Quiescent Cavitation

    E-Print Network [OSTI]

    Daily, D Jesse; Thomson, Scott L; Truscott, Tadd T

    2012-01-01T23:59:59.000Z

    A popular party trick is to fill a glass bottle with water and hit the top of the bottle with an open hand, causing the bottom of the bottle to break open. We investigate the source of the catastrophic cracking through the use of high-speed video and an accelerometer attached to the bottom of a glass bottle. Upon closer inspection, it is obvious that the acceleration caused by hitting the top of the bottle is followed by the formation of bubbles near the bottom. The nearly instantaneous acceleration creates an area of low pressure on the bottom of the bottle where cavitation bubbles form. Moments later, the cavitation bubbles collapse at roughly 10 times the speed of formation, causing the bottle to break. The accelerometer data shows that the bottle is broken after the bubbles collapse and that the magnitude of the bubble collapse is greater than the initial impact. The fluid dynamics video highlights that this trick will not work if the bottle is empty nor if it is filled with a carbonated fluid because the...

  1. ffe1098 FFE March 7, 2007 21:55 Crack tip displacements of microstructurally small cracks in 316L steel

    E-Print Network [OSTI]

    Cizelj, Leon

    steel and their dependence on crystallographic orientations of grains I. SIMONOVSKI1 , KARL orientations on a short Stage I surface crack in a 316L stainless steel. The analysis is based on a plane

  2. Thermal Processes

    Broader source: Energy.gov [DOE]

    Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

  3. Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Shack, W. J.

    2008-01-21T23:59:59.000Z

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

  4. Multiple use of waste catalysts with and without regeneration for waste polymer cracking

    SciTech Connect (OSTI)

    Salmiaton, A., E-mail: mie@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor (Malaysia); Garforth, A.A. [School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2011-06-15T23:59:59.000Z

    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C{sub 2}-C{sub 7}) remained fairly constant. For the first time, these results indicate that 'waste' FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.

  5. Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.

    DOE Patents [OSTI]

    Green, David J. (State College, PA); Sglavo, Vincenzo M. (Roncegno, IT); Tandon, Rajan (Fremont, CA)

    2003-02-11T23:59:59.000Z

    Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.

  6. High-Resolution Characterizations of Stress-Corrosion Cracks in Austenitic Stainless Steel from Crack Growth Tests in BWR-Simulated Environments

    SciTech Connect (OSTI)

    Bruemmer, Stephen M.; Thomas, Larry E.

    2005-07-20T23:59:59.000Z

    Mechanisms controlling environmental degradation and cracking in light-water-reactor (LWR) systems have been investigated by analytical transmission electron microscopy (ATEM) of cracks and crack tips. The current work focuses on intergranular stress corrosion cracking (IGSCC) of 300-series, austenitic stainless steels in high-temperature LWR environments. Comparisons are made between cold-worked 304SS containing stress-corrosion cracks produced in a simulated boiling-water-reactor (BWR) environment during crack-growth tests, and a 304SS core component with cracks produced during 26-year BWR service. Similar corrosion products consisting of duplex-layered spinel oxides were found along the walls of open cracks in the service and laboratory test samples. These oxide films consisted of oriented Cr-rich spinel up to ~30 nm thick along the metal crack walls and large-grained Fe-rich spinel at the crack centers. Cracks in the service sample were generally more filled with oxide, perhaps reflecting the much longer times available for corrosion to occur after the crack passage. Crack tips in the BWR top-guide sample exhibited unique and unexpected structures with oxide-filled cracks <10 nm wide ending in finger-like attack and locally “dealloyed” zones of Fe/Cr-depleted, Ni-rich metal. Alloy compositions measured at numerous crack tips were 40 wt% Fe, 4 wt% Cr and 55 wt% Ni immediately ahead of the degradation front versus approximately 70 wt% Fe, 19 wt% Cr and 9 wt% Ni in the bulk 304SS. Laboratory samples with cracks grown over much shorted times (~1.5 months) did not show the distinctive crack tip structures or strong Ni enrichment in the metal ahead of the crack tips as for the service sample. This suggests that although selective oxidation processes occur during degradation, significant composition differences may only develop after crack propagation has slowed or stopped. Additional nanometer-scale measurements elucidating corrosion processes occurring during crack advance are presented to provide insights into mechanisms controlling IGSCC.

  7. Progress in Statistical Crack Mechanics : An Approach to Initiation

    SciTech Connect (OSTI)

    Dienes, John K.; Middleditch, J. (John); Kershner, James D.; Zuo, Q. K. (Qiuhai K.); Starobin, A. J. (Andre J.)

    2002-01-01T23:59:59.000Z

    We have developed a general theory for the formation of hot spots from defects in explosives and propellants, and applied the theory to a variety of issues concerning the sensitivity of reactive materials. The defects of greatest concern in PBXs are cracks formed in the explosive grains, which are normally brittle. The theory accounts for the opening, shear, growth, and coalescence of cracks. In addition, the theory accounts for the heating caused by interfacial friction in closed (shear) cracks and the ignition process that results. Heat conduction and chemical reactions are treated on a smaller spatial scale than the overall continuum response; this is accomplished in the numerical (FEA) simulation with a sub-grid model. In previous work we have shown the feasibility of using this approach to model explosions that result from relatively mild insults, where many other hot-spot mechanisms fail. This paper addresses some of the complications that arise as mechanical failure and heating are examined in greater detail, including the effects of crack orientation, friction, melting, viscosity in molten regions, radial crack formation via a new approach to percolation theory, and 3-D effects.

  8. Develop statewide recommendations for application of PCC joint reflective cracking rehabilitation strategies

    E-Print Network [OSTI]

    Jain, Rahul Padamkumar

    2004-11-15T23:59:59.000Z

    Spalling of cracks and joints is the cracking, breaking or chipping of the slab edges within 2 ft (0.6m) if the joint or crack (Huang et. al 2004). Joint spalling is a construction related distress in the rigid pavement that mainly affects the structural... in the asphalt concrete overlays laid on the concrete pavements. Reflection cracks are caused by discontinuities in the underlying layers which propagate through the HMA surface due to movement at crack (Roberts et al 1996). Reflection cracks in AC overlays...

  9. Boundary integral formulation for interfacial cracks in thermodiffusive bimaterials

    E-Print Network [OSTI]

    L. Morini; A. Piccolroaz

    2015-04-29T23:59:59.000Z

    An original boundary integral formulation is proposed for the problem of a semi-infinite crack at the interface between two dissimilar elastic materials in the presence of heat flows and mass diffusion. Symmetric and skew-symmetric weight function matrices are used together with a generalized Betti's reciprocity theorem in order to derive a system of integral equations that relate the applied loading, the temperature and mass concentration fields, the heat and mass fluxes on the fracture surfaces and the resulting crack opening. The obtained integral identities can have many relevant applications, such as for the modelling of crack and damage processes at the interface between different components in electrochemical energy devices characterized by multi-layered structures (solid oxide fuel cells and lithium ions batteries).

  10. Hydrocarbon cracking with yttrium exchanged zeolite y catalyst

    SciTech Connect (OSTI)

    Lochow, C.F.; Kovacs, D.B.

    1987-05-12T23:59:59.000Z

    A process is described for cracking a gas oil boiling range hydrocarbon feedstock comprising the step of contacting the feedstock in a catalytic cracking zone under catalytic cracking conditions to produce convulsion products comprising gasoline with a catalyst composition. The process comprises: a Y crystalline aluminosilicate zeolite, having the structure of faujasite and having uniform pore diameters and a silica to alumina mole ratio of at least about 5; an inorganic oxide matrix; and the zeolite having been ion exchanged with a mixture of rare earths prior to compositing with the matrix; and the zeolite having been subsequently further ion exchanged with yttrium following compositing with the matrix, whereby the catalyst composition contains 0.30 to 3.0 wt% yttrium.

  11. Protocol development for evaluation of commercial catalytic cracking catalysts

    SciTech Connect (OSTI)

    Mitchell, M.M. Jr.; Moore, H.F. (Ashland Petroleum Co., KY (USA))

    1988-09-01T23:59:59.000Z

    A complete, new set of testing protocols has been developed for qualification of catalysts for Ashland's commercial catalytic cracking units. The objective of this test development is to identify new generations of improved cracking catalysts. Prior test protocols have classically utilized microactivity (MAT) testing of steamed virgin catalysts, while more advanced methods have utilized fixed fluid bed and/or circulating pilot units. Each of these techniques, however, have been limited by their correlation to commercial operations, weaknesses in metallation and preparation of pseudo-equilibrium catalysts, and mechanical constraints on the use of heavy, vacuum bottoms-containing feedstocks. These new protocols have been baselined, compared to commercial Ashland results on known catalytic cracking catalysts, and utilized to evaluate a range of potentially new catalyst samples.

  12. Method for fabrication of crack-free ceramic dielectric films

    DOE Patents [OSTI]

    Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

    2014-02-11T23:59:59.000Z

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  13. Reflective Cracking Study: First-level Report on HVS Testing on Section 588RF - 90 mm AR4000-DOverlay

    E-Print Network [OSTI]

    Jones, David; Wu, R; Harvey, John T

    2008-01-01T23:59:59.000Z

    testing being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the fourth HVS reflective cracking testingconcrete. It describes the results of the fourth HVS reflective cracking testing

  14. Reflective Cracking Study: First-Level Report on HVS Testing on Section 590RF - 90 mm MB4-G Overlay

    E-Print Network [OSTI]

    Jones, David; Tsai, Bor-Wen; Harvey, John T

    2008-01-01T23:59:59.000Z

    testing being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the first HVS reflective cracking testingconcrete. It describes the results of the first HVS reflective cracking testing

  15. Weld solidification cracking in 304 to 204L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15T23:59:59.000Z

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  16. Weld solidification cracking in 304 to 304L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  17. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    SciTech Connect (OSTI)

    Foster, John T.

    2009-10-01T23:59:59.000Z

    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model is then validated against one class of problems showing good agreement with experimental results.

  18. Analysis of weld solidification cracking in cast nickel aluminide alloys

    SciTech Connect (OSTI)

    Santella, M.L.; Feng, Z. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-09-01T23:59:59.000Z

    A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni{sub 5}Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results.

  19. Stress Corrosion Crack Detection on HU-25 Guardian Aircraft

    SciTech Connect (OSTI)

    Blackmon, R.; Huffman, J.; Mello, C.W.; Moore, D.G.; Walkington, P.D.

    1999-02-17T23:59:59.000Z

    Several ultrasonic inspection methods were developed at the Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) to easily and rapidly detect hidden stress corrosion cracks in all vertical windshield posts on the US Coast Guard (USCG) HU-25 Guardian aircraft. The inspection procedure locates cracks as small as 2.0 millimeters emanating from internal fastener holes and determines their length. A test procedure was developed and a baseline assessment of the USCG fleet was conducted. Inspection results on twenty-five aircraft revealed a good correlation with results made during subsequent structural disassembly and visual inspection.

  20. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  1. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  2. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  3. Failure probability of axially cracked steam generator tubes; A probabilistic fracture mechanics model

    SciTech Connect (OSTI)

    Mavko, B.; Cizelj, L. (Jozef Stefan Inst., Reactor Engineering Div., P.O. Box 100, 61111 Ljubljana, Slovenia (YU))

    1992-05-01T23:59:59.000Z

    In this paper a model for estimating the failure probability of axially cracked steam generator tubes is proposed. The model compares observed crack length distribution with critical crack length distribution by means of probabilistic fracture mechanics. The observed crack length is influenced by measured data, measurement reliability, sizing accuracy, and predicted crack growth rate. The critical crack length is defined by a deterministic mechanical model. All cracks are conservatively assumed to extend through the tube wall. The effect of the plugging limit is studied along with the number of cracked tubes to perform risk-based lifetime optimization of steam generators. A numerical example presented considers hypothetical accidental operating conditions during a feedwater line break.

  4. Monitoring Cracking of a Smectitic Vertisol using Three-dimensional Electrical Resistivity Tomography

    E-Print Network [OSTI]

    Ackerson, Jason Paul

    2013-11-20T23:59:59.000Z

    Upon desiccation, the matrix of Vertisols and other expansive soils shrinks. Matrix shrinkage results in the formation of cracks that can alter the hydrology of the soil. Despite the importance of cracks, many hydrologic models do not account...

  5. THERMAL HYDRAULICS KEYWORDS: thermal hydraulics,

    E-Print Network [OSTI]

    Smith, Barton L.

    -fluid modeling of nuclear reactor systems. Thermal-hydraulic analysis codes such as RELAP5-3D ~Ref. 1! and FLICA regions of the system. In fact, the CFD code FLUENT has previously been coupled to RELAP5-3D ~Refs. 3

  6. SEPTARIAN CONCRETIONS Septarian structures are former cracks, often lled with cement

    E-Print Network [OSTI]

    S SEPTARIAN CONCRETIONS Septarian structures are former cracks, often ®lled with cement may show a component of shear displacement. Crack filling cements Cracks may range from largely un®lled to fully cement ®lled, often with a variety of distinctively colored spar cements. The ®lls may also

  7. A fast multipole boundary element method for modeling 2-D multiple crack problems with constant elements

    E-Print Network [OSTI]

    Liu, Yijun

    A fast multipole boundary element method for modeling 2-D multiple crack problems with constant 3 April 2014 Accepted 20 May 2014 Keywords: Fast multipole BEM 2-D multi-crack problems Constant elements Crack opening displacements Stress intensity factors a b s t r a c t A fast multipole boundary

  8. Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D

    E-Print Network [OSTI]

    Zhou, Wei

    Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D W. Zhou*, T. Z. Long and C. K of the plates were produced using tungsten inert gas (TIG) welding method. The TIG arc was also used to deposit welding beads on some of the thin plates. No cracking was found in the butt joints. However, hot cracking

  9. Stress corrosion cracking under low stress: Continuous or discontinuous Longkui K. Zhu a

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Stress corrosion cracking under low stress: Continuous or discontinuous cracks? Longkui K. Zhu a , Yu Yan a , Jinxu X. Li a , Lijie J. Qiao a, , Alex A. Volinsky b,a a Corrosion and Protection Center. Stress corrosion C. Anodic dissolution a b s t r a c t Two-dimensional and three-dimensional crack

  10. Analytical Investigation of Repair Methods for Fatigue Cracks in Steel Bridges

    E-Print Network [OSTI]

    Richardson, Temple

    2012-08-31T23:59:59.000Z

    ..................................................................................................................... 22 Retrofit measure 5: Bolted Stiffener-to-Flange Angles .......................................................................................... 23 Retrofit measure 6: Bolted Web-to-Stiffener Angles and Backing Plate... crack and a 204-mm (8-in.) web-to-flange weld crack. ............................................. 55 Table 2. Comparison of stress intensity factors for three crack surface displacements with the web-to-stiffener angles and a backing plate retrofit...

  11. A cracked beam finite element for rotating shaft dynamics and stability analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A cracked beam finite element for rotating shaft dynamics and stability analysis Saber El Arem Palaiseau, France Abstract In this paper, a method for the construction of a cracked beam finite element is presented. The additional flexibility due to the cracks is identified from three- dimensional finite element

  12. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking

    E-Print Network [OSTI]

    Mahesh, Sivasambu

    A creep model for austenitic stainless steels incorporating cavitation and wedge cracking S Mahesh evolution in the form of cavitation and wedge- cracking on grain boundary facets is considered. Both: Austenitic stainless steel, creep, grain boundary sliding, cavitation, wedge- cracking. Submitted to

  13. Solvent control of crack dynamics in a reversible hydrogel

    E-Print Network [OSTI]

    Tristan Baumberger; Christiane Caroli; David Martina

    2006-05-16T23:59:59.000Z

    The resistance to fracture of reversible biopolymer hydrogels is an important control factor of the cutting/slicing and eating characteristics of food gels. It is also critical for their utilization in tissue engineering, for which mechanical protection of encapsulated components is needed. Its dependence on loading rate and, recently, on the density and strength of cross-links has been investigated. But no attention was paid so far to solvent nor to environment effects. Here we report a systematic study of crack dynamics in gels of gelatin in water/glycerol mixtures. We show on this model system that: (i) increasing solvent viscosity slows down cracks; (ii) soaking with solvent increases markedly gel fragility; (iii) tuning the viscosity of the (miscible) environmental liquid affects crack propagation via diffusive invasion of the crack tip vicinity. The results point toward the fact that fracture occurs by viscoplastic chain pull-out. This mechanism, as well as the related phenomenology, should be common to all reversibly cross-linked (physical) gels.

  14. Thin film with oriented cracks on a flexible substrate

    DOE Patents [OSTI]

    Feng, Bao; McGilvray, Andrew; Shi, Bo

    2010-07-27T23:59:59.000Z

    A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.

  15. CONTAINED PLASTIC DEFORMATION NEAR CRACKS AND NOTCHES UNDER LONGITUDINAL SHEAR

    E-Print Network [OSTI]

    CONTAINED PLASTIC DEFORMATION NEAR CRACKS AND NOTCHES UNDER LONGITUDINAL SHEAR James R. Rice* ABSTRACT An exact linear elastic-perfectly plastic solution is presented for the problem of a sharp notch coordinates corresponding to given stresses, position of the elastic-plastic boundary, and accompanying

  16. Variable amplitude fatigue crack growth, experimental results and modeling

    E-Print Network [OSTI]

    a,*, F. Bumbieler b a Laboratory of Mechanics and Technology Cachan, 61, Avenue du Pre´s. Wilson method. This identification was performed for a 0.48%C carbon steel. Then various fatigue crack growth) is required so as to capture the very details of the elastic­plastic cyclic deformation of the mate- rial

  17. Fracture mechanics analysis of slow crack growth in polyethylene

    E-Print Network [OSTI]

    Self, Robert Alan

    1997-01-01T23:59:59.000Z

    polyethylenes were used to evaluate the new test and analysis methods. Static loading of deeply notched three-point bend specimens was conducted at 26.7 'C, 40 'C, and 70 'C on 1.27 cm , 0.953 cm, and 0.635 cm material. The crack length as a function of time...

  18. EARLY-AGE CRACKING REVIEW: MECHANISMS, MATERIAL PROPERTIES,

    E-Print Network [OSTI]

    Bentz, Dale P.

    ://cementbarriers.org/ and Savannah River National Laboratory website: http://srnl.doe.gov #12;Early-Age Cracking Review: Mechanisms Commission (NRC), the National Institute of Standards and Technology (NIST), the Savannah River National of work performed in part under that contract. This report was prepared in support of the Savannah River

  19. AUTONOMOUS CRACK MEASUREMENT FOR COMPARISON OF VIBRATORY COMPACTION EXCITATION AND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Establishment of the fragility of historic structures near rights of way often produces costly delays the potential for adjacent construction activities to cause cosmetic cracking in both historic and non-historic of Civil & Environmental Engineering, Northwestern University c-dowding@northwestern.edu ABSTRACT

  20. Method of making crack-free zirconium hydride

    DOE Patents [OSTI]

    Sullivan, Richard W. (Denver, CO)

    1980-01-01T23:59:59.000Z

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  1. Steady crack growth in elasticplastic uid-saturated porous media

    E-Print Network [OSTI]

    Bigoni, Davide

    at the crack-tip were analyzed by van den Hoek et al. (1993) and Mohr-Coulomb elastoplasticity was considered a combined ®nite dierence/®nite element technique. In this article, an asymptotic solution is obtained criterion with volumetric non-associative ¯ow law and isotropic hardening. The technique used to solved

  2. Thin film cracking and ratcheting caused by temperature cycling

    E-Print Network [OSTI]

    Suo, Zhigang

    Thin film cracking and ratcheting caused by temperature cycling M. Huang and Z. Suo Mechanical caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads

  3. Incipient Crack Detection in Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Taylor, Stuart G. [Los Alamos National Laboratory; Choi, Mijin [Chonbuk National University, Korea; Jeong, Hyomi [Chonbuk National University, Korea; Jang, Jae Kyeong [Chonbuk National University, Korea; Park, Gyuhae [Chonnam National University, Korea; Farinholt, Kevin [Commonwealth Center for Advanced Manufacturing, VA; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Lee, Jung-Ryul [Chonbuk National University, Korea

    2012-08-28T23:59:59.000Z

    This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results in detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.

  4. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  5. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01T23:59:59.000Z

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  6. FURTHER EXAMINATION OF CRACK TIP MICROSTRUCTURES IN F82H ON THE LOWER SHELF

    SciTech Connect (OSTI)

    Gelles, David S.; Odette, George R.; Spatig, P.

    2003-09-03T23:59:59.000Z

    Dislocation microstructures have been further examined near the crack tip of a compact tension specimen of unirradiated F82H loaded to 25.6 MPa m square root at –196 degrees C after fatigue precracking. A specimen was prepared by sectioning, dimple grinding and ion milling to produce electron transparency just ahead of the crack tip. Further ion milling has allowed improved examination of the microstructure immediately ahead of the crack tip. It is found that subgrain structure is relatively unaffected near the crack tip whereas 3 micron from the crack tip, dislocation loop structure was identified.

  7. Thermal Stress Cracking of Sliding Gate Plates Hyoung-Jun Lee1

    E-Print Network [OSTI]

    Thomas, Brian G.

    , Warrendale, PA. #12;may b aspira b). Th indica show Previ their differ tempe mech [1]. A pressu be very

  8. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    SciTech Connect (OSTI)

    Julian K. Benz; Richard N. Wright

    2013-10-01T23:59:59.000Z

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 degrees C.

  9. Initiation of environmentally-assisted cracking in low-alloy steels

    SciTech Connect (OSTI)

    Wire, G.L.; Li, Y.Y.

    1996-06-01T23:59:59.000Z

    Environmentally-Assisted Cracking (EAC) in low alloy steels is activated by a critical level of sulfide ions at the crack tip, which is produced from dissolution of sulfide inclusions (MnS, FeS, etc.) in the steel following exposure by a growing crack. EAC of concern herein is the increase of fatigue crack growth rate of up to 40 to 100 times the rate in air that occurs at 240--300 C in high temperature LWR or boiler water environments. The initiation of EAC is the onset of the higher fatigue crack growth rates in fully developed cracks already presumed to be present due to fatigue, stress corrosion cracking, or induced by fabrication. Initiation of EAC is induced by a change in loading parameters causing the fatigue crack growth rate to increase from a small multiple (2--4) to 40--100 times the air rate. A steady state theory developed by Combrade, suggests that EAC will initiate only above a critical crack velocity and cease below this same velocity. However, more recent tests show that EAC can persist down to much lower velocities (100 times lower) in low oxygen water at slightly lower temperatures. A special set of experiments on high sulfur plate material demonstrate that EAC will not initiate from surface cracks with low sulfide inventories at low crack tip velocities. Transient diffusion calculations show that a finite crack extension at a high crack tip velocity is necessary to initiate EAC, providing a possible explanation for the lack of high crack growth observations reported in low alloy steels in structural applications involving low oxygen environments.

  10. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  11. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  12. The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures

    SciTech Connect (OSTI)

    Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL; Pandey, Amit [ORNL; Watkins, Thomas R [ORNL; More, Karren [Oak Ridge National Laboratory (ORNL)

    2012-01-01T23:59:59.000Z

    The properties that determine the thermal shock resistance in materials are reported for porous cordierite, a leading candidate material for the fabrication of diesel particulate filters. Fracture toughness and slow crack growth tests were performed on test specimens obtained from the walls of diesel particulate filter monolithic substrates using the double-torsion test method at temperatures between 20 C and 900 C. The thermal expansion and elastic properties were characterized between 20 C and 1000 C. The role of the microstructure of porous cordierite in determining its unusual thermal expansion and elevated temperature Young's modulus and fracture toughness are discussed.

  13. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  14. Microstructural and solidification cracking evaluation of electron beam welds in 304L

    SciTech Connect (OSTI)

    Sturgill, P.L.; Campbell, R.D.; Henningsen, J.L.

    1991-01-01T23:59:59.000Z

    Weld hot cracking of stainless steels is a major materials-related problem in the welding industry. This present investigation evaluates the crack susceptibility of highly-constrained EB welds made in materials whose DeLong ferrite potentials range from zero to nine FN. In addition, the effect of piece part strength level on cracking is examined. This study has revealed that these deep penetration EB welds have regions that solidify as primary austenite, even when the DeLong ferrite potential is as high as 9 FN. This points out the critical role that solidification rate plays in the crack susceptibility of these highly restrained welds. In addition, 0 FN to 0 FN welds had primarily transverse cracks while 6 FN to 0 FN welds had primarily centerline cracks. Of particular interest is the observation that cracks still occur if a high ferrite (greater than 6 FN) component is welded to a zero FN component. Cracking is always associated with regions which solidify as primary austenite and these cracks occur because there are areas in the weld which do not mix. Thus it is not a recommended production practice to compensate for low ferrite in one piece part with high ferrite in its mate. Finally, it is shown that a DeLong FN threshold of 4 to prevent cracking in EB welds in not valid. 21 refs., 16 figs.

  15. Fatigue Crack Propagation from Notched Specimens of 304 SS in elevated Temperature Aqueous Environment

    SciTech Connect (OSTI)

    Wire, G. L.; Mills, W. J.

    2002-08-01T23:59:59.000Z

    Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventional deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.

  16. To Crack or Not to Crack: Strain in High TemperatureSuperconductors

    SciTech Connect (OSTI)

    Godeke, Arno

    2007-08-22T23:59:59.000Z

    Round wire Bi 2212 is emerging as a viable successor ofNb3Sn in High Energy Physics and Nuclear Magnetic Resonance, to generatemagnetic fields that surpass the intrinsic limitations of Nb3Sn. Ratherbold claims are made on achievable magnetic fields in applications usingBi 2212, due to the materials' estimated critical magnetic field of 100 Tor higher. High transport currents in high magnetic fields, however, leadto large stress on, and resulting large strain in the superconductor. Theeffect of strain on the critical properties of Bi-2212 is far fromunderstood, and strain is, as with Nb3Sn, often treated as a secondaryparameter in the design of superconducting magnets. Reversibility of thestrain induced change of the critical surface of Nb3Sn, points to anelectronic origin of the observed strain dependence. Record breaking highfield magnets are enabled by virtue of such reversible behavior. Straineffects on the critical surface of Bi-2212, in contrast, are mainlyirreversible and suggest a non-electronic origin of the observed straindependence, which appears to be dominated by the formation of cracks inthe superconductor volumes. A review is presented of available results onthe effects of strain on the critical surface of Bi-2212, Bi-2223 andYBCO. It is shown how a generic behavior emerges for the (axial) straindependence of the critical current density, and how the irreversiblereduction of the critical current density is dominated by strain inducedcrack formation in the superconductor. From this generic model it becomesclear that magnets using high temperature superconductors will be strainlimited far before the intrinsic magnetic field limitations will beapproached, or possibly even before the magnetic field limitation ofNb3Sn can be surpassed. On a positive note, in a very promising recentresult from NIST on the axial strain dependence of the critical currentdensity in extremely well aligned YBCO, reversible behavior was observed.This result emphasizes the need for further conductor development,specifically for round wire Bi-2212, to generate a wire with a similarreversible dependence on strain. Availability of such a wire will enablethe construction of magnets that can indeed generate fields that farsurpass the limitations of Nb3Sn superconductors.

  17. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  18. Subcritical Crack Growth in Ceramic Composites at High Temperature Measured Using Digital Image Correlation

    SciTech Connect (OSTI)

    Mumm, D.R.; Morris, W.L.; Dadkhah, M.S.; Cox, B.N.

    1996-01-11T23:59:59.000Z

    An in situ experimental technique is described that allows high resolution, high sensitivity determination of displacements and full-field strains during high temperature mechanical testing. The technique is used to investigate elevated temperature crack growth in SiC/Nicalon sub f composites. At 1150 degrees C, the reinforcing fibers have a higher creep susceptibility than the matrix. Fiber creep leads to relaxation of crack bridging tractions, resulting in subcritical crack growth. Differential image analysis is used to measure the crack opening displacement profile u(x) of an advancing, bridged crack. With appropriate modeling, such data can be used to determine the traction law, from which the mechanics of cracking and failure may be determined.

  19. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  1. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    SciTech Connect (OSTI)

    Felice, Maria V. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom and Rolls-Royce plc., Bristol BS34 7QE (United Kingdom); Velichko, Alexander; Wilcox, Paul D. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Barden, Tim J.; Dunhill, Tony K. [Rolls-Royce plc., Bristol BS34 7QE (United Kingdom)

    2014-02-18T23:59:59.000Z

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  2. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    SciTech Connect (OSTI)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15T23:59:59.000Z

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

  3. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    SciTech Connect (OSTI)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01T23:59:59.000Z

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  4. Mixed Mode Static and Fatigue Crack Growth in Wind Blade Paste Adhesives

    E-Print Network [OSTI]

    , static GIc and mixed mode fracture, and fatigue crack growth resistance. I. Introduction Wind turbine blades are large composite structures which are typically resin infusion molded in sections

  5. Standard test method for measurement of creep crack growth times in metals

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    1.1 This test method covers the determination of creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The time (CCI), t0.2 to an initial crack extension ?ai = 0.2 mm from the onset of first applied force and creep crack growth rate, ?a or da/dt is expressed in terms of the magnitude of creep crack growth relating parameters, C* or K. With C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-14). The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (15-25). 1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-14) and creep-brittle (26-37). In creep ductile materials, where cr...

  6. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23T23:59:59.000Z

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  7. On the approximation of crack shapes found during inservice inspection

    SciTech Connect (OSTI)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01T23:59:59.000Z

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.

  8. Nonlinear FE analysis of cracks in tension and shear

    E-Print Network [OSTI]

    Kesse, G.; Lees, Janet M.

    2007-05-01T23:59:59.000Z

    Carbon FRP Shear Reinforcement. PhD thesis, University of Cambridge, UK, 2003. 3. Bazant Z. P. and Planas J. Fracture and Size Effect in Con- crete and Other Quasibrittle Materials. CRC Press, Boca Raton, Florida, 1998. Nonlinear FE analysis of cracks... of plain concrete to cyclic tension. ACI Materials Journal, 1987, 84, No. 5, 365–373. 9. Paulay T. and Loeber P. J. Shear transfer by aggregate inter- lock. ACI Special Publication, SP-42, 1974, 1, 1–14. 10. Houde J. and Mirza M. S. A finite element...

  9. Pattern of Thermal Fluctuations in a Recovery Boiler Floor

    SciTech Connect (OSTI)

    Abdullah, Z.; Gorog, J.P.; Keiser, J.R.; Meyers, L.E.; Swindeman, R.W.

    1999-04-25T23:59:59.000Z

    The floor of a black liquor recovey boiler at a mill in central Canada has experienced cracking and delamination of the composite tubing near the spout wall and deformation of the floor panels that is most severe in the vicinity of the spout wall. One possible explanation for the observed damage is impacts of salt cake falling from the convective section onto the floor. In order to determine if such impacts do occur, strain gauges and thermocouples were installed on the boiler floor in areas where cracking and deformation were most frequent. The data obtained from these instruments indicate that brief, sudden temperature fluctuations do occur, and changes in the strain experienced by the affected tube occur simultaneously. These fluctuations appear to occur less often along the spout wall and more frequently with increasing distance from the wall. The frequency of these temperature fluctuations is insufficient for thermal fatigue to be the sole cause of the cracking observed on the tubes, but the data are consistent with what might be expected from pieces of falling salt cake.

  10. Pattern of thermal fluctuations in a recovery boiler floor

    SciTech Connect (OSTI)

    Keiser, J.R.; Meyers, L.E.; Swindeman, R.W.; Gorog, J.P.; Abdullah, Z.

    1999-07-01T23:59:59.000Z

    The floor of a black liquor recovery boiler at a mill in central Canada has experienced cracking and delamination of the composite tubing near the spout wall and deformation of the floor panels that is most severe in the vicinity of the spout wail. One possible explanation for the observed damage is impacts of salt cake falling from the convective section onto the floor. In order to determine if such impacts do occur, strain gauges and thermocouples were installed on the boiler floor in areas where cracking and deformation were most frequent. The data obtained from these instruments indicate that brief, sudden temperature fluctuations do occur, and changes in the strain experienced by-the affected tube occur simultaneously. These fluctuations appear to occur less often along the spout wall and more frequently with increasing distance from the wall. The frequency of these temperature fluctuations is insufficient for thermal fatigue to be the sole cause of the cracking observed on the tubes, but the data are consistent with what might be expected from pieces of falling salt cake.

  11. Fracture behavior of short circumferentially surface-cracked pipe

    SciTech Connect (OSTI)

    Krishnaswamy, P.; Scott, P.; Mohan, R. [Battelle, Columbus, OH (United States)] [and others

    1995-11-01T23:59:59.000Z

    This topical report summarizes the work performed for the Nuclear Regulatory Comniission`s (NRC) research program entitled ``Short Cracks in Piping and Piping Welds`` that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC`s PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria.

  12. Pinning and Depinning of Crack Fronts in Heterogeneous Materials

    SciTech Connect (OSTI)

    Daguier, P.; Bouchaud, E. [O.N.E.R.A. (Oman), 29 Avenue de la Division Leclerc, B.P. 72, 92322 Chatillon Cedex (France)] [O.N.E.R.A. (Oman), 29 Avenue de la Division Leclerc, B.P. 72, 92322 Chatillon Cedex (France); Nghiem, B.; Creuzet, F. [Laboratoire CNRS/Saint-Gobain Surface du Verre et Interfaces, 39, Quai Lucien Lefranc, B.P. 135, 93303 Aubervilliers Cedex (France)] [Laboratoire CNRS/Saint-Gobain Surface du Verre et Interfaces, 39, Quai Lucien Lefranc, B.P. 135, 93303 Aubervilliers Cedex (France)

    1997-02-01T23:59:59.000Z

    The fatigue fracture surfaces of a metallic alloy and the stress corrosion fracture surfaces of a silicate glass are investigated as a function of crack velocity. It is shown that in both cases there are two self-affine fracture regimes. At large enough length scales, the universal roughness index {zeta}{approx_equal}0.78 is recovered. At smaller length scales, the roughness exponent is close to {zeta}{sub c}{approx_equal}0.50. The crossover length {xi}{sub c} separating these two regimes strongly depends on the material, and exhibits a power-law decrease with the measured crack velocity {xi}{sub c}{proportional_to}v{sup -{phi}}, with {phi}{approx_equal}1. The exponents {nu} and {beta} characterizing the dependence of {xi}{sub c} and v upon the pulling force are shown to be close to {nu}{approx_equal}2 and {beta}{approx_equal}2. {copyright} {ital 1997} {ital The American Physical Society}

  13. Residual stresses and stress corrosion cracking in pipe fittings

    SciTech Connect (OSTI)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01T23:59:59.000Z

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.

  14. Low-Cracking High-Performance Concrete (LC-HPC) Bridge Decks: Shrinkage-Reducing Admixtures, Internal Curing, and Cracking Performance

    E-Print Network [OSTI]

    Pendergrass, Ben Andrew

    2014-05-31T23:59:59.000Z

    ABSTRACT The development, construction, and evaluation of low-cracking high-performance concrete (LC-HPC) bridge decks is described based on laboratory tests of mixtures containing shrinkage-reducing admixtures and mineral admixtures in conjunction...

  15. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    SciTech Connect (OSTI)

    Malumbela, Goitseone, E-mail: malumbela@mopipi.ub.b [Dpt. of Civil Eng., Univ. of Cape Town, Private Bag X3, Rondebosch, 7700 (South Africa); Alexander, Mark; Moyo, Pilate [Dpt. of Civil Eng., Univ. of Cape Town, Private Bag X3, Rondebosch, 7700 (South Africa)

    2010-09-15T23:59:59.000Z

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  16. Theory of thin-skin eddy-current interaction with surface cracks N. Harfielda)

    E-Print Network [OSTI]

    Bowler, John R.

    Theory of thin-skin eddy-current interaction with surface cracks N. Harfielda) and J. R. Bowler; accepted for publication 14 July 1997 Eddy-current non-destructive evaluation is commonly performed of a typical crack. A thin-skin analysis of eddy currents is presented in which the electromagnetic fields

  17. A NON-ISOTHERMAL FATIGUE CRACK GROWTH LAW FOR THE A356-T7 ALUMINUM ALLOY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A NON-ISOTHERMAL FATIGUE CRACK GROWTH LAW FOR THE A356-T7 ALUMINUM ALLOY E. Merhy 1,2,3* , L rate, Damage tolerant design, Life time prediction, A356 cast alloy ABSTRACT Fatigue crack growth period in cylinder heads of A356-T7 casting alloy has been found to constitute an important part

  18. Crack Detection in Dielectric Structures by a Linear Sampling , M. Brignone2

    E-Print Network [OSTI]

    Piana, Michele

    Crack Detection in Dielectric Structures by a Linear Sampling Approach G. Bozza1 , M. Brignone2 , M for the detection of cracks and defects inside dielectric structures is presented. The proposed algorithm is based of the approach is assessed by means of numerical simulations. 1. Introduction The imaging community

  19. Random sequential adsorption model of damage and crack accumulation: Exact one-dimensional results

    E-Print Network [OSTI]

    O. Gromenko; V. Privman; M. L. Glasser

    2008-04-29T23:59:59.000Z

    The random sequential adsorption (RSA) model is modified to describe damage and crack accumulation. The exclusion for object deposition (for damaged region formation) is not for the whole object, as in the standard RSA, but only for the initial point (or higher-dimensional defect) from which the damaged region or crack initiates. The one-dimensional variant of the model is solved exactly.

  20. THE ELASTIC-PLASTIC MECHANICS OF CRACK EXTENSION James R. Rice*

    E-Print Network [OSTI]

    THE ELASTIC-PLASTIC MECHANICS OF CRACK EXTENSION James R. Rice* ABSTRACT This paper briefly reviews progres~in the elastic plastic analysisof crack extension. Analytical results for plane strain and plane stress deformation fields are noted, and elastic-plastic fracture instability as well as transitional

  1. Analysis of the tube-sheet cracking in slurry oil steam , L.J. Qiao a,

    E-Print Network [OSTI]

    Volinsky, Alex A.

    -sheet cracking is a severe problem in the oil refinery industry with the consequences of shortened service life steam generator is a kind of shell and tube heat exchanger extensively used in the oil refinement in the oil refinery industry. Previous study has shown that corrosion, such as stress corrosion cracking (SCC

  2. Thermo-optical modulation for improved ultrasonic fatigue crack detection in Ti6Al4V

    E-Print Network [OSTI]

    Nagy, Peter B.

    scatterers, such as surface grooves, corrosion pits, coarse grains, etc. that might hide the fatigue crack to grow at unexpectedly high growth rates well below the large-crack threshold in aluminum, aluminum­lithium) and secondary irregulari- ties (e.g. uneven machining, mechanical wear, corrosion, etc.). Second

  3. Ultrasonic ply-by-ply detection of matrix cracks in laminated composites

    E-Print Network [OSTI]

    Ganpatye, Atul Shridatta

    2005-02-17T23:59:59.000Z

    on the internal damage state of the composite tank wall. Damage in the form of matrix cracks in the composite material of the tank is responsible for the through-the-thickness permeation of LH2. In this context, the detection of matrix cracks takes...

  4. A model for the ultrasonic detection of surface-breaking cracks by the Scanning

    E-Print Network [OSTI]

    Huerta, Antonio

    A model for the ultrasonic detection of surface-breaking cracks by the Scanning Laser Source, Northwestern University, Evanston, IL 60208, USA Abstract A model for the Scanning Laser Source (SLS) technique- breaking cracks. The generated ultrasonic signal is monitored as a line-focused laser is scanned over

  5. FREE-FORM ANISOTROPY: A NEW METHOD FOR CRACK DETECTION ON PAVEMENT SURFACE IMAGES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FREE-FORM ANISOTROPY: A NEW METHOD FOR CRACK DETECTION ON PAVEMENT SURFACE IMAGES Tien Sy NGUYEN(1, in the segmentation step, for crack detection on road pavement images. Features which are calculated along every free on some samples of different kinds of pavements. Results of the method are also given on other kinds

  6. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    SciTech Connect (OSTI)

    Khan, Inamullah; François, Raoul [Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, Avenue de Rangueil, F-31077 Toulouse (France)] [Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, Avenue de Rangueil, F-31077 Toulouse (France); Castel, Arnaud [Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW (Australia)] [Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2014-02-15T23:59:59.000Z

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.

  7. Robust damage assessment of multiple cracks based on the Frequency Response Function and the Constitutive Relation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Robust damage assessment of multiple cracks based on the Frequency Response Function a damage assessment technique for the non destructive detection and sizing of multiple open cracks in beams, many researchers have performed extensive investigations and damage assess- ment techniques based

  8. Effect of Blast Design on Crack Response C.H. Dowding

    E-Print Network [OSTI]

    Effect of Blast Design on Crack Response C.H. Dowding Professor of Civil & Environmental to assess the effect of changes in blast design on the house response. Velocity response was measured some 11 velocity transducers and 3 crack sensors measured excitation and response for each blast

  9. Assessing Hydrogen-Assisted Cracking Fracture Modes in High-Strength

    E-Print Network [OSTI]

    Eagar, Thomas W.

    I I Ii . I f. Assessing Hydrogen-Assisted Cracking Fracture Modes in High-Strength Steel Weldments Test results substantiate and extend the Beachem theory on hydrogen embrittlement ABSTRACT of the hydrogen content at the crack loca- tion. This relationship was used to assess previously proposed

  10. ccsd-00095604,version1-18Sep2006 Understanding crack versus cavitation in pressure-sensitive

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ccsd-00095604,version1-18Sep2006 Understanding crack versus cavitation in pressure show that in addition to cavitation, interfacial cracks are encountered in a probe-tack traction test mechanisms in usual adhesives. The most common one is cavitation, as evidenced by the first tests

  11. Hot-crack test for aluminium alloys welds using TIG process , F. Deschaux1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hot-crack test for aluminium alloys welds using TIG process A. Niel1,a , F. Deschaux1 , C cracking in welds : state of art Aluminium alloys are highly sensitive to hot tearing phenomenon. It appears during solidification of the alloy, so it can be observed during welding, as well as during

  12. Reflective Cracking Study: First-level Report on HVS Testing on Section 586RF - 45 mm MB15-GOverlay

    E-Print Network [OSTI]

    Jones, David; Wu, R; Harvey, John T

    2008-01-01T23:59:59.000Z

    of the asphalt concrete layer. Testing was stopped when thetesting being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the fifth HVS reflective cracking testing

  13. Reflective Cracking Study: First-Level Report on HVS Testing on Section 589RF - 45 mm MB4-G Overlay

    E-Print Network [OSTI]

    Jones, David; Harvey, John T; Wu, R; Lea, J.

    2008-01-01T23:59:59.000Z

    of the asphalt concrete layer. Testing was stopped when thetesting being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the second HVS reflective cracking testing

  14. Efficient solution of multiple cracks in great number using eigen COD boundary integral equations with iteration procedure

    E-Print Network [OSTI]

    Liu, Yijun

    as the fibre-reinforced brittle materials after certain extent of tensile damage. The prediction of crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD

  15. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    SciTech Connect (OSTI)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01T23:59:59.000Z

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  16. Vickers microindentation toughness of a sintered SiC in the median-crack regime

    SciTech Connect (OSTI)

    Ghosh, Asish; Kobayashi, A.S. (Washington Univ., Seattle, WA (United States). Coll. of Engineering); Li, Zhuang (Argonne National Lab., IL (United States)); Henager, C.H. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Bradt, R.C. (Nevada Univ., Reno, NV (United States). Mackay School of Mines)

    1991-01-01T23:59:59.000Z

    The Vickers microindentation method for the determination of the fracture toughness of ceramics was investigated in the median crack regime for a sintered alpha SiC. The results are compared with fracture toughness measurements by conventional fracture mechanics technique and also with the reported indentation toughness for the low-load Palmqvist crack regime. Indentation toughnesses in the median crack regime vary widely depending on the choice of the specific equation which is applied. The indentation toughnesses are also load (crack length) dependent. A decreasing R-curve trend results, in contradiction to the flat R-curve that has been observed with conventional fracture mechanics techniques. It is concluded that the Vickers microindentation method is not a reliable technique for the determination of the fracture toughness of ceramics in the median crack regime.

  17. Fatigue crack propagation in a quasi one-dimensional elasto-plastic model

    E-Print Network [OSTI]

    Tomás M. Guozden; Eduardo A. Jagla

    2012-06-27T23:59:59.000Z

    Fatigue crack advance induced by the application of cyclic quasistatic loads is investigated both numerically and analytically using a lattice spring model. The system has a quasi-one-dimensional geometry, and consists in two symmetrical chains that are pulled apart, thus breaking springs which connect them, and producing the advance of a crack. Quasistatic crack advance occurs as a consequence of the plasticity included in the springs which form the chains, and that implies a history dependent stress-strain curve for each spring. The continuous limit of the model allows a detailed analytical treatment that gives physical insight of the propagation mechanism. This simple model captures key features that cause well known phenomenology in fatigue crack propagation, in particular a Paris-like law of crack advance under cyclic loading, and the overload retardation effect.

  18. Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

    2012-04-26T23:59:59.000Z

    Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

  19. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  20. Thermal unobtainiums? The perfect thermal conductor and

    E-Print Network [OSTI]

    Braun, Paul

    conduction · Heat conduction in Bose condensates ­ electronic superconductors ­ superfluid helium ­ Bose condensate of magnons #12;Outline--toward perfect thermal insulators · Einstein and minimum thermal directions #12;Gas kinetic equation is a good place to start · Anharmonicity (high T limit) · Point defect

  1. Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds

    E-Print Network [OSTI]

    Ju, Jaehyung

    2006-10-30T23:59:59.000Z

    ???????????..?????????47 viii CHAPTER Page 4.4 Thermal Loading Combined with Bending Conditions?????? 49 4.5 Thermo-Viscoelastic Constitutive....1 Characterization of Crack Formation and Propagation Mechanism?. 93 6.2 Analytical Study of Time Dependent Non-Isothermal Linear Thermo-Viscoelasticity??????????????????...94 6.3 Initial Damage Characterization??????????????.. 101 6.3.1 Cryogenic Temperature...

  2. EFFECT OF STRESS GRADIENT AT THE VICINITY OF A CRACK TIP ON IONIC DIFFUSION IN SILICATE GLASSES: AN AFM STUDY.

    E-Print Network [OSTI]

    Demouchy, Sylvie

    1 EFFECT OF STRESS GRADIENT AT THE VICINITY OF A CRACK TIP ON IONIC DIFFUSION IN SILICATE GLASSES.marliere@univ-montp2.fr ABSTRACT The slow advance of a crack in sodo-silicate glasses was studied at nanometer scale-micrometric vicinity of the tip of a crack running in silicate glass with mobile ions (as sodium cations) and check

  3. ensl-00156750,version1-22Jun2007 A dynamical law for slow crack growth in polycarbonate films

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ensl-00156750,version1-22Jun2007 A dynamical law for slow crack growth in polycarbonate films: 24 juin 2007) We study experimentally the slow growth of a single crack in polycarbonate films experimental insight in our plastic zone pz Fig. 1 ­ Image of a crack in a polycarbonate film with its

  4. Non-thermal Plasma Chemistry Non-thermal Thermal

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    -thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer;Leuchtstoffröhre Plasma-Bildschirm Energiesparlampe #12;electrical engineering light sources textile industry

  5. Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection

    DOE Patents [OSTI]

    Sun, Jiangang (Westmont, IL); Deemer, Chris (Downers Grove, IL)

    2003-01-01T23:59:59.000Z

    A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

  6. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05T23:59:59.000Z

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  7. Specified pipe fittings susceptible to sulfide stress cracking

    SciTech Connect (OSTI)

    McIntyre, D.R.; Moore, E.M. Jr. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-01-01T23:59:59.000Z

    The NACE Standard MR0175 limit of HRC 22 is too high for cold-forged and stress-relieved ASTM A234 WPB pipe fittings. Hardness surveys and sulfide stress cracking test results per ASTM G 39 and NACE TM0177 Method B are presented to support this contention. More stringent inspection and a hardness limit of HB 197 (for cold-forged and stress-relieved fittings only) are recommended. The paper describes a case in which fittings were welded in place in wet sour service flow lines and gas-oil separating plants which were ready to start. The failure of a welded fitting shortly after start-up led to extensive field hardness testing on all fittings from this manufacturer.

  8. Vortex flow in the technology of radiation wave cracking (RWC)

    E-Print Network [OSTI]

    L. A. Tsoy; V. N. Kolushov; A. G. Komarov; A. N. Tsoy

    2012-09-16T23:59:59.000Z

    This article examines the theory of vortex flows in relation to the processes occurring in the radiation-wave cracking of crude oil, when the crude oil is sprayed into the gas stream in the form of a mist and then is fed into the reactor, where it is treated by the accelerated electrons and the UHF radiation. The output of this process are the products with the specified parameters (high-octane petroleum products). This process operates at the ambient pressure and temperature, which makes the process safer for industrial purposes. Besides the process itself, the authors described the equipment used in this process, as well as the parameters of the optimal process.

  9. Ashland Oil Inc. has new heavy oil cracking technology

    SciTech Connect (OSTI)

    Not Available

    1980-04-21T23:59:59.000Z

    Ashland's new ''Reduced Crude Conversion'' is a fluid catalytic cracking process that permits more efficient use of the bottoms of the crude barrel, including the production of a given amount of gasoline from 20% less crude. Gasoline yields go from 49.8% for Arabian light crudes to 56.9% for Murban crudes. The new process, details of which have not been revealed, operates at ''high'' temperatures and about 1 atm; requires no feed hydrogen (and therefore, according to Ashland, compares favorably with hydrocracking); is not inhibited by catalyst poisons such as nickel and vanadium, even though these metals might adhere to the proprietary catalyst; and probably uses a zeolite catalyst. Ashland is planning a $70 million, 40,000 bbl/day unit which is scheduled to go on stream in 1982 at its Catlettsburg, Ky., refinery.

  10. Full-field characterization of thermal diffusivity in continuous- fiber ceramic composite materials and components

    SciTech Connect (OSTI)

    Steckenrider, J.S.; Ellingson, W.A. [Argonne National Lab., IL (United States); Rothermel, S.A. [South Dakota State Univ., Brookings, SD (United States)

    1995-05-01T23:59:59.000Z

    Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC{sub (f)}/SiC), SiC-fiber-reinforced silicon nitride (SiC {sub (f)}/Si{sub 3}N{sub 4}), aluminum oxide (Al{sub 2}O{sub 3})-fiber-reinforced Al{sub 2}O{sub 3} (Al{sub 2}O{sub 3}{sub (f)}/Al{sub 2}O{sub 3}), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other ``defects`` would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide ``single-shot`` full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistant coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.

  11. Hydrocarbons Heterogeneous Pyrolysis: Experiments and Modeling for Scramjet Thermal Management

    E-Print Network [OSTI]

    Bouchez, Marc; Visez, Nicolas; Herbinet, Olivier; Fournet, René; Marquaire, Paul-Marie

    2009-01-01T23:59:59.000Z

    The last years saw a renewal of interest for hypersonic research in general and regenerative cooling specifically, with a large increase of the number of dedicated facilities and technical studies. In order to quantify the heat transfer in the cooled structures and the composition of the cracked fuel entering the combustor, an accurate model of the thermal decomposition of the fuel is required. This model should be able to predict the fuel chemical composition and physical properties for a broad range of pressures, temperatures and cooling geometries. For this purpose, an experimental and modeling study of the thermal decomposition of generic molecules (long-chain or polycyclic alkanes) that could be good surrogates of real fuels, has been started at the DCPR laboratory located in Nancy (France). This successful effort leads to several versions of a complete kinetic model. These models do not assume any effect from the material that constitutes the cooling channel. A specific experimental study was performed ...

  12. Multiwavelength Thermal Emission

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

  13. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01T23:59:59.000Z

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  14. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01T23:59:59.000Z

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  15. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect (OSTI)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01T23:59:59.000Z

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  16. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    SciTech Connect (OSTI)

    Zhang Ruijin, E-mail: rjzhang@mail.neu.edu.c [Modern Design and Analysis Research Institute, Northeastern University, Shenyang (China); Castel, Arnaud; Francois, Raoul [LMDC - Laboratoire Materiaux et Durabilite des Constructions, Universite de Toulouse, UPS, INSA, Toulouse (France)

    2010-03-15T23:59:59.000Z

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  17. Threshold velocity for environmentally-assisted cracking in low alloy steels

    SciTech Connect (OSTI)

    Wire, G.L.; Kandra, J.T.

    1997-04-01T23:59:59.000Z

    Environmentally Assisted Cracking (EAC) in low alloy steels is generally believed to be activated by dissolution of MnS inclusions at the crack tip in high temperature LWR environments. EAC is the increase of fatigue crack growth rate of up to 40 to 100 times the rate in air that occurs in high temperature LWR environments. A steady state theory developed by Combrade, suggested that EAC will initiate only above a critical crack velocity and cease below this same velocity. A range of about twenty in critical crack tip velocities was invoked by Combrade, et al., to describe data available at that time. This range was attributed to exposure of additional sulfides above and below the crack plane. However, direct measurements of exposed sulfide densities on cracked specimens were performed herein and the results rule out significant additional sulfide exposure as a plausible explanation. Alternatively, it is proposed herein that localized EAC starting at large sulfide clusters reduces the calculated threshold velocity from the value predicted for a uniform distribution of sulfides. Calculations are compared with experimental results where the threshold velocity has been measured, and the predicted wide range of threshold values for steels of similar sulfur content but varying sulfide morphology is observed. The threshold velocity decreases with the increasing maximum sulfide particle size, qualitatively consistent with the theory. The calculation provides a basis for a conservative minimum velocity threshold tied directly to the steel sulfur level, in cases where no details of sulfide distribution are known.

  18. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect (OSTI)

    Hunt, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abbott, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Havstad, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-06-01T23:59:59.000Z

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80–100 ?m into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 ?m without assistance from creep or grain erosion phenomena.

  19. Characterizing the cracking behavior of hard alpha defects in rotor grade Ti-6-4 alloy

    SciTech Connect (OSTI)

    McKeighan, P.C.; Perocchi, L.C.; Nicholls, A.E.; McClung, R.C.

    1999-07-01T23:59:59.000Z

    A program sponsored by the FAA is currently underway to develop predictive tools utilizing state-of-the-art damage tolerance and probabilistic methodologies that can be used in the life management of high energy rotors. The program is focusing on fatigue crack nucleation and growth from anomalies in titanium alloys known as hard alpha, an inclusion-like feature that can occur during the melting process. In the work detailed in this paper, two sizes of synthetic hard alpha defects are created in Ti-6Al-4V and subjected to static and fatigue loading. In addition, two different geometry anomalies are considered: one intersecting the surface of the specimen and another embedded internally. A number of crack detection transducers are used and shown to compare well to results from visual inspections on the surface defect specimens. These surface specimens tend to exhibit defect cracking at relatively low stress levels, typically on the order of 5--10 ksi. Although it appeared from the crack detection transducer that little or no cracking occurred in the interior anomaly specimens given an applied static stress of 100 ksi, subsequent metallographic sectioning demonstrated more extensive cracking and damage. The observed cracking behavior indicates that the diffusion zone may play an important role in the structural integrity of the hard alpha anomalies.

  20. Conditions under which cracks occur in modified 13% chromium steel in wet hydrogen sulfide environments

    SciTech Connect (OSTI)

    Hara, T.; Asahi, H.

    2000-05-01T23:59:59.000Z

    Occurrence of cracks in an API 13% Cr steel, modified 13% Cr steel, and duplex stainless steel were compared in various wet, mild hydrogen sulfide (H{sub 2}S) environments. The conditions under which cracks occurred in the modified 13% Cr steel in oil and gas production environments were made clear. No cracks occurred if pH > depassivation pH (pH{sub d}) and redox potential of sulfur (E{sub S(red/ax)}) < pitting potential (V{sub c}). Hydrogen embrittlement-type cracks occurred in pH > Ph{sub d} and E{sub S(red/ax)} > V{sub c}. The pH inside the pit decreased drastically and hydrogen embrittlement occurred. Cracks of the hydrogen embrittlement type occurred if pH < pH{sub d} and threshold hydrogen concentration under which cracks occur (H{sub th}) < hydrogen concentration in steel (H{sub 0}). No cracks occurred if pH < pH{sub d} and H{sub th} > H{sub 0}.

  1. On the Use of the Polynomial Annihilation Edge Detection for Locating Cracks in Beam-Like Structures

    SciTech Connect (OSTI)

    Saxena, Rishu [ORNL] [ORNL; Surace, Cecilia [Politecnico di Torino] [Politecnico di Torino; Archibald, Richard K [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    A crack in a structure causes a discontinuity in the first derivative of the mode shapes: On this basis, a numerical method for detecting discontinuities in smooth piecewise functions and their derivatives, based on a polynomial annihilation technique, has been applied to the problem of crack detection and localisation in beam-like structures for which only post-damage mode shapes are available. Using a finite-element model of a cracked beam, the performance of this methodology has been analysed for different crack depths and increasing amounts of noise. Given the crack position, a procedure to estimate its depth is also proposed and corresponding results shown.

  2. Crack growth rates of nickel alloy welds in a PWR environment.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

    2006-05-31T23:59:59.000Z

    In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

  3. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09T23:59:59.000Z

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

  4. Mode I transverse cracking in an epoxy and a graphite fiber reinforced epoxy

    E-Print Network [OSTI]

    Williams, David Robert

    1981-01-01T23:59:59.000Z

    release rate can be derived from Equation (2) and shown to be: P dc where C = D/P is the compliance (m/N), D being displacement (m) and P being load (N) . Given an algebraic expression for the compliance as a function of crack length, it is possible... lengths to a compliance function suggested by Slepetz and Carlson [11]: C = A *A + A *A + A *(2+A)l(1-A) 3 2 1 2 3 24 where the A. are the coefficients, A is the relative crack length a/w (crack length measured from load line divided by specimen...

  5. Crack healing as a function of pOH- and fracture morphology

    E-Print Network [OSTI]

    Fallon, Jessica Anne

    2005-02-17T23:59:59.000Z

    Crack healing in quartz has been investigated by optical microscopy and interferometry of rhombohedral ( 1) cracks in polished Brazilian quartz prisms that were annealed hydrothermally at temperatures of 250?C and 400?C for 2.4 to 240 hours, fluid... pressure Pf = Pc = 41 MPa, and varying pOH- (from 5.4 to 1.2 at 250?C for fluids consisting of distilled water and NaOH solutions with molalities up to 1). Crack morphologies before and after annealing were recorded for each sample in plane light...

  6. Technique development for field inspection of cracking in seam welded ducts

    SciTech Connect (OSTI)

    Shell, Eric B.; Benson, Craig [Wyle Laboratories, Inc., Dayton, OH 45440 (United States); Liljestrom, Greg C.; Shanahan, Stephen [Wyle Laboratories, Inc., Oklahoma City, OK 73110 (United States)

    2014-02-18T23:59:59.000Z

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  7. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    SciTech Connect (OSTI)

    Li, Xiantao, E-mail: xli@math.psu.edu [Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-10-28T23:59:59.000Z

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  8. Ultrasonic ply-by-ply detection of matrix cracks in laminated composites 

    E-Print Network [OSTI]

    Ganpatye, Atul Shridatta

    2005-02-17T23:59:59.000Z

    .......................................... 68 Fig. 2.33 (a) Filtered X-ray image, and (b) ultrasonic image, of cracks in the -452 ply-group of the TAMU-1 specimen.................................................... 69 Fig. 2.34 (a) Filtered X-ray image, and (b) ultrasonic image....................................................... 71 Fig. 2.36 (a) Filtered X-ray image, and (b) ultrasonic image, of cracks in the -452 ply-group of the TAMU-4 specimen.................................................... 72 xi Page Fig. 3.1 Ultrasonic images of cracks in the eight...

  9. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    SciTech Connect (OSTI)

    Kanne, W.R. Jr.

    1988-01-01T23:59:59.000Z

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  10. A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909

    SciTech Connect (OSTI)

    Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun; Hu, Xiyuan; Wang, Tianjiao; Li, Jianmin; Li, Guozhu

    2013-04-15T23:59:59.000Z

    In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residual hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ? It is a new process for the forming of GH909 alloy via laser welding. ? The forming mechanism of laser welding defects in GH909 has been studied. ? It may be a means to improve the efficiency of aircraft engine production.

  11. MONITORING OF CRACKS ON THE BELL TOWER OF ST. ANASTASIA CATHEDRAL IN ZADAR CROATIA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MONITORING OF CRACKS ON THE BELL TOWER OF ST. ANASTASIA CATHEDRAL IN ZADAR CROATIA Davor Uglesi 1 , Uros Bohinc 2 1 D & Z doo, Jerolima Vidulia 7, 23000 Zadar, Croatia 2 ZAG, Dimiceva 12, 1000 Ljubljana

  12. The effect of complex inclusion geometries on fracture and crack coalescence behavior in brittle material

    E-Print Network [OSTI]

    Morgan, Stephen Philip

    2011-01-01T23:59:59.000Z

    This research study investigates the cracking processes in a brittle material associated with inclusions of varying shape, orientation and materials. Specifically, this study summarizes a series of uniaxial compression ...

  13. Analysis of cracking in small-diameter BWR piping. Final report

    SciTech Connect (OSTI)

    Eason, E.D.; Shusto, L.M.

    1986-01-01T23:59:59.000Z

    In BWRs, the failure rate from intergranular stress corrosion cracking is lower for small piping than for piping of more than 4-in. diameter. Moreover, for the small piping, repair costs are considerably lower, and leakage has much less impact.

  14. Effect of oxygen potential on high temperature crack growth in alloy 617

    E-Print Network [OSTI]

    Benz, Julian K

    2009-01-01T23:59:59.000Z

    The effect of oxygen partial pressure on crack growth rates in Alloy 617 has been studied using both static and fatigue loading at 650°C. Tests were conducted at a constant stress intensity factor, K, for static loading ...

  15. Modeling the ASR Induced Strains and Cracking of Reinforced Concrete Beams

    E-Print Network [OSTI]

    Zhang, Li

    2013-05-17T23:59:59.000Z

    the number and spacing of cracks of a partly restrained reinforced concrete beam affected by ASR gels. The model is validated with recent experimental results on large scale reinforced concrete specimens. Predictions agree well with the observed number...

  16. Stiffness reduction and stress transfer in composite laminates with transverse matrix cracks

    E-Print Network [OSTI]

    Praveen, Grama Narasimhaprasad

    1994-01-01T23:59:59.000Z

    Cross-ply laminates and angle-ply laminates with transverse plies containing through-width matrix cracks across the thickness of the transverse plies are studied using a variational, strain energy based approach, complementary to that of Hashin...

  17. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31T23:59:59.000Z

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  18. Integrating Gas Turbines with Cracking Heaters - Impact on Emissions and Energy Efficiency

    E-Print Network [OSTI]

    Platvoet, E.

    2011-01-01T23:59:59.000Z

    Turbine Exhaust Gas (TEG) contains high levels of oxygen, typically 15 vol. percent, due to gas turbine blade material temperature limits. As such it can be used as an oxidant for combustion in cracking furnaces and reformers. Its high temperature...

  19. Comparison of theory and experiment for elastic-plastic plane-strain crack growth

    E-Print Network [OSTI]

    well to the experimental results obtained on deeply cracked compact specimens. L. Hermann, lng, MS yielding are not yet available, although some discussion of the fully yielded case has been possible 1

  20. A preliminary investigation of the effects of environmentally assisted cracking on natural gas transmission pipelines 

    E-Print Network [OSTI]

    Curbo, Jason Wayne

    2005-08-29T23:59:59.000Z

    Concepts for the development of a model to predict natural gas transmission pipeline lifetime in a corrosive environment are constructed. Primarily, the effects of environmentally assisted cracking (EAC) are explored. Tensile test specimens from a...

  1. Theoretical Simulation of n-Alkane Cracking on Zeolites Joseph A. Swisher,,|

    E-Print Network [OSTI]

    Bell, Alexis

    calculations for propane and butane cracking on MFI reveal that significantly better agreement between reactions, as well as the distribution of the products formed from a specified set of reactants. Impressive

  2. A program to design asphalt concrete overlays to mitigate reflection cracking

    E-Print Network [OSTI]

    Satyanarayana Rao, Sindhu

    2002-01-01T23:59:59.000Z

    of the research are to understand the occurrence and behavior of reflection cracking and for devising ways of mitigating them and to put together an effective and complete package of computer programs to design asphalt concrete overlays. Another primary objective...

  3. The stress field around two parallel edge cracks in a finite body

    E-Print Network [OSTI]

    Hardin, Patrick Wayne

    1993-01-01T23:59:59.000Z

    The goal of this research was to develop a method to represent and analyze the stress field surrounding two edge cracks located in a finite body. The generalized Westergaard equations were utilized to represent the independent stress fields created...

  4. Linear elastic fracture mechanics in anisotropic solids : application to fluid-driven crack propagation

    E-Print Network [OSTI]

    Laubie, Hadrien Hyacinthe

    2013-01-01T23:59:59.000Z

    Fracture mechanics is a field of continuum mechanics with the objective to predict how cracks initiate and propagate in solids. It has a wide domain of application. While aerospace engineers want to make sure a defect in ...

  5. THE EFFECT OF SILICON ON THE ENVIRONMENTAL CRACKING BEHAVIOR OF A HIGH STRENGTH STEEL

    E-Print Network [OSTI]

    Cedeno, M.H.C.

    2010-01-01T23:59:59.000Z

    Low-Alloy, High-Strength Steel, Advanced Research ProjectsTests of High Strength Steels, BISRA Report September 1971.Cracking in High Strength Steels and in Titanium and

  6. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils

    E-Print Network [OSTI]

    Boyer, Edmond

    in analyzing drought effects on buildings, because the presence of cracks changes soil surface properties, leading to dam failures as for the Stockton and Wister dams (Sherard, 1973). In the agricultural field

  7. Evaluation of the filler effects on fatique cracking and permanent deformation of asphalt concrete mixtures 

    E-Print Network [OSTI]

    Izzo, Richard P

    1997-01-01T23:59:59.000Z

    The addition of hydrated lime to asphalt has shown to be beneficial with an improvement in the Theological properties of the binder, as well as resistance to permanent deformation (rutting) and fatigue cracking of asphalt concrete mixtures...

  8. Evaluation of the filler effects on fatique cracking and permanent deformation of asphalt concrete mixtures

    E-Print Network [OSTI]

    Izzo, Richard P

    1997-01-01T23:59:59.000Z

    The addition of hydrated lime to asphalt has shown to be beneficial with an improvement in the Theological properties of the binder, as well as resistance to permanent deformation (rutting) and fatigue cracking of asphalt concrete mixtures...

  9. Aluminum nitride transitional layer for reducing dislocation density and cracking of AIGan epitaxial films

    DOE Patents [OSTI]

    Allerman, Andrew A. (Tijeras, NM); Crawford, Mary H. (Albuquerque, NM); Koleske, Daniel D. (Albuquerque, NM); Lee, Stephen R. (Albuquerque, NM)

    2011-03-29T23:59:59.000Z

    A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

  10. Geometry dependence of crack growth resistance curves in thin sheet aluminum alloys

    E-Print Network [OSTI]

    Stricklin, Lance Lee

    1988-01-01T23:59:59.000Z

    GEOMETRY DEPENDENCE OF CRACK GROWTH RESISTANCE CURVES IN THIN SHEET ALUMINUM ALLOYS A Thesis by LANCE LEE STRICKLIN Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1988 Major Subject: Mechanical Engineering GEOMETRY DEPENDENCE OF CRACK GROWTH RESISTANCE CURVES IN THIN SHEET ALUMINUM ALLOYS A Thesis by LANCE LEE STRICKLIN Approved as to style and content by: Ted L. Anderson...

  11. The effect of stress cracked and broken corn kernels on alkaline processing losses

    E-Print Network [OSTI]

    Jackson, David Scott

    1986-01-01T23:59:59.000Z

    (~. 70, P&. 06). There were significant differences in COD and DML (KRATIO= 100) between highly damaged corn and the less damaged counterpart of the same hybrid. Stress cracked corn, however, only slightly increased COD and DML. The ease of pericarp... Sigruficance of Com and Cooking Parameters . . . LIST OF FIGURES Page Stress Crack, Pericarp, and Broken Kernel Damage of Corn . . Flow Chart of Procedutes and Differences Between Cook Methods I and H 21 24 Correlation between Thousand Kernel Weight...

  12. A quantitative determination of the conditions for hot cracking during welding for aluminum alloys

    E-Print Network [OSTI]

    Steenbergen, James Everett

    1969-01-01T23:59:59.000Z

    A QUANTITATIVE DETERMINATION OF THE CONDITIONS FOR HOT CRACKING DURING WELDING FOR ALUMINUM ALLOYS A Thesis by JAMES EVERETT STEENBERGEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE January 1969 Major Subject: Materials Engineering A QUANTITATIVE DETERMINATION OF THE CONDITIONS FOR HOT CRACKING DURING WELDING FOR ALUMINUM ALLOYS A Thesis by JAMES EVERETT STEENBERGEN (Chairman of Committee) ( ead...

  13. Identification of asphalt binder properties that affect cracking performance of hot mixed asphalt concrete pavements

    E-Print Network [OSTI]

    Hastings, Charles Patrick

    1997-01-01T23:59:59.000Z

    Specimen Failing in Indirect Tension Fatigue Cracking as a Function of Time for Texarkana Test Pavements 17 17 19 Figure 10. Figure I l. Figure 12. Texarkana EVA Test Section Texarkana Latex Test Section . Reflective Cracking as a Function... Results for Carbon Black Illustrating Increase in Molecular Size 69 Figure B5. Sherman GPC Results for Control Illustrating Increase in Molecular Size . 70 Page Figure B6. Sherman GPC Results for EVA Illustrating Increase in Molecular Size 70 Figure...

  14. A quantitative determination of the conditions for hot cracking during welding for aluminum alloys 

    E-Print Network [OSTI]

    Steenbergen, James Everett

    1969-01-01T23:59:59.000Z

    A QUANTITATIVE DETERMINATION OF THE CONDITIONS FOR HOT CRACKING DURING WELDING FOR ALUMINUM ALLOYS A Thesis by JAMES EVERETT STEENBERGEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE January 1969 Major Subject: Materials Engineering A QUANTITATIVE DETERMINATION OF THE CONDITIONS FOR HOT CRACKING DURING WELDING FOR ALUMINUM ALLOYS A Thesis by JAMES EVERETT STEENBERGEN (Chairman of Committee) ( ead...

  15. Characterization of the plastic strain theory for predicting hot cracking during welding in aluminum alloys 

    E-Print Network [OSTI]

    Walters, Douglas Frederick

    1970-01-01T23:59:59.000Z

    CHARACTERIZATION OF THE PLASTIC STRAIN THEORY FQR PREDICTING HOT CRACKING DURING WELDING IN ALUMINUM ALLOYS A Thesis by DOUGLAS FREDERICK WALTERS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1970 Major Subject: Mechanical Engineering CHARACTERIZATION OF THE PLASTIC STRAIN THEORY FOR PREDICTING HOT CRACKING DURING WELDING IN ALUMINUM ALLOYS A Thesis by DOUGLAS FREDERICK WALTERS Approved...

  16. On grouting using a suspension of ultrafine clay on artificially cracked rock samples

    SciTech Connect (OSTI)

    Ito, Y.; Sakaguchi, T.; Nishiyama, K. [Kumagai Gumi Co., Ltd., Tokyo (Japan). Nuclear and Energy Dept.; Fujiwara, A. [Radioactive Waste Management Center, Tokyo (Japan). Second Research Div.

    1993-12-31T23:59:59.000Z

    Recently there has been increasing social interest in the effective disposal of low-level radioactive wastes. The use of underground rock caverns is considered as a possible repository space. This paper presents a new grouting method which uses a suspension of liquefied ultrafine clay in fractured rock masses. In order to demonstrate the effect to block open cracks, two experiments were carried out on large-sized granite samples with open cracks. The experiments proved the method to be highly effective.

  17. Characterization of Nickel and Vanadium compounds in tar sand bitumen by petroporphyrin quantitation and size exclusion chromatography coupled with element specific detection

    SciTech Connect (OSTI)

    Reynolds, J.G.; Jones, E.L.; Bennett, J.A.; Biggs, W.R.

    1988-06-01T23:59:59.000Z

    Tar sands represent a tremendous untapped resource for transportation fuels. In the United States alone, over 60 billion barrels of bitumen are estimated to be in place. In order to use this bitumen, it must be somehow separated from the sand. The resulting bitumen is of low quality, and generally will require at least some refining. Typical refinery upgrading methods include fluid catalytic cracking, thermal visbreaking, and residuum hydroconversion. Most of these methods utilize metals-sensitive catalyst. The metals bound in the bitumen are deleterious to catalytic processing, causing rapid deactivation through poisoning and pore mouth plugging. Like heavy crude oil residua, tar sand bitumens have high concentrations of Ni and V. The types of complexes of Ni and V have been studied for heavy crude oils, and can be placed in two broad categories: the metallopetroporphyrins and the metallononporphyrins. The metallopetroporphyrins have been studied extensively. For understanding the behavior of the metals in processing, size exclusion chromatography coupled with element specific detection by inductively coupled plasma atomic emission spectroscopy (SEC-HPLC-ICP) has been applied to several heavy crude oils, residua, and processed products along with separated fractions of feeds and products. These results have shown general important size-behavior features of the metallopetroporphyrins and metallo-nonporphyrins associated with individual feed characteristics. Because of the importance of the metals in a downstream process methods, the authors have applied several of the metallopetroporphyrin and metallo-nonporphyrin examination technique to extracted bitumen from selected tar sands.

  18. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02T23:59:59.000Z

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  19. Contact fatigue behavior and gas cell thermal wave NDE of sintered reaction bonded silicon nitride

    SciTech Connect (OSTI)

    Barla, J.R.; Edler, J.P.; Lin, H. [Eaton Corp. R & D, Southfield, MI (United States)] [and others

    1996-12-31T23:59:59.000Z

    Silicon nitride is being evaluated for potential applications as structural components subjected to contact fatigue loading. A new testing and evaluation methodology for evaluation of Hertzian contact fatigue damage in ceramic materials has been developed and is described. Contact fatigue damage is induced in three test specimens simultaneously. The material investigated is Eaton Corporation`s low cost E - Process Silicon Nitride. Tests were conducted at several Hertzian stress levels to evaluate contact fatigue damage behavior. Gas cell thermal wave NDE was employed to study the induced subsurface damage. Damage behavior was also investigated using optical microscopy. Two specimens were evaluated in detail; one that was tested for 17,400 cycles, P{sub max} = 2700 N and one that was tested for 1 x 10{sup 6} cycles, P{sub max} = 1800 N. The 2700 N specimen has a partial cone crack and contains a small concentration of vertical and shallow horizontal cracks. No evidence of a cone crack was detected on the 1800 N specimen. However, a larger concentration of horizontal microcracks at and just below the surface is present in this specimen, with particle debris in and around the surface contact area. Correlation of the optical microscopy observations with gas cell thermal wave NDE of the subsurface damage in these two specimens is discussed.

  20. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect (OSTI)

    Zhang, Ding; Han, Xiaoyan [Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202 (United States); Newaz, Golam [Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2014-02-18T23:59:59.000Z

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  1. Steady-state propagation of a Mode III crack in couple stress elastic materials

    E-Print Network [OSTI]

    G. Mishuris; A. Piccolroaz; E. Radi

    2012-07-14T23:59:59.000Z

    This paper is concerned with the problem of a semi-infinite crack steadily propagating in an elastic solid with microstructures subject to antiplane loading applied on the crack surfaces. The loading is moving with the same constant velocity as that of the crack tip. We assume subsonic regime, that is the crack velocity is smaller than the shear wave velocity. The material behaviour is described by the indeterminate theory of couple stress elasticity developed by Koiter. This constitutive model includes the characteristic lengths in bending and torsion and thus it is able to account for the underlying microstructure of the material as well as for the strong size effects arising at small scales and observed when the representative scale of the deformation field becomes comparable with the length scale of the microstructure, such as the grain size in a polycrystalline or granular aggregate. The present analysis confirms and extends earlier results on the static case by including the effects of crack velocity and rotational inertia. By adopting the criterion of maximum total shear stress, we discuss the effects of microstructural parameters on the stability of crack propagation.

  2. Methodology for extracting local constants from petroleum cracking flows

    DOE Patents [OSTI]

    Chang, Shen-Lin (Woodridge, IL); Lottes, Steven A. (Naperville, IL); Zhou, Chenn Q. (Munster, IN)

    2000-01-01T23:59:59.000Z

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  3. Sulphide stress cracking resistance of supermartensitic stainless steel for OCTG

    SciTech Connect (OSTI)

    Scoppio, L.; Barteri, M. [Centro Sviluppo Materiali S.p.A., Rome (Italy); Cumino, G. [Dalmine Tubi Industriali S.r.l., Bergamo (Italy)

    1997-08-01T23:59:59.000Z

    Supermartensitic stainless steels, recently made available as oil country tubular goods (OCTG), have been developed as a valuable cost effective alternative to duplex stainless steel for high CO{sub 2}, medium/high chlorides, and very low H{sub 2}S environments. Experimental tests were carried out to determine the localized corrosion and the sulfide stress cracking (SSC) resistance of supermartensitic steel UNS S41425 to be used as OCTG in slightly sour oil and gas wells and to compare its performance with standard L80 API grade UNS S42000 13% Cr steel, considered as a reference. Supermartensitic steels with yield range as per L80, C95, P110, API5CT, were developed and corrosion and mechanical properties were determined. The influence of different chloride contents (NaCl 10 {divided_by} 50 g/l), hydrogen sulfide partial pressure (0.1 {divided_by} 100 kPa) and pH (2.7 {divided_by} 4.5) has been investigated in order to simulate production service conditions. Modified NACE constant load test and slow strain rate (SSR) test were performed. SSR gave the most severe evaluation for the SSC resistance. In the SSR test supermartensitic steel is deeply influenced by the chloride concentration. Supermartensitic steel corrosion resistance is by far superior to that of 13% Cr.

  4. Thermal Infrared Remote Sensing

    E-Print Network [OSTI]

    Thermal Infrared Remote Sensing Thermal Infrared Remote Sensing #12;0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 and x-ray Ultraviolet Infrared Microwave and radio waves Wavelength in meters (m) Electromagnetic.77 700 red limit 30k0.041 2.48 green500 near-infrared far infrared ultraviolet Thermal Infrare refers

  5. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  6. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov (indexed) [DOE]

    eere.energy.gov * energy.govsunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving...

  7. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...

  8. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20T23:59:59.000Z

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  9. MacroscoMacroscopic Cracking Determination in LaBS Glasspic Cracking Determination in LaBS Glass

    SciTech Connect (OSTI)

    Marra, James

    2005-08-01T23:59:59.000Z

    The DOE/EM plans to conduct the Plutonium Vitrification Project at the Savannah River Site (SRS). An important part of this project is to reduce the attractiveness of the plutonium by fabricating a plutonium glass form and immobilizing the Pu form within the high level waste (HLW) glass prepared in the Defense Waste Processing Facility (DWPF). This requires that a project schedule that is consistent with EM plans for DWPF and cleanup of the SRS be developed. Critical inputs to key decisions in the vitrification project schedule are near-term data that will increase confidence that the lanthanide borosilicate (LaBS) glass product is suitable for disposal in the Yucca Mountain Repository. A workshop was held on April 28, 2005 at Bechtel SAIC Company (BSC) facility in Las Vegas, NV to define the near term data needs. Dissolution rate data and the fate of plutonium oxide and the neutron absorbers during the dissolution process were defined as key data needs. A suite of short-term tests were defined at the workshop to obtain the needed data. The objectives of these short-term tests are to obtain data that can be used to show that the dissolution rate of a LaBS glass is acceptable and to show that the extent of Pu separation from neutron absorbers, as the glass degrades and dissolves, is not likely to lead to criticality concerns. An additional data need was identified regarding the degree of macroscopic cracking and/or voiding that occurs during processing of the Pu glass waste form and subsequent pouring of HLW glass in the DWPF. A final need to evaluate new frit formulations that may increase the durability of the plutonium glass and/or decrease the degree to which neutron absorbers separate from the plutonium during dissolution was identified. This task plan covers the need to evaluate the degree of macroscopic cracking and/or voiding that occurs during processing of the Vitrified Plutonium Waste Form (i.e. the can-in-canister configuration containing the vitrified Pu product). Separate task plans were developed for Pu glass performance testing of the current baseline LaBS glass composition and development of alternative frit formulations. Recent results from Pressurized Unsaturated Flow (PUF) testing showed the potential separation of Pu from Gd during the glass dissolution process [3]. Post-test analysis of the LaBS glass from a 6-year PUF test showed a region where Pu had apparently accumulated in a Pu-bearing disk-like phase that had become separated from neutron absorber (Gd). It should be noted that this testing was conducted on the early LaBS Frit A glass composition that was devoid of HfO{sub 2} as a neutron absorber. PUF testing is currently being initiated using the LaBS Frit B composition that contains HfO{sub 2}. The potential for fissile material and neutron absorber separation is a criticality risk for the repository. The surface area that is available for leaching (i.e. due to the degree of cracking or voiding within the Pu glass cylinder) is a factor in modeling the amount of fissile material and neutron absorber released during the dissolution process. A mathematical expression for surface area is used in the Total Systems Performance Assessment (TSPA) performed by BSC personnel. Specifically, the surface area available for leaching is being used in current external criticality assessments. The planned processing steps for producing a VPWF assembly involves processing Pu feed and LaBS frit to produce a can of Pu LaBS glass, packaging this can into a second can (i.e. bagless transfer) for removal from the glovebox processing environment, placing a series of bagless transfer cans into a DWPF canister, and pouring HLW glass into the DWPF canister to encapsulate bagless transfer cans. The objective of this task is to quantify the degree of cracking and/or voiding that will occur during the processing of the VPWF.

  10. DEVELOPMENT AND CONSTRUCTION OF LOW-CRACKING HIGH-PERFORMANCE CONCRETE (LC-HPC) BRIDGE DECKS: FREE SHRINKAGE TESTS, RESTRAINED RING TESTS, CONSTRUCTION EXPERIENCE, AND CRACK SURVEY RESULTS

    E-Print Network [OSTI]

    Yuan, Jiqiu

    2011-12-31T23:59:59.000Z

    The development, construction, and evaluation of low-cracking high-performance concrete (LC-HPC) bridge decks are described based on laboratory test results and experiences gained during the construction of 13 LC-HPC bridge decks in Kansas, along...

  11. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  12. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20T23:59:59.000Z

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  13. Microsecond switchable thermal antenna

    SciTech Connect (OSTI)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

    2014-07-21T23:59:59.000Z

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  14. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  15. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15T23:59:59.000Z

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  16. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  17. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Kassner, T. F.; Ruther, W. E.; Shack, W. J.; Smith, J. L.; Soppet, W. K.; Strain; R. V. (Energy Technology); ( APS-USR)

    1999-10-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vessel and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.

  18. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01T23:59:59.000Z

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  19. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

  20. Laser induced fluorescence imaging of thermal damage in polymer matrix composites

    SciTech Connect (OSTI)

    Wachter, E.A.; Fisher, W.G.; Meyer, K.E.

    1996-12-31T23:59:59.000Z

    A simple, fluorescence-based imaging system was developed for identifying regions of thermal damage in polymer-matrix composites (PMCs). PMCs have important applications where low weight and high mechanical strength are needed. One concern in the aerospace industry is the tendency of some PMC materials to become irreversibly damaged when exposed to high temperatures. Traditional nondestructive evaluation (NDE) techniques are capable of detecting physical flaws, such as cracks and delaminations, but have not proven effective for detecting initial heat damage, which occurs on a molecular scale. Spectroscopic techniques such as laser-induced fluorescence provide an attractive means for detecting thermal damage on large, irregularly shaped surfaces. This paper describes instrumentation capable of rapidly detecting thermal damage in graphite/epoxy components.

  1. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    SciTech Connect (OSTI)

    Pelaccio, D.G.; El-Genk, M.S. [Univ. of New Mexico, Albuquerque, NM (United States). Inst. for Space Nuclear Power Studies; Butt, D.P. [Los Alamos National Lab., NM (United States)

    1993-12-01T23:59:59.000Z

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico`s Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  2. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01T23:59:59.000Z

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  3. Acoustic Emission and Guided Wave Monitoring of Fatigue Crack Growth on a Full Pipe Specimen

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Cumblidge, Stephen E.; Ramuhalli, Pradeep; Watson, Bruce E.; Doctor, Steven R.; Bond, Leonard J.

    2011-05-06T23:59:59.000Z

    Continuous on-line monitoring of active and passive systems, structures and components in nuclear power plants will be critical to extending the lifetimes of nuclear power plants in the US beyond 60 years. Acoustic emission and guided ultrasonic waves are two tools for continuously monitoring passive systems, structures and components within nuclear power plants and are the focus of this study. These tools are used to monitor fatigue damage induced in a SA 312 TP304 stainless steel pipe specimen. The results of acoustic emission monitoring indicate that crack propagation signals were not directly detected. However, acoustic emission monitoring exposed crack formation prior to visual confirmation through the detection of signals caused by crack closure friction. The results of guided ultrasonic wave monitoring indicate that this technology is sensitive to the presence and size of cracks. The sensitivity and complexity of GUW signals is observed to vary with respect to signal frequency and path traveled by the guided ultrasonic wave relative to the crack orientation.

  4. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOE Patents [OSTI]

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17T23:59:59.000Z

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  5. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    2008-03-15T23:59:59.000Z

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  6. The effect of residuals on the presence of intergranular surface cracks on continuously cast billets

    SciTech Connect (OSTI)

    Wijngaarden, M.J.U.T. van; Visagie, G.P.

    1996-12-31T23:59:59.000Z

    During 1991, Iscor Vereeniging experienced a dramatic increase in the rejection rate of specialty steel bars rolled from continuously cast billets due to the presence of seams on the bars. The seams originated from tearing of the billets during the first 2 passes in the roughing mill during hot rolling. The defective billets were found to contain fine intergranular cracks on the surface. Such cracks have been described in the literature and have been attributed to the presence of high levels of residuals resulting in the well-known phenomenon of surface hot shortness which results from the enrichment of residuals at the grain boundaries after preferential oxidation of iron during scaling of the steel. The present investigation revealed that the effect of residuals on intergranular surface cracking is a complex interaction between steel composition and casting conditions such as casting speed, intensity of secondary cooling, section size, and mold type. This paper quantifies the effect of residuals on the intergranular surface cracking of continuously cast billets and quantitatively relates the incidence of these cracks to parameters which can be controlled during steelmaking and continuous casting.

  7. Solar Thermal Conversion

    SciTech Connect (OSTI)

    Kreith, F.; Meyer, R. T.

    1982-11-01T23:59:59.000Z

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  8. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

    1991-07-16T23:59:59.000Z

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  9. Thermal Insulation Systems

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01T23:59:59.000Z

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  10. Thermally driven circulation

    E-Print Network [OSTI]

    Nelken, Haim

    1987-01-01T23:59:59.000Z

    Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

  11. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01T23:59:59.000Z

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  12. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

    SciTech Connect (OSTI)

    Dugan, Sandra; Wagner, Sabine [Materials Testing Institute University of Stuttgart (MPA), Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2014-02-18T23:59:59.000Z

    Austenitic stainless steel welds and nickel alloy welds, which are widely used in nuclear power plants, present major challenges for ultrasonic inspection due to the grain structure in the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. Mechanized ultrasonic inspection was applied to study austenitic stainless steel test blocks with different types of flaws, including inter-granular stress corrosion cracks (IGSCC). The results show that cracks located in the heat affected zone of the weld are easily detected when inspection from both sides of the weld is possible. In cases of limited accessibility, when ultrasonic inspection can be carried out only from one side of a weld, it may be difficult to distinguish between signals from scattering in the weld and signals from cracks.

  13. Mode III interfacial crack in the presence of couple stress elastic materials

    E-Print Network [OSTI]

    Andrea Piccolroaz; Gennady Mishuris; Enrico Radi

    2011-04-02T23:59:59.000Z

    In this paper we are concerned with the problem of a crack lying at the interface between dissimilar materials with microstructure undergoing antiplane deformations. The micropolar behaviour of the materials is described by the theory of couple stress elasticity developed by Koiter (1964). This constitutive model includes the characteristic lengths in bending and torsion and thus it is able to account for the underlying microstructure of the two materials. We perform an asymptotic analysis to investigate the behaviour of the solution near the crack tip. It turns out that the stress singularity at the crack tip is strongly influenced by the microstructural parameters and it may or may not show oscillatory behaviour depending on the ratio between the characteristic lengths.

  14. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, P.C.

    1997-05-06T23:59:59.000Z

    A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

  15. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

  16. Progressive flow cracking of coal/oil mixtures with high metals content catalyst

    SciTech Connect (OSTI)

    Zandona, O.J.

    1989-10-10T23:59:59.000Z

    This patent describes a process for economically producing liquid fuel products at least partly from coal. It comprises: introducing a progressive flow catalytic cracking zone a charge stock comprising a pumpable mixture of solid, particulate coal and carbo-metallic oil and forming within the zone a stream having a linear velocity of at least about 25 feet per second. The stream comprising the charge stock and a hydrocarbon zeolite cracking catalyst promoting dehydrogenation of the charge stock; forming mobile hydrogen within the zone by the dehydrogenation; introducing the mobile hydrogen into the stream by dehydrogenation of the charge stock in the absence of added molecular hydrogen, thereby producing liquid products from the charge stock while laying down coke on the hydrocarbon cracking catalyst in the range of about 0.3% to about 3% and thereby producing spent catalyst; separating from the spent catalyst the liquid products.

  17. ISO test method to determine sustained-load-cracking resistance of aluminium cylinders

    SciTech Connect (OSTI)

    Bhuyan, G.S. [Powertech Labs. Inc., Surrey, British Columbia (Canada); Rana, M.D. [Praxair, Inc., Tonawanda, NY (United States)

    1999-08-01T23:59:59.000Z

    Leak as well as rupture types of failures related to sustained-load-cracking (SLC) have been observed in high-pressure gas cylinders fabricated from certain aluminium alloy. The stable crack growth mechanism observed primarily in the cylinder neck and shoulder area have been identified as the SLC mechanism occurring at room temperature without any environmental effect. The International Organization for standardization (ISO) Sub-Committee 3, Working Group 16 has developed a test method to measure the SLC resistance using fracture mechanics specimens along with an acceptance criterion for aluminium cylinders. The technical rationale for the proposed test method and the physical significance of the acceptance criterion to the cylinder performance in terms of critical stress-crack size relationship is presented. Application of the developed test method for characterizing new aluminium alloy for manufacturing cylinders is demonstrated. SLC characteristics of several aluminium cylinders as well as on-board cylinders for natural gas vehicles assessed by the authors are discussed.

  18. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24T23:59:59.000Z

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  19. Carbon fiber composite characterization in adverse thermal environments.

    SciTech Connect (OSTI)

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01T23:59:59.000Z

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  20. White-Etching Matter in Bearing Steel. Part I: Controlled Cracking of 52100 Steel

    E-Print Network [OSTI]

    Solano-Alvarez, W.; Bhadeshia, H. K. D. H.

    2014-07-08T23:59:59.000Z

    ! spot(welded! to! the! samples.!The!quenchants!used!were!air,!water,!and!GP460!oil!at!different!temperatures.!The!volume!of!the! oil! used! was! approximately! 10! l;! the! oil! had! a! density! at! 15! °C! of! 904! kg! m?3! and! a!viscosity!index!of!98... .!! (a) !(b)! !Figure!6:!a)!Indents!created!upon!compression!of!silica!sand!against!heat(treated!sample!and!b)!Schematic!of!bending!fatigue!testing!to!generate!cracks!at!indentations.!!Based! on! previous! indentation! cracking! studies! of! embrittled...

  1. EDDY CURRENT SYSTEM FOR DETECTION OF CRACKING BENEATH BRAIDING IN CORRUGATED METAL HOSE

    SciTech Connect (OSTI)

    Wincheski, Buzz [NASA Langley Research Center, Hampton, VA 23681 (United States); Simpson, John [Lockheed Martin Space Operations, Hampton, VA 23681 (United States); Hall, George [George Washington University, Washington, D.C. 20052 (United States)

    2009-03-03T23:59:59.000Z

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  2. Mode I transverse cracking in an epoxy and a graphite fiber reinforced epoxy 

    E-Print Network [OSTI]

    Williams, David Robert

    1981-01-01T23:59:59.000Z

    iNIODE I TRAiUSVERSE CRACKING IN AN EPOXY AUD A GRAPHITE FIBER REINFORCED EPOXY A Thesis by DAVID ROBERT l7ILLIAMS Submitted to the Graduate College of Texas A6M University ir. partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1981 Major Subject: Interdisciplinary Engineering NODE I TRAiUSVERSE CRACKING IN AN EPOXY AiND A GRAPHITE FIBER REINFORCED EPOXY A Thesis by DAVID ROBERT WILLIAMS Approved as to style and content by: (Walter L. Bradley, Char man...

  3. Fatigue Crack Growth Rate Model for Metallic Alloys R. C. Dimitriu and H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    and aluminium alloys. It appears therefore that a large proportion of the differences in the fatigue crack against iron, aluminium and titanium alloys; it does however require a prior knowledge of the thresholdFatigue Crack Growth Rate Model for Metallic Alloys R. C. Dimitriu and H. K. D. H. Bhadeshia

  4. IMAGING OF EARLY-STAGE CRACKING ON REAL-SIZE CONCRETE STRUCTURE FROM 4-POINTS BENDING TEST

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IMAGING OF EARLY-STAGE CRACKING ON REAL-SIZE CONCRETE STRUCTURE FROM 4-POINTS BENDING TEST Yuxiang difficulty on complexes material such as concrete, which is in part due the use of coherent waves in a very the application of this new technique on a real-size 15 tons concrete structure for imaging early-stage cracking

  5. Applying diffuse ultrasound under dynamic loading to improve closed crack characterization in concrete , A. Quiviger1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in concrete C. Payan1 , A. Quiviger1,2 , V. Garnier1 , J.F. Chaix1 , J. Salin2 1 Aix Marseille Université studies show the ability of diffuse ultrasound to characterize surface breaking cracks in concrete the sensitivity of the method for various crack depths and highlight its potential for concrete nondestructive

  6. Micromechanisms of short fatigue crack growth in an Al-Si piston alloy. T.O. Mbuya1

    E-Print Network [OSTI]

    behaviour of a model cast aluminium piston alloy has been investigated. This has been achieved using1 Micromechanisms of short fatigue crack growth in an Al-Si piston alloy. T.O. Mbuya1 , and P frequently observed. These results have been compared with the long crack growth behaviour of the alloy

  7. Diffusion and Catalytic Cracking of 1,3,5 Tri-iso-propyl-benzene in FCC Catalysts

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    1 Diffusion and Catalytic Cracking of 1,3,5 Tri-iso- propyl-benzene in FCC Catalysts S.Al-Khattaf1 describes catalytic cracking experiments developed in a novel CREC Riser Simulator using 1,3,5-Tri-iso

  8. Finite element analysis of grain-matrix micro-cracking in shale within the context of a multiscale modeling

    E-Print Network [OSTI]

    Regueiro, Richard A.

    , hydrofracturing, or oil shale production. Current macro- scale and multiscale models do not account simultaneouslyFinite element analysis of grain-matrix micro-cracking in shale within the context of a multiscale-cracking in shale at grain-matrix inter- faces, assuming constituents are composed of quart silt grains

  9. Reflective Cracking Study: First-level Report on HVS Testing on Section 591RF - 45 mm MAC15TR-GOverlay

    E-Print Network [OSTI]

    Jones, David; Wu, R.; Harvey, John T

    2008-01-01T23:59:59.000Z

    of the asphalt concrete layer. Testing was stopped when thetesting being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the sixth HVS reflective cracking testing

  10. Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking

    SciTech Connect (OSTI)

    Vashishta, Priya

    2014-12-01T23:59:59.000Z

    Reaction Dynamics in Energetic Materials: Detonation is a prototype of mechanochemistry, in which mechanically and thermally induced chemical reactions far from equilibrium exhibit vastly different behaviors. It is also one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. The CACS group has performed multimillion-atom reactive MD simulations to reveal a novel two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine (RDX) crystal. Rapid production of N2 and H2O within ~10 ps is followed by delayed production of CO molecules within ~ 1 ns. They found that further decomposition towards the final products is inhibited by the formation of large metastable C- and O-rich clusters with fractal geometry. The CACS group has also simulated the oxidation dynamics of close-packed aggregates of aluminum nanoparticles passivated by oxide shells. Their simulation results suggest an unexpectedly active role of the oxide shell as a nanoreactor.

  11. Simulation and Experiment of Thermal Fatigue in the CPV Die Attach: Preprint

    SciTech Connect (OSTI)

    Bosco, N.; Silverman, T.; Kurtz, S.

    2012-05-01T23:59:59.000Z

    FEM simulation and accelerated thermal cycling have been performed for the CPV die attach. Trends in fatigue damage accumulation and equivalent test time are explored and found to be most sensitive to temperature ramp rate. Die attach crack growth is measured through cycling and found to be in excellent agreement with simulations of the inelastic strain energy accumulated. Simulations of an entire year of weather data provides for the relative ranking of fatigue damage between four cites as well as their equivalent accelerated test time.

  12. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  13. Holographic thermalization in noncommutative geometry

    E-Print Network [OSTI]

    Xiao-Xiong Zeng; Xian-Ming Liu; Wen-Biao Liu

    2015-05-02T23:59:59.000Z

    Gravitational collapse of a shell of dust in noncommutative geometry is probed by the renormalized geodesic length, which is dual to probe the thermalization by the two-point correlation function in the dual conformal field theory. We find that larger the noncommutative parameter is, longer the thermalization time is, which implies that the large noncommutative parameter delays the thermalization process. We also investigate how the noncommutative parameter affects the thermalization velocity and thermalization acceleration.

  14. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19T23:59:59.000Z

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  15. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05T23:59:59.000Z

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  16. Thermal insulated glazing unit

    SciTech Connect (OSTI)

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01T23:59:59.000Z

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  17. A model for turbulent hydraulic fracture and application to crack propagation at glacier beds

    E-Print Network [OSTI]

    Click Here for Full Article A model for turbulent hydraulic fracture and application to crack suggest that fluidinduced hydraulic fracture of an ice sheet from its bed sometimes occurs quickly. Citation: Tsai, V. C., and J. R. Rice (2010), A model for turbulent hydraulic fracture and application

  18. Cracks in glass under triaxial conditions Audrey Ougier-Simonin a,*, Jrme Fortin a

    E-Print Network [OSTI]

    Fortin, Jérôme

    Cracks in glass under triaxial conditions Audrey Ougier-Simonin a,*, Jérôme Fortin a , Yves Guéguen-Sur-Cèze Cedex, France a r t i c l e i n f o Article history: Available online xxxx Keywords: Glass Pressure evolution of synthetic glass (SON68) under compressive triaxial stresses (hydrostatic and deviatoric

  19. LETTER doi:10.1038/nature13202 Classical shear cracks drive the onset of dry frictional

    E-Print Network [OSTI]

    Fineberg, Jay

    LETTER doi:10.1038/nature13202 Classical shear cracks drive the onset of dry frictional motion Ilya contactsdefiningafrictionalinterface3,4 . Therearea varietyofviews on how best to describe the onset of dry frictional motion the interface. We investigated the onset of dry frictional motion by per- forming simultaneous high

  20. Eddy-current interaction with an ideal crack. II. The inverse problem John FL Bowler

    E-Print Network [OSTI]

    Bowler, John R.

    Eddy-current interaction with an ideal crack. II. The inverse problem John FL Bowler The University 1994) Eddy-current inversion is the process whereby the geometry of a flaw in a metal is derived from eddy-current probe impedance measurements. The approach is based on an optimization scheme that seeks

  1. Eddy-current interaction with an ideal crack. I. The forward problem J. R. Bowler

    E-Print Network [OSTI]

    Bowler, John R.

    Eddy-current interaction with an ideal crack. I. The forward problem J. R. Bowler The University February 1994) The impedance of an eddy-current probe changes when the current it induces in an electrical to introduce idealizations about the nature of the flaw. Eddy-current interaction is considered with an ideal

  2. Use of intelligent pigs to detect stress corrosion cracking in gas pipelines

    SciTech Connect (OSTI)

    Culbertson, D.L. [Tenneco Energy, Houston, TX (United States)

    1996-08-01T23:59:59.000Z

    To ensure the integrity and serviceability of gas pipelines, operators periodically utilize intelligent pigging. This inspection technique has proven to be a cost effective approach for determining the condition of operating pipelines. Recent advancements in intelligent pigging technology are now aiding the pipeline industry in the detection of stress corrosion cracking.

  3. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    SciTech Connect (OSTI)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.; Bandyopadhyay, K.K.; Shteyngart, S. [Brookhaven National Lab., Upton, NY (United States)

    1993-08-01T23:59:59.000Z

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crack growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.

  4. A feasibility study of wind turbine blade surface crack detection using an optical inspection method

    E-Print Network [OSTI]

    McCalley, James D.

    A feasibility study of wind turbine blade surface crack detection using an optical inspection technique was investigated to assess its ability to detect surface flaws on an on-tower wind turbine blade and investors. Rotor blades are one of the largest mechanical components of a wind turbine and cannot

  5. Comparing Methods of Estimating Crack Volume in Shrink-Swell Soils

    E-Print Network [OSTI]

    Rivera, Leonardo D.

    2011-08-04T23:59:59.000Z

    and is located in Snook, TX. The second soil monitored is a Burleson Clay (Fine, smectitic, thermic Udic Haplusterts), which has smectitic mineralogy and is located 1 mile southwest of the Ships site. During two drying events, vertical subsidence and cracking...

  6. Optical fiber reliability implications of uncertainty in the fatigue crack growth model

    E-Print Network [OSTI]

    Matthewson, M. John

    Optical fiber reliability implications of uncertainty in the fatigue crack growth model G. M. Bubel University Fiber Optic Materials Research Program Ceramic Science and Engineering P.O. Box 909 Piscataway, furthermore, that such flaws can grow in time so that an initially intact silica optical fiber may undergo

  7. Spatial and Temporal Distribution of Desiccation Cracks in Shrink-Swell Soils

    E-Print Network [OSTI]

    Neely, Haly Lury

    2014-04-17T23:59:59.000Z

    shrinkage by using a single borehole for all vertical soil movement and water content measurements. Then measurements of soil layer thickness and water content were made for seven soils with varying COLE values, from 0.01 to 0.17 m m^(-1). Soil crack volume...

  8. Elastic-Plastic Models for Stable Crack Growtht *James R. Rice

    E-Print Network [OSTI]

    Elastic-Plastic Models for Stable Crack Growtht by *James R. Rice Mareh 1973 'PCAbh ~ ~ e c.\\. (n do not fully recover their strain upon unloading. The idealized non-linear elastic (left) and rigid-plastic,. there is ~ strain concentration created at the cut-ahead tip in the rigid-plastic material and the deformation field

  9. Shock-Induced Structural Phase Transition, Plasticity, and Brittle Cracks in Aluminum Nitride Ceramic

    E-Print Network [OSTI]

    Southern California, University of

    into an elastic wave and a slower SPT wave that transforms the wurtzite structure into the rocksalt phase into the wurtzite phase. Nanovoids coalesce into mode I cracks while dislocations give rise to kink bands and mode. Before impact, the crystal- line structure of the target material is wurtzite. The z axis, parallel

  10. The crystallography of fatigue crack initiation in Incoloy-908 and A-286 steel

    SciTech Connect (OSTI)

    Krenn, C.R. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States)

    1996-12-01T23:59:59.000Z

    Fatigue crack initiation in the austenitic Fe-Ni superalloys Incoloy-908 and A-286 is examined using local crystallographic orientation measurements. Results are consistent with sharp transgranular initiation and propagation occurring almost exclusively on {l_brace}111{r_brace} planes in Incoloy-908 but on a variety of low index planes in A-286. This difference is attributed to the influence of the semicoherent grain boundary {eta} phase in A-286. Initiation in each alloy occurred both intergranularly and transgranularly and was often associated with blocky surface oxide and carbide inclusions. Taylor factor and resolved shear stress and strain crack initiation hypotheses were tested, but despite an inconclusive suggestion of a minimum required {l_brace}111{r_brace} shear stress, none of the hypotheses were found to convincingly describe preferred initiation sites, even within the subsets of transgranular cracks apparently free from the influence of surface inclusions. Subsurface inclusions are thought to play a significant role in crack initiation. These materials have applications for use in structural conduit for high field superconducting magnets designed for fusion energy use.

  11. Development of a J-estimation scheme for internal circumferential and axial surface cracks in elbows

    SciTech Connect (OSTI)

    Mohan, R.; Brust, F.W.; Ghadiali, N.; Wilkowski, G.

    1996-06-01T23:59:59.000Z

    This report summarizes efforts to develop elastic and elastic-plastic fracture mechanics analyses for internal surface cracks in elbows. The analyses involved development of a GE/EPRI type J-estimation scheme which requires an elastic and fully plastic contribution to crack-driving force in terms of the J-integral parameter. The elastic analyses require the development of F-function values to relate the J{sub e} term to applied loads. Similarly, the fully plastic analyses require the development of h-functions to relate the J{sub p} term to the applied loads. The F- and h-functions were determined from a matrix of finite element analyses. To minimize the cost of the analyses, three-dimensional ABAQUS finite element analyses were compared to a simpler finite element technique called the line-spring method. The line-spring method provides a significant computational savings over the full three-dimensional analysis. The comparison showed excellent agreement between the line-spring and three-dimensional analysis. This experience was consistent with comparisons with circumferential surface-crack analyses in straight pipes during the NRC`s Short Cracks in Piping and Piping Welds program.

  12. Modeling of crack tip high inertia zone in dynamic brittle fracture

    E-Print Network [OSTI]

    Karedla-Ravi, Shankar

    2007-09-17T23:59:59.000Z

    of the domain. It was observed that crack propagated in three phases with a speed of 0.35cR before branching, which are in good agreement with experimental observations. Thus, modeling of high inertia zone is one of the key aspects to understanding brittle...

  13. Laboratory Evaluation of Hot-Mix Asphalt Concrete Fatigue Cracking Resistance

    E-Print Network [OSTI]

    Jamison, Brandon Parker

    2012-02-14T23:59:59.000Z

    that the crack initiates in the center of the specimen, including Walubita et al. (5), Mohammad et al. (10), and Mull et al. (21). Notch depths vary depending on many factors such as specimen thickness, diameter, loading rate, test temperature, and mix type...

  14. Environmentally assisted cracking in light water reactors. Semiannual report, April 1994--September 1994, Volume 19

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J. [and others

    1995-09-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors from April to September 1994. Topics that have been investigated include (a) fatigue of carbon and low-alloy steel used in piping and reactor pressure vessels, (b) EAC of austenitic stainless steels (SSs) and Alloy 600, and (c) irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests have been conducted on A106-Gr B and A533-Gr B steels in oxygenated water to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack growth data were obtained on fracture-mechanics specimens of SSs and Alloy 600 to investigate EAC in simulated boiling water reactor (BWR) and pressurized water reactor environments at 289{degrees}C. The data were compared with predictions from crack growth correlations developed at ANL for SSs in water and from rates in air from Section XI of the ASME Code. Microchemical changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  15. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material

    E-Print Network [OSTI]

    Ritchie, Robert

    Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material A; fatigue; shape-memory; super- elastic INTRODUCTION There has been increasing interest in the biomedical during the 1960s for its shape-memory behavior (Fig. 1).1,2 This effect is a result of an athermal

  16. Oral/Poster Reference: FT242 FATIGUE CRACK GROWTH OF RUBBER UNDER

    E-Print Network [OSTI]

    Fatemi, Ali

    Oral/Poster Reference: FT242 FATIGUE CRACK GROWTH OF RUBBER UNDER VARIABLE AMPLITUDE LOADING R. Harbour1 , A. Fatemi1 , W. V. Mars2 1 The University of Toledo, Toledo, OH, USA 2 Cooper Tire and Rubber Company, Findlay, OH, USA ABSTRACT Realistic loading conditions for rubber components are often more

  17. Analysis of cracked piezoelectric solids by a mixed three-dimensional BE approach

    E-Print Network [OSTI]

    Ariza Moreno, Pilar

    regularization and evaluation of boundary integrals. Quadratic boundary elements and quarter-point boundary isotropy. Piezoelectric ceramics are used for construction of sensors, transducers, actuators as well, these brittle materials are likely to develop cracks. The under- standing and evaluation of the fracture process

  18. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Stewart, James C. (Loudonville, NY)

    1981-01-01T23:59:59.000Z

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  19. Asymptotic fields for dynamic crack growth in non-associative pressure sensitive materials

    E-Print Network [OSTI]

    Qin, Qinghua

    . It is of interest in geo-mechanics within the context of hydraulic fracture (see Papanastasiou and Durban Waverley, Vic. 3150, Australia b Centre for Advanced Materials Technology (CAMT) and School of Aerospace Ltd. All rights reserved. Keywords: Crack-tip plasticity; Dynamic fracture; Non-associative plastic

  20. Effect of matrix acidity on resid cracking activity of FCC catalysts

    SciTech Connect (OSTI)

    Alerasool, S.; Doolin, P.K.; Hoffman, J.F. [Ashland Petroleum Company, Ashland, KY (United States)

    1996-10-01T23:59:59.000Z

    The importance of matrix acid sites on the cracking of large resid molecules in heavy crude fractions is discussed. The challenge of measuring fresh matrix acidity was overcome by first destroying the zeolite by treating the catalyst with concentrated acid and then titrating the acid sites by thermogravimetry of pyridine. Due to differences in hydrothermal stability, the acidity of matrix in its fresh form did not correlate with the commercial resid cracking activity on an equilibrated catalyst. To overcome this drawback, the zeolite was destroyed by steaming at 870{degrees}C. Such severe treatment created a matrix that closely resembled that of the commercially equilibrated catalyst. Changes in the nature of acid sites were investigated by performing diffuse reflectance infrared spectroscopy (DRIFTS) measurements on fresh and steamed matrices. While Lewis acid sites were predominant on most fresh matrices, the population of Bronsted acid sites increased as a result of hydrothermal deactivation. The correlations between each type of acidity and commercial resid cracking are discussed. The incorporation of acid density, type, and stability into a comprehensive model is shown to be an important prerequisite for designing robust resid cracking catalysts.

  1. Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load

    E-Print Network [OSTI]

    Volinsky, Alex A.

    in the nuclear power plants, petrochemical and aerospace industries, bridges and ships. Much effort has been of the reasons is that the mechanisms of SCC crack initiation and propagation are possibly altered in the process, when pitting precedes SCC, the fundamental steps in the overall process include: pit initiation, pit

  2. Title: Crack Diagnostics via Fourier Transform: Real and Imaginary Components vs. Power Spectral Density

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Title: Crack Diagnostics via Fourier Transform: Real and Imaginary Components vs. Power Spectral simultaneously the real and imaginary components of the Fourier transforms as diagnostics features approach consists of using new features based on the real and imaginary parts of the Fourier transform

  3. INTERFACE CRACK PROPAGATION IN POROUS AND TIME-DEPENDENT MATERIALS ANALYZED WITH

    E-Print Network [OSTI]

    Boyer, Edmond

    INTERFACE CRACK PROPAGATION IN POROUS AND TIME-DEPENDENT MATERIALS ANALYZED WITH DISCRETE MODELS and the FPZ. From the point of view of design of structures, e.g. reinforced concrete structures, this size size, size effects, creep, ageing, fracture, viscoelastic- ity, time effect, concrete failure, discrete

  4. CHARACTERISATION OF AGED HDPE PIPES FROM DRINKING WATER DISTRIBUTION: INVESTIGATION OF CRACK DEPTH BY NOL RING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BY NOL RING TESTS UNDER CREEP LOADING C. Devilliers 1), 2), 3) , L. Laiarinandrasana 1) , B. Fayolle 2. KEYWORDS HDPE pipes, Nol Ring creep test, ageing effects, fracture mechanism, crack depth ratio, aged layer loading than a monotonic tensile loading. It is to be noticed that the Nol Ring test subjected to a creep

  5. Micro-meter Crack Response to Rock Blast Vibrations, Wind Gusts & Weather Effects

    E-Print Network [OSTI]

    Micro-meter Crack Response to Rock Blast Vibrations, Wind Gusts & Weather Effects C. H. Dowding,1 effects. These measurements substantiate the conservancy of the 12.5 mm/s (0.5 in./s) blasting vibration blasting. Measurements in this case study now extend weather effects to include wind. While it has been

  6. Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings

    SciTech Connect (OSTI)

    Long, Rong, E-mail: rlongmech@gmail.com [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Dunn, Martin L. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-06-21T23:59:59.000Z

    Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

  7. Permeability and elastic properties of cracked glass under pressure A. OugierSimonin,1

    E-Print Network [OSTI]

    Fortin, Jérôme

    corrosion, which should be considered in further study. Citation: OugierSimonin, A., Y. Guéguen, J. Fortin issues (stability of boreholes, stimulation of oil and geother- mal reservoirs, the design of tunnels on slow crack growth and stress corrosion processes [Wiederhorn, 1966; Anderson and Grew, 1977; Atkinson

  8. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates

    E-Print Network [OSTI]

    Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates V. K. Yang, MAs films grown on Si and SiGe virtual substrates analytically and experimentally. The analytical model­10 Relaxed SiGe graded layers on Si have produced the highest quality GaAs on Si to date for the integration

  9. Understanding crack versus cavitation in pressure-sensitive adhesives: the role of kinetics

    E-Print Network [OSTI]

    Jérémie Teisseire; F. Nallet; P. Fabre; Cyprien Gay

    2006-09-18T23:59:59.000Z

    We perform traction experiments on viscous liquids highly confined between parallel plates, a geometry known as the probe-tack test in the adhesion community. Direct observation during the experiment coupled to force measurement shows the existence of several mechanisms for releasing the stress. Bubble nucleation and instantaneous growth had been observed in a previous work. Upon increasing further the traction velocity or the viscosity, the bubble growth is progressively delayed. At high velocities, cracks at the interface between the plate and the liquid appear before the bubbles have grown to their full size. Bubbles and cracks are thus observed concomitantly. At even higher velocities, cracks develop fully so early that the bubbles are not even visible. We present a theoretical model that describes these regimes, using a Maxwell fluid as a model for the actual fluid, a highly viscous silicon oil. We present the resulting phase diagramme for the different force peak regimes. The predictions are compatible with the data. Our results show that in addition to cavitation, interfacial cracks are encountered in a probe-tack traction test with viscoelastic, \\emph{liquid} materials and not solely with viscoelastic solids like adhesives.

  10. Fracture behavior of circumferentially surface-cracked elbows. Technical report, October 1993--March 1996

    SciTech Connect (OSTI)

    Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M. [and others

    1996-12-01T23:59:59.000Z

    This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed.

  11. Fraunhofer-Center fr Silizium-Photovoltaik CSP CRACK INVESTIGATION OF ENCAPSULATED

    E-Print Network [OSTI]

    © Fraunhofer-Center für Silizium-Photovoltaik CSP CRACK INVESTIGATION OF ENCAPSULATED SOLAR CELLS Encapsulant Solar cell Back sheet Interconnector Schematic layout of a standard PV module #12;© Fraunhofer, etc.) z x Glass Encapsulant Back sheet foil Encapsulant Solar cell - - + ++ MM Strain Stress Schematic

  12. DYNAMIC, TRANSIENT, MODE I CRACK PROPAGATION WITH A NONLINEAR, VISCOELASTIC COHESIVE ZONE

    E-Print Network [OSTI]

    Gorb, Yuliya

    simplifying idealizations, presents many technical obstacles. In general, polymeric materials exhibit complex. The specific forms for the time dependent cohesive zone models studied below were derived through accelerating mode I cracks in elastic material but do not explicitly exhibit a full solution for general

  13. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

  14. Thermal test options

    SciTech Connect (OSTI)

    Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

    1993-02-01T23:59:59.000Z

    Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

  15. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19T23:59:59.000Z

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  16. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  17. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  18. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect (OSTI)

    Williams, Colin F.; Sass, John H.

    1996-01-24T23:59:59.000Z

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

  19. Environmentally assisted cracking in light water reactors. Semiannual report, October 1993--March 1994. Volume 18

    SciTech Connect (OSTI)

    Chung, H.M.; Chopra, O.K.; Erck, R.A.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1995-03-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1993 to March 1994. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns in operating plants and as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels, (b) EAC of wrought and cast austenitic stainless steels (SSs), and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS after accumulation of relatively high fluence. Fatigue tests have been conducted on A302-Gr B low-alloy steel to verify whether the current predictions of modest decreases of fatigue life in simulated pressurized water reactor water are valid for high-sulfur heats that show environmentally enhanced fatigue crack growth rates. Additional crack growth data were obtained on fracture-mechanics specimens of austenitic SSs to investigate threshold stress intensity factors for EAC in high-purity oxygenated water at 289{degrees}C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating boiling water reactors were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements, which are not specified in the ASTM specifications, may contribute to IASCC of solution-annealed materials.

  20. Thermal stress analysis of fused-cast AZS refractories during production; Part 2: Development of thermo-elastic stress model

    SciTech Connect (OSTI)

    Cockcroft, S.L.; Brimacombe, J.K. (Univ. of British Columbia, Vancouver, British Columbia (Canada). Centre for Metallurgical Process Engineering); Walrod, D.G.; Myles, T.A. (Carborundum Co., Falconer, NY (United States). Monofrax-S Plant)

    1994-06-01T23:59:59.000Z

    Mathematical models of heat flow and thermo-elastic stress, based on the finite-element method, have been developed and utilized to analyze the voidless,'' fused-cast, AZS, solidification process. The results of the mathematical analysis, in conjunction with information obtained in a comprehensive industrial study, presented in Part 1 of this paper, describe the mechanisms for the formation of the various crack types found in the fused-cast product. Thermal stresses are generated early in the solidification process by rapid cooling of the refractory surface as it contacts the initially cool mold and later in conjunction with the tetragonal-to-monoclinic phase transformation which occurs in the zirconia component of the AZS refractory. Applying this model, castings were made using a revised mold design. Preliminary results indicate these castings to be free of objectionable transverse cracks.

  1. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    SciTech Connect (OSTI)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27T23:59:59.000Z

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection methods often need to be addressed as plants age. Shutdown inspection intervals can only be designed using creep and creep-fatigue crack growth techniques. (5) The use of crack growth procedures can aid in examining the seriousness of creep damage in structural components. How cracks grow can be used to assess margins on components and lead to further safe operation. After examining the pros and cons of all these methods, the R5 code was chosen as the most up-to-date and validated high temperature creep and creep fatigue code currently used in the world at present. R5 is considered the leader because the code: (1) has well established and validated rules, (2) has a team of experts continually improving and updating it, (3) has software that can be used by designers, (4) extensive validation in many parts with available data from BE resources as well as input from Imperial college's database, and (5) was specifically developed for use in nuclear plants. R5 was specifically developed for use in gas cooled nuclear reactors which operate in the UK and much of the experience is based on materials and temperatures which are experienced in these reactors. If the next generation advanced reactors to be built in the US used these same materials within the same temperature ranges as these reactors, then R5 may be appropriate for consideration of direct implementation within ASME code NH or Section XI. However, until more verification and validation of these creep/fatigue crack growth rules for the specific materials and temperatures to be used in the GEN IV reactors is complete, ASME should consider delaying this implementation. With this in mind, it is this authors opinion that R5 methods are the best available for code use today. The focus of this work was to examine the literature for creep and creep-fatigue crack growth procedures that are well established in codes in other countries and choose a procedure to consider implementation into ASME NH. It is very important to recognize that all creep and creep fatigue crack growth procedures that are part of high temperature

  2. Nonclassicality of Thermal Radiation

    E-Print Network [OSTI]

    Lars M. Johansen

    2004-02-16T23:59:59.000Z

    It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.

  3. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  4. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01T23:59:59.000Z

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  5. Low thermal conductivity skutterudites

    SciTech Connect (OSTI)

    Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

    1997-07-01T23:59:59.000Z

    Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

  6. Thermal Infrared Remote Sensing

    E-Print Network [OSTI]

    to us, like reflective ("nearreflective ("near--" infrared (0.7" infrared (0.7 -- 3.03.0 µµm)m) andand near-infrared far infrared ultraviolet Thermal Infrared refers to region o EM spectrum from ~3 - 14 µm.landscape. IMPORTANT: NEARIMPORTANT: NEAR--INFRARED is short enough wavelength toINFRARED is short enough wavelength

  7. Solar thermal financing guidebook

    SciTech Connect (OSTI)

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01T23:59:59.000Z

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  8. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    SciTech Connect (OSTI)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01T23:59:59.000Z

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  9. Effects of loading mode on the critical cracking potential of duplex ([alpha] + [gamma]) stainless steel in a hot chloride solution

    SciTech Connect (OSTI)

    Kwon, Hyuk Sang (Korea Advanced Inst. of Science and Tech., Taejon (Korea, Republic of))

    1993-08-01T23:59:59.000Z

    One of the common characteristics in stress corrosion cracking (SCC) between austenitic and ferritic stainless steels in chloride environments is that cracking occurs at potentials noble to a critical value which has been designated as the critical cracking potential, E[sub cc]. For austenitic stainless steels, E[sub cc] is insensitive to prior cold work with or without the generation of martensite and has been interpreted as the minimum potential for crack propagation. On the other hand, for low interstitial ferritic stainless steels., E[sub cc] is extremely sensitive to microstructural variations induced by small amounts of cold work or grain coarsening. It has been demonstrated that E[sub cc] for the low interstitial ferritic stainless steels, when it is measured at constant load, is that for crack initiation and is determined by the competing rates of generation of a new surface by slip induced film breakdown and repassivation. However, the physical and/or electrochemical meaning for E[sub cc] of duplex stainless steels has not yet been studied. It is the purpose of this work to determine if E[sub cc] for duplex stainless is a potential for crack initiation or one for crack propagation in a hot chloride environment and to examine the effects of loading modes on the E[sub cc] of these alloys.

  10. Growth and stability of stress corrosion cracks in large-diameter BWR piping. Volume 2: appendixes. Final report

    SciTech Connect (OSTI)

    Hale, D A; Heald, J D; Horn, R M; Jewett, C W; Kass, J N; Mehta, H S; Ranganath, S; Sharma, S R

    1982-07-01T23:59:59.000Z

    This report presents the results of a research program conducted to evaluate the behavior of hypothetical stress corrosion cracks in large diameter austenitic piping. The program included major tasks, a design margin assessment, an evaluation of crack growth and crack arrest, and development of a predictive model. As part of the margin assessment, the program developed diagrams which predicted net section collapse as a function of crack size. In addition, plasticity and dynamic load effects were also considered in evaluating collapse. Analytical methods for evaluating these effects were developed and were benchmarked by dynamic tests of 4-in.-diameter piping. The task of evaluating the growth behavior of stress corrosion cracks focused on developing constant load and cyclic growth rate data that could be used with the predictive model. Secondly, laboratory tests were performed to evaluate the conditions under which growing stress corrosion cracks would arrest when they intersected stress corrosion resistant weld metal. The third task successfully developed a model to predict the behavior of cracks in austenitic piping.

  11. Distribution of electric field and energy flux around the cracks on the surfaces of Nd-doped phosphate glasses

    SciTech Connect (OSTI)

    Zhang Lei; Huang Li; Fan Sijun; Bai Gongxun; Li Kefeng; Chen Wei; Hu Lili

    2010-12-10T23:59:59.000Z

    We simulate and calculate numerically the electromagnetic field and energy flux around a surface crack of an Nd-doped phosphate laser glass by using the finite-difference time-domain method. Because of a strong interference between the incident wave and the total internal reflections from the crack and the glass surface, the electric field is redistributed and enhanced. The results show that the electric-field distribution and corresponding energy flux component depend sensitively on the light polarization and crack geometry, such as orientation and depth. The polarization of the incident laser beam relative to the crack surfaces will determine the profile of the electric field around the crack. Under TE wave incidence, the energy flux peak is always inside the glass. But under TM wave incidence, the energy flux peak will be located inside the glass or inside the air gap. For both incident modes, the light intensification factor increases with the crack depth, especially for energy flux along the surface. Because cracks on the polished surfaces are the same as the roots extending down, the probability for much larger intensification occurring is high. The results suggest that the surface laser-damage threshold of Nd-doped phosphate may decrease dramatically with subsurface damage.

  12. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

  13. Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal Resistance H Engineering, Newmark Laboratory, 205 North Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Department of Civil and Environmental Engineering, 4139 Engineering Gateway, University

  14. Radiation-induced instability of MnS precipitates and its possible consequences on irradiation-induced stress corrosion cracking of austenitic stainless steels

    SciTech Connect (OSTI)

    Chung, H.M.; Sanecki, J.E. [Argonne National Lab., IL (United States); Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-01T23:59:59.000Z

    Irradiation-assisted stress corrosion cracking (IASCC) is a significant materials issue for the light water reactor (LWR) industry and may also pose a problem for fusion power reactors that will use water as coolant. A new metallurgical process is proposed that involves the radiation-induced release into solution of minor impurity elements not usually thought to participate in IASCC. MnS-type precipitates, which contain most of the sulfur in stainless steels, are thought to be unstable under irradiation. First, Mn transmutes strongly to Fe in thermalized neutron spectra. Second, cascade-induced disordering and the inverse Kirkendall effect operating at the incoherent interfaces of MnS precipitates are thought to act as a pump to export Mn from the precipitate into the alloy matrix. Both of these processes will most likely allow sulfur, which is known to exert a deleterious influence on intergranular cracking, to re-enter the matrix. To test this hypothesis, compositions of MnS-type precipitates contained in several unirradiated and irradiated heats of Type 304, 316, and 348 stainless steels (SSs) were analyzed by Auger electron spectroscopy. Evidence is presented that shows a progressive compositional modification of MnS precipitates as exposure to neutrons increases in boiling water reactors. As the fluence increases, the Mn level in MnS decreases, whereas the Fe level increases. The S level also decreases relative to the combined level of Mn and Fe. MnS precipitates were also found to be a reservoir of other deleterious impurities such as F and O which could be also released due to radiation-induced instability of the precipitates.

  15. Fast Thermal Simulation for Architecture Level Dynamic Thermal Management

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    Fast Thermal Simulation for Architecture Level Dynamic Thermal Management Pu Liu, Zhenyu Qi, Hang Li, Lingling Jin, Wei Wu, Sheldon X.-D. Tan, Jun Yang Department of Electrical Engineering temperature by dynamic thermal managements becomes necessary. This paper proposes a novel approach

  16. In-Line Crack and Stress Detection in Silicon Solar Cells Using Resonance Ultrasonic Vibrations

    SciTech Connect (OSTI)

    Ostapenko, Sergei

    2013-04-03T23:59:59.000Z

    Statement of Problem and Objectives. Wafer breakage in automated solar cell production lines is identified as a major technical problem and a barrier for further cost reduction of silicon solar module manufacturing. To the best of our knowledge, there are no commercial systems addressing critical needs for in-line inspection of the mechanical quality of solar wafers and cells. The principal objective of the SBIR program is to validate through experiments and computer modeling the applicability of the Resonance Ultrasonic Vibrations system, which ultimately can be used as a real-time in-line manufacturing quality control tool for fast detection of mechanically unstable silicon solar cells caused by cracks. The specific objective of Phase II is to move the technology of in-line crack detection from the laboratory level to commercial demonstration through development of a system prototype. The fragility of silicon wafers possessing low mechanical strength is attributed to peripheral and bulk millimeter-length cracks. The research program is based on feasibility results obtained during Phase I, which established that: (i) the Resonance Ultrasonic Vibrations method is applicable to as-cut, processed wafers and finished cells; (ii) the method sensitivity depends on the specific processing step; it is highest in as-cut wafers and lowest in wafers with metallization pattern and grid contacts; (iii) the system is capable of matching the 2.0 seconds per wafer throughput rate of state-of-art solar cell production lines; (iv) finite element modeling provides vibration mode analysis along with peak shift versus crack length and crack location dependence; (v) a high 91% crack rejection rate was confirmed through experimentation and statistical analysis. The Phase II project has the following specific tasks: (i) specify optimal configurations of the in-line system�¢����s component hardware and software; (ii) develop and justify a system prototype that meets major specifications for an in-line crack detection unit, such as high throughput rate, high level of stability, reproducibility of data acquisition and analysis, and high sensitivity with respect to crack length and crack location; (iii) design a system platform that allows easy integration within and adaptation to various solar cell belt-type production lines; (iv) develop a testing protocol providing quality certification of the production-grade system. Commercial Application of the proposed activity consists of bringing to the solar market a new high-tech product based on an innovative solution and patented methodology to contribute to cost reduction of silicon solar module production. The solar industry, with crystalline silicon as a dominant segment, shows outstanding performance, with approximately 25% yearly growth during the last years. Despite a slowdown with only 5.6 GW installations in 2009, solar module production for the 2010 and 2011 years was recovered. According to European Photonics Industry Consortium new solar PV installations grow by 56% compared to 2010 reached 64.7 GW in 2011. Revenues in the PV industry reached a record high of $93 billion in 2011, a 13.4 percent gain over 2010 â�� and 150 percent over 2009. This growth was forecasted to continue in 2013 with double digits growth. The solar industry is economically driven to make solar panels of the highest conversion efficiency and reliability at the lowest production cost. The Resonance Ultrasonic Vibration system addresses critical needs of the silicon-based solar industry by providing a quality control method and tool, which will improve productivity, increase reliability of products and reduce manufacturing cost of solar panels.

  17. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  18. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  19. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  20. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withAnnual Thermal Energy Storage Contractors' InformationLarge-Scale Thermal Energy Storage for Cogeneration and

  2. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  3. Thermal Modeling of Lundell Alternators

    E-Print Network [OSTI]

    Tang, Sai Chun

    Thermal analysis of Lundell alternators used in automobiles is presented. An analytical thermal model for Lundell alternators is proposed, and procedures for acquiring the model parameters are elucidated. Based on the ...

  4. Thermal Conductivity of Coated Paper

    SciTech Connect (OSTI)

    Kerr, Lei L [ORNL; Pan, Yun-Long [Smart Papers, Hamilton, OH 45013; Dinwiddie, Ralph Barton [ORNL; Wang, Hsin [ORNL; Peterson, Robert C. [Miami University, Oxford, OH

    2009-01-01T23:59:59.000Z

    In this paper, we introduce a method for measuring the thermal conductivity of paper using a hot disk system. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper although it is important to various forms of today s digital printing where heat is used for imaging as well as for toner fusing. This motivates us to investigate the thermal conductivity of paper coating. Our investigation demonstrates that thermal conductivity is affected by the coat weight and the changes in the thermal conductivity affect ink gloss and density. As the coat weight increases, the thermal conductivity increases. Both the ink gloss and density decrease as the thermal conductivity increases. The ink gloss appears to be more sensitive to the changes in the thermal conductivity.

  5. Jet Quenching and Holographic Thermalization

    E-Print Network [OSTI]

    Elena Caceres; Arnab Kundu; Berndt Müller; Diana Vaman; Di-Lun Yang

    2012-08-31T23:59:59.000Z

    We employ the AdS/CFT correspondence to investigate the thermalization of the strongly-coupled plasma and the jet quenching of a hard probe traversing such a thermalizing medium.

  6. Microviscometric studies on thermal diffusion 

    E-Print Network [OSTI]

    Reyna, Eddie

    1959-01-01T23:59:59.000Z

    for its improvement. This in~estigation was supported in part by the Convsir Division of General Dynamics Corporation. TABLE OF CONTENTS Chapter III INTRODUCTION EXPERINENTAL NETHODS AND PROCEDUPJIS Thermal Diffusion Column Viscosity Measurements.... The main interest of 6 tais work was the molecular weight dependence of the thermal diffusion coefficient and the suitability of thermal diffusion as a method of frac- tionation of polymers. Since the work of Debye and Bueche, applications of thermal...

  7. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2002-04-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on the mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity range on crack growth rates in air.

  8. Syngas Production from Propane Using Atmospheric Non-thermal Plasma

    E-Print Network [OSTI]

    Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

    2009-01-01T23:59:59.000Z

    Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

  9. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05T23:59:59.000Z

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  10. Thermal Stabilization Blend Plan

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-05-02T23:59:59.000Z

    This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

  11. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10T23:59:59.000Z

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  12. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18T23:59:59.000Z

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  13. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  14. Multiscale thermal transport.

    SciTech Connect (OSTI)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01T23:59:59.000Z

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  15. Prediction of early-age cracking of UHPC materials and structures : a thremo-chemo-mechanics approach

    E-Print Network [OSTI]

    Shim, JongMin, 1975-

    2005-01-01T23:59:59.000Z

    Ultra-High Performance Concrete [UHPC] has remarkable performance in mechanical properties, ductility, economical benefit, etc., but early-age cracking of UHPC can become an issue during the manufacturing process due to ...

  16. A continuing investigation into the stress field around two parallet-edge cracks in a finite body

    E-Print Network [OSTI]

    Gilman, Justin Patrick

    2005-02-17T23:59:59.000Z

    +yImY-yImZ-Re= II I 2.16a )'')1('')1()1( IIyImZ+yImY+YRe+yImY+yImZ+ZRe=s 2.16b ))1()1()1()1( ZIm-yReZ-yReY-YIm-yReY--yReZ= II 2.16c The stress field equations for the second crack are determined in the same manner, as those... for the first crack but after a suitable coordinate transformation that recognizes that the second crack-tip is located at coordinate (-d,c) relative to the front crack-tip. The coordinate transformation is as follows with (2) denoting application...

  17. Fatigue testing of high-density polyethylene and polycarbonate with crack length measurement using image processing techniques

    SciTech Connect (OSTI)

    Riemslag, A.C. (Delft Univ. of Technology (Netherlands). Lab. of Materials Science)

    1994-09-01T23:59:59.000Z

    A new automated method of measuring fatigue cracks in polymers is discussed. The new method is based on a video signal of the crack which is analyzed with image processing techniques. With this technique the crack length is measured every 20 s during a fatigue test. The accuracy of one single measurement is about 0.05 mm, but this can be increased by averaging a large number of measurements. The applied automated data collection and subsequent data processing is discussed in relation to the recommendations given in ASTM E 647, Test method for Measurement of Fatigue Crack Growth Rates. The use of the new technique is illustrated on the basis of fatigue tests performed on transparent polycarbonate (PC) and nontransparent polyethylene (PE). The fatigue behavior of PE and PC is briefly discussed.

  18. Assessment of susceptibility to chloride stress corrosion cracking of highly alloyed stainless steels. Part 2: A new immersion test method

    SciTech Connect (OSTI)

    Drugli, J.M.; Steinsmo, U. [SINTEF Materials Technology, Trondheim (Norway)

    1997-12-01T23:59:59.000Z

    A new method for assessment of susceptibility to chloride stress corrosion cracking under severe evaporative conditions has been developed. The basic idea is to test under submerged conditions simulating the electrolyte composition and concentration of sea water during evaporation. Two duplex and one austenitic stainless steel were tested loaded to the yield point at the test temperature. Time to failure, potential and temperature were recorded continuously. The results showed cracking of the austenitic material UNS S31254 at 110 C by long term testing. For the duplex stainless steels UNS S31803 and UNS S32750 cracking was observed at 100 C. The time to cracking was longest for the last mentioned and highest alloyed duplex material.

  19. The role of grain boundary chemistry and structure in the environmentally-assisted intergranular cracking of nickel-base alloys

    SciTech Connect (OSTI)

    Was, G.S.

    1992-07-01T23:59:59.000Z

    Stress corrosion cracking tests in constant extension rate tensile (CERT) and constant load tensile (CLT) tests were conducted on Ni-xCr- 9Fe-yC in Ar, water, and a LiOH-boric acid solution. Cr and C improve the resistance of Ni-base alloys to IG cracking in both Ar and water at 360C. Since creep plays a role in IG cracking, one possible explanation for the role of the environment involves its effect on the creep. Experiments were conducted on the role of C in the deformation behavior and failure mode of Ni-16Cr-9Fe. Constant load experiments were conducted on Ni-16Cr-9Fe to determine if the CLT test is more aggressive than CERT. The electron backscattering technique in a SEM is being developed in order to extend the IG cracking studies to grain sizes typical of commercial alloys, 20-30 microns.

  20. Aluminum nitride transitional layer for reducing dislocation density and cracking of AlGaN epitaxial films

    DOE Patents [OSTI]

    Allerman, Andrew A.; Crawford, Mary H.; Lee, Stephen R.

    2013-01-08T23:59:59.000Z

    A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

  1. Nanofluids for vehicle thermal management.

    SciTech Connect (OSTI)

    Choi, S. U.-S.; Yu, W.; Hull, J. R.; Zhang, Z. G.; Lockwood, F. E.; Energy Technology; The Valvoline Co.

    2003-01-01T23:59:59.000Z

    Applying nanotechnology to thermal engineering, ANL has addressed the interesting and timely topic of nanofluids. We have developed methods for producing both oxide and metal nanofluids, studied their thermal conductivity, and obtained promising results: (1) Stable suspensions of nanoparticles can be achieved. (2) Nanofluids have significantly higher thermal conductivities than their base liquids. (3) Measured thermal conductivities of nanofluids are much greater than predicted. For these reasons, nanofluids show promise for improving the design and performance of vehicle thermal management systems. However, critical barriers to further development and application of nanofluid technology are agglomeration of nanoparticles and oxidation of metallic nanoparticles. Therefore, methods to prevent particle agglomeration and degradation are required.

  2. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Cameron, Christopher Stan (Sanford, NC)

    2012-03-13T23:59:59.000Z

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  3. Stress Corrosion Cracking of Ferritic Materials for Fossil Power Generation Applications

    SciTech Connect (OSTI)

    Pawel, Steven J [ORNL] [ORNL; Siefert, John A. [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI)

    2014-01-01T23:59:59.000Z

    Creep strength enhanced ferritic (CSEF) steels Grades 23, 24, 91, and 92 have been widely implemented in the fossil fired industry for over two decades. The stress corrosion cracking (SCC) behavior of these materials with respect to mainstay Cr-Mo steels (such as Grades 11, 12 and 22) has not been properly assessed, particularly in consideration of recent reported issues of SCC in CSEF steels. This report details the results of Jones test exposures of a wide range of materials (Grades 11, 22, 23, 24, and 92), material conditions (as-received, improper heat treatments, normalized, weldments) and environments (salt fog; tube cleaning environments including decreasing, scale removal, and passivation; and high temperature water) to compare the susceptibility to cracking of these steels. In the as-received (normalized and tempered) condition, none of these materials are susceptible to SCC in the environments examined. However, in the hardened condition, certain combinations of environment and alloy reveal substantial SCC susceptibility.

  4. Comparison of particle size of cracking catalyst determined by laser light scattering and dry sieve methods

    SciTech Connect (OSTI)

    Dishman, K.L.; Doolin, P.K.; Hoffman, J.F. (Ashland Petroleum Co., Ashland, KY (United States))

    1993-07-01T23:59:59.000Z

    A method of interconversion of dry sieve and laser light scattering particle size values has been developed for cracking catalysts. Values obtained by light scattering techniques were consistently larger than those obtained by dry sieve analysis. The differences were primarily due to lack of sphericity of the particles. The particle size distribution determined by light scattering techniques was based on an average particle diameter. Conversely, the sieve measured the smallest diameter of the particle which can pass through the opening. Microscopic examination of commercial cracking catalysts confirmed their nonuniformity. The sphericity of the catalyst particles decreased as particle size increased. Therefore, the divergence between the laser light scattering and dry sieving value became greater as the catalyst particle size increased.

  5. Critical stress for stress corrosion cracking of duplex stainless steel in sour environments

    SciTech Connect (OSTI)

    Miyasaka, A.; Kanamaru, T. [Nippon Steel Corp., Tokai, Aichi (Japan). Nagoya Research and Development Labs.; Ogawa, H. [Nippon Steel Corp., Futtsu, Chiba (Japan). Steel Research Labs.

    1996-08-01T23:59:59.000Z

    The critical stress for initiation of stress corrosion cracking (SCC) of a duplex stainless steel (DSS) in a sour environment was investigated using three stress application techniques: constant-strain, constant-load, and slow strain rate testing (SSRT). The critical stresses for SCC initiation as determined by detailed observation of the alloy surface after the three tests were in good agreement when a newly proposed index was adopted to express the SSRT results combined with crack observations for each test. The effect of cold work (CW) on SCC and pitting resistance of the DSS also was studied. CW did not accelerate SCC when initiation was controlled by pitting. The critical stress for SCC initiation increased with increasing CW and the resultant increase in yield stress.

  6. Simulation of FCC riser flow with multiphase heat transfer and cracking reactions.

    SciTech Connect (OSTI)

    Chang, S. L.; Zhou, C. Q.; Energy Systems

    2003-08-01T23:59:59.000Z

    A validated Computational Fluid Dynamics (CFD) code ICRKFLO was developed for simulations of three-dimensional three-phase reacting flows in Fluid Catalytic Cracking (FCC) riser reactors. It calculates the product yields based on local flow properties by solving the fundamental conservation principles of mass, momentum, and energy for the flow properties associated with the gas, liquid, and solid phases. Unique phenomenological models and numerical techniques were developed specifically for the FCC flow simulation. The models include a spray vaporization model, a particle-solid interaction model, and an interfacial heat transfer model. The numerical techniques include a time-integral approach to overcome numerical stiffness problems in chemical kinetics rate calculations and a hybrid hydrodynamic-kinetic treatment to facilitate detailed kinetics calculations of cracking reactions. ICRKFLO has been validated with extensive test data from two pilot and one commercial FCC units. It is proven to be useful for advanced development of FCC riser reactors.

  7. THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, S. E.

    2011-01-01T23:59:59.000Z

    on Thermal Performance of the Exterior Envelopes ofof thermal loads resulting from the building envelope areThermal Test Facility, LhL-9653, prepared for the ASHRAE/DOE Conference-on"t:heThermal Performance the Exterior Envelope

  8. A unified method for the analysis of nonlinear viscoelasticity and fatigue cracking of asphalt mixtures using the dynamic mechanical analyzer

    E-Print Network [OSTI]

    Castelo Branco, Veronica Teixeira Franco

    2009-05-15T23:59:59.000Z

    A UNIFIED METHOD FOR THE ANALYSIS OF NONLINEAR VISCOELASTICITY AND FATIGUE CRACKING OF ASPHALT MIXTURES USING THE DYNAMIC MECHANICAL ANALYZER A Dissertation by VERONICA TEIXEIRA FRANCO CASTELO BRANCO Submitted to the Office... VISCOELASTICITY AND FATIGUE CRACKING OF ASPHALT MIXTURES USING THE DYNAMIC MECHANICAL ANALYZER A Dissertation by VERONICA TEIXEIRA FRANCO CASTELO BRANCO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  9. Sulfide stress cracking susceptible pipe fittings bought to NACE MR0175

    SciTech Connect (OSTI)

    McIntyre, D.R.; Moore, E.M. Jr. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-09-01T23:59:59.000Z

    The NACE MR0175 limit of R{sub c} 22 is non-conservative for cold-forged and stress relieved ASTM A234 WPB pipe fittings. Hardness surveys and sulfide stress cracking test results per ASTM G39 and NACE TMO177 Method B are presented. More stringent inspection and a hardness limit of BHN 197 (for cold-forged and stress relieved fittings only) are recommended to rectify this situation.

  10. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12T23:59:59.000Z

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  11. Results of crack-arrest tests on two irradiated high-copper welds

    SciTech Connect (OSTI)

    Iskander, S.K.; Corwin, W.R.; Nanstead, R.K. (Oak Ridge National Lab., TN (USA))

    1990-12-01T23:59:59.000Z

    The objective of this study was to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288{degree}C to an average fluence of 1.9 {times} 10{sup 19} neutrons/cm{sup 2} (>1 MeV). Evaluation of the results shows that the neutron-irradiation-induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves (for the range of test temperatures covered) did not seem to have been altered by irradiation compared to those of the ASME K{sub Ia} curve. 9 refs., 21 figs., 10 tabs.

  12. Environmentally assisted cracking in light water reactors. Semiannual report July 1996--December 1996

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J. [Argonne National Lab., IL (United States)] [and others

    1997-10-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1996 to December 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, (c) EAC of Alloy 600, and (d) characterization of residual stresses in welds of boiling water reactor (BWR) core shrouds by numerical models. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated BWR water at 288 C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from a low-carbon content heat of Alloy 600 in high-purity oxygenated water at 289 C. Residual stresses and stress intensity factors were calculated for BWR core shroud welds.

  13. Environmentally assisted cracking in light water reactors. Semiannual progress report, January 1996--June 1996

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

    1997-05-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from January 1996 to June 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, and (c) EAC of Alloys 600 and 690. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated boiling water reactor (BWR) water at 288{degrees}C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in air and high-purity, low-DO water. 83 refs., 60 figs., 14 tabs.

  14. Effects of water chemistry on itergranular cracking of irradiated austenitic stainless steels

    SciTech Connect (OSTI)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Hins, A.; Kassner, T.F.

    1995-12-31T23:59:59.000Z

    To determine the effects of water chemistry on the susceptibility to irradiation-assisted stress corrosion cracking (IASCC) in austenitic stainless steels. constant-extension-rate tests were conducted in simulated BWR environments on several heats of high- and commercial-purity (HP and CP) Type 304 SS specimens from BWR components irradiated to fluences up to 2.4 {times} 10{sup 21} n cm{sup {minus}2} (E > I MeV). Effects of dissolved oxygen (DO) and electrochemical potential (ECP) in 289{degrees}C water were investigated. Dependence of Susceptibility to intergranular stress corrosion cracking (IGSCC) on DO was somewhat different for the two materials. Susceptibility of the HP heats. less influenced by DO and ECP, was higher than that of CP material for all DO and fluence levels. Percent IGSCC in the CP material was negligible for DO <0.01 ppm or ECP <{minus}140 mV SHE. Results of analysis by Auger electron spectroscopy indicated that the HP neutron absorber tubes were characterized by relatively lower concentrations of C, Ni, and Li and relatively higher concentrations of F and N on grain boundaries than those of the CP materials. It is suggested that a synergism between irradiation-induced grain-boundary Cr depletion and fabrication-related fluorine contamination plays an important role in the stress corrosion cracking behavior of the HP neutron absorber tubes.

  15. Fatigue crack growth of titanium rotor alloys in vacuum and air

    SciTech Connect (OSTI)

    McClung, R.C.; Lawless, B.H.; Gorelik, M.; Date, C.; Gill, Y.; Piascik, R.S.

    1999-07-01T23:59:59.000Z

    An enhanced life management system for aircraft turbine engine rotors based on probabilistic damage tolerance methods is currently under development by the engine industry and the FAA, with an initial focus on fatigue cracking at hard alpha (HA) defects in titanium. Since HA defects are usually subsurface, any resulting cracks are embedded and hence isolated from the atmosphere (i.e., vacuum-like) for at least some of their life. Fatigue crack growth (GCG) tests have been conducted in vacuum at various temperatures and stress ratios for Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo+Si rotor alloys. A brief study of vacuum levels suggests that pressures of 10{sup {minus}6} Torr are adequate to capture full vacuum effects on FCG rates. Vacuum FCG results are compared with available air data. The vacuum data demonstrate temperature and stress ratio effects comparable to air data. The vacuum and air data exhibit the same growth rates in the upper Paris regime, but apparent thresholds are significantly higher in vacuum than in air.

  16. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31T23:59:59.000Z

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  17. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect (OSTI)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01T23:59:59.000Z

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  18. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03T23:59:59.000Z

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  19. Standard test method for determining plane-strain crack-arrest fracture toughness, kIa, of ferritic steels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This test method employs a side-grooved, crack-line-wedge-loaded specimen to obtain a rapid run-arrest segment of flat-tensile separation with a nearly straight crack front. This test method provides a static analysis determination of the stress intensity factor at a short time after crack arrest. The estimate is denoted Ka. When certain size requirements are met, the test result provides an estimate, termed KIa, of the plane-strain crack-arrest toughness of the material. 1.2 The specimen size requirements, discussed later, provide for in-plane dimensions large enough to allow the specimen to be modeled by linear elastic analysis. For conditions of plane-strain, a minimum specimen thickness is also required. Both requirements depend upon the crack arrest toughness and the yield strength of the material. A range of specimen sizes may therefore be needed, as specified in this test method. 1.3 If the specimen does not exhibit rapid crack propagation and arrest, Ka cannot be determined. 1.4 The values stat...

  20. Development of crystallographic-orientation-dependent internal strains around a fatigue-crack tip during overloading and underloading

    SciTech Connect (OSTI)

    Lee, S.Y., E-mail: sylee2012@cnu.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Huang, E.-W. [Department of Chemical and Materials Engineering and Center for Neutron Beam Applications, National Central University, Jhongli City, 32001, Taiwan (China); Wu, W.; Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Paradowska, A.M. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Rd., Lucas Heights NSW 2234 (Australia)

    2013-05-15T23:59:59.000Z

    In-situ neutron diffraction was employed to directly measure the crystallographic-orientation-dependent (i.e. hkl) internal strains as a function of distance from the crack tip on the pre-cracked Hastelloy C-2000 compact-tension specimen. Both in-plane (IP) and through-thickness (TT) strain evolutions for various grain orientations were examined during tensile overloading and compressive underloading cycles. After overloading, underloading and their combination loadings were applied and unloaded, the significantly different (hkl) residual strain profiles were obtained in the vicinity of the crack tip. The load responses of the (200) grain orientation in both the IP and TT directions were more significant than those of any other orientations. It is suggested that the different orientation-dependent strain distributions around the crack tip are caused by the combined effects of elastic and plastic anisotropy of each (hkl) reflection upon loading and the subsequent development of residual stresses generated near the crack tip during unloading as a result of the plastic deformation. - Highlights: ? (hkl) strains are examined in situ using neutron diffraction. ? Distinct strain responses are developed around the crack tip under loading. ? The strain response of the (200) grain orientation is more significant. ? Possible mechanisms for the orientation-dependent strain responses are provided.

  1. Environmentally assisted cracking in light water reactors annual report January - December 2005.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chen, Y.; Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.

    2007-08-31T23:59:59.000Z

    This report summarizes work performed from January to December 2005 by Argonne National Laboratory on fatigue and environmentally assisted cracking in light water reactors (LWRs). Existing statistical models for estimating the fatigue life of carbon and low-alloy steels and austenitic stainless steels (SSs) as a function of material, loading, and environmental conditions were updated. Also, the ASME Code fatigue adjustment factors of 2 on stress and 20 on life were critically reviewed to assess the possible conservatism in the current choice of the margins. An approach, based on an environmental fatigue correction factor, for incorporating the effects of LWR environments into ASME Section III fatigue evaluations is discussed. The susceptibility of austenitic stainless steels and their welds to irradiation-assisted stress corrosion cracking (IASCC) is being evaluated as a function of the fluence level, water chemistry, material chemistry, and fabrication history. For this task, crack growth rate (CGR) tests and slow strain rate tensile (SSRT) tests are being conducted on various austenitic SSs irradiated in the Halden boiling water reactor. The SSRT tests are currently focused on investigating the effects of the grain boundary engineering process on the IASCC of the austenitic SSs. The CGR tests were conducted on Type 316 SSs irradiated to 0.45-3.0 dpa, and on sensitized Type 304 SS and SS weld heat-affected-zone material irradiated to 2.16 dpa. The CGR tests on materials irradiated to 2.16 dpa were followed by a fracture toughness test in a water environment. The effects of material composition, irradiation, and water chemistry on growth rates are discussed. The susceptibility of austenitic SS core internals to IASCC and void swelling is also being evaluated for pressurized water reactors. Both SSRT tests and microstructural examinations are being conducted on specimens irradiated in the BOR-60 reactor in Russia to doses up to 20 dpa. Crack growth rate data, obtained in the pressurized water reactor environment, are presented on Ni-alloy welds prepared in the laboratory or obtained from the nozzle-to-pipe weld of the V. C. Summer reactor. The experimental CGRs under cyclic and constant load are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of these materials to environmentally enhanced cracking under a variety of loading conditions.

  2. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  3. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  4. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2006-04-04T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  5. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01T23:59:59.000Z

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  6. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30T23:59:59.000Z

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  7. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01T23:59:59.000Z

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  8. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01T23:59:59.000Z

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  9. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01T23:59:59.000Z

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  10. The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb

    SciTech Connect (OSTI)

    Sagat, S.; Coleman, C.E.; Griffiths, M. [AECL Research, Chalk River, Ontario (Canada); Wilkins, B.J.S. [AECL Research, Pinawa, Manitoba (Canada)

    1994-12-31T23:59:59.000Z

    Zirconium alloys are susceptible to a stable cracking process called delayed hydride cracking (DHC). DHC has two stages: (a) crack initiation that requires a minimum crack driving force (the threshold stress intensity factor, K{sub IH}) and (b) stable crack growth that is weakly dependent on K{sub l}. The value of K{sub lH} is an important element in determining the tolerance of components to sharp flaws. The rate of cracking is used in estimating the action time for detecting propagating cracks before they become unstable. Hence, it is important for reactor operators to know how these properties change during service in reactors where the components are exposed to neutron irradiation at elevated temperatures. DHC properties were measured on a number of components, made from the two-phase alloy Zr-2.5 Nb, irradiated at temperatures in the range of 250 to 290 C in fast neutron fluxes (E {>=} 1 MeV) between 1.6 {times} 10{sup 17} and 1.8 {times} 10{sup 18} n/m{sup 2} {center_dot} s to fluences between 0.01 {times} 10{sup 25} and 9.8 {times} 10{sup 25} n/m{sup 2}. The neutron irradiation reduced K{sub IH} by about 20% and increased the velocity of cracking by a factor of about five. The increase in crack velocity was greatest with the lowest irradiation temperature. These changes in the rack velocity by neutron irradiation are explained in terms of the combined effects of irradiation hardening associated with increased -type dislocation density, and {beta}-phase decomposition. While the former process increases crack velocity, the latter process decrease it. The combined contribution is controlled by the irradiation temperature. X-ray diffraction analyses showed that the degree of {beta}-phase decomposition was highest with an irradiation temperature of 290 C while -type dislocation densities were highest with an irradiation temperature of 250 C.

  11. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  12. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R. J.

    1980-08-01T23:59:59.000Z

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  13. Enhanced Thermal Conductivity Oxide Fuels

    SciTech Connect (OSTI)

    Alvin Solomon; Shripad Revankar; J. Kevin McCoy

    2006-01-17T23:59:59.000Z

    the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

  14. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  15. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

  16. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    E-Print Network [OSTI]

    Regnier, Cindy

    2014-01-01T23:59:59.000Z

    including cost, energy and thermal comfort analysis, whichfor greatest energy benefits, prioritize thermal comfortSetting Thermal Comfort Criteria and Minimizing Energy Use

  17. Dynamic modelling for thermal micro-actuators using thermal networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    electrical anal- ogy. However, current equivalent electrical models (thermal networks) are generally obtained - Universidad Aut´onoma de Nuevo Le´on, PIIT Monterrey, C.P. 66600, Nuevo Le´on, Mexico. Preprint submitted.2010.06.012 #12;are then proposed in this paper. The validities of both types of thermal net- works

  18. Measuring Thermal Transport in Extreme Environments: Thermal Conductivity

    E-Print Network [OSTI]

    Braun, Paul

    Chen California Institute of Technology Jackie Li University of Michigan supported by CarnegieMeasuring Thermal Transport in Extreme Environments: Thermal Conductivity of Water Ice VII to 20 GPa David G. Cahill, Wen-Pin Hsieh, Dallas Trinkle, University of Illinois at Urbana-Champaign Bin

  19. On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity

    E-Print Network [OSTI]

    Sevostianov, Igor

    expansion and thermal conductivity Igor Sevostianov Department of Mechanical and Aerospace Engineering, NewOn the thermal expansion of composite materials and cross-property connection between thermal: Composite material Thermal expansion Cross-property Microstructure Thermal conductivity a b s t r a c

  20. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J. (Littleton, CO)

    1983-01-01T23:59:59.000Z

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  1. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne (Pittsburg, PA)

    2010-06-22T23:59:59.000Z

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  2. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  3. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Moore, Troy K. (Los Alamos, NM)

    1988-01-01T23:59:59.000Z

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  4. Pacific Northwest National Laboratory Investigation of the Stress Corrosion Cracking in Nickel-Base Alloys, Volume 2

    SciTech Connect (OSTI)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2012-03-01T23:59:59.000Z

    The objective of this program is to evaluate the primary water stress corrosion cracking (PWSCC) susceptibility of high chromium alloy 690 and its weld metals, establish quantitative measurements of crack-growth rates and determine relationships among cracking susceptibility, environmental conditions and metallurgical characteristics. Stress-corrosion, crack-growth rates have been determined for 12 alloy 690 specimens, 11 alloy 152/52/52M weld metal specimens, 4 alloy 52M/182 overlay specimens and 2 alloy 52M/82 inlay specimens in simulated PWR primary water environments. The alloy 690 test materials included three different heats of extruded control-rod-drive mechanism (CRDM) tubing with variations in the initial material condition and degree of cold work for one heat. Two cold-rolled (CR) alloy 690 plate heats were also obtained and evaluated enabling comparisons to the CR CRDM materials. Weld metal, overlay and inlay specimens were machined from industry mock ups to provide plant-representative materials for testing. Specimens have been tested for one alloy 152 weld, two alloy 52 welds and three alloy 52M welds. The overlay and inlay specimens were prepared to propagate stress-corrosion cracks from the alloy 182 or 82 material into the more resistant alloy 52M. In all cases, crack extension was monitored in situ by direct current potential drop (DCPD) with length resolution of about +1 µm making it possible to measure extremely low growth rates approaching 5x10-10 mm/s. Most SCC tests were performed at 325-360°C with hydrogen concentrations from 11-29 cc/kg; however, environmental conditions were modified during a few experiments to evaluate the influence of temperature, water chemistry or electrochemical potential on propagation rates. In addition, low-temperature (~50°C) cracking behavior was examined for selected alloy 690 and weld metal specimens. Extensive characterizations have been performed on material microstructures and stress-corrosion cracks by optical and electron microscopy techniques and linked to crack-growth test results to help define material and environmental parameters controlling SCC susceptibility.

  5. Theoretical studies of pentene cracking on zeolites: C-C beta-scission processes

    SciTech Connect (OSTI)

    Hay, P.J.; Redondo, A.; Guo, Y.

    1997-04-01T23:59:59.000Z

    The nature of the molecular species involved in the cracking of hydrocarbons into smaller fragments over zeolite catalysts has been studied extensively, as the advent of zeolites such as faujasite to carry out these transformations more selectively has revolutionized the petroleum refining technology. While the nature of the acid-catalyzed process involving proposed carbocationic species has been proposed for nearly fifty years, there have been extensive studies involving heterogeneous processes and analogs with solution superacid chemistry to elucidate these mechanisms more clearly and to attempt to detect the intermediates involved in these reactions. Also in recent years there have been an increasing number of theoretical studies on the nature of the acid sites in zeolites, the interactions of these acid sites with adsorbates including hydrocarbons, and on simple reactions of hydrocarbon species using model systems to represent the zeolite. In this study the authors report the results of ab initio and density functional studies on one aspect--the beta-scission C-C bond-breaking step--that arises in the cracking process of alkanes and alkenes. The authors focus on the species arising from pentene adsorption on an acid site and the subsequent cracking of this C{sub 5} species as an illustration of the carbon-carbon bond-breaking step. In these studies they employ a simple three-T-site to represent the immediate vicinity of the acid site in faujasite comprised of the Si-O-Al-OH-O-Si skeleton with the unsatisfied bonds terminated by hydrogens. They study the reaction of the 2-pentyl cation undergoing beta-scission in the gas phase to form propene and the ethyl cation and the corresponding reaction on the zeolite cluster. The structures of the reactants, products and transition states are determined using ab initio electronic structure techniques.

  6. Effect of aging of the pillaring reagent on the microstructure and cracking activity of pillared clay

    SciTech Connect (OSTI)

    Harris, J.R. (Phillips Petroleum Company, Bartlesville, OK (USA))

    1987-08-01T23:59:59.000Z

    Pillared interlayer clay (PILC) is formed by exchanging large hydroxyaluminum polycations into the interlayer of a smectite clay such as montmorillonite, which is made up of sheet-like silica/alumina layers. Calcination of the exchanged clay gives a well dispersed array of metal oxide clumps (i.e., pillars) bonded top and bottom to the silica/alumina layers of the clay. The permanent separation of the clay layers gives an 8 to 10-fold increase in surface area, from 30 to 250-300 m{sup 2}/g, and a microporous structure similar to but less constrained than that of zeolites. Recently, there has been an increased interest in the use of these clays as cracking catalysts. For example, pillared clays have been shown to be an active cracking catalyst for both single component and gas oil feeds. PILC's also lead to both higher light cycle oil (LCO) and coke yields than conventional cracking catalysts. Commercially available, metal-hydrolyzed hydroxyaluminum solutions containing chlorhydrol, A1{sub 2}(OH){sub 5}C1.2H{sub 2}O, have been used as one source of the polycation solution. The approach of these hydrolyzed polycation solutions to equilibrium is known as aging. During the aging process certain polycationic species disappear from the solution and new species are formed. For this reason, the aging process can have a significant influence on the properties of the pillared clays. The objective of this work was to determine how the physical and catalytic properties of the pillared clay depend on the aging of dilute cholorhydrol solutions.

  7. Localized hydrogen cracking in the austenitic phase of a duplex stainless steel

    SciTech Connect (OSTI)

    Oltra, R.; Bouillot, C. [Univ. de Bourgogne, Dijon (France). Lab. de Recherches sur la Reactivite des Solides] [Univ. de Bourgogne, Dijon (France). Lab. de Recherches sur la Reactivite des Solides; Magnin, T. [Ecole des Mines, Saint-Etienne (France)] [Ecole des Mines, Saint-Etienne (France)

    1996-11-01T23:59:59.000Z

    The aim of this study is to investigate the role of hydrogen on the mechanical behavior of an austenitic phase, in the particular situation of duplex stainless steels. In these duplex alloys, in presence of hydrogen, the ferritic phase is embrittled by hydrogen and the resistance to cracking is mainly related to the behavior of the austenitic phase. Thus, a discussion of the role of hydrogen at the crack tip of a duplex alloy (as function of the microstructure) has been proposed by T. Perng and C.J. Altester after experiments conducted in gaseous environment. A similar experimental approach has been followed in this study; slow strain rate tests (SSRT) have been performed on duplex stainless steels in gaseous environments for low hydrogen charging conditions. The main question is then related to the conditions for hydrogen entry and embrittlement of the austenitic phase ({gamma}). Because hydrogen is spread everywhere in the ferritic matrix ({alpha}), it was asked if the behavior of the austenitic phase of the duplex was comparable to that of a purely austenitic sample during hydrogen charging. Critical experiments have been conducted to answer this question. SSRT (strain rate = 10{sup {minus}6}s{sup {minus}1}) were performed on duplex stainless steels in a pressure vessel under 30 bar of hydrogen or deuterium at room temperature. Complementary chemical analysis by Secondary Ionic Mass Spectroscopy (SIMS) allowed to image the spatial distribution of deuterium as function of the microstructure. The role of hydrogen will be then mainly illustrated on the basis of microscopic examinations of the crack path transition from the ferritic to the austenitic grains, and discussed through the corrosion enhanced plasticity model proposed by T. Magnin for SCC in ductile materials.

  8. Interference of wedge-shaped protrusions on the faces of a Griffith crack in biaxial stress. Final report

    SciTech Connect (OSTI)

    Boulet, J.A.M. [Tennessee Univ., Knoxville, TN (United States)

    1992-04-01T23:59:59.000Z

    An initial investigation of the influence of protrusion interference on the fracture toughness required to prevent unstable propagation of a Griffith crack in a brittle material is described. The interference is caused by relative shear displacement of the crack faces when subjected to remote biaxial stress with neither principal stress parallel to the crack. It is shown that for room temperature cracks smaller than about one centimeter in silicon carbide, or about one millimeter in silicon nitride, the presence of interference changes the fracture stress. A mathematical model based on linear elasticity solutions and including multiple interference sites at arbitrarily specified positions on the crack is presented. Computations of the change in required fracture toughness and its dependence on wedge geometry (size and vertex angle), applied stresses (orientation and magnitude), and location of the interference site are discussed. Results indicate that a single interference site has only a slight effect on required toughness. However, the influence of interference increases monotonically with the number of interference sites. The two-dimensional model described herein is not accurate when the interference sites are closely spaced.

  9. Electrochemical and metallurgical aspects of stress corrosion cracking of sensitized Alloy 600 in simulated primary water containing sulfur contamination

    SciTech Connect (OSTI)

    Bandy, R.; Kelly, K.

    1985-01-01T23:59:59.000Z

    The stress corrosion cracking (SCC) of sensitized Alloy 600 was investigated in aerated solutions of sodium thiosulfate containing 1.3% boric acid. Results indicate that in the borated thiosulfate solution containing 7 ppM sulfur, 5 ppM lithium as lithium hydroxide is sufficient to inhibit SCC in U-bends. The occurrence of inhibition seems to correlate to the rapid increase of pH and conductivity of the solution as a result of the lithium hydroxide addition. In the slow strain rate tests in the borated solution containing 0.7 ppM lithium as lithium hydroxide, significant SCC is observed at a sulfur level of 30 ppB, i.e., a lithium to sulfur ratio of 23. In a parallel test in 30 ppB sulfur level but without any lithium hydroxide, the SCC is more severe than that in the lithiated environment. In the constant load test on a specimen held initially at a nominal stress near the yield strength of the material, cracks continue to grow until fracture during controlled, progressive dilution of the bulk solution, leading to final lithium concentration of 1.5 ppM and sulfur concentration (as thiosulfate) of 9.6 ppB i.e., a lithium to sulfur ratio of about 156, although lithium hydroxide retards the rate of crack propagation to some extent. The crack growth rate is strongly influenced by the electrochemical potential which is primarily governed by the local crack tip chemistry.

  10. Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Tan, Ting [ORNL; Jiang, Hao [ORNL; Zhang, Wei [ORNL; Feng, Zhili [ORNL

    2012-10-01T23:59:59.000Z

    The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials.

  11. Radiation hardening and radiation-induced chromium depletion effects on intergranular stress corrosion cracking of austenitic stainless steels

    SciTech Connect (OSTI)

    Bruemmer, S.M.; Simonen, E.P.

    1993-03-01T23:59:59.000Z

    Available data on neutron-irradiated materials have been analyzed and correlations developed between fluence, yield strength, grain boundary chromium concentration and cracking susceptibility in high-temperature water environments. Large heat-to-heat differences in critical fluence (0.2 to 2.5 n/cm[sup 2]) for IGSCC are documented.In many cases, this variability is consistent with yield strength differences among irradiated materials. IGSCC correlated better to yield strength than to fluence for most heats suggesting a possible role of the radiation-induced hardening (and microstructure) on cracking. However, isolatedheats reveal a wide range of yield strengths from 450 to 800 MPa necessary to promote IGSCC which cannot be understood by strength effects alone. Grain boundary Cr depletion explain differences in IGSCC susceptibility for irradiated stainless steels. Cr contents versus SCC shows that all materials showing IG cracking have some grain boundary depletion ([ge]2%). Grain boundary Cr concentrations for cracking (below [approximately]16 wt %) are in good agreement with similar SCC tests on unirradiated 304 SS with controlled depletion profiles. Heats that prompt variability in the yield strength correlation, are accounted for bydifferences in their interfacial Cr contents. Certain stainless steels are more resistant to cracking even though they have significant radiation-induced Cr depletion. It is proposed that Cr depletion is required for IASCC, but observed susceptibility is modified by other microchemical and microstructural components.

  12. Radiation hardening and radiation-induced chromium depletion effects on intergranular stress corrosion cracking of austenitic stainless steels

    SciTech Connect (OSTI)

    Bruemmer, S.M.; Simonen, E.P.

    1993-03-01T23:59:59.000Z

    Available data on neutron-irradiated materials have been analyzed and correlations developed between fluence, yield strength, grain boundary chromium concentration and cracking susceptibility in high-temperature water environments. Large heat-to-heat differences in critical fluence (0.2 to 2.5 n/cm{sup 2}) for IGSCC are documented.In many cases, this variability is consistent with yield strength differences among irradiated materials. IGSCC correlated better to yield strength than to fluence for most heats suggesting a possible role of the radiation-induced hardening (and microstructure) on cracking. However, isolatedheats reveal a wide range of yield strengths from 450 to 800 MPa necessary to promote IGSCC which cannot be understood by strength effects alone. Grain boundary Cr depletion explain differences in IGSCC susceptibility for irradiated stainless steels. Cr contents versus SCC shows that all materials showing IG cracking have some grain boundary depletion ({ge}2%). Grain boundary Cr concentrations for cracking (below {approximately}16 wt %) are in good agreement with similar SCC tests on unirradiated 304 SS with controlled depletion profiles. Heats that prompt variability in the yield strength correlation, are accounted for bydifferences in their interfacial Cr contents. Certain stainless steels are more resistant to cracking even though they have significant radiation-induced Cr depletion. It is proposed that Cr depletion is required for IASCC, but observed susceptibility is modified by other microchemical and microstructural components.

  13. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01T23:59:59.000Z

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  14. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30T23:59:59.000Z

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  15. Thermal Evolution of Strange Stars

    E-Print Network [OSTI]

    Zhou Xia; Wang Lingzhi; Zhou Aizhi

    2007-09-03T23:59:59.000Z

    We investigated the thermal evolution of rotating strange stars with the deconfinement heating due to magnetic braking. We consider the stars consisting of either normal quark matter or color-flavor-locked phase. Combining deconfinement heating with magnetic field decay, we find that the thermal evolution curves are identical to pulsar data.

  16. Transient Eddy Current Response Due to a Subsurface Crack in a Conductive Plate

    SciTech Connect (OSTI)

    Fangwei Fu

    2006-08-09T23:59:59.000Z

    Eddy current nondestructive evaluation (NDE) is usually carried out by exciting a time harmonic field using an inductive probe. However, a viable alternative is to use transient eddy current NDE in which a current pulse in a driver coil produces a transient .eld in a conductor that decays at a rate dependent on the conductivity and the permeability of the material and the coil configuration. By using transient eddy current, it is possible to estimate the properties of the conductive medium and to locate and size potential .aws from the measured probe response. The fundamental study described in this dissertation seeks to establish a theoretical understanding of the transient eddy current NDE. Compared with the Fourier transform method, the derived analytical formulations are more convenient when the transient eddy current response within a narrow time range is evaluated. The theoretical analysis provides a valuable tool to study the effect of layer thickness, location of defect, crack opening as well as the optimization of probe design. Analytical expressions have been developed to evaluate the transient response due to eddy currents in a conductive plate based on two asymptotic series. One series converges rapidly for a short time regime and the other for a long time regime and both of them agree with the results calculated by fast Fourier transform over all the times considered. The idea of asymptotic expansion is further applied to determine the induced electromotive force (EMF) in a pick-up coil due to eddy currents in a cylindrical rod. Starting from frequency domain representation, a quasi-static time domain dyadic Green's function for an electric source in a conductive plate has been derived. The resulting expression has three parts; a free space term, multiple image terms and partial reflection terms. The dyadic Green's function serves as the kernel of an electric field integral equation which defines the interaction of an ideal crack with the transient eddy currents in a conductive plate. The crack response is found using the reciprocity theorem. Good agreement is observed between the predictions of the magnetic field due to the crack and experimental measurements.

  17. INHIBITION OF STRESS CORROSION CRACKING OF CARBON STEEL STORAGE TANKS AT HANFORD

    SciTech Connect (OSTI)

    BOOMER, K.D.

    2007-01-31T23:59:59.000Z

    The stress corrosion cracking (SCC) behavior of A537 tank steel was investigated in a series of environments designed to simulate the chemistry of legacy nuclear weapons production waste. Tests consisted of both slow strain rate tests using tensile specimens and constant load tests using compact tension specimens. Based on the tests conducted, nitrite was found to be a strong SCC inhibitor. Based on the test performed and the tank waste chemistry changes that are predicted to occur over time, the risk for SCC appears to be decreasing since the concentration of nitrate will decrease and nitrite will increase.

  18. EXPERT PANEL OVERSIGHT COMMITTEE ASSESSMENT OF FY2008 CORROSION AND STRESS CORROSION CRACKING SIMULANT TESTING PROGRAM

    SciTech Connect (OSTI)

    BOOMER KD

    2009-01-08T23:59:59.000Z

    The Expert Panel Oversight Committee (EPOC) has been overseeing the implementation of selected parts of Recommendation III of the final report, Expert Panel workshop for Hanford Site Double-Shell Tank Waste Chemistry Optimization, RPP-RPT-22126. Recommendation III provided four specific requirements necessary for Panel approval of a proposal to revise the chemistry control limits for the Double-Shell Tanks (DSTs). One of the more significant requirements was successful performance of an accelerated stress corrosion cracking (SCC) experimental program. This testing program has evaluated the optimization of the chemistry controls to prevent corrosion in the interstitial liquid and supernatant regions of the DSTs.

  19. 303:20130618.1036 Thermal Engineering Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    303:20130618.1036 Thermal Engineering Group LASP's Thermal Engineering Group is involved in all of the component, as well as on-orbit trending and operations planning. Design Experience The Thermal Engineering Systems Engineering The group has formulated general thermal design and thermal interface requirements

  20. Advanced thermal imaging of composites

    SciTech Connect (OSTI)

    Wang, H.; Dinwiddie, R.B.

    1996-06-01T23:59:59.000Z

    Composite materials were studied by Scanning Thermal Conductivity Microscope (STCM) and high speed thermography. The STCM is a qualitative technique which is used to study thermal conductivity variations on a sub-micrometer scale. High speed thermography is a quantitative technique for measuring thermal diffusivity with a variable spatial resolution from centimeters down to less than 25 gm. A relative thermal conductivity contrast map was obtained from a SiC/Si3N4 continuous fiber ceramic composite using the STCM. Temperature changes of a carbon/carbon composite after a heat pulse were captured by an IR camera to generate a thermal diffusivity map of the specimen. Line profiles of the temperature distribution showed significant variations as a result of fiber orientation.