Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal cracking in disc brakes Thomas J. Mackin *,1  

E-Print Network [OSTI]

Thermal cracking in disc brakes Thomas J. Mackin *,1 , Steven C. Noe, K.J. Ball, B.C. Bedell, D, or hub, which is connected to the wheel and axle, and an inboard and outboard braking surface

Salvaggio, Carl

2

Prediction of thermal reflection cracking in west Texas  

E-Print Network [OSTI]

for the stress intensity factor, Ck, following Barenblatt (53) is used. z 'e(')4' C = ? / k n o (3-11) where C is the distance away from crack tip and o (g) is the surface e stress inside the crack tip element, i. e. ? o is the thermal stress at the depth... of the studies being conducted on pavement temp- erature cracking have been mainly concerned with the fracture suscepti- bilityy of asphalt concrete under extremely low temperature (3, 4). Find- ings of these studies could not provide satisfactory...

Chang, Hang-Sun

1975-01-01T23:59:59.000Z

3

Process for magnetic beneficiating petroleum cracking catalyst  

DOE Patents [OSTI]

A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

Doctor, Richard D. (Lisle, IL)

1993-01-01T23:59:59.000Z

4

Process for magnetic beneficiating petroleum cracking catalyst  

DOE Patents [OSTI]

A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

Doctor, R.D.

1993-10-05T23:59:59.000Z

5

Thermal Processes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Current Technology Thermal Processes Thermal Processes Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass,...

6

High-Resolution Crack Imaging Reveals Degradation Processes in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reveals Degradation Processes in Nuclear Reactor Structural Materials. Abstract: Corrosion and cracking represent critical failure mechanisms for structural materials in many...

7

Thermal resistance of bridged cracks in fiber-reinforced ceramic John Dryden  

E-Print Network [OSTI]

-reinforced ceramic composites obtain high toughness is through the de- velopment of multiple matrix cracksThermal resistance of bridged cracks in fiber-reinforced ceramic composites John Dryden Department November 2000; accepted for publication 16 January 2001 The thermal resistance of a bridged matrix crack

Zok, Frank

8

Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite  

E-Print Network [OSTI]

Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite of Engineering Science, University of Western Ontario, London, Ontario N6A 5B9, Canada Effects of matrix cracks conductances coupled with a unit cell model for a fiber composite containing a periodic array of matrix cracks

Zok, Frank

9

Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale  

E-Print Network [OSTI]

by the thermal cracking process of the El-Lujjan oil shale showed that the yield of oil was around 12 wt of the boiling point for different distillate fractions. Sulfur in Jordanian oil shale was found to be mainly the dominant phases in these fractions. q 2005 Published by Elsevier Ltd. 1. Introduction Oil shale

Shawabkeh, Reyad A.

10

Enlargement of concrete blocks of arch dams with allowance of the formation of radial thermal cracks  

SciTech Connect (OSTI)

Considerable acceleration of the construction of arch dams with the use of highly productive continuous concreting mechanisms is possible with enlargement of the blocks and allowance of the formation of thermal radial cracks in them. A theoretical analysis and the results of on-site observations show that under the effect of the hydrostatic head of water, radial joints and cracks in compressed zones of an arch dam close and the dam in these zones works as a solid dam. Thermal cracking in concrete blocks of arch dams enlarged in plan should be controlled by making radial notches to concentrate tensile stresses providing the formation of radial cracks at prescribed places and through the usual methods of thermal regulation. The block size along the face of an arch dam is then no longer limited by the condition of crack resistance but is determined by the rate of concreting. The technical and economic effects from concreting arch dams are cited.

Verbetskii, G.P.; Chogovadze, G.I.; Daneliya, A.I.

1988-04-01T23:59:59.000Z

11

A probabilistic model to predict the formation and propagation of crack networks in thermal  

E-Print Network [OSTI]

. In the case of cooling systems in nuclear power plants, observations revealed the presence of thermal crazing loading even if thermal fatigue is multiaxial. However, the first simulations on a uniaxial mechanicalA probabilistic model to predict the formation and propagation of crack networks in thermal fatigue

12

Rapid thermal processing by stamping  

DOE Patents [OSTI]

A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

Stradins, Pauls; Wang, Qi

2013-03-05T23:59:59.000Z

13

Materials Selection Considerations for Thermal Process Equipment...  

Broader source: Energy.gov (indexed) [DOE]

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

14

Continuous Processing of High Thermal Conductivity Polyethylene...  

Broader source: Energy.gov (indexed) [DOE]

Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of...

15

Effect of cracks on the thermal resistance of aligned fiber composites Department of Mechanical and Materials Engineering, University of Western Ontario, London,  

E-Print Network [OSTI]

Effect of cracks on the thermal resistance of aligned fiber composites J. Dryden Department are bridged by the fibers, and this crack- ing causes an increase in the longitudinal thermal resistance of the matrix and the fiber, respectively. The thermal resistance of a pristine unit cell is R0 L b2 kz . 4

Zok, Frank

16

Roles of grain boundaries in cleavage cracking and thermal crack arrest experiments in iron-silicon alloy  

E-Print Network [OSTI]

High-angle grain boundaries in steel offer an important resistance to the propagation of cleavage cracks that affects the fracture toughness and can modulate the ductile-to-brittle transition temperature of fracture downward. ...

Qiao, Yu, 1972-

2002-01-01T23:59:59.000Z

17

Gamma prime embrittlement and thermal fatigue cracking of a hydrogen reformer burner end  

SciTech Connect (OSTI)

An investigation into the premature failure of an Alloy 800HT (UNS N08811) oxygen-gas mixer water jacketed end is discussed. Detailed metallurgical analyses showed that gamma prime [Ni{sub 3} (Al, Ti)] embrittlement and thermal fatigue cracking led to eventual leakage. The reduced lif e of the Alloy 800HT (UNS N08811) replacement (problems after only a year) was traced to its higher Al + Ti content (1.1%) compared to Alloy 800H (0.6% Al + Ti) which lasted over two years. While higher aluminum and titanium levels improve high temperature creep and stress rupture properties, both are sigma formers and, at levels > 0.6%, tend to form gamma prime with nickel. The choice of alternative metallurgies requires careful considerations of physical, mechanical and thermal properties as well as an understanding of complex stresses and stress distributions.

Dias, O.C.; Mack, N.C. [Amoco Oil Co., Texas City, TX (United States)

1994-12-31T23:59:59.000Z

18

Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process  

SciTech Connect (OSTI)

This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

Zhang Ruijin, E-mail: rjzhang@mail.neu.edu.c [Modern Design and Analysis Research Institute, Northeastern University, Shenyang (China); Castel, Arnaud; Francois, Raoul [LMDC - Laboratoire Materiaux et Durabilite des Constructions, Universite de Toulouse, UPS, INSA, Toulouse (France)

2010-03-15T23:59:59.000Z

19

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-01-01T23:59:59.000Z

20

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Creep failure of cracking heater at a petrochemical plant  

SciTech Connect (OSTI)

After two and half years of operation, a bend tube in a cracking heater at an ethylene plant failed due to creep cracking. Creep damage occurred as a result of metallurgical instability including coarsening of carbides that caused softening and initiation of voids or wedge-type intergranular cracks. This was accelerated due to increasing inner surface temperature during decoking process. Thermal fatigue contributed to the failure as a result of temperature variations due to several shutdown-startup operations. To minimize such failure in futures, periodic inspection to monitor crack formation was scheduled. Nondestructive tests including dye penetrant test for surface cracking and radiographic test for internal crack were implemented.

El-Batahgy, A. [Welding Research Department, Central, Metallurgical R and D Institute, Cairo (Egypt)]. E-mail: elbatahgy@yahoo.com; Zaghloul, B. [Central Metallurgical R and D Institute, P.O. Box: 87 Helwan, Cairo (Egypt)

2005-03-15T23:59:59.000Z

22

WATTS TOWERS: THE EFFECTS OF THERMAL CYCLES ON THE FORMATION AND BEHAVIOR OF CRACKS  

E-Print Network [OSTI]

The development of cracks in Portland Cement Concrete (PCC) and Grout has become a problem of rising concern in a country with an aging infrastructure. A detailed understanding of the causes as well as the behavior of these cracks is vital...

Spencer, Matthew T

2013-02-06T23:59:59.000Z

23

Thermal behavior in the LENS process  

SciTech Connect (OSTI)

Direct laser metal deposition processing is a promising manufacturing technology which could significantly impact the length of time between initial concept and finished part. For adoption of this technology in the manufacturing environment, further understanding is required to ensure robust components with appropriate properties are routinely fabricated. This requires a complete understanding of the thermal history during part fabrication and control of this behavior. This paper will describe research to understand the thermal behavior for the Laser Engineered Net Shaping (LENS) process, where a component is fabricated by focusing a laser beam onto a substrate to create a molten pool in which powder particles are simultaneously injected to build each layer. The substrate is moved beneath the laser beam to deposit a thin cross section, thereby creating the desired geometry for each layer. After deposition of each layer, the powder delivery nozzle and focusing lens assembly is incremented in the positive Z-direction, thereby building a three dimensional component layer additively. It is important to control the thermal behavior to reproducibly fabricate parts. The ultimate intent is to monitor the thermal signatures and to incorporate sensors and feedback algorithms to control part fabrication. With appropriate control, the geometric properties (accuracy, surface finish, low warpage) as well as the materials` properties (e.g., strength, ductility) of a component can be dialed into the part through the fabrication parameters. Thermal monitoring techniques will be described, and their particular benefits highlighted. Preliminary details in correlating thermal behavior with processing results will be discussed.

Griffith, M.L.; Schlienger, M.E.; Harwell, L.D. [and others

1998-08-01T23:59:59.000Z

24

Effects of thermal aging on Stress Corrosion Cracking and mechanical properties of stainless steel weld metals  

E-Print Network [OSTI]

Stress Corrosion Cracking (SCC) in and around primary loop piping welds in Boiling Water Reactors has been observed worldwide as plants continue to operate at temperatures and pressures near 2880C (5500F) and 6.9 MPa (1000 ...

Hixon, Jeff

2006-01-01T23:59:59.000Z

25

LABORATORY VI ENERGY AND THERMAL PROCESSES  

E-Print Network [OSTI]

LABORATORY VI ENERGY AND THERMAL PROCESSES Lab VI - 1 The change of the internal energy of a system temperature. In this lab you will concentrate on quantifying the changes in internal energy within the framework of conservation of energy. In the problems of this lab, you will master the relation

Minnesota, University of

26

Value of solar thermal industrial process heat  

SciTech Connect (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

27

Theoretical studies of pentene cracking on zeolites: C-C beta-scission processes  

SciTech Connect (OSTI)

The nature of the molecular species involved in the cracking of hydrocarbons into smaller fragments over zeolite catalysts has been studied extensively, as the advent of zeolites such as faujasite to carry out these transformations more selectively has revolutionized the petroleum refining technology. While the nature of the acid-catalyzed process involving proposed carbocationic species has been proposed for nearly fifty years, there have been extensive studies involving heterogeneous processes and analogs with solution superacid chemistry to elucidate these mechanisms more clearly and to attempt to detect the intermediates involved in these reactions. Also in recent years there have been an increasing number of theoretical studies on the nature of the acid sites in zeolites, the interactions of these acid sites with adsorbates including hydrocarbons, and on simple reactions of hydrocarbon species using model systems to represent the zeolite. In this study the authors report the results of ab initio and density functional studies on one aspect--the beta-scission C-C bond-breaking step--that arises in the cracking process of alkanes and alkenes. The authors focus on the species arising from pentene adsorption on an acid site and the subsequent cracking of this C{sub 5} species as an illustration of the carbon-carbon bond-breaking step. In these studies they employ a simple three-T-site to represent the immediate vicinity of the acid site in faujasite comprised of the Si-O-Al-OH-O-Si skeleton with the unsatisfied bonds terminated by hydrogens. They study the reaction of the 2-pentyl cation undergoing beta-scission in the gas phase to form propene and the ethyl cation and the corresponding reaction on the zeolite cluster. The structures of the reactants, products and transition states are determined using ab initio electronic structure techniques.

Hay, P.J.; Redondo, A.; Guo, Y.

1997-04-01T23:59:59.000Z

28

Continuous Processing of High Thermal Conductivity Fibers and...  

Broader source: Energy.gov (indexed) [DOE]

We are developing a continuous fabrication process for high thermal conductivity polyethylene (PE) films While high thermal conductivity in (PE) has been shown in isolated...

29

Thermal processes for heavy oil recovery  

SciTech Connect (OSTI)

This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

Sarkar, A.K.; Sarathi, P.S.

1993-11-01T23:59:59.000Z

30

MODELING OF THERMALLY DRIVEN HYDROLOGICAL PROCESSES IN PARTIALLY  

E-Print Network [OSTI]

) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic AND BACKGROUND [2] The containment of spent fuel from nuclear power plants in a geological repositoryMODELING OF THERMALLY DRIVEN HYDROLOGICAL PROCESSES IN PARTIALLY SATURATED FRACTURED ROCK Y. W

Jellinek, Mark

31

Pulse thermal processing of functional materials using directed plasma arc  

DOE Patents [OSTI]

A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.

Ott, Ronald D. (Knoxville, TN); Blue, Craig A. (Knoxville, TN); Dudney, Nancy J. (Knoxville, TN); Harper, David C. (Kingston, TN)

2007-05-22T23:59:59.000Z

32

Thermal processing system concepts and considerations for RWMC buried waste  

SciTech Connect (OSTI)

This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

1992-02-01T23:59:59.000Z

33

Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets  

SciTech Connect (OSTI)

A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

Hai Huang; Ben Spencer; Jason Hales

2014-10-01T23:59:59.000Z

34

Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break  

SciTech Connect (OSTI)

This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

Sullivan, Edmund J.; Anderson, Michael T.

2013-01-01T23:59:59.000Z

35

Crack isobutane for isobutylene  

SciTech Connect (OSTI)

This paper describes the coastal isobutane cracking process which cracks isobutane under controlled conditions in the presence of steam utilizing efficient tubular furnaces and produces high propylene and isobutylene yields. The authors list the options to which this process lends itself.

Soudek, M. (Coastal States Management Corp., Houston, TX (US)); Lacatena, J.J. (Foster Wheeler USA Corp., Clinton, NJ (US))

1990-05-01T23:59:59.000Z

36

Stress corrosion crack growth in porous sandstones.   

E-Print Network [OSTI]

Stress corrosion crack growth occurs when the chemical weakening of strained crack tip bonds facilitates crack propagation. I have examined the effect of chemical processes on the growth of a creack population by carrying out triaxial compression...

Ojala, Ira O

37

Process and apparatus for thermal enhancement  

DOE Patents [OSTI]

Thermal treatment apparatus for downhole deployment comprising a combustion stage with an elongated hot wall combustion zone for the substantially complete combustion of the fuel-air mixture and an ignition zone immediately upstream from the combustion zone in which a mixture of atomized liquid fuel and air at or below stoichiometric ratio is ignited; together with a water injection stage immediately downstream from the combustion zone through which essentially partuculate free high temperature combustion products flow from the combustion zone and into which water is sprayed. The resulting mixture of steam and combustion products is injected into an oil formation for enhancing the speed and effectiveness of reservoir response due to physical, chemical, and/or thermal stimulation interactions.

Burrill, Jr., Charles E. (Billerica, MA); Smirlock, Martin E. (Brimfield, MA); Krepchin, Ira P. (Newton Upper Falls, MA)

1984-06-26T23:59:59.000Z

38

Thermal Insulation Performance in the Process Industries: Facts and Fallacies  

E-Print Network [OSTI]

on Industrial Insulation," Eurima-News, Roskilde, Denmark (October, 1979). 4. "High Temperature Thermal Insulation Usage in the U.K. Process Industries," UKAEA, Harwell, Report, 1982. 5. Tye, R.P., J. Thermal Insulation 2., 69, July, 1983. 6. Tye, R...

Tye, R. P.

39

Thermal Analysis of Novel Underfill Materials with Optimum Processing Characteristics  

E-Print Network [OSTI]

Thermal Analysis of Novel Underfill Materials with Optimum Processing Characteristics Yang Liu,1 Yi evolution. Boron nitride, silica-coated alu- minum nitride, and alumina ceramic powders were used as fillers poly- merization. The effects of the filler type and composition on the thermal and mechanical

Harmon, Julie P.

40

Solar thermal aerosol flow reaction process  

DOE Patents [OSTI]

The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

2005-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal Plasma Systems for Industrial Processes  

E-Print Network [OSTI]

furnaces, extending from below 2000 F to almost any conceivably useful processing temperature, with efficiencies much higher than can be achieved with combustion heating equipment. Numerous applications for plasma systems exist in the chemical...

Fey, M. G.; Meyer, T. N.; Reed, W. H.; Philbrook, W. O.

1982-01-01T23:59:59.000Z

42

Thermal Systems Process and Components Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

Not Available

2011-10-01T23:59:59.000Z

43

Identifying and Understanding Environment-Induced Crack propagation Behavior in Ni-based Superalloy INCONEL 617  

SciTech Connect (OSTI)

The nickel-based superalloy INCONEL 617 is a candidate material for heat exchanger applications in the next-generation nuclear plant (NGNP) system. This project will study the crack propagation process of alloy 617 at temperatures of 650°C-950°C in air under static/cyclic loading conditions. The goal is to identify the environmental and mechanical damage components and to understand in-depth the failure mechanism. Researchers will measure the fatigue crack propagation (FCP) rate (da/dn) under cyclic and hold-time fatigue conditions, and sustained crack growth rates (da/dt) at elevated temperatures. The independent FCP process will be identified and the rate-controlled sustained loading crack process will be correlated with the thermal activation equation to estimate the oxygen thermal activation energy. The FCP-dependent model indicates that if the sustained loading crack growth rate, da/dt, can be correlated with the FCP rate, da/dn, at the full time dependent stage, researchers can confirm stress-accelerated grain-boundary oxygen embrittlement (SAGBOE) as a predominate effect. Following the crack propagation tests, the research team will examine the fracture surface of materials in various cracking stages using a scanning electron microscope (SEM) and an optical microscope. In particular, the microstructure of the crack tip region will be analyzed in depth using high resolution transmission electron microscopy (TEM) and electron energy loss spectrum (EELS) mapping techniques to identify oxygen penetration along the grain boundary and to examine the diffused oxygen distribution profile around the crack tip. The cracked sample will be prepared by focused ion beam nanofabrication technology, allowing researchers to accurately fabricate the TEM samples from the crack tip while minimizing artifacts. Researchers will use these microscopic and spectroscopic results to interpret the crack propagation process, as well as distinguish and understand the environment or SAGBOE damage process under hold-time fatigue and sustained loading conditions

Longzhou Ma

2012-11-30T23:59:59.000Z

44

Technical resource document for assured thermal processing of wastes  

SciTech Connect (OSTI)

This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

1994-06-01T23:59:59.000Z

45

Process for fabricating composite material having high thermal conductivity  

DOE Patents [OSTI]

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

2001-01-01T23:59:59.000Z

46

Process management using component thermal-hydraulic function classes  

DOE Patents [OSTI]

A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

Morman, J.A.; Wei, T.Y.C.; Reifman, J.

1999-07-27T23:59:59.000Z

47

Process management using component thermal-hydraulic function classes  

DOE Patents [OSTI]

A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

Morman, James A. (Woodridge, IL); Wei, Thomas Y. C. (Downers Grove, IL); Reifman, Jaques (Western Springs, IL)

1999-01-01T23:59:59.000Z

48

Thermal acidization and recovery process for recovering viscous petroleum  

DOE Patents [OSTI]

A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

Poston, Robert S. (Winter Park, FL)

1984-01-01T23:59:59.000Z

49

Process and apparatus for cooling during regeneration of fluid cracking catalyst  

SciTech Connect (OSTI)

This patent describes an apparatus for the regeneration of coke contaminated fluid cracking catalyst. The combination comprises: A. an elongated upflow regeneration vessel, containing a dense bed of catalyst and a regeneration gas grid located within the bed; B. a vertical heat exchanger mounted to the lower side of the vessel adapted to receive hot catalyst directly from the regeneration vessel and adapted to cool the hot catalyst as it passes downwardly through the exchanger; C. a Y junction positioned below the lower end of the heat exchanger; D. a first conduit means for passing cool catalyst downwardly to the Y junction; E. second conduit means for passing cool catalyst from the Y junction upwardly into the dense bed of catalyst in the regeneration vessel, and F. regeneration gas supply means, separate from the second conduit means, for supplying regeneration gas to the gas grid; G. lift gas supply means, separate from the regeneration gas supply means, for introducing lift gas into the second conduit means so as to lift the cool catalyst up through the second conduit means to the regenerator.

Walters, P.W.; Raiche, H.A.; Harness, R.L.; Quodala, G.M.

1987-10-06T23:59:59.000Z

50

Method and apparatus for thermal processing of semiconductor substrates  

DOE Patents [OSTI]

An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

Griffiths, Stewart K. (Danville, CA); Nilson, Robert H. (Cardiss, CA); Mattson, Brad S. (Los Gatos, CA); Savas, Stephen E. (Alameda, CA)

2002-01-01T23:59:59.000Z

51

Method and apparatus for thermal processing of semiconductor substrates  

DOE Patents [OSTI]

An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

Griffiths, Stewart K. (Danville, CA); Nilson, Robert H. (Cardiss, CA); Mattson, Brad S. (Los Gatos, CA); Savas, Stephen E. (Alameda, CA)

2000-01-01T23:59:59.000Z

52

A new mineralogical approach to predict coefficient of thermal expansion of aggregate and concrete  

E-Print Network [OSTI]

the construction allows for accurate prediction of the potential thermal change on crack development and crack width and enhances the overall design process. Siliceous gravel use results in larger crack width than does the limestone and at low temperature... increment between the contacts to the flask volume, the amount of aggregate in the flask, and the thermal characteristics of the aggregate. For measurements made below the freezing point of water, a non-reactive liquid, such as toluene, which does...

Neekhra, Siddharth

2005-02-17T23:59:59.000Z

53

Process modeling for the Integrated Thermal Treatment System (ITTS) study  

SciTech Connect (OSTI)

This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

1995-09-01T23:59:59.000Z

54

Supporting technology for enhanced oil recovery - EOR thermal processes  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

NONE

1995-03-01T23:59:59.000Z

55

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

56

Thermal processing of black liquor from alkaline straw pulping  

SciTech Connect (OSTI)

Black liquor is the wastewater from the cooking of wood or straw in the production of pulp and paper. Nowadays new processes are being investigated as alternatives to the traditional recovery boiler used for black liquor treatment. One of the processes which appears to be more promising is gasification, for which further research is needed for its full industrial implementation. There is not much data about the behavior of soda black liquors from straw cooking in the literature. Therefore the thermal decomposition of one of these liquors has been studied in a thermobalance, in inert (N{sub 2}) atmosphere. The kinetic constants from isothermal experiments have been obtained.

Sanchez, J.L.; Garcia, L.; Gea, G.; Bilbao, R.; Arauzo, J. [Univ. of Zaragoza (Spain)

1996-12-31T23:59:59.000Z

57

Characterization of Fatigue Cracking and Healing of Asphalt Mixtures  

E-Print Network [OSTI]

Fatigue cracking is one of the most common distresses of asphalt pavements, whereas healing is a counter process to cracking which alleviates cracking damage and extends fatigue life of asphalt pavements. Most of existing methods to characterize...

Luo, Xue

2012-07-16T23:59:59.000Z

58

Wide-Area Thermal Processing of Light-Emitting Materials  

SciTech Connect (OSTI)

Silicon carbide based materials and devices have been successfully exploited for diverse electronic applications. However, they have not achieved the same success as Si technologies due to higher material cost and higher processing temperatures required for device development. Traditionally, SiC is not considered for optoelectronic applications because it has an indirect bandgap. However, AppliCote Associates, LLC has developed a laser-based doping process which enables light emission in SiC through the creation of embedded p-n junctions. AppliCote laser irradiation of silicon carbide allows two different interaction mechanisms: (1) Laser conversion or induced phase transformation which creates carbon rich regions that have conductive properties. These conductive regions are required for interconnection to the light emitting semiconducting region. (2) Laser doping which injects external dopant atoms into the substrate that introduces deep level transition states that emit light when electrically excited. The current collaboration with AppliCote has focused on the evaluation of ORNL's unique Pulse Thermal Processing (PTP) technique as a replacement for laser processing. Compared to laser processing, Pulse Thermal Processing can deliver similar energy intensities (20-50 kW/cm2) over a much larger area (up to 1,000 cm2) at a lower cost and much higher throughput. The main findings of our investigation; which are significant for the realization of SiC based optoelectronic devices, are as follows: (1) The PTP technique is effective in low thermal budget activation of dopants in SiC similar to the laser technique. The surface electrical conductivity of the SiC samples improved by about three orders of magnitude as a result of PTP processing which is significant for charge injection in the devices; (2) The surface composition of the SiC film can be modified by the PTP technique to create a carbon-rich surface (increased local C:Si ratio from 1:1 to 2.9:1). This is significant as higher thermal and electrical conductivities of the surface layer are critical for a successful development of integrated optoelectronic devices; and (3) PTP provides low thermal budget dopant activation with a controlled depth profile, which can be exploited for high performance device development with selective patterning of the substrate. This project has successfully demonstrated that a low thermal budget annealing technique, such as PTP, is critical to defining the path for low cost electronic devices integrated on glass or polymeric substrates. This project is complimentary to the goals of the Solid State Lighting Program within DOE. It involves new manufacturing techniques for light emitting materials that are potentially much lower cost and energy efficient than existing products. Significant opportunity exists for further exploration of AppliCote's material and device technology in combination with ORNL's PTP technique, modeling, and characterization capabilities.

Duty, C.; Quick, N. (AppliCote Associates, LLC) [AppliCote Associates, LLC

2011-09-30T23:59:59.000Z

59

Method for thermal processing alumina-enriched spinel single crystals  

DOE Patents [OSTI]

A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

Jantzen, Carol M. (Aiken, SC)

1995-01-01T23:59:59.000Z

60

Method for thermal processing alumina-enriched spinel single crystals  

DOE Patents [OSTI]

A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

Jantzen, C.M.

1995-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Analysis of Zinc 65 Contamination after Vacuum Thermal Process  

SciTech Connect (OSTI)

Radioactive contamination with a gamma energy emission consistent with {sup 65}Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor.

Korinko, Paul S.; Tosten, Michael H.

2013-01-01T23:59:59.000Z

62

Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material  

DOE Patents [OSTI]

Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

Panitz, Janda K. (Sandia Park, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Neiser, Richard A. (Albuquerque, NM); Moffatt, William C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

63

Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material  

DOE Patents [OSTI]

Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

1999-07-20T23:59:59.000Z

64

Combustion in cracks of PBX 9501  

SciTech Connect (OSTI)

Recent experiments involving the combustion of PBX 9501 explosive under confined conditions reveal the importance of crack and flaws in reaction violence. Experiments on room temperature confined disks of pristine and thermally damaged PBX 9501 reveal that crack ignition depends on hot gases entering existing or pressure induced cracks rather than on energy release at the crack tip. PBX 9501 slot combustion experiments show that the reaction propagation rate in the slot does not depend on the external pressure. We have observed 1500 d s in long slots of highly-confined PBX 9501. We present experiments that examine the combustion of mechanically and thermally damaged samples of PBX 9501.

Berghout, H. L. (Henry L.); Son, S. F. (Steven F.); Bolme, C. A. (Cynthia A.); Hill, L. G. (Larry G.); Asay, B. W. (Blaine W.); Dickson, P. M. (Peter M.); Henson, B. F. (Bryan F.); Smilowitz, L. B. (Laura B.)

2002-01-01T23:59:59.000Z

65

Carbon Nanostructures As Thermal Interface Materials: Processing And Properties.  

E-Print Network [OSTI]

??The power density of electronic packages has substantially increased. The thermal interface resistance involves more than 50% of the total thermal resistance in current high-power… (more)

Memon, Muhammad Omar

2011-01-01T23:59:59.000Z

66

Advanced thermal processing alternatives for solid waste management  

SciTech Connect (OSTI)

The 1990`s have seen a resurgence of interest in the development of new thermal processing alternatives for municipal solid waste (MSW). Sparked by increasingly stringent environmental regulations, much of this creative energy has been applied to technologies for the gasification of MSW: converting the solid, hard to handle material into a clean, medium to high-Btu fuel gas. Other developers have focussed on full combustion technology but with a {open_quotes}twist{close_quotes} that lowers emissions or reduces cost. A comprehensive study of these new technologies was recently completed under the sponsorship of the National Renewable Energy Laboratory of the U.S. Department of Energy. The study characterized the state-of-the-art among emerging MSW thermal processing technologies that have reached the point of `incipient commercialization.` More than 45 technologies now under development were screened to develop a short list of seven processes that have passed through the idea stage, laboratory and benchscale testing, and have been prototyped at an MSW feed rate of at least several tons per hour. In-depth review of these seven included inspections of operating pilot or prototype units and a detailed analysis of technical, environmental and economic feasibility issues. No attempt was made to select `the best` technology since best can only be defined in the context of the constraints, aspirations and circumstances of a specific, local situation. The basic flowsheet, heat and material balances and available environmental data were summarized to help the reader grasp the underlying technical concepts and their embodiment in hardware. Remaining development needs, as seen by the study team are presented. Economic analysis shows the general balance of capital and operating costs.

Niessen, W.R. [Camp Dresser & McKee Inc., Cambridge, MA (United States)

1997-12-01T23:59:59.000Z

67

Thermal casting process for the preparation of membranes  

DOE Patents [OSTI]

Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

Caneba, G.T.M.; Soong, D.S.

1985-07-10T23:59:59.000Z

68

The analysis of cracks in high-pressure piping and their effects on strength and lifetime of construction components at the Ignalina nuclear plant  

SciTech Connect (OSTI)

A number of cracks and damages of other sorts have been identified in the high-pressure parts at the Ignalina Nuclear Plant. They are caused by inadequate production- and repair technologies, as well as by thermal, chemical and mechanical processes of their performance. Several techniques are available as predictions of cracks and other defects of pressurized vessels. The choice of an experimental technique should be based on the level of its agreement with the actual processes.

Aleev, A.; Petkevicius, K.; Senkus, V. [and others

1997-04-01T23:59:59.000Z

69

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network [OSTI]

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

Kjelstrup, Signe

70

Early stages in the development of stress corrosion cracks  

SciTech Connect (OSTI)

Processes in growth of short cracks and stage I of long stress corrosion cracks were identified and evaluated. There is evidence that electrochemical effects can cause short stress corrosion cracks to grow at rates faster or slower than long cracks. Short cracks can grow at faster rates than long cracks for a salt film dissolution growth mechanism or from reduced oxygen inhibition of hydrolytic acidification. An increasing crack growth rate with increasing crack length could result from a process of increasing crack tip concentration of a critical anion, such as Cl{sup {minus}}, with increasing crack length in a system where the crack velocity is dependent on the Cl{sup {minus}} or some other anion concentration. An increasing potential drop between crack tip and mouth would result in an increased anion concentration at the crack tip and hence an increasing crack velocity. Stage I behavior of long cracks is another early development stage in the life of a stress corrosion crack which is poorly understood. This stage can be described by da/dt = AK{sup m} where da/dt is crack velocity, A is a constant, K is stress intensity and m ranges from 2 to 24 for a variety of materials and environments. Only the salt film dissolution model was found to quantitatively describe this stage; however, the model was only tested on one material and its general applicability is unknown.

Jones, R.H.; Simonen, E.P.

1993-12-01T23:59:59.000Z

71

Solar-thermal fluid-wall reaction processing  

DOE Patents [OSTI]

The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

2006-04-25T23:59:59.000Z

72

Solar-Thermal Fluid-Wall Reaction Processing  

DOE Patents [OSTI]

The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

2006-04-25T23:59:59.000Z

73

Supporting technology for enhanced oil recovery for thermal processes  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

Reid, T.B.; Bolivar, J.

1997-12-01T23:59:59.000Z

74

The effects of controlled thermal cycling on dislocation creation during semiconductor device processing  

E-Print Network [OSTI]

commonly resulting from conventional high temperature process- ing techniques and it is shown that thermally induced dislocations can be virtually eliminated through controlled thermal cycling. The diffus' on of impurities into silicon under such thermal... the wafer at any time during the heat-cycle. Indeed, one might speculate at this point on the effect of gradually increas ng the concentration of impurities at the sur- face of a wafer during diffusion. Controlled thermal cycling, hereinafter referred...

Spaw, William James

2012-06-07T23:59:59.000Z

75

Technical Letter Report - Analysis of Ultrasonic Data on Piping Cracks at Ignalina Nuclear Power Plant Before and After Applying a Mechanical Stress Improvement Process, JCN-N6319, Task 2  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in piping systems previously analyzed for leak-before-break (LBB). Part of this work involves determining whether inspections alone are sufficient or if inspections plus mitigation techniques are needed. The work described in this report addresses the reliability of ultrasonic phased-array (PA) examinations for inspection of cracks that have been subjected to the mitigation method of mechanical stress improvement process (MSIP). It is believed that stresses imparted during MSIP may make ultrasonic crack responses in piping welds more difficult to detect and accurately characterize. To explore this issue, data were acquired, both before and after applying MSIP, and analyzed from cracked areas in piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. This work was performed under NRC Project JCN-N6319, PWSCC in Leak-Before-Break Systems.

Anderson, Michael T.; Cumblidge, Stephen E.; Crawford, Susan L.

2008-02-26T23:59:59.000Z

76

Strain compensation in boron-indium coimplanted laser thermal processed silicon  

E-Print Network [OSTI]

Strain compensation in boron-indium coimplanted laser thermal processed silicon Mark H. Clarka Strain in B-implanted laser thermal processed LTP silicon is reduced by coimplantation of In. Strain in the codoped layer is calculated using lattice constants measured by high-resolution x-ray diffraction

Florida, University of

77

Representation of thermal energy in the design process  

E-Print Network [OSTI]

The goal of thermal design is to go beyond the comfort zone. In spatial design architects don't just look up square footage requirements and then draw a rectangle that satisfies the givens. There must be an interpretation. ...

Roth, Shaun

1995-01-01T23:59:59.000Z

78

Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository  

SciTech Connect (OSTI)

After closure of an underground nuclear waste repository, the decay of radionuclides will raise temperature in the repository, and the bentonite buffer will resaturate by water inflow from the surrounding host rock. The perturbations from these thermal and hydrological processes are expected to dissipate within hundreds to a few thousand years. Here, we investigate coupled thermal-hydro-chemical processes and their effects on the short-term performance of a potential nuclear waste repository located in a clay formation. Using a simplified geometric configuration and abstracted hydraulic parameters of the clayey formation, we examine geochemical processes, coupled with thermo-hydrologic phenomena, and potential changes in porosity near the waste container during the early thermal period. The developed models were used for evaluating the mineral alterations and potential changes in porosity of the buffer, which can affect the repository performance. The results indicate that mineral alteration and associated changes in porosity induced by early thermal and hydrological processes are relatively small and are expected to not significantly affect flow and transport properties. Chlorite precipitation was obtained in all simulation cases. A maximum of one percent volume fraction of chlorite could be formed, whose process may reduce swelling and sorption capacity of bentonite clay, affecting the performance of the repository. llitisation process was not obtained from the present simulations.

Xu, T.; Senger, R.; Finsterle, S.

2011-02-01T23:59:59.000Z

79

Study on grain boundary character and strain distribution of intergranular cracking in the CGHAZ of T23 steel  

SciTech Connect (OSTI)

Intergranular reheat cracking in the coarse-grained heat-affected zone of T23 steel was produced by strain to fracture tests on a Gleeble 3500 thermal–mechanical simulator. Then the grain boundary character, as well as the strain distribution after reheat crack propagation, was studied by electron backscatter diffraction technique. The results showed that incoherent ?3 boundaries were seldom found on the prior austenite grain boundaries. Therefore, only the type of random high-angle boundaries played a crucial role in the intergranular cracking. Microstructurally cavities and small cracks were preferentially initiated from high-angle grain boundaries. Low-angle grain boundaries and high-angle ones with misorientation angles less than 15° were more resistant to the cracking. More importantly, the fraction of high-angle grain boundaries increased with the plastic strain induced by both temperature gradient and stress in the coarse-grained heat-affected zone, which contributed to the crack initiation and propagation. Furthermore, the strain distributions in the vicinity of cavities and cracks revealed the accommodation processes of plastic deformation during stress relaxation. It also reflected the strength differences between grain interior and grain boundary at different heat-treated temperatures, which had a large influence on the cracking mechanism. - Highlights: • The coincidence site lattice boundaries play little role in the reheat cracking. • Cavity and crack occur at high-angle grain boundaries rather than low-angle ones. • The strain leads low-angle grain boundaries to transform to high-angle ones. • Strain distribution differs for cavity and crack zones at different temperatures.

Jin, Y.J.; Lu, H., E-mail: shweld@sjtu.edu.cn; Yu, C.; Xu, J.J.

2013-10-15T23:59:59.000Z

80

DETERMINATION OF THE UAV POSITION BY AUTOMATIC PROCESSING OF THERMAL IMAGES  

E-Print Network [OSTI]

DETERMINATION OF THE UAV POSITION BY AUTOMATIC PROCESSING OF THERMAL IMAGES Wilfried Hartmann.hartmann, sebastian.tilch, henri.eisenbeiss, konrad.schindler)@geod.baug.ethz.ch KEY WORDS: Thermal, UAV, Camera, Calibration, Bundle, Photogrammetry, GPS/INS ABSTRACT: If images acquired from Unmanned Aerial Vehicles (UAVs

Schindler, Konrad

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THERMAL PROPERTIES AND PROCESSES D Hillel, Columbia University, New York, NY, USA  

E-Print Network [OSTI]

- lengths, is proportional to the fourth power of the absolute temperature Tof the body's surface. This lawTHERMAL PROPERTIES AND PROCESSES D Hillel, Columbia University, New York, NY, USA Ã? 2005, Elsevier, and microbial activity. Soil temperature varies in response to changes in the radiant, thermal, and latent

82

Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications  

E-Print Network [OSTI]

1 Comparison of closed and open thermochemical processes, for long-term thermal energy storage-term thermal storage, second law analysis * Corresponding author: E-mail: mazet@univ-perp.fr Nomenclature c Energy Tecnosud, Rambla de la thermodynamique, 66100 Perpignan, France b Université de Perpignan Via

Paris-Sud XI, Université de

83

Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock  

E-Print Network [OSTI]

1 Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock-0210 Phone: (937) 229-2852 Fax: (937) 229-4766 Email: Kelly.Kissock@notes.udayton.edu ABSTRACT Open tanks

Kissock, Kelly

84

Process of making cryogenically cooled high thermal performance crystal optics  

DOE Patents [OSTI]

A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

Kuzay, T.M.

1992-06-23T23:59:59.000Z

85

Process of making cryogenically cooled high thermal performance crystal optics  

DOE Patents [OSTI]

A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N.sub.2 is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

Kuzay, Tuncer M. (Naperville, IL)

1992-01-01T23:59:59.000Z

86

Automated Process for the Fabrication of Highly Customized Thermally...  

Energy Savers [EERE]

2 of 2 A project member completes cuts foam insulating via a process known as computer numerically controlled (CNC) foam cutting. Image: Worcester Polytechnic Institute...

87

Automated Process for the Fabrication of Highly Customized Thermally...  

Broader source: Energy.gov (indexed) [DOE]

Polytechnic Institute 2 of 2 A project member completes cuts foam insulating via a process known as computer numerically controlled (CNC) foam cutting. Image: Worcester...

88

Cascading of fluid cracking catalysts  

SciTech Connect (OSTI)

A process is described for conversion of hydrocarbon feedstocks by cascading a cracking catalyst containing zeolite in an acidic matrix from one hydrocarbon processing unit to another, wherein there are at least three different interconnected hydrocarbon processing units comprising a first unit having a regeneration zone and a riser zone, a second unit having having a regeneration zone and a riser zone, and a third unit having a riser zone and a regeneration zone, each unit having different processing conditions.

Kovach, S.M.; Miller, C.B.

1986-05-27T23:59:59.000Z

89

Processing and thermal properties of molecularly oriented polymers  

E-Print Network [OSTI]

High molecular weight polymers that are linear in molecular construction can be oriented such that some of their physical properties in the oriented direction are enhanced. For over 50 years polymer orientation and processing ...

Skow, Erik (Erik Dean)

2007-01-01T23:59:59.000Z

90

Control of thermal processes in a fluidized bed combustor (FBC)  

SciTech Connect (OSTI)

Heat and mass balance equations for the transient process of a fluidized bed furnace are described. The equations involve heat release from char and volatiles combustion, heat consumption during moisture evaporation, and heating of char and circulating particles. Calculations and experimental data for steady-state and unsteady conditions are compared. The results show that the height of the dense bed, the excess-air ratio and kinetic features of the fuel affect the rate of the transient process. The time constant for a disturbance by a change of the air flow rate was found to be smaller than the one for a change of the fuel input.

Munts, V.A.; Filippovskij, N.F.; Baskakov, A.P.; Pavliok, E.J. [Ural State Technical Univ., Ekaterinburg (Russian Federation). Heat Power Dept.; Leckner, B. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Energy Conversion

1997-12-31T23:59:59.000Z

91

Crack coalescence in granite  

E-Print Network [OSTI]

This thesis experimentally investigates crack coalescence in prismatic Barre Granite specimens with two pre-cut, open flaws under uniaxial compression. Using a high-speed video system, crack initiation, propagation, and ...

Miller, James Thomas, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

92

Nonlinear structural crack growth monitoring  

DOE Patents [OSTI]

A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

Welch, Donald E. (Oak Ridge, TN); Hively, Lee M. (Philadelphia, TN); Holdaway, Ray F. (Clinton, TN)

2002-01-01T23:59:59.000Z

93

Thermally and optically stimulated processes in X-irradiated scheelite type crystals  

E-Print Network [OSTI]

Thermally and optically stimulated processes in X-irradiated scheelite type crystals M. Bohm, R at http://dx.doi.org/10.1051/jphyscol:19806132 #12;THbKMALLY AND OPTICALLY STIMULATED PROCESSES IN X-IRRADIATED and extrinsic) hole and electron centres are created by X-irradiation at liquid nitrogen temperature. Several

Paris-Sud XI, Université de

94

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules  

E-Print Network [OSTI]

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves are accounted for in their ef fects on the mass, momentum and energy fluxes. Also, besides thermal exchange

Connolly Jr, Harold C.

95

Rapid thermal processing of steel using high energy electron beams  

SciTech Connect (OSTI)

High energy electron beams (HEEBs) with megavolt energies represent a new generation of charged particle beams that rapidly deposit up to several hundred joules/pulse over areas on the order of a few square millimeters to 100s of square centimeters. These pulsed beams have energies in the 1 to 10 MeV range, which enables the electrons to deposit large amounts of energy deeply into the material being processed, and these beams have short pulse durations (50 ns) that can heat materials at rates as high as 10{sup 10} {degrees}C/s for a 1000 {degree}C temperature rise in the material. Lower heating rates, on the order of 10{sup 4} {degrees}C/s, can be produced by reducing the energy per pulse and distributing the total required energy over a series of sub-ms pulses, at pulse repetition frequencies (PRFs) up to several kHz. This paper presents results from materials processing experiments performed on steel with a 6 MeV electron beam, analyzes these results using a Monte Carlo transport code, and presents a first-order predictive method for estimating the peak energy deposition, temperature, and heating rate for HEEB processed steel.

Elmer, J.W.; Newton, A.; Smith, C. Jr.

1993-11-10T23:59:59.000Z

96

Materials Selection Considerations for Thermal Process Equipment: A  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small ModularDepartmentSummaryBestPractices Process

97

Composite material having high thermal conductivity and process for fabricating same  

DOE Patents [OSTI]

A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

1998-07-21T23:59:59.000Z

98

Composite material having high thermal conductivity and process for fabricating same  

DOE Patents [OSTI]

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

1998-01-01T23:59:59.000Z

99

Application of the cracked pipe element to creep crack growth prediction  

SciTech Connect (OSTI)

The modification of a computer code for leak before break analysis is very briefly described. The CASTEM2000 code was developed for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading. The modification extends the capabilities of the cracked pipe element to the determination of fracture parameters under creep conditions (C*, {phi}c and {Delta}c). The model has the advantage of evaluating significant secondary effects, such as those from thermal loading.

Brochard, J.; Charras, T.

1997-04-01T23:59:59.000Z

100

Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal  

DOE Patents [OSTI]

The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

Sheldon, Ray W. (Huntley, MT)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect (OSTI)

A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

J. E. O'Brien

2008-11-01T23:59:59.000Z

102

Gas-chromatographic identification of volatile products from thermal processing of Bitumen  

SciTech Connect (OSTI)

The variety of bitumen industrial brands is evident in the significant variation of composition and ratio of volatile thermal processing products, which makes their detailed characterization difficult. For that reason, in the authors` opinion a simple and easily reproducible method for gas chromatographic analysis and identification of these substances should be of greater interest than gathering more such results. In this report the authors discuss the selection of an optimal combination of group and individual gas chromatographic methods for identification of volatile thermal processing products in the presence of air, using the example of AP bitumen, the main brand used in Czechoslavakia for production of asphalt. 15 refs., 1 tab.

Zenkevich, I.G.; Ventura, K. [Advanced Chemical Engineering Institute, Pardubice (Czechoslovakia)

1992-03-10T23:59:59.000Z

103

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network [OSTI]

1 Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process. Larribau 64018 Pau Cedex, France Oil and Gas Science and Technology 2012, 67 (6), 1029-1039, doi:10 pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated

Paris-Sud XI, Université de

104

Application of the cracked pipe element to creep crack growth prediction  

SciTech Connect (OSTI)

Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.

Brochard, J.; Charras, T. [C.E.A.-C.E.-Saclay DRN/DMT, Gif Sur Yvette (France); Ghoudi, M. [C.E.A.-C.E.-Saclay, Gif Sur Yvette (France)

1997-04-01T23:59:59.000Z

105

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

SciTech Connect (OSTI)

This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

2009-03-15T23:59:59.000Z

106

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network [OSTI]

In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

2013-01-01T23:59:59.000Z

107

Determination of crack morphology parameters from service failures for leak-rate analyses  

SciTech Connect (OSTI)

In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

Wilkowski, G.; Ghadiali, N.; Paul, D. [Battelle Memorial Institute, Columbus, OH (United States)] [and others

1997-04-01T23:59:59.000Z

108

Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes  

SciTech Connect (OSTI)

Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

2012-12-03T23:59:59.000Z

109

Elevated temperature crack propagation  

SciTech Connect (OSTI)

This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

Orange, T.W.

1994-02-01T23:59:59.000Z

110

Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

Reid, T B [USDOE Bartlesville Project Office, OK (United States)] [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)] [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

1993-02-01T23:59:59.000Z

111

Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants  

SciTech Connect (OSTI)

Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads.

Goldberg, A.; Streit, R.D.

1981-05-01T23:59:59.000Z

112

Stress corrosion cracking behavior of Alloy 600 in high temperature water  

SciTech Connect (OSTI)

SCC susceptibility of Alloy 600 in deaerated water at 360 C (statically loaded U-bend specimens) is dependent on microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures (optical metallography). In CWA tubing materials, one crack dominated and grew to a visible size. HWA materials with a low hot-working finishing temperature (<925 C) and final anneals at 1010-1065 C developed both large cracks (similar to those in CWA materials) and small intergranular microcracks detectable only by destructive metallography. HWA materials with a high hot-working finishing temperature (>980 C) and a high-temperature final anneal (>1040 C), with grain boundaries that are fully decorated, developed only microcracks in all specimens. These materials did not develop large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 C for 7h), which reduces or eliminates SCC in Alloy 600, did not eliminate microcrack formation in high temperature processed HWA materials. Conventional metallographic and analytical electron microscopy (AEM) were done on selected materials to identify the factors responsible for the observed differences in cracking behavior. Major difference between high-temperature HWA and low-temperature HWA and CWA materials was that the high temperature processing and final annealing produced predominantly ``semi-continuous`` dendritic M{sub 7}C{sub 3} carbides along grain boundaries with a minimal amount of intragranular carbides. Lower temperature processing produced intragranular M7C3 carbides, with less intergranular carbides.

Webb, G.L.; Burke, M.G.

1995-07-01T23:59:59.000Z

113

Stress Corrosion Cracking and Delayed Increase in Penetration Resistance after Dynamic Compaction of Sand  

E-Print Network [OSTI]

Stress Corrosion Cracking and Delayed Increase in Penetration Resistance after Dynamic Compaction on the process of stress corrosion cracking of the micro-morphological features on the surface of the sand grains

Michalowski, Radoslaw L.

114

Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites  

E-Print Network [OSTI]

Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber t Thermally-exfoliated graphite oxide (TEGO) is a graphene-based material that has been previously shown to graphene-based materials [4]. GO can be exfoliated in water into single-layer graphene oxide platelets

115

PHYSICAL REVIEW E 84, 036104 (2011) Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium  

E-Print Network [OSTI]

PHYSICAL REVIEW E 84, 036104 (2011) Average crack-front velocity during subcritical fracture]. In consequence the slow kinetic crack propagation is usually referred to as subcritical crack growth or the subcritical regime. Statistical physics models suggest that this subcritical regime is governed by a thermally

Schmittbuhl, Jean

116

Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process  

SciTech Connect (OSTI)

A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

2011-02-01T23:59:59.000Z

117

Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed  

E-Print Network [OSTI]

-level mix- ing, exhibits CNTs homogeneously dispersed in the Cu matrix. Measured thermal conductivity: Metal matrix composites; Nanocomposite; Carbon and graphite; Thermal conductivity Carbon nanotubes (CNTs management applications, due to their extraordinarily low coefficient of thermal expan- sion (CTE) [1

Hong, Soon Hyung

118

Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research  

SciTech Connect (OSTI)

Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. This paper presents an overview of ongoing Heavy-Section Steel Technology (HSST) Program research aimed at refining the fracture toughness data used in the analysis of fracture margins under pressurized-thermal-shock loading conditions. 33 refs., 13 figs.

Pennell, W.E.

1991-01-01T23:59:59.000Z

119

Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking  

SciTech Connect (OSTI)

Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting process has been the mainstay of the aluminum industry for the production of ingots due largely to its robust nature and relative simplicity. Though the basic process of DC casting is in principle straightforward, the interaction of process parameters with heat extraction, microstructural evolution, and development of solidification stresses is too complex to analyze by intuition or practical experience. One issue in DC casting is the formation of stress cracks [1-15]. In particular, the move toward larger ingot cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies have increased industry efficiencies but have made it more difficult to predict the occurrence of stress crack defects. The Aluminum Industry Technology Roadmap [16] has recognized the challenges inherent in the DC casting process and the control of stress cracks and selected the development of 'fundamental information on solidification of alloys to predict microstructure, surface properties, and stresses and strains' as a high-priority research need, and the 'lack of understanding of mechanisms of cracking as a function of alloy' and 'insufficient understanding of the aluminum solidification process', which is 'difficult to model', as technology barriers in aluminum casting processes. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack incidence is important for improving product quality and consistency as well as for saving resources and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, by reducing the scalping thickness of the ingot before rolling, and by eliminating butt sawing. Full-scale industrial implementation of the results of the proposed research would lead to energy savings in excess of 6 trillion Btu by the year 2020. The research undertaken in this project aimed to achieve this objective by a collaboration of industry, university, and national laboratory personnel through Secat, Inc., a consortium of aluminum companies. During the four-year project, the industrial partners and the research team met in 16 quarterly meetings to discuss research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot production. The project focused on the development of a fundamental understanding of ingot cracking and detailed models of thermal conditions, solidification, microstructural evolution, and stress development during the initial transient in DC castings of the aluminum alloys 3004 and 5182. The microstructure of the DC casting ingots was systematically characterized. Carefully designed experiments were carried out at the national laboratory and university facilities as well as at the industrial locations using the industrial production facilities. The advanced computational capabilities of the national laboratories were used for thermodynamic and kinetic simulations of phase transformation, heat transfer and fluid flow, solidification, and stress-strain evolution during DC casting. The achievements of the project are the following: (1) Identified the nature of crack formation during DC casting; (2) Developed a novel method for determining the mechanical properties of an alloy at the nonequilibrium mushy zone of the alloy; (3) Measured heat transfer coefficients (HTCs) between the solidifying ingot and the cooling water jet; (4) Determined the material constitutive model at high temperatures; and (5) Developed computational capabilities for the simulation of cracking formation in DC casting ingot. The models and the database de

Das, S.K.; Ningileri, S.; Long, Z.; Saito, K.; Khraisheh, M.; Hassan, M.H.; Kuwana, K.; Han, Q.; Viswanathan, S.; Sabau, A.S.; Clark, J.; Hyrn, J. (ANL)

2006-08-15T23:59:59.000Z

120

Crack propagation in Hastelloy X  

SciTech Connect (OSTI)

The fatigue and creep crack growth rates of Hastelloy X were examined both in air and impure helium. Creep crack growth rate is higher in air and impure helium at 650/sup 0/C. Initial creep crack growth from the original sharp fatigue crack is by an intergranular mode of fracture. As the cracking accelerates at higher stress intensities, growth is by a mixed mode of both intergranular and transgranular fracture. Fatigue crack growth rate increases with increasing temperature and decreasing frequency for the range of stress intensities reported in the literature and is lower in impure helium than in air.

Weerasooriya, T.; Strizak, J.P.

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transition from cool flame to thermal flame in compression ignition process  

SciTech Connect (OSTI)

The mechanism that initiates thermal flames in compression ignition has been studied. Experimentally, a homogeneous charge compression ignition (HCCI) engine was used with DME, n-heptane, and n-decane. Arrhenius plots of the heat release rate in the HCCI experiments showed that rates of heat release with DME, n-heptane, and n-decane exhibited a certain activation energy that is identical to that of the H{sub 2}O{sub 2} decomposition reaction. The same feature was observed in diesel engine operation using ordinary diesel fuel with advanced ignition timing to make ignition occur after the end of fuel injection. These experimental results were reproduced in nondimensional simulations using kinetic mechanisms for DME, n-heptane, and n-decane, the last being developed by extending the n-heptane mechanism. Methanol addition, which suppresses low-temperature oxidation (LTO) and delays the ignition timing, had no effect on the activation energy obtained from the Arrhenius plot of heat release rate. Nevertheless, methanol addition lowered the heat release rates during the prethermal flame process. This is because H{sub 2}O{sub 2} formation during cool flame was reduced by adding methanol. The mechanism during the transition process from cool flame to thermal flame can be explained quantitatively using thermal explosion theory, in which the rate-determining reaction is H{sub 2}O{sub 2} decomposition, assuming that heat release in this period is caused by partial oxidation of DME and HCHO initiated with the reaction with OH produced though H{sub 2}O{sub 2} decomposition. (author)

Yamada, Hiroyuki; Suzaki, Kotaro; Goto, Yuichi [National Traffic Safety and Environment Laboratory, 7-42-27 Jindaiji-Higashimachi, Chofu, Tokyo 182-0012 (Japan); Tezaki, Atsumu [Department of Mechanical and Intellectual Systems Engineering, University of Toyama, Gofuku 3190, Toyama-shi, Toyama 930-8555 (Japan)

2008-07-15T23:59:59.000Z

122

Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste  

SciTech Connect (OSTI)

This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

1996-08-01T23:59:59.000Z

123

Reflective Cracking Study: Summary Report  

E-Print Network [OSTI]

Cracking Study: First-level Report on Laboratory ShearStudy: Second-Level Analysis Report. Davis and Berkeley, CA:Cracking Study: First-level Report on HVS Testing on Section

Jones, David; Harvey, John T; Monismith, Carl L.

2008-01-01T23:59:59.000Z

124

Fracture process zone : microstructure and nanomechanics in quasi-brittle materials  

E-Print Network [OSTI]

Cracks begin (and end) at a crack tip; the "Fracture Process Zone" (FPZ) is a region of damage around the crack tip. The context of this research is the FPZ in quasi-brittle materials, which is characterized by cracking ...

Brooks, Zenzile (Zenzile Z.)

2013-01-01T23:59:59.000Z

125

Rheological and thermal study of the curing process of a cycloaliphatic epoxy resin: application to the optimization of the  

E-Print Network [OSTI]

1 Rheological and thermal study of the curing process of a cycloaliphatic epoxy resin: application-4-67-14-37-80; Fax: 33-4-67-14-40-28 ABSTRACT The curing process of a cycloaliphatic epoxy resin was defined using of structure-properties relationships. Keywords: curing kinetics, epoxy resin, dynamic mechanical properties

Paris-Sud XI, Université de

126

Hydrocarbon cracking catalyst  

SciTech Connect (OSTI)

This patent describes a catalyst composition for cracking hydrocarbons to maximize gasoline comprising: rare earth exchanged ''Y'' crystalline faujasite dispersed in a clay containing matrix material; and which has been subsequently further ion exchanged to contain 0.20 to 3.0 wt% yttrium, calculated as the oxide, whereby the yttrium is chemically combined in the catalyst composition.

Lochow, C.F.; Kovacs, D.B.

1988-12-27T23:59:59.000Z

127

Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature  

SciTech Connect (OSTI)

Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125–1000?Torr and fixed plasma input DC power of 6?kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Das, A. K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

2014-10-28T23:59:59.000Z

128

Development of the fluidized bed thermal treatment process for treating mixed waste  

SciTech Connect (OSTI)

A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970`s and 1980`s in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed systems. The system operates at low temperatures ({approx} 525--600{degree}C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The process has shown the ability to destroy polychlorinated biphenyls (PCB`s) with 99.9999% (``six-nines``) destruction efficiency in tests monitored by the Environmental Protection Agency (EPA). The bed makes use of in situ neutralization of acidic off-gases by incorporating sodium carbonate (Na{sub 2}CO{sub 3}) in the bed media. This eliminates using wet scrubbers to treat the off-gas; these produce a high volume of secondary waste. Once in operation, it is expected that the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste.

Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

1993-05-01T23:59:59.000Z

129

Deployment of an innovative thermally enhanced soil mixing process augmented with zero-valent iron.  

SciTech Connect (OSTI)

An innovative in-situ soil treatment process, referred to as soil mixing/thermally enhanced soil vapor extraction (SM/TESVE), was used to remediate the 317 Area of Argonne National Laboratory-East (i.e., Argonne), which is contaminated with volatile organic compounds (VOCs). Following the initial soil treatment, polishing was required to reduce residual concentrations of contaminants. A study of polishing methods was conducted. It determined that injecting metallic iron particles into the soil, in conjunction with soil mixing, would reduce residual VOC concentrations more effectively than the original conventional soil ventilation approach. After the effectiveness of iron injection was verified, it replaced the soil ventilation step. The modified process involved mixing the soil while hot air and steam were injected into it. Off-gases were captured in a hood over the treatment area. During this process, an iron slurry, consisting of up to 50% iron particles in water with guar gum added as a thickening agent, was injected and mixed into the soil by the mixing equipment. Approximately 6,246 m{sup 3} (8, 170 yd{sup 3}) of soil was treated during this project. Confirmatory samples were then collected. In these samples, VOC concentrations were usually reduced by more than 80%.

Lynch, P. L.

1999-01-15T23:59:59.000Z

130

Solar thermal hydrogen production process: Final report, January 1978-December 1982  

SciTech Connect (OSTI)

Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

Not Available

1982-12-01T23:59:59.000Z

131

Modeling of crack initiation, propagation and coalescence in rocks  

E-Print Network [OSTI]

Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

Gonçalves da Silva, Bruno Miguel

2009-01-01T23:59:59.000Z

132

Fundamental heat transfer processes related to phase change thermal storage media  

SciTech Connect (OSTI)

Research on fundamental heat transfer processes which occur in phase-change thermal storage systems is described. The research encompasses both melting and freezing, and includes both experiment and analysis. The status of four research problems is discussed. One of the freezing problems was focused on investigating, via experiment, the extent to which freezing can be enhanced by the attachment of fins to the external surface of a cooled vertical tube situated in a liquid phase-change medium. Very substantial enhancements were encountered which neutralize the degradation of freezing due to the thermal resistance of the frozen layer and to natural convection in the liquid phase. The second of the freezing problems was analytical in nature and sought to obtain solutions involving both the phase-change medium and the heat transfer fluid used either to add heat to or extract heat from the medium. For freezing on a plane wall, it was possible to obtain a closed-form analytical solution, while for freezing about a coolant-carrying circular tube, a new numerical methodology was devised to obtain finite-difference solutions. For melting, quantitative design-quality heat transfer coefficients were determined experimentally for melting adjacent to a heated vertical tube. These experiments explored the effects of solid-phase subcooling and of open versus closed top containment on the coefficients. A dimensionless correlation enables these results to be used for a wide range of phase-change media. Studies on melting of a phase-change material situated within a circular tube are in progress.

Sparrow, E. M.; Ramsey, J. W.

1981-01-01T23:59:59.000Z

133

Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report  

SciTech Connect (OSTI)

Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objects recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.

Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.; Virden, Daniel J.; Myers, Joshua R.; Maxwell, Adam R.

2012-09-01T23:59:59.000Z

134

High-Resolution Characterizations of Stress-Corrosion Cracks in Austenitic Stainless Steel from Crack Growth Tests in BWR-Simulated Environments  

SciTech Connect (OSTI)

Mechanisms controlling environmental degradation and cracking in light-water-reactor (LWR) systems have been investigated by analytical transmission electron microscopy (ATEM) of cracks and crack tips. The current work focuses on intergranular stress corrosion cracking (IGSCC) of 300-series, austenitic stainless steels in high-temperature LWR environments. Comparisons are made between cold-worked 304SS containing stress-corrosion cracks produced in a simulated boiling-water-reactor (BWR) environment during crack-growth tests, and a 304SS core component with cracks produced during 26-year BWR service. Similar corrosion products consisting of duplex-layered spinel oxides were found along the walls of open cracks in the service and laboratory test samples. These oxide films consisted of oriented Cr-rich spinel up to ~30 nm thick along the metal crack walls and large-grained Fe-rich spinel at the crack centers. Cracks in the service sample were generally more filled with oxide, perhaps reflecting the much longer times available for corrosion to occur after the crack passage. Crack tips in the BWR top-guide sample exhibited unique and unexpected structures with oxide-filled cracks <10 nm wide ending in finger-like attack and locally “dealloyed” zones of Fe/Cr-depleted, Ni-rich metal. Alloy compositions measured at numerous crack tips were 40 wt% Fe, 4 wt% Cr and 55 wt% Ni immediately ahead of the degradation front versus approximately 70 wt% Fe, 19 wt% Cr and 9 wt% Ni in the bulk 304SS. Laboratory samples with cracks grown over much shorted times (~1.5 months) did not show the distinctive crack tip structures or strong Ni enrichment in the metal ahead of the crack tips as for the service sample. This suggests that although selective oxidation processes occur during degradation, significant composition differences may only develop after crack propagation has slowed or stopped. Additional nanometer-scale measurements elucidating corrosion processes occurring during crack advance are presented to provide insights into mechanisms controlling IGSCC.

Bruemmer, Stephen M.; Thomas, Larry E.

2005-07-20T23:59:59.000Z

135

Causes and solutions for cracking of coextruded and weld overlay floor tubes in black liquor recovery boilers  

SciTech Connect (OSTI)

Cracking of coextruded, black liquor recovery boiler floor tubes is both a safety and an economic issue to mill operators. In an effort to determine the cause of the cracking and to identify a solution, extensive studies, described in this and three accompanying papers, are being conducted. In this paper, results of studies to characterize both the cracking and the chemical and thermal environment are reported. Based on the results described in this series of papers, a possible mechanism is presented and means to lessen the likelihood of cracking or to totally avoid cracking of floor tubes are offered.

Keiser, J.R.; Taljat, B.; Wang, X.L. [and others

1998-09-01T23:59:59.000Z

136

Crack-resistant siloxane molding compounds. [Patent application  

DOE Patents [OSTI]

The crack resistance of phenyl silicone molding resins containing siliceous fillers is improved by incorporating therein about 0.5 to 5.5% by weight of ..beta..-eucryptite, a lithium aluminum silicate having a negative thermal expansion coefficient. These molding resins are particularly suitable for encapsulating electronic devices such as diodes, coils, resistors, and the like.

McFarland, J.W.; Swearngin, C.B.

1980-11-03T23:59:59.000Z

137

Modeling of interaction between corrosion-induced concrete cover crack and steel corrosion rate.  

E-Print Network [OSTI]

??Chloride-induced corrosion of steel reinforcement in concrete may cause severe damage to RC structures. Longitudinal cover cracks may form during the rust expansion process. Currently,… (more)

Cao, Chong

2012-01-01T23:59:59.000Z

138

E-Print Network 3.0 - advanced thermal processing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Polyimide Films Katsuo Kurabayashi, Member, IEEE, Mehdi Asheghi, Maxat... optoelectronic devices. The thermal properties of polyimide films govern the temporal response of...

139

Shrinkage - cracking characteristics of structural lightweight concrete  

E-Print Network [OSTI]

'P'D. ) FIGURE 4-14 Cracking as Indi. cat d by Nater Loss PACE IO 5-1 Thermal Expansion Correction by Emtrspolation /7 LZST OP TAELES TAELE Environments 35 Test. ing Program. Statistical Data Direct Tensile Specim n Data 59 4-3 Comparison of Selected.... Cement contents of 5, 0, 6. 0 ind 6. 5 i a~n. , /ci-hie yorri were used. Unrestraineii volume changes wcr liaaoi - . . i o! standard type specimens (3 x 3 x i 1. 25 . in, ) . Craciring i'!ali!ai. cd ns thi! number of ccac!. s occurring on a s, ~ i...

McKeen, Robert Gordon

1969-01-01T23:59:59.000Z

140

Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

Izequeido, Alexandor

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Status Report on Studies of Recovery Boiler Composite Floor Tube Cracking  

SciTech Connect (OSTI)

Cracking of the stainless steel layer of co-extruded 304L stainless steel/SA210 Gd A 1 carbon steel black liquor recovery boiler floor tubes has been identified as one of the most serious material problems in the pulp and paper industry. A DOE-funded study was initiated in 1995 with the goal of determining the cause of and possible solutions to this cracking problem. These studies have characterized tube cracking as well as the chemical and thermal environment and stress state of floor tubes. Investigations of possible cracking mechanisms indicate that stress corrosion cracking rather than thermal fatigue is a more likely cause of crack initiation. The cracking mechanism appears to require the presence of hydrated sodium sulfide and is most likely active during shut-downs and/or start-ups. Based on these results and operating experience, certain alloys appear to be more resistant than others to cracking in the floor environment, and certain operating practices appear to significantly lessen the likelihood of cracking. This report is the latest in a series of progress reports presented on this project.

Eng, P.; Frederick, L.A.; Hoffmann, C.M.; Keiser, J.R.; Mahmood, J.; Maziasz, P.J.; Prescott, R.; Sarma, G.B.; Singbeil, D.L.; Singh, P.M.; Swindeman, R.W.; Wang, X.-L.

1999-09-12T23:59:59.000Z

142

Insights into Stress Corrosion Cracking Mechanisms from High-Resolution Measurements of Crack-Tip Structures and Compositions  

SciTech Connect (OSTI)

The fundamental basis for mechanistic understanding and modeling of SCC remains in question for many systems. Specific mechanisms controlling SCC can vary with changes in alloy characteristics, applied/residual stress or environmental conditions. The local crack electrochemistry, crack-tip mechanics and material metallurgy are the main factors controlling crack growth. These localized properties are difficult or impossible to measure in active cracks. Nevertheless, it is essential to quantitatively interrogate these crack-tip conditions if mechanistic understanding is to be obtained. A major recent advance has been the ability to investigate SCC cracks and crack tips using high-resolution ATEM techniques. ATEM enables the characterization of SCC cracks including trapped tip solution chemistries, corrosion product/film compositions and structures, and elemental composition gradients and defect microstructures along the crack walls and at the crack tip. A wide variety of methods for imaging and analyses at resolutions down to the atomic level can be used to examine the crack and corrosion film characteristics. Surface films and reaction layers have been examined by cross-sectional TEM techniques, but little work had been conducted on environmentally induced internal cracks until that of Lewis and co-workers [1-3] and the current authors [4-17]. This capability combined with modern ATEM techniques has enabled exciting new insights into corrosion processes occurring at buried interfaces and is being used to identify mechanisms controlling IGSCC in boiling water reactor (BWR) and pressurized water reactor (PWR) components. The objective of this paper is to summarize certain results focused on IGSCC of Fe- base and Ni-base stainless alloys in high-temperature water environments. Representative crack-tip examples will be shown to illustrate specific aspects that are characteristic of SCC in the material/environment combinations. Differences and similarities in crack-tip structures- chemistries will be highlighted comparing Fe-base 316/304SS to Ni-base alloy 600/182 and for tests in oxidizing versus hydrogenated water environments.

Bruemmer, Stephen M.; Thomas, Larry E.

2010-04-05T23:59:59.000Z

143

THERMAL PERFORMANCE ANALYSIS FOR SMALL ION-EXCHANGE CESIUM REMOVAL PROCESS  

SciTech Connect (OSTI)

The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF media. Although, the safety temperature limit is based on the salt solution boiling point which does not apply in the air-filled case (because there is no liquid), this same limit (130C) is used as a measure for the evaluation of this condition as well. The primary objective of the present work is to develop models to simulate the thermal performance of the RF column design when the media is fully loaded with radioactive cesium and the central cooling tube is excluded. Previous analysis led to the consideration of this design simplification for RF, since the baseline column design with center cooling was developed assuming that CST media would be used for cesium removal which has a higher volumetric heat load. Temperature distributions and maximum temperatures across the column during SCIX process operations and upset conditions were conducted with a focus on SCIX implementation at Hanford. However, a feed composition and cesium loading were assumed which were known to be considerably higher than would typically be observed at Hanford. In order to evaluate the impact of this potentially highly conservative assumption, fractionally-reduced loading cases were also considered. A computational modeling approach was taken to include conservative, bounding estimates for key parameters so that the results would provide the maximum temperatures achievable under the design configurations.

Lee, S.; King, W.

2009-12-29T23:59:59.000Z

144

Structures for dense, crack free thin films  

DOE Patents [OSTI]

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2011-03-08T23:59:59.000Z

145

Cracking blends of gas oil and residual oil  

SciTech Connect (OSTI)

In a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking zone at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regeneration zone by burning coke of the catalyst, and catalyst is circulated between the cracking zone and the regeneration zone. The improvement is described for obtaining a naphtha product of improved octane number comprising introducing sufficient of a nickel and vanadium metals-containing heavy feedstock with the gas oil feed introduced into the cracking zone to deposit nickel and vanadium metals on the catalyst and raise the nickel and metals-content of the catalyst to a level ranging from about 1500 to about 6000 parts per million of the metals expressed as equivalent nickel, based on the weight of the catalyst, and maintaining the nickel and vanadium metals level on the catalyst by withdrawing high nickel and vanadium metals containing catalyst and adding low nickel and vanadium metals-containing catalyst to the regeneration zone.

Myers, G.D.

1988-03-01T23:59:59.000Z

146

THERMAL ANALYSIS FOR IN-TANK ION-EXCHANGE COLUMN PROCESS  

SciTech Connect (OSTI)

High Level Waste (HLW) at the Savannah River Site (SRS) is stored in three forms: sludge, saltcake, and supernate. A small column ion-exchange (SCIX) process is being designed to treat dissolved saltcake waste before feeding it to the saltstone facility to be made into grout. The waste is caustic with high concentrations of various sodium salts and lower concentrations of radionuclides. Two cation exchange media being considered are a granular form of crystalline silicotitanate (CST) and a spherical form of resorcinol-formaldehyde (RF) resin. CST is an inorganic material highly selective for cesium that is not elutable. Through this process, radioactive cesium from the salt solution is absorbed into ion exchange media (either CST or RF) which is packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. If engineering designs cannot handle this thermal load, hot spots may develop locally which could degrade the performance of the ion-exchange media. Performance degradation with regard to cesium removal has been observed between 50 and 80 C for CST [1] and at 65 C for RF resin [2]. In addition, the waste supernate solution will boil around 130 C. If the columns boiled dry, the sorbent material could plug the column and lead to replacement of the entire column module. Alternatively, for organic resins such as RF there is risk of fire at elevated temperatures. The objective of the work is to compute temperature distributions across CST- and RF-packed columns immersed in waste supernate under accident scenarios involving loss of salt solution flow through the beds and, in some cases, loss of coolant system flow. For some cases, temperature distributions are determined as a function of time after the initiation of a given accident scenario and in other cases only the final steady-state temperature distributions are calculated. In general, calculations are conducted to ensure conservative and bounding results for the maximum temperatures achievable using the current baseline column design. This information will assist in SCIX design and facility maintenance.

Lee, S; Frank02 Smith, F

2009-01-05T23:59:59.000Z

147

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

148

Fluid catalytic cracking of heavy petroleum fractions  

SciTech Connect (OSTI)

A process is claimed for fluid catalytic cracking of residuum and other heavy oils comprising of gas oil, petroleum residue, reduced and whole crudes and shale oil to produce gasoline and other liquid products which are separated in various streams in a fractionator and associated vapor recovery equipment. The heat from combustion of coke on the coked catalyst is removed by reacting sulfur-containing coke deposits with steam and oxygen in a separate stripper-gasifier to produce a low btu gas stream comprising of sulfur compounds, methane, carbon monoxide, hydrogen, and carbon dioxide at a temperature of from about 1100/sup 0/F. To about 2200/sup 0/F. The partially regenerated catalyst then undergoes complete carbon removal in a regeneration vessel. The regenerated catalyst is recycled for re-use in the cracking of heavy petroleum fractions. The liquid products are gasoline, distillates, heavy fuel oil, and light hydrocarbons.

McHenry, K.W.

1981-06-30T23:59:59.000Z

149

EFFECT OF THERMAL PROCESSES ON COPPER-TIN ALLOYS FOR ZINC GETTERING  

SciTech Connect (OSTI)

A contamination mitigation plan was initiated to address the discovery of radioactive zinc‐65 in a glovebox. A near term solution was developed, installation of heated filters in the glovebox piping. This solution is effective at retaining the zinc in the currently contaminated area, but the gamma emitting contaminant is still present in a system designed for tritium beta. A project was initiated to develop a solution to contain the {sup 65}Zn in the furnace module. Copper and bronze (a Cu/Sn alloy) were found to be candidate materials to combine with zinc‐65 vapor, using thermodynamic calculations. A series of binary Cu/Sn alloys were developed (after determining that commercial alloys were unacceptable), that were found to be effective traps of zinc vapor. The task described in this report was undertaken to determine if the bronze substrates would retain their zinc gettering capability after being exposed to simulated extraction conditions with oxidizing and reducing gases. Pure copper and three bronze alloys were prepared, exposed to varying oxidation conditions from 250 to 450{degree}C, then exposed to varying reduction conditions in He-H{sub 2} from 250-450{degree}C, and finally exposed to zinc vapor at 350{degree}C for four hours. The samples were characterized using scanning electron microscopy, X-ray diffraction, differential thermal analysis, mass change, and visual observation. It was observed that the as fabricated samples and the reduced samples all retained their zinc gettering capacity while samples in the "as-oxidized" condition exhibited losses in zinc gettering capacity. Over the range of conditions tested, i.e., composition, oxidation temperature, and reduction temperature, no particular sample composition appeared better. Samples reduced at 350{degree}C exhibited the greatest zinc capacity, although there were some testing anomalies associated with these samples. This work clearly demonstrated that the zinc gettering was not adversely affected by exposure to simulated process conditions and a full scale lithium and zinc trap should be fabricated for testing in the Tritium Extraction Facility.

Korinko, P.; Golyski, M.

2013-11-01T23:59:59.000Z

150

Energy conservation in dissipative processes: Teacher expectations and strategies associated with imperceptible thermal energy  

E-Print Network [OSTI]

Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in dissipative scenarios in which kinetic energy transforms into thermal energy (e.g., a ball rolls to a stop). We find that teachers expect that when they can see the motion associated with kinetic energy, they should be able to perceive the warmth associated with thermal energy. Their expectations are violated when the warmth produced is imperceptible. In these cases, teachers reject the idea that the kinetic energy transforms to thermal energy. Our observations suggest that apparent difficulties with energy conservation may have their roots in a strong and productive association between forms of energy and their perceptible indicators. We see teachers resolve these ch...

Daane, Abigail R; Vokos, Stamatis; Scherr, Rachel E

2014-01-01T23:59:59.000Z

151

The origin of thermal component in the transverse momentum spectra in high energy hadronic processes  

E-Print Network [OSTI]

The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect, and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the $t$-channel exchange is color-singlet and there is no fragmenting string -- so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive $pp$ collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.

Alexander A. Bylinkin; Dmitri E. Kharzeev; Andrei A. Rostovtsev

2014-07-15T23:59:59.000Z

152

Description of Thermal and Micro-Structural Processes in Generalized Continua: Zhilin's  

E-Print Network [OSTI]

and its Modifications Elena Ivanova and Elena Vilchevskaya Abstract The method of description of thermal, Russia e-mail: elenaivanova239@post.ru E. Vilchevskaya Institute for Problems in Mechanical Engineering transitions and structural transformations, plastic flow, dynamics of bulk solids, dynamics of granular media

Ivanova, Elena A.

153

Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement  

E-Print Network [OSTI]

device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

Abraham, Michaela Marie

1993-01-01T23:59:59.000Z

154

Peridynamic model for fatigue cracking.  

SciTech Connect (OSTI)

The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the %22remaining life%22 of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

Silling, Stewart A.; Abe Askari (Boeing)

2014-10-01T23:59:59.000Z

155

Cracking behavior of cored structures  

SciTech Connect (OSTI)

The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a composition gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Data on stress corrosion cracking and fatigue crack growth in selected FCC alloys are used to illustrate the significance of microsegregation on mechanical properties.

Wahid, A.; Olson, D.L.; Matlock, D.K. (Colorado School of Mines, Golden, CO (United States). Center for Welding and Joining Research); Kelly, T.J. (General Electric Aircraft Engines, Evendale, OH (United States))

1991-01-01T23:59:59.000Z

156

Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?thermal absorbers  

SciTech Connect (OSTI)

Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?thermal absorbers that exhibit a strong anti-oxidation behavior up to 600?°C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al{sub 2}O{sub 3} selective solar thermal absorbers, which readily oxidize at 450?°C. The SiO{sub x} (x?processed by low-cost solution-chemical methods for future generations of CSP systems.

Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States); Li, Juchuan [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-08-21T23:59:59.000Z

157

Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection  

DOE Patents [OSTI]

A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

Sun, Jiangang (Westmont, IL); Deemer, Chris (Downers Grove, IL)

2003-01-01T23:59:59.000Z

158

Environmental stress cracking of plastics under dynamic conditions  

E-Print Network [OSTI]

The objective of this study was to find out if dynamic conditions have any effect on the phenomenon of environmental stress cracking (ESC). Dynamic conditions in this study include thermal shock, mechanical shock, and vibrations. Injection blow molded... resistance of blow molded polyethylene containers. The experimental data indicated that each of the dynamic conditions accelerated the ESC. Therefore, the results obtained from the static tests cannot be used to predict the service life of the containers...

Suresh, Mitta

1992-01-01T23:59:59.000Z

159

Degradation of Structural Alloys Under Thermal Insulation  

E-Print Network [OSTI]

Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

McIntyre, D. R.

1984-01-01T23:59:59.000Z

160

Weld solidification cracking in 304 to 204L stainless steel  

SciTech Connect (OSTI)

A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

2010-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Weld solidification cracking in 304 to 304L stainless steel  

SciTech Connect (OSTI)

A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

162

Evaluation of cracking in feedwater piping adjacent to the steam generators in Nine Pressurized Water Reactor Plants  

SciTech Connect (OSTI)

Cracking in ASTM A106-B and A106-C feedwater piping was detected near the inlet to the steam generators in a number of pressurized water reactor plants. We received sections with cracks from nine of the plants with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Variations were observed in piping surface irregularities, corrosion-product, pit, and crack morphology, surface elmental and crystal structure analyses, and steel microstructures and mechanical properties. However, with but two exceptions, namely, arrest bands and major surface irregularities, we were unable to relate the extent of cracking to any of these factors. Tensile and fracture toughness (J/sub Ic/ and tearing modulus) properties were measured over a range of temperatures and strain rates. No unusual properties or microstructures were observed that could be related to the cracking problem. All crack surfaces contained thick oxide deposits and showed evidence of cyclic events in the form of arrest bands. Transmission electron microscopy revealed fatigue striations on replicas of cleaned crack surfaces from one plant and possibly from three others. Calculations based on the observed striation spacings gave a value of ..delta..sigma = 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses. Although surface irregularities and corrosion pits were sources for crack initiation and corrosion may have contributed to crack propagation, it is proposed that the overriding factor in the cracking problem is the presence of unforeseen cyclic loads.

Goldberg, A.; Streit, R.D.; Scott, R.G.

1980-06-25T23:59:59.000Z

163

Crack propagation driven by crystal growth  

SciTech Connect (OSTI)

Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

2011-10-01T23:59:59.000Z

164

Hydrocarbon cracking with yttrium exchanged zeolite y catalyst  

SciTech Connect (OSTI)

A process is described for cracking a gas oil boiling range hydrocarbon feedstock comprising the step of contacting the feedstock in a catalytic cracking zone under catalytic cracking conditions to produce convulsion products comprising gasoline with a catalyst composition. The process comprises: a Y crystalline aluminosilicate zeolite, having the structure of faujasite and having uniform pore diameters and a silica to alumina mole ratio of at least about 5; an inorganic oxide matrix; and the zeolite having been ion exchanged with a mixture of rare earths prior to compositing with the matrix; and the zeolite having been subsequently further ion exchanged with yttrium following compositing with the matrix, whereby the catalyst composition contains 0.30 to 3.0 wt% yttrium.

Lochow, C.F.; Kovacs, D.B.

1987-05-12T23:59:59.000Z

165

Method for fabrication of crack-free ceramic dielectric films  

DOE Patents [OSTI]

The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

2014-02-11T23:59:59.000Z

166

Polyx multicrystalline silicon solar cells processed by PF+5 unanalysed ion implantation and rapid thermal annealing  

E-Print Network [OSTI]

of terrestrial solar cells as compared to classical furnace or pulsed laser annealing. Unfortunately, drawbacks695 Polyx multicrystalline silicon solar cells processed by PF+5 unanalysed ion implantation with classical furnace annealing or with classical diffusion process. Revue Phys. Appl. 22 (1987) 695-700 JUILLET

Paris-Sud XI, Université de

167

Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes  

SciTech Connect (OSTI)

The mechanical properties of an acrylate resin and its carbon fiber composite, as well as the adhesion strength between them, were characterized in the case of thermal and electron beam curing. The thermal history during the cure was also recorded. It was shown that the properties of the matrix were similar but that the thermal history during the curing had a direct influence on the type of interactions that were generated at the interface, leading to different level of adhesion strength and level of performance for the associated composites. In the case of a thermal cure, the thermal profile allowed the generation of covalent bonding at the interface, leading to a high level of adhesion strength, which was not the case for electron beam curing. The thermal history during the cure appeared to be a determining parameter for the level of performance of composites cured by electron beam.

Vautard, Frederic [ORNL] [ORNL; Ozcan, Soydan [ORNL] [ORNL; Poland, Laura E [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL

2013-01-01T23:59:59.000Z

168

Development of reduced crude cracking catalysts  

SciTech Connect (OSTI)

In 1974 OPEC imposed an embargo on oil to the United States and caused a rapid rise in the price of a barrel of oil. At the time of the embargo, Ashland imported a considerable portion of its oil from the Middle East, thus raising the question of oil availability. As the problem increased in severity, Messrs. George Meyer, Oliver Zandona and Llyod Busch, began to explore alternative ways of squeezing more product from a given barrel of crude. After considering many alternatives, they arrived at the innovative thought that it might be possible to catalytically crack the 1050{degree}F plus fraction of the barrel directly to gasoline which would in effect, give them an additional volume of crude oil. Also, if vacuum fractionation were eliminated and if the entire 650{degree}F plus (reduced crude) portion of the barrel processed, this would further reduce operating costs. With these objectives and some new process innovations in mind, they began reduced crude cracking experimentation in a small 12,000 B/D FCC operating unit at Louisville. It was from these goals, concepts and a small operating unit, that the RCC process was born.

Hettinger, W.P. Jr. (Ashland Petroleum Company, KY (USA))

1987-08-01T23:59:59.000Z

169

EFFECT OF ELECTROLYZER CONFIGURATION AND PERFORMANCE ON HYBRID SULFUR PROCESS NET THERMAL EFFICIENCY  

SciTech Connect (OSTI)

Hybrid Sulfur cycle is gaining popularity as a possible means for massive production of hydrogen from nuclear energy. Several different ways of carrying out the SO{sub 2}-depolarized electrolysis step are being pursued by a number of researchers. These alternatives are evaluated with complete flowsheet simulations and on a common design basis using Aspen Plus{trademark}. Sensitivity analyses are performed to assess the performance potential of each configuration, and the flowsheets are optimized for energy recovery. Net thermal efficiencies are calculated for the best set of operating conditions for each flowsheet and the results compared. This will help focus attention on the most promising electrolysis alternatives. The sensitivity analyses should also help identify those features that offer the greatest potential for improvement.

Gorensek, M

2007-03-16T23:59:59.000Z

170

Controlled Thermal-Mechanical Processing of Tubes and Pipes for Enhanced Manufacturing and Performance  

SciTech Connect (OSTI)

The Alloy Steel Business of The Timken Company won an award for the controlled thermo-mechanical processing (CTMP) project and assembled a strong international public/private partnership to execute the project. The premise of the CTMP work was to combine Timken's product understanding with its process expertise and knowledge of metallurgical and deformation fundamentals developed during the project to build a predictive process design capability. The CTMP effort succeeded in delivering a pc-based capability in the tube optimization model, with a virtual pilot plant (VPP) feature to represent the desired tube making process to predict the resultant microstructure tailored for the desired application. Additional tasks included a system for direct, online measurement of grain size and demonstration of application of CTMP via robotically enhanced manufacturing.

Kolarik, Robert V.

2005-11-11T23:59:59.000Z

171

High-temperature microfluidic systems for thermally-efficient fuel processing  

E-Print Network [OSTI]

Miniaturized fuel cell systems have the potential to outperform batteries in powering a variety of portable electronics. The key to this technology is the ability to efficiently process an easily-stored, energy-dense fuel. ...

Arana, Leonel R

2003-01-01T23:59:59.000Z

172

Innovative Approach to Establish Root Causes for Cracking in Aggressive Reactor Environments  

SciTech Connect (OSTI)

The research focuses on the high-resolution characterization of degradation microstructures and microchemistries in specimens tested under controlled conditions for the environment and for the material where in-service complexities can be minimized. Thermodynamic and kinetic modeling of crack-tip processes is employed to analyze corrosion-induced structures and gain insights into degradation mechanisms. Novel mechanistic ''fingerprinting'' of crack-tip structures is used to isolate causes of environmental cracking in tandem with quantitative measurements of crack growth. Sample preparation methods and advanced analytical techniques are used to characterize corrosion/oxidation reactions and crack-tip structures at near atomic dimensions in order to gain insight into fundamental environmental cracking mechanisms. Reactions at buried interfaces, not accessible by conventional approaches, are being systematically interrogated. Crack-growth experiments in high-temperature water environments are evaluating and isolating the effects of material condition (matrix strength, grain boundary composition and precipitation) on stress corrosion cracking (SCC). The fundamental understanding of crack advance mechanisms will establish the basis to design new corrosion-resistant alloys for current light-water reactors and advanced reactor systems.

Bruemmer, Stephen M.; Thomas, Larry E.; Vetrano, John S.; Simonen, Edward P.

2003-10-31T23:59:59.000Z

173

Multiple use of waste catalysts with and without regeneration for waste polymer cracking  

SciTech Connect (OSTI)

Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C{sub 2}-C{sub 7}) remained fairly constant. For the first time, these results indicate that 'waste' FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.

Salmiaton, A., E-mail: mie@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor (Malaysia); Garforth, A.A. [School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

2011-06-15T23:59:59.000Z

174

Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties  

SciTech Connect (OSTI)

The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

Beardsley, M B

2008-03-26T23:59:59.000Z

175

Investigation of HNCO isomers formation in ice mantles by UV and thermal processing: an experimental approach  

E-Print Network [OSTI]

Current gas phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting a formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogues containing H$_2$O, NH$_3$, CO, HCN, CH$_3$OH, CH$_4$, and N$_2$ followed by warm-up, under astrophysically relevant conditions. Only the H$_2$O:NH$_3$:CO and H$_2$O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H$_2$O:NH$_3$:CO and H$_2$O:HCN ices was simulated using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer (QMS) detected the desorption of the molecules in the gas phase....

Jiménez-Escobar, A; Caro, G M Muñoz; Cernicharo, J; Marcelino, N

2014-01-01T23:59:59.000Z

176

Optimization studies on thermal and mechanical manufacturing processes for multifilament superconducting tape and wire  

E-Print Network [OSTI]

].................................................................. 115 60 SEM image of melt processed tapes in oxygen (a) Tm= 890oC and CR= 10oC/h (b) Tm= 890oC and CR= 5oC/h [38] ........................................... 116 61 SEM images of tapes (a) in the flawless region (b) near the bubble defect...

Basaran, Burak

2004-11-15T23:59:59.000Z

177

Cracking Resistance of Asphalt Rubber Mix Versus  

E-Print Network [OSTI]

. crack length curve for KR #12;Load vs. CMOD 0.0 0.5 1.0 1.5 2.0 Crack mouth opening, mm 0 500 1000 1500 non-linear fracture mechanics ·Compliance approach ·R-Curve approach #12;Conventional Fatigue Testing factor R-Curve approach Resistance to initiation & growth of cracks Evaluates fracture toughness

Mobasher, Barzin

178

Original article Stem cracks in Norway spruce  

E-Print Network [OSTI]

Original article Stem cracks in Norway spruce in southern Scandinavia: causes and consequences Garpenberg, Sweden (Received 1st September 1992; accepted 17 June 1993) Summary — Stem cracks in Norway;INTRODUCTION Background During this century, the widespread crack- ing of Norway spruce (Picea abies L Karst

Boyer, Edmond

179

doi: 10.3176/oil.2008.2.02 © 2008 Estonian Academy Publishers THERMAL PROCESSING OF POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE  

E-Print Network [OSTI]

This study is concerned with thermal processing of polyvinylchloride (PVC) in the presence of alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the feedstock is heated by mixing with ash from retorted feed-stock combustion, are potentially an

V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

180

A low thermal impact annealing process for SiO{sub 2}-embedded Si nanocrystals with optimized interface quality  

SciTech Connect (OSTI)

Silicon nanocrystals (Si NCs) for 3rd generation photovoltaics or optoelectronic applications can be produced by several industrially compatible physical or chemical vapor deposition technologies. A major obstacle for the integration into a fabrication process is the typical annealing to form and crystallize these Si quantum dots (QDs) which involves temperatures ?1100??°C for 1?h. This standard annealing procedure allows for interface qualities that correspond to more than 95% dangling bond defect free Si NCs. We study the possibilities to use rapid thermal annealing (RTA) and flash lamp annealing to crystallize the Si QDs within seconds or milliseconds at high temperatures. The Si NC interface of such samples exhibits huge dangling bond defect densities which makes them inapplicable for photovoltaics or optoelectronics. However, if the RTA high temperature annealing is combined with a medium temperature inert gas post-annealing and a H{sub 2} passivation, luminescent Si NC fractions of up to 90% can be achieved with a significantly reduced thermal load. A new figure or merit, the relative dopant diffusion length, is introduced as a measure for the impact of a Si NC annealing procedure on doping profiles of device structures.

Hiller, Daniel, E-mail: daniel.hiller@imtek.uni-freiburg.de; Gutsch, Sebastian; Hartel, Andreas M.; Zacharias, Margit [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Löper, Philipp [Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gebel, Thoralf [DTF Technology GmbH, Am Promigberg 16, 01108 Dresden (Germany)

2014-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems  

SciTech Connect (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

Nick Soelberg; Joe Enneking

2011-05-01T23:59:59.000Z

182

Interaction between corrosion crack width and steel loss in RC beams corroded under load  

SciTech Connect (OSTI)

This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

Malumbela, Goitseone, E-mail: malumbela@mopipi.ub.b [Dpt. of Civil Eng., Univ. of Cape Town, Private Bag X3, Rondebosch, 7700 (South Africa); Alexander, Mark; Moyo, Pilate [Dpt. of Civil Eng., Univ. of Cape Town, Private Bag X3, Rondebosch, 7700 (South Africa)

2010-09-15T23:59:59.000Z

183

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents [OSTI]

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, V.K.

1990-08-21T23:59:59.000Z

184

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents [OSTI]

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, Vinod K. (Lexington, MA)

1990-01-01T23:59:59.000Z

185

Saber's heavy oil cracking refinery project  

SciTech Connect (OSTI)

Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

Benefield, C.S.; Glasscock, W.L.

1983-03-01T23:59:59.000Z

186

Environmentally assisted cracking of LWR materials  

SciTech Connect (OSTI)

Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289{degree}C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320{degree}C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections.

Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

1995-12-01T23:59:59.000Z

187

Insights Gained from Ultrasonic Testing of Piping Welds Subjected to the Mechanical Stress Improvement Process  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. This compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.

Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

2010-12-01T23:59:59.000Z

188

Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar  

E-Print Network [OSTI]

and moist air for thermal storage of solar energy: global performance Benoit Michela, *, Nathalie Mazeta-gas reaction, hydration, thermal storage, seasonal storage, solar energy * Corresponding author: E-mail: mazet Der energy density of the reactor, Jm -3 thermal conductivity, Wm -1 .K -1 G reactive gas

Paris-Sud XI, Université de

189

Rapid Thermal Processing of High Efficiency n-Type Silicon Solar Cells with Al Back Junction  

SciTech Connect (OSTI)

In this paper we report on the design, fabrication and modeling of 49 cm{sup 2}, 200-{micro}m thick, 1-5 {Omega}-cm, n- and p-type <111> and <100> screen-printed silicon solar cells. A simple process involving RTP front surface phosphorus diffusion, low frequency PECVD silicon nitride deposition, screen-printing of Al metal and Ag front grid followed by co-firing of front and back contacts produced cell efficiencies of 15.4% on n-type <111> Si, 15.1% on n-type <100> Si, 15.8% on p-type <111> Si and 16.1% on p-type <100> Si. Open circuit voltage was comparable for n and p type cells and was also independent of wafer orientation. High fill factor values (0.771-0.783) for all the devices ruled out appreciable shunting which has been a problem for the development of co-fired n-type <100> silicon solar cells with Al back junction. Model calculations were performed using PC1D to support the experimental results and provide guidelines for achieving >17% n-type silicon solar cells by rapid firing of Al back junction.

Ebong, A.; Upadhyaya, V.; Rounsaville, B.; Kim, D. S.; Meemongkolkiat, V.; Rohatgi, A.; Al-Jassim, M. M.; Jones, K. M.; To, B.

2006-01-01T23:59:59.000Z

190

Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs  

SciTech Connect (OSTI)

The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

Kelkar, Sharad [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

191

Thermal barrier coating resistant to sintering  

DOE Patents [OSTI]

A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

Subramanian, Ramesh; Seth, Brig B.

2005-08-23T23:59:59.000Z

192

Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams  

SciTech Connect (OSTI)

This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.

Khan, Inamullah; François, Raoul [Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, Avenue de Rangueil, F-31077 Toulouse (France)] [Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, Avenue de Rangueil, F-31077 Toulouse (France); Castel, Arnaud [Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW (Australia)] [Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW (Australia)

2014-02-15T23:59:59.000Z

193

Stiffness reduction and stress transfer in composite laminates with transverse matrix cracks  

E-Print Network [OSTI]

-staggered cracking. Laminates with staggered cracks showed a greater reduction in effective modulus at lower crack densities. The crack opening displacements at different crack densities were normalized in a way as to compare with the solution for an isolated crack...

Praveen, Grama Narasimhaprasad

2012-06-07T23:59:59.000Z

194

ABSTRACT. The stress-relief cracking (SRC) susceptibility of single-pass welds  

E-Print Network [OSTI]

steel, HCM2S, has been evaluated and compared to 2.25Cr-1Mo steel using Gleeble thermal simulation and pressure vessels for chemical and fossil power plants. Many components in these power plants oper- ate techniques. HCM2S was found to be more susceptible to stress-relief cracking than 2.25Cr-1Mo steel. Simulated

DuPont, John N.

195

Microstructural development and solidification cracking susceptibility of Cu deposits on steel: Part I  

E-Print Network [OSTI]

Microstructural development and solidification cracking susceptibility of Cu deposits on steel industry is interested in depositing Cu onto steel using direct metal deposition techniques in order to improve thermal management of mold dies manufactured from steel alloys. However, Cu is a known promoter

DuPont, John N.

196

A NOVEL TECHNIQUE TO GENERATE SHARP CRACKS IN METALLIC/CERAMIC FUNCTIONALLY GRADED  

E-Print Network [OSTI]

materials with high fracture toughness and elevated temperature resistance. Ideally, the ceramic side of the FGM provides thermal and corrosion resistance while the metallic side gives the necessary strengthA NOVEL TECHNIQUE TO GENERATE SHARP CRACKS IN METALLIC/CERAMIC FUNCTIONALLY GRADED MATERIALS

Paulino, Glaucio H.

197

Methodology for predicting asphalt concrete overlay life against reflection cracking  

E-Print Network [OSTI]

of thermal expansion = change in temperature E K - (so gT) vc/h F3(c/h) +(I-u ) By defining, !40) (41) Jc/h F3(c/h) T Kt (42 ) 29 ~Summa r The proper variables to be used in a design equation and the form of the equation to be used is best... obtained are presented in this chapter. The stress intensity factor computations were carr1ed out for different crack-tip positions and for different levels of aggregate interlock act1on. These results were obtained for each of the three mechanisms...

Jayawickrama, Priyantha Warnasuriya

1985-01-01T23:59:59.000Z

198

Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

Venezuela

2000-04-06T23:59:59.000Z

199

Crack stability analysis of low alloy steel primary coolant pipe  

SciTech Connect (OSTI)

At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

1997-04-01T23:59:59.000Z

200

A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory  

SciTech Connect (OSTI)

Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

Li, Xiantao, E-mail: xli@math.psu.edu [Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

2014-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Crack Propagation Fracture Toughness of Several Wood Species Elijah Wilson, Meisam Shir Mohammadi, and John A. Nairn  

E-Print Network [OSTI]

1 Crack Propagation Fracture Toughness of Several Wood Species Elijah Wilson, Meisam Shir Mohammadi In materials with process zones, such as fiber bridging zones in wood, it is crucial to characterize fracture toughness as a function of crack growth, known as the material's R curve. Here, a new fracture testing

Nairn, John A.

202

Biomaterials 24 (2003) 52095221 Crack blunting, crack bridging and resistance-curve fracture  

E-Print Network [OSTI]

Biomaterials 24 (2003) 5209­5221 Crack blunting, crack bridging and resistance-curve fracture focused on a description of the fracture toughness properties of dentin in terms of resistance-curve (R-curve) behavior, i.e., fracture resistance increasing with crack extension, particularly in light of the relevant

Ritchie, Robert

203

Electrochemical aspects of stress-corrosion cracking in. cap alpha. -brass  

SciTech Connect (OSTI)

This paper considers a number of aspects of the stress-corrosion cracking of brass from the point of view of the localized electrochemical processes occurring at the tip of a propagating crack. The principal system examined is the intergranular SCC of 70-30 brass in near-neutral ammoniacal solutions, for which a detailed mechanism is developed. In addition, the effects of nitrite ions in promoting SCC of both brass and copper are considered.

Burstein, G T; Newman, R C

1981-01-01T23:59:59.000Z

204

A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909  

SciTech Connect (OSTI)

In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residual hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ? It is a new process for the forming of GH909 alloy via laser welding. ? The forming mechanism of laser welding defects in GH909 has been studied. ? It may be a means to improve the efficiency of aircraft engine production.

Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun; Hu, Xiyuan; Wang, Tianjiao; Li, Jianmin; Li, Guozhu

2013-04-15T23:59:59.000Z

205

Development of crack shape: LBB methodology for cracked pipes  

SciTech Connect (OSTI)

For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.

Moulin, D.; Chapuliot, S.; Drubay, B. [Commissariat a l Energie Atomique, Gif sur Yvette (France)

1997-04-01T23:59:59.000Z

206

Crack shape developments and leak rates for circumferential complex-cracked pipes  

SciTech Connect (OSTI)

A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)

1997-04-01T23:59:59.000Z

207

Preparation of silica aerogels with improved mechanical properties and extremely low thermal conductivities through modified sol-gel process  

E-Print Network [OSTI]

Reported silica aerogels have a thermal conductivity as low as 15 mW/mK. The fragility of silica aerogels, however, makes them impractical for structural applications. The purpose of the study is to improve the ductility ...

Zuo, Yanjia

2010-01-01T23:59:59.000Z

208

Preparation of silica aerogels with improved mechanical properties and extremely low thermal conductivities through modified sol-gel process .  

E-Print Network [OSTI]

??Reported silica aerogels have a thermal conductivity as low as 15 mW/mK. The fragility of silica aerogels, however, makes them impractical for structural applications. The… (more)

Zuo, Yanjia

2010-01-01T23:59:59.000Z

209

SciTech Connect: CRACK TIP PLASTICITY AND FRACTURE INITIATION...  

Office of Scientific and Technical Information (OSTI)

N50000* --Metals, Ceramics, & Other Materials; CRACKS; FRACTURE PROPERTIES; METALS BUILDING MATERIALSfracture of metal, crack tip plasticity and initiation criteria for;...

210

Life prediction for bridged fatigue cracks  

SciTech Connect (OSTI)

One of the more promising classes of composites touted for high temperature applications, and certainly the most available, is that of relatively brittle matrices, either ceramic or intermetallic, reinforced by strong, aligned, continuous fibers. Under cyclic loading in the fiber direction, these materials develop matrix cracks that often run perpendicular to the fibers, while the fibers remain intact in the crack wake, supplying bridging tractions across the fracture surfaces. The bridging tractions shield the crack tip from the applied load, dramatically reducing the crack velocity from that expected in an unreinforced material subjected to the same value, {Delta}K{sub a}, of the cyclic applied stress intensity factor. An important issue in reliability is the prediction of the growth rates of the bridged cracks. The growth rates of matrix fatigue cracks bridged by sliding fibers are now commonly predicted by models based on the micromechanics of frictional interfaces. However, there exist many reasons, both theoretical and experimental, for suspecting that the most popular micromechanical models are probably wrong in detail in the context of fatigue cracks. Furthermore, a review of crack growth data reveals that the validity of the micromechanics-based predictive model has never been tested and may never be tested. In this paper, two alternative approaches are suggested to the engineering problem of predicting the growth rates of bridged cracks without explicit recourse to micromechanics. Instead, it is shown that the material properties required to analyze bridging effects can be deduced directly from crack growth data. Some experiments are proposed to test the validity of the proposals.

Cox, B.N.

1994-08-01T23:59:59.000Z

211

Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels  

SciTech Connect (OSTI)

Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

2014-01-09T23:59:59.000Z

212

Thermal stress analysis of fused-cast AZS refractories during production; Part 2: Development of thermo-elastic stress model  

SciTech Connect (OSTI)

Mathematical models of heat flow and thermo-elastic stress, based on the finite-element method, have been developed and utilized to analyze the voidless,'' fused-cast, AZS, solidification process. The results of the mathematical analysis, in conjunction with information obtained in a comprehensive industrial study, presented in Part 1 of this paper, describe the mechanisms for the formation of the various crack types found in the fused-cast product. Thermal stresses are generated early in the solidification process by rapid cooling of the refractory surface as it contacts the initially cool mold and later in conjunction with the tetragonal-to-monoclinic phase transformation which occurs in the zirconia component of the AZS refractory. Applying this model, castings were made using a revised mold design. Preliminary results indicate these castings to be free of objectionable transverse cracks.

Cockcroft, S.L.; Brimacombe, J.K. (Univ. of British Columbia, Vancouver, British Columbia (Canada). Centre for Metallurgical Process Engineering); Walrod, D.G.; Myles, T.A. (Carborundum Co., Falconer, NY (United States). Monofrax-S Plant)

1994-06-01T23:59:59.000Z

213

Contact fatigue behavior and gas cell thermal wave NDE of sintered reaction bonded silicon nitride  

SciTech Connect (OSTI)

Silicon nitride is being evaluated for potential applications as structural components subjected to contact fatigue loading. A new testing and evaluation methodology for evaluation of Hertzian contact fatigue damage in ceramic materials has been developed and is described. Contact fatigue damage is induced in three test specimens simultaneously. The material investigated is Eaton Corporation`s low cost E - Process Silicon Nitride. Tests were conducted at several Hertzian stress levels to evaluate contact fatigue damage behavior. Gas cell thermal wave NDE was employed to study the induced subsurface damage. Damage behavior was also investigated using optical microscopy. Two specimens were evaluated in detail; one that was tested for 17,400 cycles, P{sub max} = 2700 N and one that was tested for 1 x 10{sup 6} cycles, P{sub max} = 1800 N. The 2700 N specimen has a partial cone crack and contains a small concentration of vertical and shallow horizontal cracks. No evidence of a cone crack was detected on the 1800 N specimen. However, a larger concentration of horizontal microcracks at and just below the surface is present in this specimen, with particle debris in and around the surface contact area. Correlation of the optical microscopy observations with gas cell thermal wave NDE of the subsurface damage in these two specimens is discussed.

Barla, J.R.; Edler, J.P.; Lin, H. [Eaton Corp. R & D, Southfield, MI (United States)] [and others

1996-12-31T23:59:59.000Z

214

Prediction of early-age cracking of UHPC materials and structures : a thremo-chemo-mechanics approach  

E-Print Network [OSTI]

Ultra-High Performance Concrete [UHPC] has remarkable performance in mechanical properties, ductility, economical benefit, etc., but early-age cracking of UHPC can become an issue during the manufacturing process due to ...

Shim, JongMin, 1975-

2005-01-01T23:59:59.000Z

215

The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy  

SciTech Connect (OSTI)

The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

G.A. Young, Jr.; J.R. Scully

2000-09-17T23:59:59.000Z

216

Catalytic cracking of residual petroleum fractions  

SciTech Connect (OSTI)

This paper reports on Arabian Light crude oil vacuum bottoms fractionated into five high-boiling fractions by wiped film evaporation, and the fractions subjected to catalytic cracking in a fixed-fluidized bed using a commercial equilibrium cracking catalyst. Density, aromaticity, and heteroatom content generally increased with boiling point, as did metals content except for vanadium and iron which demonstrated possible bimodal distributions. The cracking response of these fractions showed increasing yields of dry gas and coke, with decreasing gasoline yields, as a function of increasing apparent boiling point as would normally be expected. Surprisingly, however, local maxima were observed for wet gas yield and total conversion, with local minima for cycle oil and slurry yields, in the region of the 1200-1263{degrees}F (650-680{degrees}C) middle fraction. All fractions showed significant response to cracking, with coke yields generally being the only negative factor observed.

Moore, H.F.; Mayo, S.L.; Goolsby, T.L. (Research and Development Dept., Ashland Petroleum Co., Ashland, KY (US))

1991-01-01T23:59:59.000Z

217

SAES ST 909 PILOT SCALE METHANE CRACKING TESTS  

SciTech Connect (OSTI)

Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

Klein, J; Henry Sessions, H

2007-07-02T23:59:59.000Z

218

Parallel interacting edge cracks under pure bending  

E-Print Network [OSTI]

. Once the applicability of the Williams' equations, have been proved or disproved, the power of the singularity represented by the first term of equation 1. 1 and the polynomial expansion can be truncated in order to extract information... of Williams' approach for the case of cracked bodies under pure bending is demonstrated. Four point bending load is applied on specimens with either a vertical or a slant crack giving Mode I or Mixed Mode I ? II respectively. The existence...

Moran, Ivan

1991-01-01T23:59:59.000Z

219

Studies on fruit cracking of tomatoes  

E-Print Network [OSTI]

STUDIES ON FRUIT CRACKING OF TOMATOES A Thesis Sam Don Cotner Submitted to the Graduate College of' ths Texas A&M University in partial fulfillment of the requirements i' or the degree of MASTER OF SCIENCE January~ 1966 Major Subject...: Horticulture STUDlES ON FRUIT CRACKING OF TOMATOES A Thesis Sam Dcn Cotnsr Approved as to style and content by; (Chairman of tes Member (Head o Department) mbsr) January 1966 TABLE OF CONTENTS Chapter I. INTRODUCTION . II. REVIEW OF LITERATURE Page...

Cotner, Sam Don

1966-01-01T23:59:59.000Z

220

An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics  

SciTech Connect (OSTI)

The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

Forster, G.A.; Ellingson, W.A.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hydrogen-induced cracking along the fusion boundary of dissimilar metal welds  

SciTech Connect (OSTI)

Presented here are the results from a series of experiments in which dissimilar metals welds were made using the gas tungsten arc welding process with pure argon or argon-6% hydrogen shielding gas. The objective was to determine if cracking near the fusion boundary of dissimilar metal welds could be caused by hydrogen absorbed during welding and to characterize the microstructures in which cracking occurred. Welds consisted of ER308 and ER309LSi austenitic stainless steel and ERNiCr-3-nickel-based filler metals deposited on A36 steel base metal. Cracking was observed in welds made with all three filler metals. A ferrofluid color metallography technique revealed that cracking was confined to regions in the weld metal containing martensite. Microhardness indentations indicated that martensitic regions in which cracking occurred had hardness values from 400 to 550 HV. Cracks did not extend into bulk weld metal with hardness less than 350 HV. Martensite formed near the fusion boundary in all three filler metals due to regions of locally increased base metal dilution.

Rowe, M.D.; Nelson, T.W.; Lippold, J.C. [Ohio State Univ., Columbus, OH (United States)

1999-02-01T23:59:59.000Z

222

Development of processing techniques for advanced thermal protection materials. Annual progress report, 1 June 1994-31 May 1995  

SciTech Connect (OSTI)

The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.

Selvaduray, G.S.

1995-06-01T23:59:59.000Z

223

Inuence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti6Al4V  

E-Print Network [OSTI]

incidence of late of HCF- related engine failures, particularly involving titanium alloy fan and compressor.g., stones, primarily on the fan blades, can cause (de- pending on the impact severity) immediate blade of small surface fatigue cracks in a Ti±6Al±4V alloy, processed for typical turbine blade applications

Ritchie, Robert

224

New field programmable gate array-based image-oriented acquisition and real-time processing applied to plasma facing component thermal monitoring  

SciTech Connect (OSTI)

During operation of present fusion devices, the plasma facing components (PFCs) are exposed to high heat fluxes. Understanding and preventing overheating of these components during long pulse discharges is a crucial safety issue for future devices like ITER. Infrared digital cameras interfaced with complex optical systems have become a routine diagnostic to measure surface temperatures in many magnetic fusion devices. Due to the complexity of the observed scenes and the large amount of data produced, the use of high computational performance hardware for real-time image processing is then mandatory to avoid PFC damages. At Tore Supra, we have recently made a major upgrade of our real-time infrared image acquisition and processing board by the use of a new field programmable gate array (FPGA) optimized for image processing. This paper describes the new possibilities offered by this board in terms of image calibration and image interpretation (abnormal thermal events detection) compared to the previous system.

Martin, V. [Pulsar Team-Project, INRIA Sophia Antipolis, Sophia Antipolis F-06902 (France); Dunand, G.; Moncada, V. [Sophia Conseil Company, Sophia Antipolis F-06560 (France); Jouve, M.; Travere, J.-M. [CEA, IRFM, Saint-Paul-Lez-Durance F-13108 (France)

2010-10-15T23:59:59.000Z

225

Recent evaluations of crack-opening-area in circumferentially cracked pipes  

SciTech Connect (OSTI)

Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

1997-04-01T23:59:59.000Z

226

TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW  

SciTech Connect (OSTI)

Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

Langton, C.

2012-05-11T23:59:59.000Z

227

Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture  

SciTech Connect (OSTI)

Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.

Edward Levy

2012-06-29T23:59:59.000Z

228

Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating  

SciTech Connect (OSTI)

The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850��������C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys���¢�������� weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t

Kumar Sridharan; Mark Anderson; Todd Allen; Michael Corradini

2012-01-30T23:59:59.000Z

229

Thermal Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

230

E-Print Network 3.0 - axially cracked pressure Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 2 MATERIAL POINT METHOD CALCULATIONS WITH EXPLICIT CRACKS, FRACTURE PARAMETERS, AND CRACK Summary: under axial impact with a crack in the central disk....

231

E-Print Network 3.0 - anomolous fatigue crack Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science ; Engineering 6 Cracking Resistance of Asphalt Rubber Mix Versus Summary: vs. Fracture Mechanics Conventional Fatigue Testing Crack initiation Fracture Mechanics Crack......

232

Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water  

SciTech Connect (OSTI)

Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. For the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.

Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.; Thomas, Larry E.

2012-10-01T23:59:59.000Z

233

Environmentally assisted cracking of LWR materials.  

SciTech Connect (OSTI)

The effect of dissolved oxygen level on fatigue life of austenitic stainless steels is discussed and the results of a detailed study of the effect of the environment on the growth of cracks during fatigue initiation are presented. Initial test results are given for specimens irradiated in the Halden reactor. Impurities introduced by shielded metal arc welding that may affect susceptibility to stress corrosion cracking are described. Results of calculations of residual stresses in core shroud weldments are summarized. Crack growth rates of high-nickel alloys under cyclic loading with R ratios from 0.2-0.95 in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 C are summarized.

Chopra, O. K.; Chung, H. M.; Kassner, T. F.; Park, J. H.; Shack, W. J.; Zhang, J.; Brust, F. W.; Dong, P.

1997-12-05T23:59:59.000Z

234

Crack detection using resonant ultrasound spectroscopy  

DOE Patents [OSTI]

Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

Migliori, A.; Bell, T.M.; Rhodes, G.W.

1994-10-04T23:59:59.000Z

235

Crack detection using resonant ultrasound spectroscopy  

DOE Patents [OSTI]

Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

Migliori, Albert (Santa Fe, NM); Bell, Thomas M. (Santa Fe, NM); Rhodes, George W. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

236

A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain  

SciTech Connect (OSTI)

A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1993-07-01T23:59:59.000Z

237

IDENTIFICATION OF AN {sup 84}Sr-DEPLETED CARRIER IN PRIMITIVE METEORITES AND IMPLICATIONS FOR THERMAL PROCESSING IN THE SOLAR PROTOPLANETARY DISK  

SciTech Connect (OSTI)

The existence of correlated nucleosynthetic heterogeneities in solar system reservoirs is now well demonstrated for numerous nuclides. However, it has proven difficult to discriminate between the two disparate processes that can explain such correlated variability: incomplete mixing of presolar material or secondary processing of a well-mixed disk. Using stepwise acid-leaching of the Ivuna CI-chondrite, we show that unlike other nuclides such as {sup 54}Cr and {sup 50}Ti, Sr-isotope variability is the result of a carrier depleted in {sup 84}Sr. The carrier is most likely presolar SiC, which is known to have both high Sr-concentrations relative to solar abundances and extremely depleted {sup 84}Sr compositions. Thus, variability in {sup 84}Sr in meteorites and their components can be attributed to varying contributions from presolar SiC. The observed {sup 84}Sr excesses in calcium-aluminum refractory inclusions (CAIs) suggest their formation from an SiC-free gaseous reservoir, whereas the {sup 84}Sr depletions present in differentiated meteorites require their formation from material with an increased concentration of SiC relative to CI chondrites. The presence of a positive correlation between {sup 84}Sr and {sup 54}Cr, despite being hosted in carriers of negative and positive anomalies, respectively, is not compatible with incomplete mixing of presolar material but instead suggests that the solar system's nucleosynthetic heterogeneity reflects selective thermal processing of dust. Based on vaporization experiments of SiC under nebular conditions, the lack of SiC material in the CAI-forming gas inferred from our data requires that the duration of thermal processing of dust resulting in the vaporization of CAI precursors was extremely short-lived, possibly lasting only hours to days.

Paton, Chad; Schiller, Martin; Bizzarro, Martin, E-mail: chadpaton@gmail.com, E-mail: schiller@snm.ku.dk, E-mail: bizzarro@snm.ku.dk [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350 (Denmark)

2013-02-01T23:59:59.000Z

238

REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion  

SciTech Connect (OSTI)

This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.

Ballard, Richard O. [Nuclear and Advanced Propulsion Systems Engineering Branch, NASA Marshall Space Flight Center, AL 35812 (United States)

2006-01-20T23:59:59.000Z

239

Fast electromigration crack in nanoscale aluminum film  

SciTech Connect (OSTI)

The current-induced breakage of 20?nm thin aluminum layers deposited onto capacitor grade polypropylene (PP) films is experimentally studied. Biexponential current pulses of different amplitude (10–15?A) and duration (0.1–1??s) were applied to the samples. Breakage occurred after fast development of electromigrating ?200?nm-wide cracks with initial propagation velocity of ?1?m/s under a high current density of ?10{sup 12?}A/m{sup 2}. The cracks stopped when their lengths reached 250–450??m. This behavior is explained by the balance of electromigration and stress-induced atomic fluxes.

Emelyanov, O. A., E-mail: oaemel2@gmail.com; Ivanov, I. O. [St. Petersburg State Polytechnical University, Saint-Petersburg (Russian Federation)

2014-08-14T23:59:59.000Z

240

Interim Report on Thermal Cycling Model Development for Representative Unisolable Piping Configurations (MRP-81)  

SciTech Connect (OSTI)

Thermal fatigue can lead to cracking in dead-ended branch lines attached to PWR primary coolant piping. This interim report describes the results of on-going research to provide an improved screening tool for identification of susceptible piping.

J. Keller, A. Bilanin

2002-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Crack closure effects on fatigue crack growth thresholds and remaining life in an HSLA steel  

SciTech Connect (OSTI)

The effects of crack closure on the near-threshold corrosion fatigue crack growth behavior of Mil S-24645 HSLA steel and its weld metal have been investigated in air, ASTM seawater at the free corrosion potential, and ASTM seawater at {minus}0.8V and {minus}1.0V (SCE) using frequencies of 10, 2, and 0.2 Hz, and a stress ratio, R = 0.1. Remaining life, in the presence and absence of crack closure, has been estimated as a function of applied stress range for a structure containing a 3-mm-deep surface semi-elliptical flaw.

Todd, J.A.; Mostovoy, S. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Mechanical, Materials and Aerospace Engineering; Chen, L. [Texas Instruments, Attleboro, MA (United States); Yankov, E.Y. [A. Finkl and Sons, Chicago, IL (United States)

1997-02-01T23:59:59.000Z

242

Process for upgrading tar sand bitumen  

SciTech Connect (OSTI)

A process is described for upgrading a charge of a tar sand bitumen concentrate containing metal impurities, colloidal calcium-containing clay and water. It consists of contacting the charge in a riser contacting zone in the presence of a low boiling organic solvent with hot fluidizable attrition-resistant substantially catalytically-inert microspheres, which are 20 to 150 microns in diameter and are composed of previously calcined kaolin clay. The contact takes place at high temperature and short contact time, which permits vaporization of the high hydrogen containing components of the bitumen. The period of time is less than that which induces substantial thermal cracking of the charge. At the end of the time the vaporized produce is separated from the microspheres of calcined kaolin clay, the microspheres of calcined kaolin clay now bearing a deposit of combustible solid, metal impurities and adherent particles of colloidal calcium-containing clay originally contained in the bitumen concentrate, immediately reducing the temperature of the vaporized product to minimize thermal cracking and recovering the product for further refining to produce one or more premium products.

Bartholic, D.B.; Reagan, W.J.

1989-02-14T23:59:59.000Z

243

Environmentally assisted cracking in Light Water Reactors: Semiannual report, April 1993--September 1993. Volume 17  

SciTech Connect (OSTI)

This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRS) during the six months from April 1993 to September 1993. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels; (b) EAC of cast stainless steels (SSs); and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions in simulated boiling-water reactor (BWR) water at 289{degree}C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section 11 of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy.

Chopra, O.K.; Chung, H.M.; Karlsen, T.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K. [Argonne National Lab., IL (United States)

1994-06-01T23:59:59.000Z

244

Linking Grain Boundary Structure and Composition to Intergranular Stress Corrosion Cracking of Austenitic Stainless Steels  

SciTech Connect (OSTI)

Grain boundary structure and composition is assessed in austenitic stainless steels along with its influence on intergranular stress corrosion cracking (IGSCC) in high-temperature water. Brief examples are presented illustrating effects of grain boundary character and segregation on behavior in specific light-water-reactor environments. Although grain boundary engineering can produce an increased fraction of special boundaries in austenitic stainless alloys, practical benefits depend on the boundary orientation distribution. It is critical to recognize that only coherent sigma 3s appear to be resistant to SCC and the behavior of other low sigma boundaries is uncertain. Grain boundary composition can have a dominant effect on IGSCC under certain conditions, but altered interfacial chemistry is not required for cracking. In high-potential oxidizing environments, IGSCC susceptibility is a direct function of the boundary Cr concentration. Non-equilibrium thermal segregation of Cr and Mo is often present in millannealed stainless steels and may influence cracking susceptibility. This initial grain boundary composition alters subsequent radiation-induced segregation and delays irradiation-assisted SCC susceptibility to higher doses. Other alloying elements and impurities in 300-series stainless steels have been seen to enrich grain boundaries, but few have any significant impact on IGSCC susceptibility. One exception is Si that strongly segregates during irradiation. recent results suggest that Si may accelerate crack propagation in both low- and high-potential water environments. Critical research is still needed to isolate individual grain boundary characteristics and quantitatively link to IGSCC.

Bruemmer, Stephen M.

2004-08-10T23:59:59.000Z

245

Grain Boundary Structure Effects on Intergranular Stress Corrosion Cracking of  

E-Print Network [OSTI]

Grain Boundary Structure Effects on Intergranular Stress Corrosion Cracking of Alloy X­750 Y. Pan B­of­freedom) and correlations with intergranular stress corrosion cracking observed in Alloy X­750. Orientation imaging

Olson, Tamara

246

Reflective Cracking Study: HVS Test Section Forensic Investigation  

E-Print Network [OSTI]

the asphalt concrete. Summary of Testing on the Underlyingtesting performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the forensic investigation of the HVS rutting and reflective cracking testing

Jones, David; Steven, B.; Harvey, John T

2008-01-01T23:59:59.000Z

247

Time-resolved measurement of photon emission during fast crack propagation in three-point bending fracture of silica glass and soda lime glass  

SciTech Connect (OSTI)

Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645–655?nm) was observed during the entire crack propagation process, whereas intense PE (430–490?nm and 500–600?nm) was observed during the initial stages of propagation. In contrast, only weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.

Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S7-13 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)] [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S7-13 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

2014-03-10T23:59:59.000Z

248

Catalytic cracking of a Gippsland reduced crude on zeolite catalysts  

SciTech Connect (OSTI)

Cracking reactions of a Gippsland reduced crude have been investigated at 520[degrees]C over HY and HZSM-5. Gasolines with similar characteristics can be obtained on both zeolites, although the mechanistic routes to these products are quite distinct. Changes in aromatic product selectivities are consistent with the zeolite pore geometries. Minor quantities of aromatics are formed via hydrogen transfer processes involving product olefins and naphthenes over the faujasite and the cyclization (and to a lesser extent oligomerization) of olefinic species on the pentasil. Dehydrogenation of naphthenic species in the feedstock is also important for aromatic formation. While paraffins are formed via hydrogen transfer processes together with cracking and isomerization of feed paraffins on HY, only the latter route can explain formation of saturated species on HZSM-5. The removal of linear paraffins from the GRC was traced as a function of conversion on HY. It was found that the relative reactivity of the linear paraffins increased monotonically with paraffin chain length. 43 refs., 11 figs., 8 tabs.

Guerzoni, F.N.; Abbot, J. (Univ. of Tasmania (Australia))

1994-06-01T23:59:59.000Z

249

Permeability and elastic properties of cracked glass under pressure A. OugierSimonin,1  

E-Print Network [OSTI]

corrosion, which should be considered in further study. Citation: OugierSimonin, A., Y. Guéguen, J. Fortin issues (stability of boreholes, stimulation of oil and geother- mal reservoirs, the design of tunnels on slow crack growth and stress corrosion processes [Wiederhorn, 1966; Anderson and Grew, 1977; Atkinson

Fortin, Jérôme

250

Process of welding gamma prime-strengthened nickel-base superalloys  

DOE Patents [OSTI]

A process for welding superalloys, and particularly articles formed of gamma prime-strengthened nickel-base superalloys whose chemistries and/or microstructures differ. The process entails forming the faying surface of at least one of the articles to have a cladding layer of a filler material. The filler material may have a composition that is different from both of the articles, or the same as one of the articles. The cladding layer is machined to promote mating of the faying surfaces, after which the faying surfaces are mated and the articles welded together. After cooling, the welded assembly is free of thermally-induced cracks.

Speigel, Lyle B.; White, Raymond Alan; Murphy, John Thomas; Nowak, Daniel Anthony

2003-11-25T23:59:59.000Z

251

Process development and techno-economic analysis of a novel process for MeOH production from CO2 using solar-thermal energy.  

SciTech Connect (OSTI)

Mitigating and overcoming environmental problems brought about by the current worldwide fossil fuel-based energy infrastructure requires the creation of innovative alternatives. In particular, such alternatives must actively contribute to the reduction of carbon emissions via carbon recycling and a shift to the use of renewable sources of energy. Carbon neutral transformation of biomass to liquid fuels is one of such alternatives, but it is limited by the inherently low energy efficiency of photosynthesis with regard to the net production of biomass. Researchers have thus been looking for alternative, energy-efficient chemical routes inspired in the biological transformation of solar power, CO2 and H2O into useful chemicals; specifically, liquid fuels. Methanol has been the focus of a fair number of publications for its versatility as a fuel, and its use as an intermediate chemical in the synthesis of many compounds. In some of these studies, (e.g. Joo et al., (2004), Mignard and Pritchard (2006), Galindo and Badr (2007)) CO2 and renewable H2 (e.g. electrolytic H2) are considered as the raw materials for the production of methanol and other liquid fuels. Several basic PFD diagrams have been proposed. One of the most promising is the so called CAMERE process (Joo et al., 1999 ). In this process, carbon dioxide and renewable hydrogen are fed to a first reactor and transformed according to: H2 + CO2 <=> H2O + CO Reverse Water Gas Shift (RWGS) After eliminating the produced water the resulting H2/CO2/CO mixture is then feed to a second reactor where it is converted to methanol according to: CO2 + 3.H2 <=> CH3OH + H2O Methanol Synthesis (MS) CO + H2O <=> CO2 + H2 Water Gas Shift (WGS) The approach here is to produce enough CO to eliminate, via WGS, the water produced by MS. This is beneficial since water has been proven to block active sites in the MS catalyst. In this work a different process alternative is presented: One that combines the CO2 recycling of the CAMERE process and the use of solar energy implicit in some of the biomass-based process, but in this case with the potential high energy efficiency of thermo-chemical transformations.

Henao, Carlos (University of Wisconsin); Kim, Jiyong (University of Wisconsin); Johnson, Terry Alan; Stechel, Ellen Beth; Dedrick, Daniel E.; Maravelias, Christos T. (University of Wisconsin); Miller, James Edward

2010-11-01T23:59:59.000Z

252

Task 3.9 -- Catalytic tar cracking. Semi-annual report, January 1--June 30, 1995  

SciTech Connect (OSTI)

Tar produced in the gasification of coal is deleterious to the operation of downstream equipment including fuel cells, gas turbines, hot-gas stream cleanup filters, and pressure swing adsorption systems. Catalytic cracking of tars to smaller hydrocarbons can be an effective means to remove these tars from gas streams and, in the process, generate useful products, e.g., methane gas, which is crucial to the operation of molten carbonate fuel cells. The objectives of this project are to investigate whether gasification tars can be cracked by synthetic nickel-substituted micamontmorillonite, zeolite, or dolomite material; and whether the tars can be cracked selectively by these catalysts to produce a desired liquid and/or gas stream. Results to date are presented in the cited papers.

Young, B.C.; Timpe, R.C.

1995-12-31T23:59:59.000Z

253

Progressive flow cracking of coal/oil mixtures with high metals content catalyst  

SciTech Connect (OSTI)

This patent describes a process for economically producing liquid fuel products at least partly from coal. It comprises: introducing a progressive flow catalytic cracking zone a charge stock comprising a pumpable mixture of solid, particulate coal and carbo-metallic oil and forming within the zone a stream having a linear velocity of at least about 25 feet per second. The stream comprising the charge stock and a hydrocarbon zeolite cracking catalyst promoting dehydrogenation of the charge stock; forming mobile hydrogen within the zone by the dehydrogenation; introducing the mobile hydrogen into the stream by dehydrogenation of the charge stock in the absence of added molecular hydrogen, thereby producing liquid products from the charge stock while laying down coke on the hydrocarbon cracking catalyst in the range of about 0.3% to about 3% and thereby producing spent catalyst; separating from the spent catalyst the liquid products.

Zandona, O.J.

1989-10-10T23:59:59.000Z

254

Nanoparticulate-catalyzed oxygen transfer processes  

DOE Patents [OSTI]

Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

Hunt, Andrew T. (Atlanta, GA); Breitkopf, Richard C. (Dunwoody, GA)

2009-12-01T23:59:59.000Z

255

Environmentally assisted cracking in light water reactors  

SciTech Connect (OSTI)

This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

1996-07-01T23:59:59.000Z

256

Digital radiographic systems detect boiler tube cracks  

SciTech Connect (OSTI)

Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

Walker, S. [EPRI, Charlotte, NC (United States)

2008-06-15T23:59:59.000Z

257

CRACKING OF PIc NUCLEAR CONTAINMENT STRUCTURES  

E-Print Network [OSTI]

CRACKING OF PIc NUCLEAR CONTAINMENT STRUCTURES By Sami H. Rizkalla,l Sidney H. Simmonds': and James structures for some Canadian nuclear reactors consist of a heavy concrete base, a cylindrical wall, a ring the design accident pressure. This would result in the walls and dome of the containment being stressed

258

NORTHWESTERN UNIVERSITY Autonomous Crack Comparometer Phase II  

E-Print Network [OSTI]

program between the two universities. Thanks are also given to the staff of the Infrastructure Technology Institute and in particular Dan Marron for all his advice and assistance during the project. I would like that daily and weekly weather related crack displacements are greater than those produced by dynamic events

259

Stress corrosion cracking and crack tip characterization of Alloy X-750 in light water reactor environments  

E-Print Network [OSTI]

Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

Gibbs, Jonathan Paul

2011-01-01T23:59:59.000Z

260

Stress Corrosion Cracking and Crack Tip Characterization of Alloy X-750 in Light Water Reactor Environments  

E-Print Network [OSTI]

Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

Gibbs, Jonathan Paul

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enhanced ultrasonic detection of fatigue cracks by laser-induced crack closure  

E-Print Network [OSTI]

, corrosion, etc. . Sec- ond, it is important to distinguish small fatigue cracks as early as possible after threshold in aluminum, aluminum­ lithium, and titanium alloys.1 For example, extensive multiple-site fatigue

Nagy, Peter B.

262

CRACK STATISTIC OF CRYSTALLINE SILICON PHOTOVOLTAIC MODULES M. Kntges1  

E-Print Network [OSTI]

the risk of cracks, as well as for statistical power loss assessment. Keywords: PV module, micro cracks separation, thus resulting in inactive cell parts. For this special case a clear assessment of the power loss this gap and provide a first statistic of cracks in PV modules for future power loss assessment

263

Characterization of cracking restraint at sawcut joints using the German Cracking Frame  

E-Print Network [OSTI]

. . 7 Percentage cracks vs. time aAer placement in bike trail concrete. . . , . . . . . . 8. Development of cracking stress and strength vs. time atter placement of bike trail concrete 9. Equivalent temperature difference (between the slab top... and bottom) vs. time after placement in the bike trail concrete. . . . . . . . . . . . . , , . . . . . . . . 10, Relative humidity at 0. 75 inches below surface vs. time after placement for the bike trail concrete 11. Calculated shrinkage vs. time aAer...

Vepakomma, Shilpa

2002-01-01T23:59:59.000Z

264

A review of test results on parabolic dish solar thermal power modules with dish-mounted rankine engines and for production of process steam  

SciTech Connect (OSTI)

This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

Jaffe, L.D.

1988-11-01T23:59:59.000Z

265

Ashland Oil Inc. has new heavy oil cracking technology  

SciTech Connect (OSTI)

Ashland's new ''Reduced Crude Conversion'' is a fluid catalytic cracking process that permits more efficient use of the bottoms of the crude barrel, including the production of a given amount of gasoline from 20% less crude. Gasoline yields go from 49.8% for Arabian light crudes to 56.9% for Murban crudes. The new process, details of which have not been revealed, operates at ''high'' temperatures and about 1 atm; requires no feed hydrogen (and therefore, according to Ashland, compares favorably with hydrocracking); is not inhibited by catalyst poisons such as nickel and vanadium, even though these metals might adhere to the proprietary catalyst; and probably uses a zeolite catalyst. Ashland is planning a $70 million, 40,000 bbl/day unit which is scheduled to go on stream in 1982 at its Catlettsburg, Ky., refinery.

Not Available

1980-04-21T23:59:59.000Z

266

Development of Spatio-Temporal Wavelet Post Processing Techniques for Application to Thermal Hydraulic Experiments and Numerical Simulations  

E-Print Network [OSTI]

for Re=2.06E5 .................... 55 xiv Page Figure 34 Zoom of 1D Wavelet transform after the SEO for Re=2.06E5 ....................... 56 Figure 35 1D Wavelet transform semblance plot of low frequency pressure signals before and after the SEO... fields of straddling PTV ?t sensitivity study for times (a) 0.001s, (b) 0.0005s, (c) 0.00033s, and (d) 0.00025s at z=3.0? ........................ 75 Figure 56 Sensitivity study to the number of image pairs used in averaging process...

Salpeter, Nathaniel

2012-07-16T23:59:59.000Z

267

Why Do Kraft Recovery Boiler Composite Floor Tubes Crack?  

SciTech Connect (OSTI)

Cracks were first reported in 1992 in co-extruded 304L stainless steel/SA210 Gd Al carbon steel floor tubes of North American black liquor recovery boilers. Since then, a considerable amount of information has been collected on the tube environment, crack characteristics, the stress state of the tubes, and the crack initiation and propagation mechanisms. These studies have identified both operating procedures that apparently can greatly lessen the likelihood of crack formation in the stainless steel layer and alternate materials that appear to be much more resistant to cracking than is 304L stainless.

Keiser, J.R.

2001-10-22T23:59:59.000Z

268

Residual stresses and stress corrosion cracking in pipe fittings  

SciTech Connect (OSTI)

Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.

Parrington, R.J.; Scott, J.J.; Torres, F.

1994-06-01T23:59:59.000Z

269

Soil cracking modelling using the mesh-free SPH method  

E-Print Network [OSTI]

The presence of desiccation cracks in soils can significantly alter their mechanical and hydrological properties. In many circumstances, desiccation cracking in soils can cause significant damage to earthen or soil supported structures. For example, desiccation cracks can act as the preference path way for water flow, which can facilitate seepage flow causing internal erosion inside earth structures. Desiccation cracks can also trigger slope failures and landslides. Therefore, developing a computational procedure to predict desiccation cracking behaviour in soils is vital for dealing with key issues relevant to a range of applications in geotechnical and geo-environment engineering. In this paper, the smoothed particle hydrodynamics (SPH) method will be extended for the first time to simulate shrinkage-induced soil cracking. The main objective of this work is to examine the performance of the proposed numerical approach in simulating the strong discontinuity in material behaviour and to learn about the crack ...

Bui, H H; Kodikara, J; Sanchez, M

2015-01-01T23:59:59.000Z

270

Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking  

SciTech Connect (OSTI)

A successful four-year project on the modeling and optimization of direct chill (DC) casting to reduce ingot cracking has been completed. The project involved close collaboration among private industries, national laboratories, and universities. During the four-year project, 16 quarterly meetings brought the industrial partners and the research team together for discussion of research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot. The collaborative research resulted in several major accomplishments or findings: (1) Surface cracks were shown to be a result of hot tearing rather than cold cracks, as was thought before this project. These cracks form on the surface of a DC cast ingot just above the impingement point of the secondary cooling water jets. The cracks form along dendrite and grain boundaries, where solute and impurity elements are highly segregated. This understanding led to the development of a new technique for determining the mechanical properties in the nonequilibrium mushy zone of alloys and to thermodynamic predictions of the hot tearing propensity of DC cast ingots. (2) The apparent heat transfer coefficient (HTC) at the ingot surface in the water cooling region during DC casting was determined on the basis of temperature measurements in commercial DC casting ingots and an inverse heat transfer analysis. HTCs were calculated as a function of temperature and time, and covered the different regimes of heat transfer expected during DC casting. The calculated values were extrapolated to include the effect of water flow rate. The calculated HTCs had a peak at around 200 C, corresponding to the high heat transfer rates during nucleate boiling, and the profile was consistent with similar data published in the literature. (3) A new method, termed the reheating-cooling method (RCM), was developed and validated for measuring mechanical properties in the nonequilibrium mushy zones of alloys. The new method captures the brittle nature of aluminum alloys at temperatures close to the nonequilibrium solidus temperature, while specimens tested using the reheating method exhibit significant ductility. The RCM has been used for determining the mechanical properties of alloys at nonequilibrium mushy zone temperatures. Accurate data obtained during this project show that the metal becomes more brittle at high temperatures and high strain rates. (4) The elevated-temperature mechanical properties of the alloy were determined. Constitutive models relating the stress and strain relationship at elevated temperatures were also developed. The experimental data fit the model well. (5) An integrated 3D DC casting model has been used to simulate heat transfer, fluid flow, solidification, and thermally induced stress-strain during casting. A temperature-dependent HTC between the cooling water and the ingot surface, cooling water flow rate, and air gap were coupled in this model. An elasto-viscoplastic model based on high-temperature mechanical testing was used to calculate the stress during casting. The 3D integrated model can be used for the prediction of temperature, fluid flow, stress, and strain distribution in DC cast ingots. (6) The cracking propensity of DC cast ingots can be predicted using the 3D integrated model as well as thermodynamic models. Thus, an ingot cracking index based on the ratio of local stress to local alloy strength was established. Simulation results indicate that cracking propensity increases with increasing casting speed. The composition of the ingots also has a major effect on cracking formation. It was found that copper and zinc increase the cracking propensity of DC cast ingots. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks in DC castings from a current level of 5% down to 2%. This could lead to energy savings

Das, Subodh K.

2006-01-09T23:59:59.000Z

271

The Stress Corrosion Crack Growth Rate of Alloy 600 Heat Affected Zones Exposed to High Purity Water  

SciTech Connect (OSTI)

Grain boundary chromium carbides improve the resistance of nickel based alloys to primary water stress corrosion cracking (PWSCC). However, in weld heat affected zones (HAZ's), thermal cycles from fusion welding can solutionize beneficial grain boundary carbides, produce locally high residual stresses and strains, and promote PWSCC. The present research investigates the crack growth rate of an A600 HAZ as a function of test temperature. The A600 HAZ was fabricated by building up a gas-tungsten-arc-weld deposit of EN82H filler metal onto a mill-annealed A600 plate. Fracture mechanics based, stress corrosion crack growth rate testing was performed in high purity water between 600 F and 680 F at an initial stress intensity factor of 40 ksi {radical}in and at a constant electrochemical potential. The HAZ samples exhibited significant SCC, entirely within the HAZ at all temperatures tested. While the HAZ samples showed the same temperature dependence for SCC as the base material (HAZ: 29.8 {+-} 11.2{sub 95%} kcal/mol vs A600 Base: 35.3 {+-} 2.58{sub 95%} kcal/mol), the crack growth rates were {approx} 30X faster than the A600 base material tested at the same conditions. The increased crack growth rates of the HAZ is attributed to fewer intergranular chromium rich carbides and to increased plastic strain in the HAZ as compared to the unaffected base material.

George A. Young; Nathan Lewis

2003-04-05T23:59:59.000Z

272

SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS  

SciTech Connect (OSTI)

Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

Klein, J; Jeffrey Holder, J

2007-07-16T23:59:59.000Z

273

Circumferential cracking of steam generator tubes  

SciTech Connect (OSTI)

On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

Karwoski, K.J.

1997-04-01T23:59:59.000Z

274

CDF central preshower and crack detector upgrade  

SciTech Connect (OSTI)

The CDF Central Preshower and Crack Detector Upgrade consist of scintillator tiles with embedded wavelength-shifting fibers, clear-fiber optical cables, and multi-anode photomultiplier readout. A description of the detector design, test results from R&D studies, and construction phase are reported. The upgrade was installed late in 2004, and a large amount of proton-antiproton collider data has been collected since then. Detector studies using those data are also discussed.

Artikov, A.; Boudagov, J.; Chokheli, D.; Drake, G.; Gallinaro, M.; Giunta, M.; Grudzinski, J.; Huston, J.; Iori, M.; Kim, D.; Kim, M.; /Dubna, JINR /Argonne /Rockefeller

2007-02-01T23:59:59.000Z

275

Chemical analysis of HfO{sub 2}/Si (100) film systems exposed to NH{sub 3} thermal processing  

SciTech Connect (OSTI)

Nitrogen incorporation in HfO{sub 2}/SiO{sub 2} films utilized as high-k gate dielectric layers in advanced metal-oxide-semiconductor field effect transistors has been investigated. Thin HfO{sub 2} blanket films deposited by atomic layer deposition on either SiO{sub 2} or NH{sub 3} treated Si (100) substrates have been subjected to NH{sub 3} and N{sub 2} anneal processing. Several high resolution techniques including electron microscopy with electron energy loss spectra, grazing incidence x-ray diffraction, and synchrotron x-ray photoelectron spectroscopy have been utilized to elucidate chemical composition and crystalline structure differences between samples annealed in NH{sub 3} and N{sub 2} ambients as a function of temperature. Depth profiling of core level binding energy spectra has been obtained by using variable kinetic energy x-ray photoelectron spectroscopy with tunable photon energy. An 'interface effect' characterized by a shift of the Si{sup 4+} feature to lower binding energy at the HfO{sub 2}/SiO{sub 2} interface has been detected in the Si 1s spectra; however, no corresponding chemical state change has been observed in the Hf 4f spectra acquired over a broad range of electron take-off angles and surface sensitivities. The Si 2p spectra indicate Si-N bond formation beneath the HfO{sub 2} layer in the samples exposed to NH{sub 3} anneal. The NH{sub 3} anneal ambient is shown to produce a metastable Hf-N bond component corresponding to temperature driven dissociation kinetics. These findings are consistent with elemental profiles across the HfO{sub 2}/Si(100) interface determined by electron energy loss spectroscopy measurements. X-ray diffraction measurements on similarly treated films identify the structural changes resulting from N incorporation into the HfO{sub 2} films.

Lysaght, Patrick S.; Barnett, Joel; Bersuker, Gennadi I.; Woicik, Joseph C.; Fischer, Daniel A.; Foran, Brendan; Tseng, Hsing-Huang; Jammy, Raj [Front End Process Division, SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741-6499 (United States); National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Physical Characterization Laboratory, Advanced Technology Development Facility, 2706 Montopolis Drive, Austin, Texas 78741-6499 (United States); Front End Process Division, SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741-6499 (United States)

2007-01-15T23:59:59.000Z

276

The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb  

SciTech Connect (OSTI)

Zirconium alloys are susceptible to a stable cracking process called delayed hydride cracking (DHC). DHC has two stages: (a) crack initiation that requires a minimum crack driving force (the threshold stress intensity factor, K{sub IH}) and (b) stable crack growth that is weakly dependent on K{sub l}. The value of K{sub lH} is an important element in determining the tolerance of components to sharp flaws. The rate of cracking is used in estimating the action time for detecting propagating cracks before they become unstable. Hence, it is important for reactor operators to know how these properties change during service in reactors where the components are exposed to neutron irradiation at elevated temperatures. DHC properties were measured on a number of components, made from the two-phase alloy Zr-2.5 Nb, irradiated at temperatures in the range of 250 to 290 C in fast neutron fluxes (E {>=} 1 MeV) between 1.6 {times} 10{sup 17} and 1.8 {times} 10{sup 18} n/m{sup 2} {center_dot} s to fluences between 0.01 {times} 10{sup 25} and 9.8 {times} 10{sup 25} n/m{sup 2}. The neutron irradiation reduced K{sub IH} by about 20% and increased the velocity of cracking by a factor of about five. The increase in crack velocity was greatest with the lowest irradiation temperature. These changes in the rack velocity by neutron irradiation are explained in terms of the combined effects of irradiation hardening associated with increased -type dislocation density, and {beta}-phase decomposition. While the former process increases crack velocity, the latter process decrease it. The combined contribution is controlled by the irradiation temperature. X-ray diffraction analyses showed that the degree of {beta}-phase decomposition was highest with an irradiation temperature of 290 C while -type dislocation densities were highest with an irradiation temperature of 250 C.

Sagat, S.; Coleman, C.E.; Griffiths, M. [AECL Research, Chalk River, Ontario (Canada); Wilkins, B.J.S. [AECL Research, Pinawa, Manitoba (Canada)

1994-12-31T23:59:59.000Z

277

Improve corrosion control in refining processes  

SciTech Connect (OSTI)

New guidelines show how to control corrosion and environmental cracking of process equipment when processing feedstocks containing sulfur and/or naphthenic acids. To be cost competitive refiners must be able to process crudes of opportunity. These feedstocks when processed under high temperatures and pressures and alkaline conditions can cause brittle cracks and blisters in susceptible steel-fabricated equipment. Even with advances in steel metallurgy, wet H{sub 2}S cracking continues to be a problem. New research data shows that process conditions such as temperature, pH and flowrate are key factors in the corrosion process. Before selecting equipment material, operators must understand the corrosion mechanisms present within process conditions. Several case histories investigate the corrosion reactions found when refining naphthenic crudes and operating amine gas-sweetening systems. These examples show how to use process controls, inhibitors and/or metallurgy to control corrosion and environmental cracking, to improve material selection and to extend equipment service life.

Kane, R.D.; Cayard, M.S. [CLI International, Houston, TX (United States)

1995-11-01T23:59:59.000Z

278

High-Resolution Crack Imaging Reveals Degradation Processes in Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein theSurfactant-Assisted Fabrication. |Reactor

279

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

280

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

E-Print Network [OSTI]

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

2009-01-01T23:59:59.000Z

282

Method and apparatus for generating a natural crack  

DOE Patents [OSTI]

A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A nonsustained single pressure pulse is then generated in the vicinity of the primary notch, reuslting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

Fulton, F.J.; Honodel, C.A.; Holman, W.R.; Weingart, R.C.

1982-05-06T23:59:59.000Z

283

Computational simulations of latent heat thermal energy storage systems - with innovative and first-principles based simulation for the underlying unsteady melting (and solidification) processes.  

E-Print Network [OSTI]

?? This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such… (more)

Gumaste, Rohan Achyut

2011-01-01T23:59:59.000Z

284

Radiation-induced instability of MnS precipitates and its possible consequences on irradiation-induced stress corrosion cracking of austenitic stainless steels  

SciTech Connect (OSTI)

Irradiation-assisted stress corrosion cracking (IASCC) is a significant materials issue for the light water reactor (LWR) industry and may also pose a problem for fusion power reactors that will use water as coolant. A new metallurgical process is proposed that involves the radiation-induced release into solution of minor impurity elements not usually thought to participate in IASCC. MnS-type precipitates, which contain most of the sulfur in stainless steels, are thought to be unstable under irradiation. First, Mn transmutes strongly to Fe in thermalized neutron spectra. Second, cascade-induced disordering and the inverse Kirkendall effect operating at the incoherent interfaces of MnS precipitates are thought to act as a pump to export Mn from the precipitate into the alloy matrix. Both of these processes will most likely allow sulfur, which is known to exert a deleterious influence on intergranular cracking, to re-enter the matrix. To test this hypothesis, compositions of MnS-type precipitates contained in several unirradiated and irradiated heats of Type 304, 316, and 348 stainless steels (SSs) were analyzed by Auger electron spectroscopy. Evidence is presented that shows a progressive compositional modification of MnS precipitates as exposure to neutrons increases in boiling water reactors. As the fluence increases, the Mn level in MnS decreases, whereas the Fe level increases. The S level also decreases relative to the combined level of Mn and Fe. MnS precipitates were also found to be a reservoir of other deleterious impurities such as F and O which could be also released due to radiation-induced instability of the precipitates.

Chung, H.M.; Sanecki, J.E. [Argonne National Lab., IL (United States); Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

1996-12-01T23:59:59.000Z

285

CYCLIC PLASTICITY OF A CRACKED STRUCTURE SUBJECTED TO MIXED MODE LOADING  

E-Print Network [OSTI]

CYCLIC PLASTICITY OF A CRACKED STRUCTURE SUBJECTED TO MIXED MODE LOADING Sylvie Pommier1, a 1 LMT, mixed mode crack propagation, plasticity, crack deflection. Abstract. Cyclic plasticity in the crack tip stresses in the overload's plastic zone. Moreover, if the overload's ratio is large enough, the crack may

286

LOW-FREQUENCY PHASED-ARRAY METHODS FOR CRACK DETECTION IN CAST AUSTENITIC PIPING COMPONENTS  

SciTech Connect (OSTI)

Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examination (NDE) approaches for inspecting coarse-grained, austenitic stainless steel reactor components. The work provides information to the United States Nuclear Regulatory Commission (NRC) on the utility, effectiveness, limitations, and reliability of advanced inspection techniques for application on safety-related components in commercial nuclear power plants. This paper describes results from recent assessments using a low-frequency phased-array methodology for detecting cracks in cast austenitic piping welds. Piping specimens that contain thermal and mechanical fatigue cracks located adjacent to welds were examined. The specimens have surface geometrical conditions and weld features that simulate portions of primary piping systems in many U.S. pressurized water reactors (PWRs). In addition, segments of vintage centrifugally cast piping were examined to assess inherent acoustic noise and scattering due to grain structures and determine consistency of ultrasonic (UT) responses from varied circumferential locations. The phased-array UT methods were applied from the outside surface of the specimens using automated scanning devices and water coupling, and employed a modified instrument operating between 500 kHz and 1.0 MHz. Composite volumetric images of the specimens were generated. Results from laboratory studies for assessing crack detection and sizing effectiveness are discussed, including acoustic parameters observed in centrifugally cast piping base materials.

Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

2008-01-01T23:59:59.000Z

287

P wave anisotropy, stress, and crack distribution at Coso geothermal...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: P wave anisotropy, stress, and crack distribution at Coso geothermal field, California...

288

Physics-Based Stress Corrosion Cracking Component Reliability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework Draft Report Supporting Technology Inputs to the Risk-...

289

White-Etching Crack Failure Overview, Tomography Analysis, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

White-Etching Crack Failure Overview, Tomography Analysis, and Test Development Presented by Aaron Greco of Argonne National Laboratory at the Wind Turbine Tribology Seminar 2014....

290

Investigation of White Etching Crack (WEC) Formation Mechanisms...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of White Etching Crack (WEC) Formation Mechanisms Under Non-hydrogen Charged Test Conditions Presented by Alex Richardson, Afton Chemical (representing University of...

291

Tribological Analysis of White Etching Crack (WEC) Failures in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crack (WEC) Failures in Rolling Element Bearings Presented by Arnaud Ruellan, INSA de Lyon at the Wind Turbine Tribology Seminar 2014. 20141030NREL2014ArgonneRuellancomV...

292

Solar-thermal reaction processing  

DOE Patents [OSTI]

In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

2014-03-18T23:59:59.000Z

293

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

Copeland, R.J.

1981-08-01T23:59:59.000Z

294

Cracking in reinforced concrete bent caps  

E-Print Network [OSTI]

) . . . . . . . . . . . . . . . . 4. 2 Group It2 Response (Specimens 3C, 3D, 4C, 4E, 5D, 5E) . . . 4. 3 Group tt3 Response (Specimens 6F, 6G, 7F, 7H, 8G, 8H) . . . 4. 4 General Response 4. 5 Sununary. . . . . 49 . . . . 58 . . . . 64 70 . . . 75 5. STRUT-AND-TIE MODELING... be expressed as the product of the steel strain (s, ) at that level multiplied by the crack spacing (s, ); 20 w =z*s C S C (2. 6) a linear strain gradient can be used to project the maximum strain occurring at the level of the flexural reinforcement...

Young, Bradley S.

2000-01-01T23:59:59.000Z

295

3:2:1 Crack Spread  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotal (Data from:2:1 Crack Spread

296

Crack opening area estimates in pressurized through-wall cracked elbows under bending  

SciTech Connect (OSTI)

One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

Franco, C.; Gilles, P.; Pignol, M.

1997-04-01T23:59:59.000Z

297

An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects  

SciTech Connect (OSTI)

In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, FRT, Institut Jean Le Rond D'Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr l'Ecole (France); Guibert, Philippe [UPMC Universite Paris 06, FRT, Institut Jean Le Rond D'Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr l'Ecole (France)

2008-11-15T23:59:59.000Z

298

Composite tube cracking in kraft recovery boilers: A state-of-the-art review  

SciTech Connect (OSTI)

Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

1997-07-01T23:59:59.000Z

299

Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material  

SciTech Connect (OSTI)

Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22 (used for the waste package outer barrier) and Titanium Grade 7 (used for the drip shield) that are subjected to the effects of stress corrosion cracking. The use of laser peening or other residual stress mitigation techniques is considered as a means of mitigating stress corrosion cracking in the waste package final closure lid weld.

G. Gordon

2004-10-13T23:59:59.000Z

300

E-Print Network 3.0 - applications crack growth Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that the critical crack-tip opening angle (CTOA) value measured on the specimen... fracture changes a Mode-I type of crack growth to a mixed-mode IIII type of crack growth. It...

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nickel electroplating of steam generator tubes (kiss sleeving process)  

SciTech Connect (OSTI)

This process, the nickel electroplating of steam generator tubes, has been jointly developed under a Belgatom (Laborelec) and Framatome agreement with shared experience gained by both companies, industrial applications being under the responsibility of Framatome. Application of the coating in zones where residual stresses or cracks are present prevents contact between the primary water and the tube, which stops the stress corrosion process. In the Doel 2 plant, 91 tubes have been plated since 1985, and different sets of parameters have been used for comparison purposes. Among these tubes, 9 have been preventively plugged because of defective plating, 9 have been pulled out for laboratory examinations, 2 just after plating and 7 after 1 or 2 yr of service. There are 73 plated tubes still in service. From the tests that were performed, it was possible to select an optimized set of parameters guaranteeing the following properties: bridging of existing cracks and good behavior of the coating in relevant zones, good adhesion to the Inconel tube, high ductility, low residual stresses, thermal shock resistance, corrosion resistance, erosion resistance, and low cobalt content. The licensability of this process is being completed. It is based first on the leak-before-break concept to determine the characteristics of the nickel plating, thickness in particular, and second on the inspectability of ultrasonic testing methods.

Michaut, B.

1988-01-01T23:59:59.000Z

302

The Influence of Crystallographic Orientation on Crack Tip Displacements of  

E-Print Network [OSTI]

consists of 212 randomly shaped, sized and oriented grains, loaded monotonically in uniaxial tension to a maximum load of 0.9Rp0.2 (240 MPa). The influence that a random grain structure imposes on a Stage I crack will preferably follow the slip plane where the crack tip opening displacement is highest, we show

Cizelj, Leon

303

Fracture mechanics analysis of slow crack growth in polyethylene  

E-Print Network [OSTI]

Slow crack growth in polyethylene is often the limiting factor in long-term service of plastic pipe or other structural applications. A new test method and analysis method was developed to study slow crack growth in polyethylene. Two high density...

Self, Robert Alan

1997-01-01T23:59:59.000Z

304

NORTHWESTERN UNIVERSITY Crack Response to Weather Effects, Blasting, and Construction  

E-Print Network [OSTI]

NORTHWESTERN UNIVERSITY Crack Response to Weather Effects, Blasting, and Construction Vibrations Acknowledgements iii Abstract iv List of Figures v List of Tables xi Chapter 1- Introduction 1 Chapter 2- Blast Vibration Response, Southbury, Connecticut 5 Structural Description Instrumentation Blast Response Crack

305

Crack-based analysis of concrete with brittle reinforcement  

E-Print Network [OSTI]

{ FaberMaunsell Ltd; University of Cambridge Brittle reinforcement (such as fibre-reinforced plastic to the surround- ing concrete, at a crack surface sL=sR s on the left/right side of a crack u increase in unbonded

Burgoyne, Chris

306

Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models  

SciTech Connect (OSTI)

The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip.

Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

1995-02-22T23:59:59.000Z

307

SciTech Connect: Stress corrosion cracking of alloy 600 using...  

Office of Scientific and Technical Information (OSTI)

Stress corrosion cracking of alloy 600 using the constant strain rate test Citation Details In-Document Search Title: Stress corrosion cracking of alloy 600 using the constant...

308

E-Print Network 3.0 - assisted cracking resistance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

crack... and the time-dependent, environmentally-assisted, crack initiation and subcritical growth in the oxide layer... of exploring these prin- ciples is seen in Figure 5....

309

E-Print Network 3.0 - automated crack inspection Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

through micro cracks in the composite material... system with micro cracking induced damage is carried out. The effective permeability due ... Source: Popov, Peter - Institute of...

310

Demetallization of asphaltenes: Thermal and catalytic effects with small-pore catalysts  

SciTech Connect (OSTI)

Residual oil hydrotreating has become an important front end process in commercial oil upgrading schemes because of tighter environmental regulations and a continuing trend toward processing heavier crudes. At Phillips Petroleum, residual oil hydrotreating pretreates feed for heavy oil cracking (HOC) by removing sulfur, a pollutant in the HOC stack gas, and metals such as nickel and vanadium, which adversely affect the cracking catalyst and gasoline yield in the HOC. Metals in residual oil are found almost exclusively in the resin and asphaltene fractions. Research has showed that metals in the resin fraction react more rapidly than metals in the asphaltene fraction. The hydrodemetallization (HDM) reaction is known to be diffusion limited and the larger molecular size of the asphaltene molecules may explain the slower reaction rates. Richardson and Alley and Asaoka, et al. have shown a reduction in asphaltene molecular weights with thermal and catalytic processing. Reynolds and Biggs demonstrated shifts in vanadium size distributions from thermally and catalytically treated residual. Recently Savage and Javanmaridian showed theoretically that reduction in molecular sizes external to catalyst pellets increases the reaction rate by as much as the inverse of the effectiveness factor. This work attempts to extend information on how metals are removed from asphaltenes and the interaction with small-pore catalysts generally found at the back end of residual oil hydrotreaters, where they are protected from deactivation by metal deposition. The small-pore catalysts are generally high in hydrodesulfurization (HDS) activity and generally restrict the large asphaltene molecules from entering their pores and depositing metals.

Adarme, R. (Oklahoma State Univ., Stillwater, OK (United States)); Sughrue, E.L.; Johnson, M.M.; Kidd, D.R.; Phillips, M.D.; Shaw, J.E. (Phillips Petroleum Co., Bartlesville, OK (United States))

1990-08-01T23:59:59.000Z

311

Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds  

E-Print Network [OSTI]

performed as a function of mechanical inplane strain levels, heating rates, and number of thermal cycles. The apparatus generated cracks related to the in-plane stresses (or strains) on plies. The design and analysis concept of the synergistic stress...

Ju, Jaehyung

2006-10-30T23:59:59.000Z

312

In-Line Crack and Stress Detection in Silicon Solar Cells Using Resonance Ultrasonic Vibrations  

SciTech Connect (OSTI)

Statement of Problem and Objectives. Wafer breakage in automated solar cell production lines is identified as a major technical problem and a barrier for further cost reduction of silicon solar module manufacturing. To the best of our knowledge, there are no commercial systems addressing critical needs for in-line inspection of the mechanical quality of solar wafers and cells. The principal objective of the SBIR program is to validate through experiments and computer modeling the applicability of the Resonance Ultrasonic Vibrations system, which ultimately can be used as a real-time in-line manufacturing quality control tool for fast detection of mechanically unstable silicon solar cells caused by cracks. The specific objective of Phase II is to move the technology of in-line crack detection from the laboratory level to commercial demonstration through development of a system prototype. The fragility of silicon wafers possessing low mechanical strength is attributed to peripheral and bulk millimeter-length cracks. The research program is based on feasibility results obtained during Phase I, which established that: (i) the Resonance Ultrasonic Vibrations method is applicable to as-cut, processed wafers and finished cells; (ii) the method sensitivity depends on the specific processing step; it is highest in as-cut wafers and lowest in wafers with metallization pattern and grid contacts; (iii) the system is capable of matching the 2.0 seconds per wafer throughput rate of state-of-art solar cell production lines; (iv) finite element modeling provides vibration mode analysis along with peak shift versus crack length and crack location dependence; (v) a high 91% crack rejection rate was confirmed through experimentation and statistical analysis. The Phase II project has the following specific tasks: (i) specify optimal configurations of the in-line system�¢����s component hardware and software; (ii) develop and justify a system prototype that meets major specifications for an in-line crack detection unit, such as high throughput rate, high level of stability, reproducibility of data acquisition and analysis, and high sensitivity with respect to crack length and crack location; (iii) design a system platform that allows easy integration within and adaptation to various solar cell belt-type production lines; (iv) develop a testing protocol providing quality certification of the production-grade system. Commercial Application of the proposed activity consists of bringing to the solar market a new high-tech product based on an innovative solution and patented methodology to contribute to cost reduction of silicon solar module production. The solar industry, with crystalline silicon as a dominant segment, shows outstanding performance, with approximately 25% yearly growth during the last years. Despite a slowdown with only 5.6 GW installations in 2009, solar module production for the 2010 and 2011 years was recovered. According to European Photonics Industry Consortium new solar PV installations grow by 56% compared to 2010 reached 64.7 GW in 2011. Revenues in the PV industry reached a record high of $93 billion in 2011, a 13.4 percent gain over 2010 â�� and 150 percent over 2009. This growth was forecasted to continue in 2013 with double digits growth. The solar industry is economically driven to make solar panels of the highest conversion efficiency and reliability at the lowest production cost. The Resonance Ultrasonic Vibration system addresses critical needs of the silicon-based solar industry by providing a quality control method and tool, which will improve productivity, increase reliability of products and reduce manufacturing cost of solar panels.

Ostapenko, Sergei

2013-04-03T23:59:59.000Z

313

MacroscoMacroscopic Cracking Determination in LaBS Glasspic Cracking Determination in LaBS Glass  

SciTech Connect (OSTI)

The DOE/EM plans to conduct the Plutonium Vitrification Project at the Savannah River Site (SRS). An important part of this project is to reduce the attractiveness of the plutonium by fabricating a plutonium glass form and immobilizing the Pu form within the high level waste (HLW) glass prepared in the Defense Waste Processing Facility (DWPF). This requires that a project schedule that is consistent with EM plans for DWPF and cleanup of the SRS be developed. Critical inputs to key decisions in the vitrification project schedule are near-term data that will increase confidence that the lanthanide borosilicate (LaBS) glass product is suitable for disposal in the Yucca Mountain Repository. A workshop was held on April 28, 2005 at Bechtel SAIC Company (BSC) facility in Las Vegas, NV to define the near term data needs. Dissolution rate data and the fate of plutonium oxide and the neutron absorbers during the dissolution process were defined as key data needs. A suite of short-term tests were defined at the workshop to obtain the needed data. The objectives of these short-term tests are to obtain data that can be used to show that the dissolution rate of a LaBS glass is acceptable and to show that the extent of Pu separation from neutron absorbers, as the glass degrades and dissolves, is not likely to lead to criticality concerns. An additional data need was identified regarding the degree of macroscopic cracking and/or voiding that occurs during processing of the Pu glass waste form and subsequent pouring of HLW glass in the DWPF. A final need to evaluate new frit formulations that may increase the durability of the plutonium glass and/or decrease the degree to which neutron absorbers separate from the plutonium during dissolution was identified. This task plan covers the need to evaluate the degree of macroscopic cracking and/or voiding that occurs during processing of the Vitrified Plutonium Waste Form (i.e. the can-in-canister configuration containing the vitrified Pu product). Separate task plans were developed for Pu glass performance testing of the current baseline LaBS glass composition and development of alternative frit formulations. Recent results from Pressurized Unsaturated Flow (PUF) testing showed the potential separation of Pu from Gd during the glass dissolution process [3]. Post-test analysis of the LaBS glass from a 6-year PUF test showed a region where Pu had apparently accumulated in a Pu-bearing disk-like phase that had become separated from neutron absorber (Gd). It should be noted that this testing was conducted on the early LaBS Frit A glass composition that was devoid of HfO{sub 2} as a neutron absorber. PUF testing is currently being initiated using the LaBS Frit B composition that contains HfO{sub 2}. The potential for fissile material and neutron absorber separation is a criticality risk for the repository. The surface area that is available for leaching (i.e. due to the degree of cracking or voiding within the Pu glass cylinder) is a factor in modeling the amount of fissile material and neutron absorber released during the dissolution process. A mathematical expression for surface area is used in the Total Systems Performance Assessment (TSPA) performed by BSC personnel. Specifically, the surface area available for leaching is being used in current external criticality assessments. The planned processing steps for producing a VPWF assembly involves processing Pu feed and LaBS frit to produce a can of Pu LaBS glass, packaging this can into a second can (i.e. bagless transfer) for removal from the glovebox processing environment, placing a series of bagless transfer cans into a DWPF canister, and pouring HLW glass into the DWPF canister to encapsulate bagless transfer cans. The objective of this task is to quantify the degree of cracking and/or voiding that will occur during the processing of the VPWF.

Marra, James

2005-08-01T23:59:59.000Z

314

Implications of early stages in the growth of stress corrosion cracking on component reliability  

SciTech Connect (OSTI)

Environment-induced crack growth generally progresses through several stages prior to component failure. Crack initiation, short crack growth, and stage 1 growth are early stages in crack development that are summarized in this paper. The implications of these stages on component reliability, derive from the extended time that the crack exists in the early stages because crack velocity is slow. The duration of the early stages provides a greater opportunity for corrective action if cracks can be detected. Several important factors about the value of understanding short crack behavior include: (1) life prediction requires a knowledge of the total life cycle of the crack including the early stages, (2) greater reliability is possible if the transition between short and long crack behavior is known component life after this transition is short and (3) remedial actions are more effective for short than long cracks.

Jones, R.H.; Simonen, E.P.

1995-04-01T23:59:59.000Z

315

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network [OSTI]

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. #12;2 Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption Bound-Bound & Bound-Free Processes

Sitko, Michael L.

316

A three-dimensional validation of crack curvature in muscovite mica  

SciTech Connect (OSTI)

Experimental and computational efforts focused on characterizing crack tip curvature in muscovite mica. Wedge-driven cracks were propagated under monochromatic light. Micrographs verified the subtle curvature of the crack front near the free surface. A cohesive approach was employed to model mixed-mode fracture in a three-dimensional framework. Finite element calculations captured the crack curvature observed in experiment.

J. C. Hill; J. W. Foulk III; P. A. Klein; E. P. Chen

2001-01-07T23:59:59.000Z

317

Author's personal copy Effect of fluid salinity on subcritical crack propagation in calcite  

E-Print Network [OSTI]

Author's personal copy Effect of fluid salinity on subcritical crack propagation in calcite Fatma Accepted 22 October 2012 Available online 31 October 2012 Keywords: Subcritical crack growth Calcite Salt Damage The slow propagation of cracks, also called subcritical crack growth, is a mechanism of fracturing

318

12.11.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/32 4. Refrigeration process comparison;  

E-Print Network [OSTI]

Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi Kylteknik ("KYL") Refrigeration course # 424503.0 v. 2014 �A 424503 Refrigeration / Kylteknik 12.11.2014�bo Akademi Univ - Thermal voltage part for T-E) see ---- boundaries in the figures below The energy input occurs at the point where

Zevenhoven, Ron

319

Automated crack control analysis for concrete pavement construction  

E-Print Network [OSTI]

The focus of this research is on the control of random cracking in concrete paving by using sawcut notch locations in the early stages of construction. This is a major concern in concrete pavement construction. This research also addresses a...

Jang, Se Hoon

2005-11-01T23:59:59.000Z

320

Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes Presented by Paul John Baker of FrontierPro Services at the Wind Turbine Tribology Seminar 2014. 141030 Axial...

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

PLASMA Approximate Dynamic Programming finally cracks the locomotive optimization problem  

E-Print Network [OSTI]

PLASMA ­ Approximate Dynamic Programming finally cracks the locomotive optimization problem schedules and new operating policies. PLASMA is currently running at Norfolk Southern for strategic of PLASMA: Each locomotive is modeled individually, making it possible to capture both horsepower

Powell, Warren B.

322

Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering  

SciTech Connect (OSTI)

Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. Despite its numerous advantages such as high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation, it suffers from low thermal conductivity that can result in large temperature gradients within the UO2 fuel pellet, causing it to crack and release fission gases. Thermal swelling of the pellets also limits the lifetime of UO2 fuel in the reactor. To mitigate these problems, we propose to develop novel UO2 fuel with uniformly distributed carbon nanotubes (CNTs) that can provide high-conductivity thermal pathways and can eliminate fuel cracking and fission gas release due to high temperatures. CNTs have been investigated extensively for the past decade to explore their unique physical properties and many potential applications. CNTs have high thermal conductivity (6600 W/mK for an individual single- walled CNT and >3000 W/mK for an individual multi-walled CNT) and high temperature stability up to 2800°C in vacuum and about 750°C in air. These properties make them attractive candidates in preparing nano-composites with new functional properties. The objective of the proposed research is to develop high thermal conductivity of UO2–CNT composites without affecting the neutronic property of UO2 significantly. The concept of this goal is to utilize a rapid sintering method (5–15 min) called spark plasma sintering (SPS) in which a mixture of CNTs and UO2 powder are used to make composites with different volume fractions of CNTs. Incorporation of these nanoscale materials plays a fundamentally critical role in controlling the performance and stability of UO2 fuel. We will use a novel in situ growth process to grow CNTs on UO2 particles for rapid sintering and develop UO2-CNT composites. This method is expected to provide a uniform distribution of CNTs at various volume fractions so that a high thermally conductive UO2-CNT composite is obtained with a minimal volume fraction of CNTs. The mixtures are sintered in the SPS facility at a range of temperatures, pressures, and time durations so as to identify the optimal processing conditions to obtain the desired microstructure of sintered UO2-CNT pellets. The second objective of the proposed work is to identify the optimal volume fraction of CNTs in the microstructure of the composites that provides the desired high thermal conductivity yet retaining the mechanical strength required for efficient function as a reactor fuel. We will systematically study the resulting microstructure (grain size, porosity, distribution of CNTs, etc.) obtained at various SPS processing conditions using optical microscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM). We will conduct indentation hardness measurements and uniaxial strength measurements as a function of volume fraction of CNTs to determine the mechanical strength and compare them to the properties of UO2. The fracture surfaces will be studied to determine the fracture characteristics that may relate to the observed cracking during service. Finally, we will perform thermal conductivity measurements on all the composites up to 1000° C. This study will relate the microstructure, mechanical properties, and thermal properties at various volume fractions of CNTs. The overall intent is to identify optimal processing conditions that will provide a well-consolidated compact with optimal microstructure and thermo-mechanical properties. The deliverables include: (1) fully characterized UO2-CNT composite with optimal CNT volume fraction and high thermal conductivity and (2) processing conditions for production of UO2-CNT composite pellets using SPS method.

Subhash, Ghatu; Wu, Kuang-Hsi; Tulenko, James

2014-03-10T23:59:59.000Z

323

VEBA-Combi-cracking - A technology for upgrading of heavy oils and bitumen  

SciTech Connect (OSTI)

Based on experiences with liquid phase hydrogenation for coal liquefaction according to the Berguis-Pier-Process as well as crude oil residue hydrogenation in the Fifties and Sixties, VEBA OEL in recent years developed the VEBA-LQ-Cracking (VLC) and the VEBA-Combi-Cracking (VCC) Processes. Since 1978, more than 20 different feedstocks have been converted in small scale plants with a capacity of 3-20 kg/h. Together with LURGI GmbH, Frankfurt, the next steps were taken: the design and construction of a 1 t/h Pilot Plant located at the RUHR OEL refinery in Gelsenkirchen. After 18 months of construction, the heavy oil pilot plant was put on stream in May 1983. Since the beginning of 1983, the plant has been funded and owned by LURGI GmbH, VEBA OEL AG and INTEVEP S.A., the research institute of Petroleos de Venezuela, all of whom have participated in the development of the VLC/VCC process. Reported here are the results of the intensive experimental work for the development of the VLC/VCC-processes in a scale covering all aspects relevant for a scale-up, demonstrate the technical maturity of the processes developed by VEBA OEL to convert refinery residues and natural heavy crude oils.

Doehler, W.; Kretschmar, D.I.K.; Merz, L.; Niemann, K. (VEBA OEL Entwicklungs-Gesellschaft mbH, Gelsenkirchen (West Germany))

1987-04-01T23:59:59.000Z

324

J-integral values for cracks in conventional fatigue specimens  

SciTech Connect (OSTI)

Comprehensive S-N fatigue data has been developed worldwide using conventional low-cycle fatigue tests. Such tests use smooth unnotched specimens subjected to controlled axial deflection or strain ranges. The tests must be run in the plastic regime in order to achieve the required cycles-to-failure. Recent developments have highlighted the need to understand and interpret the significance of the resulting strain range vs. cycles to failure data in terms of crack initiation and propagation. Since conventional fatigue tests are conducted in the plastic regime, linear elastic fracture mechanics cannot be used to accurately quantify crack growth in such tests. Elastic-plastic J-integral theory, however, has been shown to provide excellent correlations of crack growth in the elastic, elastic-plastic and grossly-plastic regimes for a wide range of geometric and loading conditions. The authors are applying this theory to the low-cycle fatigue specimen crack behavior. As cracks progress in conventional fatigue specimens, bending becomes significant. Since fatigue testing machines are quite stiff relative to the small fatigue specimens, the ends of the specimen are constrained to remain parallel, and this reduces bending in the cracked cross-section. Three-dimensional finite element elastic-plastic analyses are required to include these constraints in the J-integral solutions.

O`Donnell, T.P.; O`Donnell, W.J. [O`Donnell Consulting Engineers, Pittsburgh, PA (United States)

1996-12-01T23:59:59.000Z

325

Assessment of crack opening area for leak rates  

SciTech Connect (OSTI)

This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

Sharples, J.K.; Bouchard, P.J.

1997-04-01T23:59:59.000Z

326

ffe1098 FFE March 7, 2007 21:55 Crack tip displacements of microstructurally small cracks in 316L steel  

E-Print Network [OSTI]

steel and their dependence on crystallographic orientations of grains I. SIMONOVSKI1 , KARL orientations on a short Stage I surface crack in a 316L stainless steel. The analysis is based on a plane

Cizelj, Leon

327

Materials processing issues for non-destructive laser gas sampling (NDLGS)  

SciTech Connect (OSTI)

The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top of the crimp using the electro-spark deposition (ESD) process followed by laser mixing, drilling and rewelding. Results of a study of the ESD parameters on deposition rate and efficiency will be discussed along with mass balance calculations for determining the desired Cr content to eliminate cracking. The study also required purchase of new pulsed Nd:YAG laser welders. Evaluation of the performance of the new lasers, including beam profiling results, will also be presented. Development of a mixing, drilling and re-welding process at atmospheric pressure with inert gas shielding demonstrated the efficacy of the Cr-augmentation approach. However, extending the process to vacuum conditions proved more challenging owing to loss of laser transmission through the window from spatter and condensation of metal vapors. Solutions developed to circumvent hese issues will be reviewed. Weld microstructures found with various Cr levels will be presented and discussed.

Lienert, Thomas J [Los Alamos National Laboratory

2010-12-09T23:59:59.000Z

328

Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.  

DOE Patents [OSTI]

Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.

Green, David J. (State College, PA); Sglavo, Vincenzo M. (Roncegno, IT); Tandon, Rajan (Fremont, CA)

2003-02-11T23:59:59.000Z

329

Matrix fatigue cracking mechanisms of alpha(2) TMC for hypersonic applications  

SciTech Connect (OSTI)

The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha[sub 2] TMC in possible hypersonic applications. A (0)[sub 8] SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

Gabb, T.P.; Gayda, J.

1994-02-01T23:59:59.000Z

330

Matrix fatigue cracking in {alpha}{sub 2} titanium matrix composites for hypersonic applications  

SciTech Connect (OSTI)

The objective of this work was to understand matrix cracking mechanisms in a unidirectional {alpha}{sub 2} titanium matrix composite (TMC) in possible hypersonic applications. A [0]{sub 8} SCS-6/Ti-24Al-11Nb (atomic %) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

Gabb, T.P.; Gayda, J. [NASA Lewis Research Center, Cleveland, OH (United States)

1996-12-31T23:59:59.000Z

331

Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.  

SciTech Connect (OSTI)

In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

Chopra, O. K.; Shack, W. J.

2008-01-21T23:59:59.000Z

332

Alterations of bitumen produced by the in-situ combustion process at the oxygen Wolf Lake Project, Alberta  

SciTech Connect (OSTI)

The Oxygen Wolf Lake Project, operated by BP Resources Canada Limited, recovers bitumen by an in-situ combustion process. Bitumen samples produced from this process were analyzed and compared with analyses of unaltered bitumen from the same formation. The naphtha and middle distillate fractions were greater in the samples produced by the in-situ combustion process, which indicates thermal cracking has occurred. Gas chromatograph and Mass Spectral analyses of these samples have been used to further describe the changes to the oil. The compositional changes found in the study have been related to reductions in viscosity and density. Implications of bitumen alterations to the performance of the combustion process and production problems are discussed.

Riechert, C.; Fuhr, B. (Alberta Research Council, Edmonton (Canada)); Williams, G. (British Petroleum Canada Ltd., Calgary, Alberta (Canada)); Sawatzky, H.; Jha, K.; Lafleur, R. (Canmet, Energy Mines and Resources Canada, Ottawa, Ontario (Canada))

1989-04-01T23:59:59.000Z

333

Environmentally assisted cracking in light water reactors annual report January - December 2005.  

SciTech Connect (OSTI)

This report summarizes work performed from January to December 2005 by Argonne National Laboratory on fatigue and environmentally assisted cracking in light water reactors (LWRs). Existing statistical models for estimating the fatigue life of carbon and low-alloy steels and austenitic stainless steels (SSs) as a function of material, loading, and environmental conditions were updated. Also, the ASME Code fatigue adjustment factors of 2 on stress and 20 on life were critically reviewed to assess the possible conservatism in the current choice of the margins. An approach, based on an environmental fatigue correction factor, for incorporating the effects of LWR environments into ASME Section III fatigue evaluations is discussed. The susceptibility of austenitic stainless steels and their welds to irradiation-assisted stress corrosion cracking (IASCC) is being evaluated as a function of the fluence level, water chemistry, material chemistry, and fabrication history. For this task, crack growth rate (CGR) tests and slow strain rate tensile (SSRT) tests are being conducted on various austenitic SSs irradiated in the Halden boiling water reactor. The SSRT tests are currently focused on investigating the effects of the grain boundary engineering process on the IASCC of the austenitic SSs. The CGR tests were conducted on Type 316 SSs irradiated to 0.45-3.0 dpa, and on sensitized Type 304 SS and SS weld heat-affected-zone material irradiated to 2.16 dpa. The CGR tests on materials irradiated to 2.16 dpa were followed by a fracture toughness test in a water environment. The effects of material composition, irradiation, and water chemistry on growth rates are discussed. The susceptibility of austenitic SS core internals to IASCC and void swelling is also being evaluated for pressurized water reactors. Both SSRT tests and microstructural examinations are being conducted on specimens irradiated in the BOR-60 reactor in Russia to doses up to 20 dpa. Crack growth rate data, obtained in the pressurized water reactor environment, are presented on Ni-alloy welds prepared in the laboratory or obtained from the nozzle-to-pipe weld of the V. C. Summer reactor. The experimental CGRs under cyclic and constant load are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of these materials to environmentally enhanced cracking under a variety of loading conditions.

Alexandreanu, B.; Chen, Y.; Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.

2007-08-31T23:59:59.000Z

334

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network [OSTI]

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption #12;2 Bound-Bound & Bound

Sitko, Michael L.

335

Process sensing and metrology in gate oxide growth by rapid thermal chemical vapor deposition from SiH4 and N2O  

E-Print Network [OSTI]

SiO2 film. An optimal process window had been previously identified at a total pressure of 5 Torr, but also quantitative metrology for the film deposition process. © 1999 American Vacuum Society. S0734-211X the wafer. Radiative heating of the wafer was achieved through a quartz window by an array of halogen lamps

Rubloff, Gary W.

336

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process of converting the ocean thermal energy into electricity. OTEC transfer function The relationship between

337

Coding the cracks | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is able to calculate and solve these processes in a single day, standard high-performance computing clusters typically available to university researchers could take six months...

338

Influence of cracking on the diffusion properties of cement-based materials. Part I: Influence of continuous cracks on the steady-state regime  

SciTech Connect (OSTI)

The influence of traversing cracks on the steady-state diffusion properties of concrete was studied. The effect of both anisotropic and isotropic crack networks was first theoretically assessed using an analytical approach. To simplify the transport equations, cracks were assumed to be of uniform size and evenly distributed on a one- or two-dimensional grid. Results of the theoretical analysis were then compared to experimental data. Both series of results indicate that cracking can markedly alter the diffusion properties of the material and favor the penetration (or the leaching) of drifting species. A simple method to predict the effect of cracking on the concrete diffusivity is proposed. Predictions are made on the basis of two parameters: the crack density and the mean crack aperture. This method can provide a first estimate of the diffusion properties of severely damaged concrete elements.

Gerard, B.; Marchand, J.

2000-01-01T23:59:59.000Z

339

Combination process for upgrading residual oils  

SciTech Connect (OSTI)

This patent describes a method for upgrading high boiling residual portions of crude oils comprising metal contaminants, porphyrins, asphaltenes and high molecular weight multi-ring hydrocarbon material. It comprises: charging a high boiling residual portion of crude oil admixed with diluent in contact with suspended upflowing substantially inert fluidizable solids particulate material at an elevated thermal visbreaking temperature in a riser contact zone for a time sufficient to recover therefrom a vaporous hydrocarbon product higher boiling than gasoline partially decarbonized and demetallized to a lower contaminating metals level, quenching the vaporous product of thermal visbreaking below its dew point after separation from solids, charging quenched thermally modified high boiling hydrocarbon product with a crystalline zeolite cracking catalyst under cracking conditions for a hydrocarbon residence time in a riser cracking zone; recovering a hydrocarbon conversion product; separating a combined C{sub 4} minus wet gas product stream of the visbreaking and zeolite catalyst cracking operating to recover a C{sub 3}-C{sub 4} rich fraction separately from a C{sub 2} minus dry gas product fraction, and regenerating the crystalline zeolite contcontaining catalyst.

Busch, L.E.; Walters, P.W.; Zandona, O.

1990-01-16T23:59:59.000Z

340

Effect of aging of the pillaring reagent on the microstructure and cracking activity of pillared clay  

SciTech Connect (OSTI)

Pillared interlayer clay (PILC) is formed by exchanging large hydroxyaluminum polycations into the interlayer of a smectite clay such as montmorillonite, which is made up of sheet-like silica/alumina layers. Calcination of the exchanged clay gives a well dispersed array of metal oxide clumps (i.e., pillars) bonded top and bottom to the silica/alumina layers of the clay. The permanent separation of the clay layers gives an 8 to 10-fold increase in surface area, from 30 to 250-300 m{sup 2}/g, and a microporous structure similar to but less constrained than that of zeolites. Recently, there has been an increased interest in the use of these clays as cracking catalysts. For example, pillared clays have been shown to be an active cracking catalyst for both single component and gas oil feeds. PILC's also lead to both higher light cycle oil (LCO) and coke yields than conventional cracking catalysts. Commercially available, metal-hydrolyzed hydroxyaluminum solutions containing chlorhydrol, A1{sub 2}(OH){sub 5}C1.2H{sub 2}O, have been used as one source of the polycation solution. The approach of these hydrolyzed polycation solutions to equilibrium is known as aging. During the aging process certain polycationic species disappear from the solution and new species are formed. For this reason, the aging process can have a significant influence on the properties of the pillared clays. The objective of this work was to determine how the physical and catalytic properties of the pillared clay depend on the aging of dilute cholorhydrol solutions.

Harris, J.R. (Phillips Petroleum Company, Bartlesville, OK (USA))

1987-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Stress-corrosion cracking in BWR and PWR piping  

SciTech Connect (OSTI)

Intergranular stress-corrosion cracking of weld-sensitized wrought stainless steel piping has been an increasingly ubiquitous and expensive problem in boiling-water reactors over the last decade. In recent months, numerous cracks have been found, even in large-diameter lines. A number of potential remedies have been developed. These are directed at providing more resistant materials, reducing weld-induced stresses, or improving the water chemistry. The potential remedies are discussed, along with the capabilities of ultrasonic testing to find and size the cracks and related safety issues. The problem has been much less severe to date in pressurized-water reactors, reflecting the use of different materials and much lower coolant oxygen levels.

Weeks, R.W.

1983-07-01T23:59:59.000Z

342

Protocol development for evaluation of commercial catalytic cracking catalysts  

SciTech Connect (OSTI)

A complete, new set of testing protocols has been developed for qualification of catalysts for Ashland's commercial catalytic cracking units. The objective of this test development is to identify new generations of improved cracking catalysts. Prior test protocols have classically utilized microactivity (MAT) testing of steamed virgin catalysts, while more advanced methods have utilized fixed fluid bed and/or circulating pilot units. Each of these techniques, however, have been limited by their correlation to commercial operations, weaknesses in metallation and preparation of pseudo-equilibrium catalysts, and mechanical constraints on the use of heavy, vacuum bottoms-containing feedstocks. These new protocols have been baselined, compared to commercial Ashland results on known catalytic cracking catalysts, and utilized to evaluate a range of potentially new catalyst samples.

Mitchell, M.M. Jr.; Moore, H.F. (Ashland Petroleum Co., KY (USA))

1988-09-01T23:59:59.000Z

343

Experimental and analytical investigations of mass transport processes of 12Cr-1MoVW steel in thermally-convected lithium systems  

SciTech Connect (OSTI)

Experimental data on corrosion and mass transport in lithium12Cr-1MoVW steel were obtained from two thermal convection loops; one operated from 360 to 505/sup 0/C for 3040 hours and the other from 525 to 655/sup 0/C for 2510 hours. The experimental effort was supported by analytical investigations of mechanisms of corrosion and mass transport. It was found that mass transfer is not a simple function of temperature and alloy component solubility, but that temperature gradient also plays an important role. Above 580/sup 0/C mass transfer appears dominated by temperature gradient. Between 450 and 580/sup 0/C, mass transfer appears related to surface reactions involving nitrogen in lithium with chromium, and carbides on the steel surface. The corrosion rates from this work are significantly lower than those adopted in recent blanket design studies. 16 refs., 5 figs

Bell, G.E.; Abdou, M.A.; Tortorelli, P.F.

1988-01-01T23:59:59.000Z

344

Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields  

SciTech Connect (OSTI)

Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

Langerman, M.A.

1990-09-01T23:59:59.000Z

345

Reflective Cracking Study: First-level Report on HVS Testing on Section 588RF - 90 mm AR4000-DOverlay  

E-Print Network [OSTI]

testing being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the fourth HVS reflective cracking testingconcrete. It describes the results of the fourth HVS reflective cracking testing

Jones, David; Wu, R; Harvey, John T

2008-01-01T23:59:59.000Z

346

Reflective Cracking Study: First-Level Report on HVS Testing on Section 590RF - 90 mm MB4-G Overlay  

E-Print Network [OSTI]

testing being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the first HVS reflective cracking testingconcrete. It describes the results of the first HVS reflective cracking testing

Jones, David; Tsai, Bor-Wen; Harvey, John T

2008-01-01T23:59:59.000Z

347

Model of crack propagation in a clay soil  

E-Print Network [OSTI]

of independent variables for maximum R to determine A for crack de th, 2 Number of variables in model (p) R Variables in model 0. 703913 0. 916176 0. 988151 0. 997207 0. 999328 H*CLrH*M~CL H, H*M, H~M*CL H, CL, H*M, H*M*CL H, CL, H"M, H*CL, H...: Agricultural Engineering MODEL OF CRACK PROPAGATION IN A CLAY SOIL A Thesis by PATRICK EDWIDGE CARRIERE Approved as to style and content by: John L. Nieber (Chairman of Committee) Donald L. Reddell (Member) Kirk W, Brown (Member ) Wilbert H...

Carriere, Patrick Edwidge

2012-06-07T23:59:59.000Z

348

Stress relief cracking in creep resisting low alloy ferritic steels.  

E-Print Network [OSTI]

, for their inspiration by example, to Messrs. R.Turkentine, S. Charter, D. Evans, P.Hull and D.Duke, for their guidance and assistfu.ce during all stages of the experi- mental work; also to Professor G.S.Kent, Dr.M.N.Mct1orris, Professor T.P.Hughes, Dr... >eased and inter>granular> cavitation cracking increased. Indeed the mixed upper> and lower> bainite matr>ix pr>oduced by oil quenching, showed ver>y br>ittle behaviOUr> associated with little opening of the intergranular cr>acKs. The implication...

Tait, Robert Andrew

1976-10-26T23:59:59.000Z

349

Stress Corrosion Crack Detection on HU-25 Guardian Aircraft  

SciTech Connect (OSTI)

Several ultrasonic inspection methods were developed at the Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) to easily and rapidly detect hidden stress corrosion cracks in all vertical windshield posts on the US Coast Guard (USCG) HU-25 Guardian aircraft. The inspection procedure locates cracks as small as 2.0 millimeters emanating from internal fastener holes and determines their length. A test procedure was developed and a baseline assessment of the USCG fleet was conducted. Inspection results on twenty-five aircraft revealed a good correlation with results made during subsequent structural disassembly and visual inspection.

Blackmon, R.; Huffman, J.; Mello, C.W.; Moore, D.G.; Walkington, P.D.

1999-02-17T23:59:59.000Z

350

Thermal stress analysis of fused-cast AZS refractories during production; Part 1: Industrial study  

SciTech Connect (OSTI)

A study has been conducted to understand and prevent the formation of cracks in alumina-zirconia-silica (AZS) refractory blocks during solidification processing. A fundamental approach has been taken, centered on the development of a three-dimensional mathematical model to predict heat flow and stress generation in fused-cast AZS refractory blocks. In the first part of a two-part study, the voidless'' casting process has been carefully examined in an industrial setting. From a survey of the distribution, frequency of occurrence, and fracture surface morphology of cracks, an attempt was made to link the crack types found in the study to process variables. In-mold temperature data collected for a single casting throughout the normal cooling period have been used to validate the heat-flow model which is described in Part 2. The stress analysis, cause of the different cracks, and remedial action are also presented in Part 2.

Cockcroft, S.L.; Brimacombe, J.K. (Univ. of British Columbia, Vancouver, British Columbia (Canada). Centre for Metallurgical Process Engineering); Walrod, D.G.; Myles, T.A. (Carborundum Co., Falconer, NY (United States). Monofrax-S Plant)

1994-06-01T23:59:59.000Z

351

Monitoring Cracking of a Smectitic Vertisol using Three-dimensional Electrical Resistivity Tomography  

E-Print Network [OSTI]

Upon desiccation, the matrix of Vertisols and other expansive soils shrinks. Matrix shrinkage results in the formation of cracks that can alter the hydrology of the soil. Despite the importance of cracks, many hydrologic models do not account...

Ackerson, Jason Paul

2013-11-20T23:59:59.000Z

352

E-Print Network 3.0 - assisted crack growth Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cal crack growth by stress... for the first time in sapphire for both modes of subcritical cracking. It was found that growth rates were... growth rates could be closely...

353

Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.  

SciTech Connect (OSTI)

This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

2012-02-13T23:59:59.000Z

354

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

355

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

356

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

357

alloy processing plant: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pricing. This, in turn, negatively...-product of the olefins cracking process. This off-gas is routinely used as fuel for the olefins furnaces. Supplemental fuel for the...

358

acid processing plant: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pricing. This, in turn, negatively...-product of the olefins cracking process. This off-gas is routinely used as fuel for the olefins furnaces. Supplemental fuel for the...

359

E-Print Network 3.0 - amplitude fatigue crack Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with an initial crack. Constant ... Source: Fatemi, Ali - Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo Collection: Materials...

360

Thin film cracking and ratcheting caused by temperature cycling  

E-Print Network [OSTI]

Thin film cracking and ratcheting caused by temperature cycling M. Huang and Z. Suo Mechanical caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads

Suo, Zhigang

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Cracks and Atoms** By Dominic Holland* and Michael Marder  

E-Print Network [OSTI]

Cracks and Atoms** By Dominic Holland* and Michael Marder 1. Introduction Many materials scientists the atomic scale on the mechanical response of materials. On the one hand, there is a reluctance to believe that the invisible atomic scale is important for macroscopic mechanical deformation. Out of sight, out of mind

Texas at Austin. University of

362

Method of making crack-free zirconium hydride  

DOE Patents [OSTI]

Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

Sullivan, Richard W. (Denver, CO)

1980-01-01T23:59:59.000Z

363

CONTAINED PLASTIC DEFORMATION NEAR CRACKS AND NOTCHES UNDER LONGITUDINAL SHEAR  

E-Print Network [OSTI]

CONTAINED PLASTIC DEFORMATION NEAR CRACKS AND NOTCHES UNDER LONGITUDINAL SHEAR James R. Rice* ABSTRACT An exact linear elastic-perfectly plastic solution is presented for the problem of a sharp notch coordinates corresponding to given stresses, position of the elastic-plastic boundary, and accompanying

364

MATHEMATICAL MODEL OF DELAMINATION CRACKS ON IMPERFECT INTERFACES  

E-Print Network [OSTI]

monolith combustors that are being incorporated into new proto-type designs of gas turbines. The 1 #12. In the application in a gas turbine combustor, temperatures of the catalyst layer could vary from ambient conditionsMATHEMATICAL MODEL OF DELAMINATION CRACKS ON IMPERFECT INTERFACES Y. A. Antipov 1 , O. Avila

Bath, University of

365

Stress corrosion cracking under low stress: Continuous or discontinuous Longkui K. Zhu a  

E-Print Network [OSTI]

Stress corrosion cracking under low stress: Continuous or discontinuous cracks? Longkui K. Zhu a , Yu Yan a , Jinxu X. Li a , Lijie J. Qiao a, , Alex A. Volinsky b,a a Corrosion and Protection Center. Stress corrosion C. Anodic dissolution a b s t r a c t Two-dimensional and three-dimensional crack

Volinsky, Alex A.

366

Influence of Impurity Segregation on Temper Embrittlement and on Slow Fatigue Crack  

E-Print Network [OSTI]

of segregated impurity atoms (temper embrittlement) and hydrogen atoms, evolved from crack tip surface reactions with water vapor in the moist air environment (hydrogen embrittlement). The signifi- cance of crack closureInfluence of Impurity Segregation on Temper Embrittlement and on Slow Fatigue Crack Growth

Ritchie, Robert

367

White(etching!matter!in!bearing!steel! Part1:!Controlled(cracking!of!52100!steel!  

E-Print Network [OSTI]

! 1! White(etching!matter!in!bearing!steel! Part1:!Controlled(cracking!of!52100!steel! ! W!phenomena!such!as!the!appearance!of!"white(etching!areas"!or!"white(etching! cracks",!crack!particular!kind!of!microstructural!damage!in!the!form!of!regions!of!the! structure,! which! appear! white! in

Cambridge, University of

368

A creep model for austenitic stainless steels incorporating cavitation and wedge cracking  

E-Print Network [OSTI]

A creep model for austenitic stainless steels incorporating cavitation and wedge cracking S Mahesh evolution in the form of cavitation and wedge- cracking on grain boundary facets is considered. Both: Austenitic stainless steel, creep, grain boundary sliding, cavitation, wedge- cracking. Submitted to

Mahesh, Sivasambu

369

A new approach to the subcritical cracking of ceramic Pierre Ladev`eze,a,1  

E-Print Network [OSTI]

A new approach to the subcritical cracking of ceramic fibers Pierre Ladev`eze,a,1 , Martin Geneta a Cachan Cedex, France Abstract A new modeling approach to subcritical crack propagation (i.e. static fa, the result comes down to the widely-used Paris-like subcritical crack propagation law. For the general case

370

Average crack front velocity during subcritical fracture propagation in a heterogeneous medium  

E-Print Network [OSTI]

Average crack front velocity during subcritical fracture propagation in a heterogeneous medium relaxation tests, exploring subcritical to critical regimes. Transparency of the material (PMMA) allows kinetic crack propagation is usually referred to as sub-critical crack growth or sub- critical regime

Paris-Sud XI, Université de

371

On the physics of moisture-induced cracking in metal-glass ,,copper-silica... interfaces  

E-Print Network [OSTI]

September 2007 Environmentally dependent subcritical crack growth, or stress-corrosion cracking, along on the moisture content in gaseous environments. Water and several organic liquids, namely n-butanol, methanol, additionally, subcritical crack growth17 and cyclically induced fracture18 at or near these interfaces when

Ritchie, Robert

372

Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility  

SciTech Connect (OSTI)

An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

2011-03-01T23:59:59.000Z

373

Fluid Catalytic Cracking Power Recovery Computer Simulation  

E-Print Network [OSTI]

re covery available in new plants results in the air string being almost self sustaining, 8S far as direct input power. With some processes, it is possible to produce excess power on the order of 1,000 to 9,000 HP. Waste heat recovery in the form...

Samurin, N. A.

1979-01-01T23:59:59.000Z

374

Thermal Stress Cracking of Sliding Gate Plates Hyoung-Jun Lee1  

E-Print Network [OSTI]

, Warrendale, PA. #12;may b aspira b). Th indica show Previ their differ tempe mech [1]. A pressu be very

Thomas, Brian G.

375

ME 343 Thermal-Fluid Systems ABET EC2000 syllabus  

E-Print Network [OSTI]

) 8. Unsteady thermal system modeling, energy storage 9. Software design and development ClassME 343 ­ Thermal-Fluid Systems Page 1 ABET EC2000 syllabus ME 343 ­ Thermal-Fluid Systems Spring thermal and fluid processes are central to function and performance: thermodynamics of nonreacting

Ben-Yakar, Adela

376

Economics for iso-olefin production using the fluid catalytic cracking unit  

SciTech Connect (OSTI)

The Clean Air Act of 1990 requires use of oxygenates in some gasolines to improve both CO and hydrocarbon auto tailpipe emissions. Various oxygenates are currently being used by the refining industry. For the fully integrated refinery having a fluid catalytic cracking unit, the most commonly used oxygenates are methyl tertiary butyl ether (MTBE) and tertiary amyl ether (TAME). The FCC unit produces the isobutylene and iso-amylases need for manufacture of both MTBE and TAME. The economics for an assumed refinery processing scheme for several FCC cases are examined giving estimates of income and investments for each case. Up to one-third of the total gasoline pool can be made in reformulated gasoline using TAME and MTBE with the FCC unit as the sole source of feedstock. This processing route is much more economical than the alternative scheme using butane isomerization/iosbutane dehydrogenation.

McClung, R.G.; Witoshkin, A.; Bogert, D.C.; Winkler, W.S. [Englehard Corp., Iselin, NJ (United States)

1993-12-31T23:59:59.000Z

377

Ultrasonic Flaw Detection of Cracks and Machined Flaws as Observed Through Austenitic Stainless Steel Piping Welds  

SciTech Connect (OSTI)

Piping welds in the pressure boundary of light water reactors (LWRs) are subject to a volumetric examination based on Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Due to access limitations and high background radiation levels, the technique used is primarily ultrasonic rather than radiographic. Many of the austenitic welds in safety-related piping systems provide limited access to both sides of the weld, so a far-side examination is necessary. Historically, far-side inspections have performed poorly because of the coarse and elongated grains that make up the microstructures of austenitic weldments. The large grains cause the ultrasound to be scattered, attenuated, and redirected. Additionally, grain boundaries or weld geometry may reflect coherent ultrasonic echoes, making flaw detection and discrimination a more challenging endeavor. Previous studies conducted at the Pacific Northwest National Laboratory (PNNL) on ultrasonic far-side examinations in austenitic piping welds involved the application of conventional transducers, use of low-frequency Synthetic Aperture Focusing Techniques (SAFT), and ultrasonic phased-array (PA) methods on specimens containing implanted thermal fatigue cracks and machined reflectors [1-2]. From these studies, PA inspection provided the best results, detecting nearly all of the flaws from the far side. These results were presented at the Fifth International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components in 2006. This led to an invitation to examine field-removed specimens containing service-induced intergranular stress corrosion cracks (IGSCC) at the Electric Power Research Institute’s (EPRI) Nondestructive Evaluation (NDE) Center, in Charlotte, North Carolina. Results from this activity are presented.

Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.

2009-07-01T23:59:59.000Z

378

FURTHER EXAMINATION OF CRACK TIP MICROSTRUCTURES IN F82H ON THE LOWER SHELF  

SciTech Connect (OSTI)

Dislocation microstructures have been further examined near the crack tip of a compact tension specimen of unirradiated F82H loaded to 25.6 MPa m square root at –196 degrees C after fatigue precracking. A specimen was prepared by sectioning, dimple grinding and ion milling to produce electron transparency just ahead of the crack tip. Further ion milling has allowed improved examination of the microstructure immediately ahead of the crack tip. It is found that subgrain structure is relatively unaffected near the crack tip whereas 3 micron from the crack tip, dislocation loop structure was identified.

Gelles, David S.; Odette, George R.; Spatig, P.

2003-09-03T23:59:59.000Z

379

Thermal Shock-resistant Cement  

SciTech Connect (OSTI)

We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

Sugama T.; Pyatina, T.; Gill, S.

2012-02-01T23:59:59.000Z

380

Characteristics of lead induced stress corrosion cracking of alloy 690 in high temperature  

SciTech Connect (OSTI)

Slow strain rate tests (SSRT) were conducted on alloy 690 in various lead chloride solutions and metal lead added to 100 ppm chloride solution at 288 C. The corrosion potential (rest potential) for the alloy was measured with SSRT tests. The cracking was observed by metallographic examination and electron probe micro analyzer. Also, the corrosion behavior of the alloy was evaluated by anodic polarized measurement at 30 C. Resulting from the tests, cracking was characterized by cracking behavior, crack length and crack growth rate, and lead effects on cracking. The cracking was mainly intergranular in mode, approximately from 60 um to 450 um in crack length, and approximately 10{sup {minus}6} to 10{sup {minus}7} mmS-1 in crack velocity. The cracking was evaluated through the variation the corrosion potential in potential-time and lead behavior during SSRTs. The lead effect in corrosion was evaluated through active to passive transition behavior in anodic polarized curves. The corrosion reactions in the cracking region were confirmed by electron probe microanalysis. Alloy 690 is used for steam generation tubes in pressurized water reactors.

Chung, K.K. [Korea Inst. of Nuclear Safety, Taejon (Korea, Republic of); Lim, J.K. [Chonbuk National Univ., Chonju (Korea, Republic of); Watanabe, Yutaka; Shoji, Tetsuo [Tohoku Univ., Sendai (Japan). Research Inst. for Fracture Technology

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal Stabilization Blend Plan  

SciTech Connect (OSTI)

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

382

Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions  

SciTech Connect (OSTI)

The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 degrees C.

Julian K. Benz; Richard N. Wright

2013-10-01T23:59:59.000Z

383

Initiation of environmentally-assisted cracking in low-alloy steels  

SciTech Connect (OSTI)

Environmentally-Assisted Cracking (EAC) in low alloy steels is activated by a critical level of sulfide ions at the crack tip, which is produced from dissolution of sulfide inclusions (MnS, FeS, etc.) in the steel following exposure by a growing crack. EAC of concern herein is the increase of fatigue crack growth rate of up to 40 to 100 times the rate in air that occurs at 240--300 C in high temperature LWR or boiler water environments. The initiation of EAC is the onset of the higher fatigue crack growth rates in fully developed cracks already presumed to be present due to fatigue, stress corrosion cracking, or induced by fabrication. Initiation of EAC is induced by a change in loading parameters causing the fatigue crack growth rate to increase from a small multiple (2--4) to 40--100 times the air rate. A steady state theory developed by Combrade, suggests that EAC will initiate only above a critical crack velocity and cease below this same velocity. However, more recent tests show that EAC can persist down to much lower velocities (100 times lower) in low oxygen water at slightly lower temperatures. A special set of experiments on high sulfur plate material demonstrate that EAC will not initiate from surface cracks with low sulfide inventories at low crack tip velocities. Transient diffusion calculations show that a finite crack extension at a high crack tip velocity is necessary to initiate EAC, providing a possible explanation for the lack of high crack growth observations reported in low alloy steels in structural applications involving low oxygen environments.

Wire, G.L.; Li, Y.Y.

1996-06-01T23:59:59.000Z

384

Coupled heat conduction and thermal stress formulation using explicit integration. [LMFBR  

SciTech Connect (OSTI)

The formulation needed for the conductance of heat by means of explicit integration is presented. The implementation of these expressions into a transient structural code, which is also based on explicit temporal integration, is described. Comparisons of theoretical results with code predictions are given both for one-dimensional and two-dimensional problems. The coupled thermal and structural solution of a concrete crucible, when subjected to a sudden temperature increase, shows the history of cracking. The extent of cracking is compared with experimental data.

Marchertas, A.H.; Kulak, R.F.

1982-06-01T23:59:59.000Z

385

E-Print Network 3.0 - applied thermal cutting Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applied... ON THE EFFECTIVE THERMAL CONDUCTIVITY AND THERMAL CONTACT RESISTANCE IN PEM FUEL CELL GAS DIFFUSION LAYERS Ehsan... of this process requires determination of the...

386

ANALYZING THE THERMAL ANNEALING BEHAVIOR OF LASER THERMAL PROCESSED SILICON  

E-Print Network [OSTI]

Talwar for allowing access to the laser annealing tools at Verdant Technologies. I would also like;useless discussions. I would especially like to thank Lance Robertson who encouraged me to "just give grad

Florida, University of

387

Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data  

SciTech Connect (OSTI)

To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.

D. Yuan; E. Doak; P. Guss; A. Will

2002-01-01T23:59:59.000Z

388

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents [OSTI]

A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

Frei, H.; Blatter, F.; Sun, H.

1999-06-22T23:59:59.000Z

389

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents [OSTI]

A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

1999-01-01T23:59:59.000Z

390

Selective thermal oxidation of hydrocarbons in zeolites by oxygen  

DOE Patents [OSTI]

A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2000-01-01T23:59:59.000Z

391

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents [OSTI]

A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2001-01-01T23:59:59.000Z

392

Environmentally assisted cracking of light-water reactor materials  

SciTech Connect (OSTI)

Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used.

Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

1996-02-01T23:59:59.000Z

393

Thermal conductivity of thermal-battery insulations  

SciTech Connect (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

394

Mixed-mode, high-cycle fatigue-crack growth thresholds in I. A comparison of large-and short-crack behavior  

E-Print Network [OSTI]

) in a Ti±6Al±4V turbine blade alloy with a bimodal microstructure. Speci®cally, the eect of combined mode I machined to within $200 lm of the precrack tip. For such short cracks, wherein the magnitude of crack, particularly in association with fretting fatigue in the blade dovetail/disk contact section [3]. For fatigue

Ritchie, Robert

395

Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods  

SciTech Connect (OSTI)

Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

2007-03-01T23:59:59.000Z

396

Microstructural and solidification cracking evaluation of electron beam welds in 304L  

SciTech Connect (OSTI)

Weld hot cracking of stainless steels is a major materials-related problem in the welding industry. This present investigation evaluates the crack susceptibility of highly-constrained EB welds made in materials whose DeLong ferrite potentials range from zero to nine FN. In addition, the effect of piece part strength level on cracking is examined. This study has revealed that these deep penetration EB welds have regions that solidify as primary austenite, even when the DeLong ferrite potential is as high as 9 FN. This points out the critical role that solidification rate plays in the crack susceptibility of these highly restrained welds. In addition, 0 FN to 0 FN welds had primarily transverse cracks while 6 FN to 0 FN welds had primarily centerline cracks. Of particular interest is the observation that cracks still occur if a high ferrite (greater than 6 FN) component is welded to a zero FN component. Cracking is always associated with regions which solidify as primary austenite and these cracks occur because there are areas in the weld which do not mix. Thus it is not a recommended production practice to compensate for low ferrite in one piece part with high ferrite in its mate. Finally, it is shown that a DeLong FN threshold of 4 to prevent cracking in EB welds in not valid. 21 refs., 16 figs.

Sturgill, P.L.; Campbell, R.D.; Henningsen, J.L.

1991-01-01T23:59:59.000Z

397

Process for upgrading tar sand bitumen  

SciTech Connect (OSTI)

A process is described for upgrading a charge of a tar sand bitumen concentrate containing mineral matter including fine particles which comprises contacting the charge in a riser in the presence of a low boiling organic solvent diluent with finely divided attrition-resistant particles of a hot fluidizable substantially catalytically inert solid which is substantially chemically inert to a solution of mineral acid. The contact of the charge with the particles is at high temperature and short contact time to vaporize the high hydrogen containing components of the bitumen, the period of time being less than that which induces substantial thermal cracking of the charge, at the end of the time separating the vaporizing product from the fluidizable particles. The fluidizable particles now bear a deposit of both combustible solid, adherent particles of fine particles of mineral matter and metals. The particles of inert solid are passed with deposit of combustibles and fine particles of mineral matter to a regenerator to oxidize the combustible portion of the deposits, removing at least a portion of deposit of mineral matter and metals by removing the inert solid from the regenerator and contacting removed inert solid with a hot mineral acid, and recirculating fluidizable solid depleted at least in part of deposited mineral matter to contact with incoming charge of tar sand bitumen concentrate and diluent.

Bartholic, D.B.; Reagan, W.J.

1989-04-04T23:59:59.000Z

398

Stress Corrosion Cracking and Non-Destructive Examination of Dissimilar Metal Welds and Alloy 600  

SciTech Connect (OSTI)

The United States Nuclear Regulatory Commission (USNRC) has conducted research since 1977 in the areas of environmentally assisted cracking and assessment and reliability of non-destructive examination (NDE). Recent occurrences of cracking in Alloy 82/182 welds and Alloy 600 base metal at several domestic and overseas plants have raised several issues relating to both of these areas of NRC research. The occurrences of cracking were identified by the discovery of boric acid deposits resulting from through-wall cracking in the primary system pressure boundary. Analyses indicate that the cracking has occurred due to primary water stress corrosion cracking (PWSCC) in Alloy 82/182 welds. This cracking has occurred in two different locations: in hot leg nozzle-to-safe end welds and in control rod drive mechanism (CRDM) nozzle welds. The cracking associated with safe-end welds is important due to the potential for a large loss of reactor coolant inventory, and the cracking of CRDM nozzle base metal and welds, particularly circumferential cracking of CRDM nozzle base metal, is important due to the potential for a control rod to eject resulting in a loss of coolant accident. The industry response in the U.S. to this cracking is being coordinated through the Electric Power Research Institute's Materials Reliability Project (EPRI-MRP) in a comprehensive, multifaceted effort. Although the industry program is addressing many of the issues raised by these cracking occurrences, confirmatory research is necessary for the staff to evaluate the work conducted by industry groups. Several issues requiring additional consideration regarding the generic implications of these isolated events have been identified. This paper will discuss the recent events of significant cracking in domestic and foreign plants, discuss the limitations of NDE in detecting SCC, identify deficiencies in information available in this area, discuss the USNRC approach to address these issues, and discuss the development of an international cooperative effort. (authors)

Jackson, Deborah A. [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

2002-07-01T23:59:59.000Z

399

Fatigue Crack Propagation from Notched Specimens of 304 SS in elevated Temperature Aqueous Environment  

SciTech Connect (OSTI)

Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventional deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.

Wire, G. L.; Mills, W. J.

2002-08-01T23:59:59.000Z

400

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures  

SciTech Connect (OSTI)

The properties that determine the thermal shock resistance in materials are reported for porous cordierite, a leading candidate material for the fabrication of diesel particulate filters. Fracture toughness and slow crack growth tests were performed on test specimens obtained from the walls of diesel particulate filter monolithic substrates using the double-torsion test method at temperatures between 20 C and 900 C. The thermal expansion and elastic properties were characterized between 20 C and 1000 C. The role of the microstructure of porous cordierite in determining its unusual thermal expansion and elevated temperature Young's modulus and fracture toughness are discussed.

Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL; Pandey, Amit [ORNL; Watkins, Thomas R [ORNL; More, Karren [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

402

Characterization of microstructure and crack propagation in alumina using orientation imaging microscopy (OIM). December 1996  

SciTech Connect (OSTI)

A more complete description requires the lattice orientations of a statistically significant number of grains, coupled with morphology such as grain size and shape; this can be obtained using orientation imaging microscopy (OIM), which uses crystallographic orientation data from Backscattered Electron Kikuchi patterns (BEKP) collected using a SEM. This report describes the OIM results for alumina; these include image quality maps, grain boundary maps, pole figures, and lattice misorientations depicted on MacKenzie plot and in Rodrigues space. High quality BEKP were obtained and the images and data readily reveal the grain morphology, texture, and grain boundary misorientations, including those for cracked boundaries. A larger number of grains should be measured to make statistical comparisons between materials with different processing histories.

Glass, S.J.; Michael, J.R. [Sandia National Labs., Albuquerque, NM (United States); Readey, M.J. [Caterpillar, Inc., Peoria, IL (United States); Wright, S.I.; Field, D.P. [TSL, Inc., Provo, UT (United States)

1996-12-01T23:59:59.000Z

403

Carbo-metallic oil-conversion process and catalysts  

SciTech Connect (OSTI)

This patent describes a continuous process for cracking of a residual hydrocarbon feedstock into lower molecular weight hydrocarbon transportation fuels. The cracking being carried out in the presence of a catalyst having catalyst parameters comprising porosity, metals content, rare earth content, and zeolite content. The residual hydrocarbon feedstock comprising metal contaminants, fractions boiling above 1025{degrees}F. comprising asphaltenes, polynuclear aromatics, naphthenes and prophyrins.

Hettinger, W.P.; Beck, W.

1989-10-31T23:59:59.000Z

404

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

405

Subcritical Crack Growth in Ceramic Composites at High Temperature Measured Using Digital Image Correlation  

SciTech Connect (OSTI)

An in situ experimental technique is described that allows high resolution, high sensitivity determination of displacements and full-field strains during high temperature mechanical testing. The technique is used to investigate elevated temperature crack growth in SiC/Nicalon sub f composites. At 1150 degrees C, the reinforcing fibers have a higher creep susceptibility than the matrix. Fiber creep leads to relaxation of crack bridging tractions, resulting in subcritical crack growth. Differential image analysis is used to measure the crack opening displacement profile u(x) of an advancing, bridged crack. With appropriate modeling, such data can be used to determine the traction law, from which the mechanics of cracking and failure may be determined.

Mumm, D.R.; Morris, W.L.; Dadkhah, M.S.; Cox, B.N.

1996-01-11T23:59:59.000Z

406

Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management  

SciTech Connect (OSTI)

In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Tool steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.

Brevick, Jerald R. [Ohio State University

2014-06-13T23:59:59.000Z

407

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network [OSTI]

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

408

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

409

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

410

Significance of crack opening monitoring for determining the growth behavior of hydrofractures  

SciTech Connect (OSTI)

A method for determining the size of a crack induced by hydraulic fracturing is presented. The procedure is based on the measurement of the crack opening displacement and the fracture mechanics approach. The proposed method has been tested by conducting laboratory small-scale hydraulic fracturing tests on a granite. It is shown from the preliminary tests that the method provides a reasonable prediction of experimentally observed crack sizes.

Hashida, Toshiyuki; Sato, Kazushi; Takahashi, Hideaki

1993-01-28T23:59:59.000Z

411

Beryllium Manufacturing Processes  

SciTech Connect (OSTI)

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

412

Stress-corrosion cracking of steels in ammonia with consideration given to OTEC design: a survey  

SciTech Connect (OSTI)

Carbon steel, alloy steel, and high-strength, quenched and tempered steel, when under applied or residual stress and especially when cold formed and/or welded without subsequent thermal stress relief, are subject to failure by stress-corrosion cracking (SCC) in air-contaminated dry ammonia. Water as well as hydrazine when present in small amounts have been shown to be effective inhibitors in an all steel system. Galvanic corrosion between dissimilar metals and/or accelerated failure by SCC of stressed steel as a result of galvanic coupling may be of concern. Where water has proven effective as an inhibitor of SCC in an all steel system, it may not be adequate in a mixed metal system. With aluminum tubes, the tube sheet will either have to be solid aluminum, aluminum clad steel or some nonconductive coating will be necessary to effectively remove the cathodic alloy from the galvanic circuit. Research is required to determine the severity of the coupling effect between dissimilar alloys in ammonia under OTEC conditions; especially the possibility of accelerated SCC failures of stressed steel where the presence of an inhibitor in the ammonia may not be sufficient to override the galvanic coupling effect.

Teel, R.B.

1980-03-01T23:59:59.000Z

413

Evaluation of low-cycle fatigue crack growth and subsequent ductile fracture for cracked pipe experiments using cyclic J-integral  

SciTech Connect (OSTI)

Piping for LWR power plants is required to satisfy the Leak-Before-Break concept for postulated (not actual) defects. With this in mind, numerous research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. Study on cracked pipe fracture under cyclic loading gains much attention from the viewpoint of the Leak-Before-Break concept for seismic loading that accompanies large-scale yielding. An evaluation method based on cyclic J-integral was newly developed to predict the low-cycle fatigue crack growth and the subsequent ductile fracture for cyclic loading that accompanies large-scale yielding. Cyclic J-integral was introduced to describe the crack growth up to failure. The method was applied to 4-inch diameter circumferentially through-wall-cracked carbon steel base metal pipes and welded pipe joints subjected to cyclic 4-point bending at room temperature and high temperature of approximately 300 C. Fatigue crack growth behavior and failure life were successfully predicted by the proposed approach.

Miura, Naoki; Fujioka, Terutaka; Kashima, Koichi [CRIEPI, Tokyo (Japan); Miyazaki, Katsumasa; Kanno, Satoshi; Hayashi, Makoto; Ishiwata, Masayuki; Gotoh, Nobuho [Hitachi, Ltd., Ibaraki (Japan)

1996-12-01T23:59:59.000Z

414

Assessment and prediction of drying shrinkage cracking in bonded mortar overlays  

SciTech Connect (OSTI)

Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

2013-11-15T23:59:59.000Z

415

Mixed Mode Static and Fatigue Crack Growth in Wind Blade Paste Adhesives  

E-Print Network [OSTI]

, static GIc and mixed mode fracture, and fatigue crack growth resistance. I. Introduction Wind turbine blades are large composite structures which are typically resin infusion molded in sections

416

Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications  

SciTech Connect (OSTI)

This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

Dong, P.; Rahman, S.; Wilkowski, G. [and others

1997-04-01T23:59:59.000Z

417

E-Print Network 3.0 - alligator cracking Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: alligator cracking Page: << < 1 2 3 4 5 > >> 1 Project Summary Report 7-4975-S PROJECTSUMMARYREPORT CENTER FOR TRANSPORTATION RESEARCH Summary: . For...

418

E-Print Network 3.0 - assisted fatigue crack Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Grain-Boundary Adhesion Summary: unless they experience environmentally assisted subcritical growth during cyclic loading.7 Fatigue-crack... (moist air and dry N2). The...

419

Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method  

SciTech Connect (OSTI)

A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

Felice, Maria V. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom and Rolls-Royce plc., Bristol BS34 7QE (United Kingdom); Velichko, Alexander; Wilcox, Paul D. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Barden, Tim J.; Dunhill, Tony K. [Rolls-Royce plc., Bristol BS34 7QE (United Kingdom)

2014-02-18T23:59:59.000Z

420

Method For Brazing And Thermal Processing  

DOE Patents [OSTI]

The present invention includes a method for brazing of two objects or heat treatment of one object. First, object or objects to be treated are selected and initial conditions establishing a relative geometry and material characteristics are determined. Then, a first design of an optical system for directing heat energy onto the object or objects is determined. The initial conditions and first design of the optical system are then input into a optical ray-tracing computer program. The program is then run to produce a representative output of the heat energy input distribution to the object or objects. The geometry of the object or objects, material characteristics, and optical system design are then adjusted until an desired heat input is determined.

Milewski, John O. (Santa Fe, NM); Dave, Vivek R. (Los Alamos, NM); Christensen, Dane (Livermore, CA); Carpenter, II, Robert W. (Los Alamos, NM)

2005-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Conductive Thermal Interaction in Evaporative Cooling Process  

E-Print Network [OSTI]

be considered. Usually the dry-bulb depression performed by an evaporative cooler depends solely on the ambient wet-bulb temperature. The cool underground water in an evaporative cooler can cause not only adiabatic evaporation but also sensible heat transfer...

Kim, B. S.; Degelman, L. O.

1990-01-01T23:59:59.000Z

422

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to: navigation,Solar

423

Thermal conductivity and heat transfer in superlattices  

SciTech Connect (OSTI)

Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

Chen, G.; Neagu, M.; Borca-Tasciuc, T.

1997-07-01T23:59:59.000Z

424

Nonlinear FE analysis of cracks in tension and shear  

E-Print Network [OSTI]

Carbon FRP Shear Reinforcement. PhD thesis, University of Cambridge, UK, 2003. 3. Bazant Z. P. and Planas J. Fracture and Size Effect in Con- crete and Other Quasibrittle Materials. CRC Press, Boca Raton, Florida, 1998. Nonlinear FE analysis of cracks... of plain concrete to cyclic tension. ACI Materials Journal, 1987, 84, No. 5, 365–373. 9. Paulay T. and Loeber P. J. Shear transfer by aggregate inter- lock. ACI Special Publication, SP-42, 1974, 1, 1–14. 10. Houde J. and Mirza M. S. A finite element...

Kesse, G.; Lees, Janet M.

2007-05-01T23:59:59.000Z

425

On the approximation of crack shapes found during inservice inspection  

SciTech Connect (OSTI)

This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.

Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

1997-04-01T23:59:59.000Z

426

Numerical simulations of the thermal impact of supercritical CO2 injection on chemical  

E-Print Network [OSTI]

Numerical simulations of the thermal impact of supercritical CO2 injection on chemical reactivity, investigates thermal effects during CO2 injection into a deep carbonate formation. Different thermal processes in carbonate aquifers, and the influence of anthropic thermal processes (e.g., injection temperature

Boyer, Edmond

427

Thermal treatment for VOC control  

SciTech Connect (OSTI)

Catalytic and thermal oxidation are well-established technologies for controlling volatile organic compounds (VOCs). Oxidation destroys pollutants, rather than capturing them. Oxidation units can destroy nearly 100% of VOC and toxic emissions targeted by the Clean Air Act Amendments of 1990--some systems attain destruction efficiencies over 99.99%. To assist in the design of these systems, an engineer will often look a/t the heat of combustion of the gas stream, along with the type of pollutant, to best determine the correct type of oxidation device to use. The paper discusses catalytic and thermal oxidation, energy recovery, and equipment for these processes.

Cloud, R.A. [Huntington Environmental Systems, Schaumburg, IL (United States)

1998-07-01T23:59:59.000Z

428

Calculate thermal-expansion coefficients  

SciTech Connect (OSTI)

To properly design and use process equipment, an engineer needs a sound knowledge of physical and thermodynamic property data. A lack of such knowledge can lead to design or operating mistakes that can be dangerous, costly or even fatal. One useful type of property data is the thermal-expansion coefficient. This article presents equations and tables to find the thermal-expansion coefficients of many liquids that contain carbon. These data are useful in process-engineering applications, including the design of relief systems which are crucial to safeguarding process equipment. Data are provided for approximately 350 compounds. A computer software program, which contains the thermophysical property data for all of the compounds discussed in this article, is available for $43 prepaid from the author (Carl L. Yaws, Box 10053, Lamar University, beaumont, TX 77710; Tel. 409-880-8787; fax 409-880-8404). The program is in ASCII format, which can be accessed by most other types of computer software.

Yaws, C.L. [Lamar Univ., Beaumont, TX (United States)

1995-08-01T23:59:59.000Z

429

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

430

Prediction of PWSCC in nickel base alloys using crack growth rate models  

SciTech Connect (OSTI)

The Ford/Andresen slip-dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material conditions. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip-dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip-dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip.

Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L. [Knolls Atomic Power Lab., Schenectady, NY (United States)

1995-12-31T23:59:59.000Z

431

Fatigue and environmentally assisted cracking in light water reactors  

SciTech Connect (OSTI)

Fatigue and stress corrosion cracking (SCC) for low-alloy steel used in piping and in steam generator and reactor pressure vessels have been investigated. Fatigue data were obtained on medium-sulfur-content A533-Gr B and A106-Gr B steels in high-purity (HP) deoxygenated water, in simulated pressurized water reactor water, and in air. Analytical studies focused on the behavior of carbon steels in boiling water reactor (BWR) environments. Crack-growth rates of composite fracture-mechanics specimens of A533-Gr B/Inconel-182/Inconel-600 (plated with nickel) and homogeneous specimens of A533-Gr B steel were determined under small-amplitude cyclic loading in HP water with {approx}300 pbb dissolved oxygen. Radiation-induced segregation and irradiation-assisted SCC of Type 304 SS after accumulation of relatively high fluence also have been investigated. Microchemical and microstructural changes in HP and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy, and slow-strain-rate tensile tests were conducted on tubular specimens in air and in simulated BWR water at 289{degrees}C.

Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Shack, W.J.

1992-03-01T23:59:59.000Z

432

Ceramics in non-thermal plasma discharge for hydrogen generation.  

E-Print Network [OSTI]

??Recent interest in hydrogen as an energy source has resulted in development of new technologies such as non-thermal plasma processing of natural gas. We report… (more)

Vintila, Ramona Roxana

2005-01-01T23:59:59.000Z

433

Low-Cracking High-Performance Concrete (LC-HPC) Bridge Decks: Shrinkage-Reducing Admixtures, Internal Curing, and Cracking Performance  

E-Print Network [OSTI]

ABSTRACT The development, construction, and evaluation of low-cracking high-performance concrete (LC-HPC) bridge decks is described based on laboratory tests of mixtures containing shrinkage-reducing admixtures and mineral admixtures in conjunction...

Pendergrass, Ben Andrew

2014-05-31T23:59:59.000Z

434

Pattern of Thermal Fluctuations in a Recovery Boiler Floor  

SciTech Connect (OSTI)

The floor of a black liquor recovey boiler at a mill in central Canada has experienced cracking and delamination of the composite tubing near the spout wall and deformation of the floor panels that is most severe in the vicinity of the spout wall. One possible explanation for the observed damage is impacts of salt cake falling from the convective section onto the floor. In order to determine if such impacts do occur, strain gauges and thermocouples were installed on the boiler floor in areas where cracking and deformation were most frequent. The data obtained from these instruments indicate that brief, sudden temperature fluctuations do occur, and changes in the strain experienced by the affected tube occur simultaneously. These fluctuations appear to occur less often along the spout wall and more frequently with increasing distance from the wall. The frequency of these temperature fluctuations is insufficient for thermal fatigue to be the sole cause of the cracking observed on the tubes, but the data are consistent with what might be expected from pieces of falling salt cake.

Abdullah, Z.; Gorog, J.P.; Keiser, J.R.; Meyers, L.E.; Swindeman, R.W.

1999-04-25T23:59:59.000Z

435

Pattern of thermal fluctuations in a recovery boiler floor  

SciTech Connect (OSTI)

The floor of a black liquor recovery boiler at a mill in central Canada has experienced cracking and delamination of the composite tubing near the spout wall and deformation of the floor panels that is most severe in the vicinity of the spout wail. One possible explanation for the observed damage is impacts of salt cake falling from the convective section onto the floor. In order to determine if such impacts do occur, strain gauges and thermocouples were installed on the boiler floor in areas where cracking and deformation were most frequent. The data obtained from these instruments indicate that brief, sudden temperature fluctuations do occur, and changes in the strain experienced by-the affected tube occur simultaneously. These fluctuations appear to occur less often along the spout wall and more frequently with increasing distance from the wall. The frequency of these temperature fluctuations is insufficient for thermal fatigue to be the sole cause of the cracking observed on the tubes, but the data are consistent with what might be expected from pieces of falling salt cake.

Keiser, J.R.; Meyers, L.E.; Swindeman, R.W.; Gorog, J.P.; Abdullah, Z.

1999-07-01T23:59:59.000Z

436

THE ELASTIC-PLASTIC MECHANICS OF CRACK EXTENSION James R. Rice*  

E-Print Network [OSTI]

THE ELASTIC-PLASTIC MECHANICS OF CRACK EXTENSION James R. Rice* ABSTRACT This paper briefly reviews progres~in the elastic plastic analysisof crack extension. Analytical results for plane strain and plane stress deformation fields are noted, and elastic-plastic fracture instability as well as transitional

437

Thermo-optical modulation for improved ultrasonic fatigue crack detection in Ti6Al4V  

E-Print Network [OSTI]

scatterers, such as surface grooves, corrosion pits, coarse grains, etc. that might hide the fatigue crack to grow at unexpectedly high growth rates well below the large-crack threshold in aluminum, aluminum­lithium) and secondary irregulari- ties (e.g. uneven machining, mechanical wear, corrosion, etc.). Second

Nagy, Peter B.

438

Ultrasonic ply-by-ply detection of matrix cracks in laminated composites  

E-Print Network [OSTI]

on the internal damage state of the composite tank wall. Damage in the form of matrix cracks in the composite material of the tank is responsible for the through-the-thickness permeation of LH2. In this context, the detection of matrix cracks takes...

Ganpatye, Atul Shridatta

2005-02-17T23:59:59.000Z

439

Effect of Blast Design on Crack Response C.H. Dowding  

E-Print Network [OSTI]

Effect of Blast Design on Crack Response C.H. Dowding Professor of Civil & Environmental to assess the effect of changes in blast design on the house response. Velocity response was measured some 11 velocity transducers and 3 crack sensors measured excitation and response for each blast

440

Statistical fracture modeling: crack path and fracture criteria with application to homogeneous and  

E-Print Network [OSTI]

Statistical fracture modeling: crack path and fracture criteria with application to homogeneous; accepted 23 January 2002 Abstract Analysis has been performed on fracture initiation near a crack in a brittle material with strength described by Weibull statistics. This nonlocal fracture model allows

Ritchie, Robert

Note: This page contains sample records for the topic "thermal cracking process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D  

E-Print Network [OSTI]

Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D W. Zhou*, T. Z. Long and C. K ductility, and the HAZ was found to be the `weakest link'. Keywords: Magnesium alloy, AZ91D, TIG welding, Hot cracking, Liquation, Fracture Introduction Magnesium alloys have high strength/weight ratio

Zhou, Wei

442

Brittle fracture in a periodic structure with internal potential energy. Spontaneous crack propagation  

E-Print Network [OSTI]

Spontaneous brittle fracture is studied based on the recently introduced model (Mishuris and Slepyan, Brittle fracture in a periodic structure with internal potential energy. Proc. Roy. Soc. A, in press). A periodic structure is considered, where only the prospective crack-path layer is specified as a discrete set of alternating initially stretched and compressed bonds. A bridged crack destroying initially stretched bonds may propagate under a certain level of the internal energy without external sources. The general analytical solution with the crack speed $-$ energy relation is presented in terms of the crack-related dynamic Green's function. For the anisotropic two-line chain and lattice considered earlier in quasi-statics, the dynamic problem is examined in detail. The crack speed is found to grow unboundedly as the energy approaches its upper limit. It is revealed that the spontaneous fracture can occur in the form of a pure bridged, partially bridged or fully open crack depending on the internal energy level. Generally, the steady-state mode of the crack propagation is found to be realised, whereas an irregular growth, clustering and the crack speed oscillations are detected in a vicinity of the lower bound of the energy.

Mark Ayzenberg-Stepanenko; Gennady Mishuris; Leonid Slepyan

2014-02-12T23:59:59.000Z

443

DEVELOPMENT OF NONLINEAR TIME REVERSED ACOUSTICS (NLTRA) FOR APPLICATIONS TO CRACK DETECTION IN SOLIDS  

E-Print Network [OSTI]

of Nondestructive Evaluation (NDE) exhibit extremely high sensitivity to the presence of cracks. Time Reverse stones and long-distance communication in the ocean. The Nondestructive Evaluation (NDE) applications,4] and detection of cracks in a thin air-filled hollow cylinder [5]. A review of TRA applications to NDE is given

444

ccsd-00095604,version1-18Sep2006 Understanding crack versus cavitation in pressure-sensitive  

E-Print Network [OSTI]

ccsd-00095604,version1-18Sep2006 Understanding crack versus cavitation in pressure show that in addition to cavitation, interfacial cracks are encountered in a probe-tack traction test mechanisms in usual adhesives. The most common one is cavitation, as evidenced by the first tests

Paris-Sud XI, Université de

445

Autonomous Crack Displacement Monitoring of a Residence Near a Quarry David E. Kosnik, Northwestern University  

E-Print Network [OSTI]

Autonomous Crack Displacement Monitoring of a Residence Near a Quarry David E. Kosnik, Northwestern remote mon- itoring of cracks in interior and exterior walls of a residence near a limestone quarry for construction and raw materials. For instance, neighbors of road aggregate quarries often perceive

446

Autonomous Remote Crack Displacement Monitoring of a Residence Near a Limestone  

E-Print Network [OSTI]

Autonomous Remote Crack Displacement Monitoring of a Residence Near a Limestone Quarry, Naples a limestone quarry. The object is to quantitatively compare crack re- sponse to blast-induced ground motion for construction and raw materials. For instance, neighbors of road aggregate quarries often perceive

447

Analysis of the tube-sheet cracking in slurry oil steam , L.J. Qiao a,  

E-Print Network [OSTI]

Analysis of the tube-sheet cracking in slurry oil steam generators L.K. Zhu a , L.J. Qiao a, , X and increased costs. In this study, the mechanisms of the tube- sheet cracking in slurry oil steam generators steam generator is a kind of shell and tube heat exchanger extensively used in the oil refinement

Volinsky, Alex A.

448

Efficient solution of multiple cracks in great number using eigen COD boundary integral equations with iteration procedure  

E-Print Network [OSTI]

as the fibre-reinforced brittle materials after certain extent of tensile damage. The prediction of crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD

Liu, Yijun

449

Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within the oxide layer  

E-Print Network [OSTI]

Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within with stress-induced surface oxide thicken- ing and moisture-assisted subcritical cracking in the amor- phous

Ritchie, Robert

450

Reflective Cracking Study: First-level Report on HVS Testing on Section 586RF - 45 mm MB15-GOverlay  

E-Print Network [OSTI]

of the asphalt concrete layer. Testing was stopped when thetesting being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the fifth HVS reflective cracking testing

Jones, David; Wu, R; Harvey, John T

2008-01-01T23:59:59.000Z

451

Reflective Cracking Study: First-Level Report on HVS Testing on Section 589RF - 45 mm MB4-G Overlay  

E-Print Network [OSTI]

of the asphalt concrete layer. Testing was stopped when thetesting being performed to validate Caltrans overlay strategies for the rehabilitation of cracked asphalt concrete.concrete. It describes the results of the second HVS reflective cracking testing

Jones, David; Harvey, John T; Wu, R; Lea, J.

2008-01-01T23:59:59.000Z

452

Fatigue crack propagation in a quasi one-dimensional elasto-plastic model  

E-Print Network [OSTI]

Fatigue crack advance induced by the application of cyclic quasistatic loads is investigated both numerically and analytically using a lattice spring model. The system has a quasi-one-dimensional geometry, and consists in two symmetrical chains that are pulled apart, thus breaking springs which connect them, and producing the advance of a crack. Quasistatic crack advance occurs as a consequence of the plasticity included in the springs which form the chains, and that implies a history dependent stress-strain curve for each spring. The continuous limit of the model allows a detailed analytical treatment that gives physical insight of the propagation mechanism. This simple model captures key features that cause well known phenomenology in fatigue crack propagation, in particular a Paris-like law of crack advance under cyclic loading, and the overload retardation effect.

Tomás M. Guozden; Eduardo A. Jagla

2012-06-27T23:59:59.000Z

453

Characterization of elevated temperature crack growth in Hastelloy-X using integral parameters  

SciTech Connect (OSTI)

Linear elastic fracture mechanics approaches are not suitable for prediction of fatigue crack growth in the nonlinear regime at elevated temperatures. The objective of this paper is to investigate the ability of the integral parameters by Blackburn (J*), by Kishimoto et al. ({cflx J}), and by Atluri et al. ({Delta}Tp*, {Delta}Tp) to correlate crack growth data of Hastelloy-X at elevated temperatures under nominally elastic and nominally plastic loading. Crack growth is analyzed using a finite element method, and the integral parameters are computed from the results of analysis. The experimental crack growth rates are correlated with these parameters. It is found that J*, {cflx J}, and {Delta}Tp* can correlate crack growth data within an acceptable accuracy.

Kim, K.S. [Pohang Univ. of Science and Technology (Korea, Republic of). Dept. of Mechanical Engineering; Van Stone, R.H. [General Electric Aircraft Engines, Cincinnati, OH (United States)

1995-07-01T23:59:59.000Z

454

Vickers microindentation toughness of a sintered SiC in the median-crack regime  

SciTech Connect (OSTI)

The Vickers microindentation method for the determination of the fracture toughness of ceramics was investigated in the median crack regime for a sintered alpha SiC. The results are compared with fracture toughness measurements by conventional fracture mechanics technique and also with the reported indentation toughness for the low-load Palmqvist crack regime. Indentation toughnesses in the median crack regime vary widely depending on the choice of the specific equation which is applied. The indentation toughnesses are also load (crack length) dependent. A decreasing R-curve trend results, in contradiction to the flat R-curve that has been observed with conventional fracture mechanics techniques. It is concluded that the Vickers microindentation method is not a reliable technique for the determination of the fracture toughness of ceramics in the median crack regime.

Ghosh, Asish; Kobayashi, A.S. (Washington Univ., Seattle, WA (United States). Coll. of Engineering); Li, Zhuang (Argonne National Lab., IL (United States)); Henager, C.H. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Bradt, R.C. (Nevada Univ., Reno, NV (United States). Mackay School of Mines)

1991-01-01T23:59:59.000Z

455

Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning  

SciTech Connect (OSTI)

This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

Shah, V.N.; Ware, A.G.; Porter, A.M.

1997-03-01T23:59:59.000Z

456

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

457

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

458

A continuing investigation into the stress field around two parallet-edge cracks in a finite body  

E-Print Network [OSTI]

,7 ........................................................................................... 5 2.1 Two Parallel Edge Cracks in a Four Point Bending Member.............................. 7 2.2 Westergaard Stress Functions and Resulting Stress Intensity Factors for a Crack with Applied Tractions Along Its Faces... .................................................................... 31 4.2 Mesh Created for Numerical Model (Zoomed in on Crack Interaction Region) ............................................................................................. 32 5.1 Open Mode Stress Intensity Factor Percent...

Gilman, Justin Patrick

2005-02-17T23:59:59.000Z

459

EFFECT OF STRESS GRADIENT AT THE VICINITY OF A CRACK TIP ON IONIC DIFFUSION IN SILICATE GLASSES: AN AFM STUDY.  

E-Print Network [OSTI]

1 EFFECT OF STRESS GRADIENT AT THE VICINITY OF A CRACK TIP ON IONIC DIFFUSION IN SILICATE GLASSES.marliere@univ-montp2.fr ABSTRACT The slow advance of a crack in sodo-silicate glasses was studied at nanometer scale-micrometric vicinity of the tip of a crack running in silicate glass with mobile ions (as sodium cations) and check

Demouchy, Sylvie

460

Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission  

SciTech Connect (OSTI)

Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

2012-04-26T23:59:59.000Z