National Library of Energy BETA

Sample records for thermal cracking delayed

  1. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect (OSTI)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  2. Percolation Cooling of the Three Mile Island Unit 2 Lower Head by Way of Thermal Cracking and Gap Formation

    SciTech Connect (OSTI)

    Thomsen, K.L.

    2002-01-15

    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall. The bulk permeability of the cracked top crust is estimated based on simple fracture mechanics and application of Poiseuille's law to the fractures. The gap is considered as an abstraction representing an initially rugged interface, which probably expanded by thermal deformation and cracking in connection with the water ingress. The coupled flow and heat conduction problem for the top crust is solved in slab geometry based on the two-phase Darcy equations together with quasi-steady mass and energy conservation equations. The resulting water penetration depth is in good agreement with the depth of the so-called loose debris bed. The lower-head and bottom-crust problem is treated analogously by a two-dimensional axisymmetric model. The notion of a gap is maintained as a useful concept in the flow analysis. Simulations show that a central hot spot with a peak wall temperature of 1075 to 1100 deg. C can be obtained, but the quenching rates are not satisfactory. It is concluded that a three-dimensional model with an additional mechanism to explain the sudden water ingress to the hot spot center would be more appropriate.

  3. Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter

    SciTech Connect (OSTI)

    Niwa, Akitsugu; Kobayashi, Takashi Nagase, Takashi; Naito, Hiroyoshi; Goushi, Kenichi; Adachi, Chihaya

    2014-05-26

    Using steady-state and time-resolved photoluminescence (PL) spectroscopy, we have investigated the temperature dependence of PL properties of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN), which have a small energy gap between its singlet and triplet excited states and thus exhibits efficient thermally activated delayed fluorescence [H. Uoyama et al., Nature 492, 235 (2012)]. Below around 100?K, PL quantum efficiency of 4CzIPN thin films is largely suppressed and strong photoexcitation intensity dependence appears. These features can be explained by using rate equations for the densities of singlet and triplet excited states considering a triplet-triplet annihilation process.

  4. Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow

    SciTech Connect (OSTI)

    Gill, Ramandeep; Thompson, Christopher, E-mail: rgill@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-01

    We consider delayed, volumetric heating in a magnetized outflow that has broken out of a confining medium and expanded to a high Lorentz factor (? ? 10{sup 2}-10{sup 3}) and low optical depth to scattering (? {sub T} ? 10{sup 3}-10{sup 2}). The energy flux at breakout is dominated by the magnetic field, with a modest contribution from quasi-thermal gamma rays whose spectrum was calculated in Paper I. We focus on the case of extreme baryon depletion in the magnetized material, but allow for a separate baryonic component that is entrained from a confining medium. Dissipation is driven by relativistic motion between these two components, which develops once the photon compactness drops below 4 10{sup 3}(Y{sub e} /0.5){sup 1}. We first calculate the acceleration of the magnetized component following breakout, showing that embedded MHD turbulence provides significant inertia, the neglect of which leads to unrealistically high estimates of flow Lorentz factor. After reheating begins, the pair and photon distributions are evolved self-consistently using a one-zone kinetic code that incorporates an exact treatment of Compton scattering, pair production and annihilation, and Coulomb scattering. Heating leads to a surge in pair creation, and the scattering depth saturates at ? {sub T} ? 1-4. The plasma maintains a very low ratio of particle to magnetic pressure, and can support strong anisotropy in the charged particle distribution, with cooling dominated by Compton scattering. High-energy power-law spectra with photon indices in the range observed in gamma-ray bursts (GRBs; 3 < ? < 3/2) are obtained by varying the ratio of heat input to the seed energy in quasi-thermal photons. We contrast our results with those for continuous heating across an expanding photosphere, and show that the latter model produces soft-to-hard evolution that is inconsistent with observations of GRBs.

  5. Vehicle barrier with access delay

    DOE Patents [OSTI]

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  6. Investigation of Cracked Lithium Hydride Reactor Vessels

    SciTech Connect (OSTI)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  7. Vacuum Distillation

    U.S. Energy Information Administration (EIA) Indexed Site

    Day) Process: Vacuum Distillation Thermal Cracking Thermal Cracking: Coking Thermal Cracking: Delayed Coking Thermal Cracking: Fluid Coking Thermal Cracking: Visbreaking Thermal Cracking: Other/Gas Oil Thermal Cracking: Coking (Barrels/Calendar Day) Catalytic Cracking Fresh Feed Catalytic Cracking Fresh Feed (Barrels/Calendar Day) Catalytic Cracking Recycled Feed Catalytic Hydrocracking Catalytic Hydrocracking: Distillate Catalytic Hydrocracking: Gas Oil Catalytic Hydrocracking: Residual Fuel

  8. The relationship between crack-tip strain and subcritical cracking...

    Office of Scientific and Technical Information (OSTI)

    crack-tip strain and subcritical cracking thresholds for steels in high-pressure hydrogen gas. Citation Details In-Document Search Title: The relationship between crack-tip...

  9. LPG storage vessel cracking experience

    SciTech Connect (OSTI)

    Cantwell, J.E. )

    1988-10-01

    In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

  10. LPG storage vessel cracking experience

    SciTech Connect (OSTI)

    Cantwell, J.E.

    1988-01-01

    As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

  11. Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes

    SciTech Connect (OSTI)

    Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 4680 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 8048503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2014-07-07

    Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

  12. Catalytic cracking process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA); Baker, Richard W. (Palo Alto, CA)

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  13. Blunt-crack band propagation in finite-element analysis for concrete structures. [LMFBR

    SciTech Connect (OSTI)

    Pfeiffer, P.A.; Bazant, Z.P.; Marchertas, A.H.

    1983-01-01

    The knowledge of concrete fracture is needed in nuclear reactor safety. The question of safety arises from the potential of concrete to crack under thermal loading. It has been postulated that structural concrete could be exposed to very high temperature, which may result from hot reactor coolant or even core debris coming in direct contact with the concrete. The utilization of the blunt crack approach for simulating concrete cracking in a general-purpose code is explored. The difficulties encountered in establishing the proper direction of crack propagation in an arbitrary discretization are described. Crack propagation is considered within the context of two types of solution techniques: (1) implicit solution of the static crack advance, and (2) explicit time integration using a dynamic relaxation technique to simulate the static crack advance. Also, in both solution techniques an elastic model is used to characterize the concrete.

  14. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    SciTech Connect (OSTI)

    Saha, Dulal Chandra [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Chang, InSung [Automotive Production Development Division, Hyundai Motor Company (Korea, Republic of); Park, Yeong-Do, E-mail: ypark@deu.ac.kr [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: The HAZ liquation crack during resistance spot welding of TWIP steel was examined. Cracks were completely backfilled and healed with divorced eutectic secondary phase. Co-segregation of C and Mn was detected in the cracked zone. Heat input was the most influencing factor to initiate liquation crack. Cracks have less/no significant effect on static tensile properties.

  15. Crack-resistant siloxane molding compounds. [Patent application

    DOE Patents [OSTI]

    McFarland, J.W.; Swearngin, C.B.

    1980-11-03

    The crack resistance of phenyl silicone molding resins containing siliceous fillers is improved by incorporating therein about 0.5 to 5.5% by weight of ..beta..-eucryptite, a lithium aluminum silicate having a negative thermal expansion coefficient. These molding resins are particularly suitable for encapsulating electronic devices such as diodes, coils, resistors, and the like.

  16. VARIABLE TIME DELAY MEANS

    DOE Patents [OSTI]

    Clemensen, R.E.

    1959-11-01

    An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

  17. Digital time delay

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

  18. Peridynamic model for fatigue cracking.

    SciTech Connect (OSTI)

    Silling, Stewart A.; Abe Askari

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the %22remaining life%22 of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  19. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  20. Time delay spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R. (Los Alamos, NM)

    1980-01-01

    A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.

  1. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cements resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  2. Downhole delay assembly for blasting with series delay

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO)

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  3. Nonlinear structural crack growth monitoring

    DOE Patents [OSTI]

    Welch, Donald E. (Oak Ridge, TN); Hively, Lee M. (Philadelphia, TN); Holdaway, Ray F. (Clinton, TN)

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  4. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2003-09-26

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  5. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2004-09-26

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  6. Programmable Differential Delay Circuit With Fine Delay Adjustment

    DOE Patents [OSTI]

    DeRyckere, John F. (Eau Claire, WI); Jenkins, Philip Nord (Eau Claire, WI); Cornett, Frank Nolan (Chippewa Falls, WI)

    2002-07-09

    Circuitry that provides additional delay to early arriving signals such that all data signals arrive at a receiving latch with same path delay. The delay of a forwarded clock reference is also controlled such that the capturing clock edge will be optimally positioned near quadrature (depending on latch setup/hold requirements). The circuitry continuously adapts to data and clock path delay changes and digital filtering of phase measurements reduce errors brought on by jittering data edges. The circuitry utilizes only the minimum amount of delay necessary to achieve objective thereby limiting any unintended jitter. Particularly, this programmable differential delay circuit with fine delay adjustment is designed to allow the skew between ASICS to be minimized. This includes skew between data bits, between data bits and clocks as well as minimizing the overall skew in a channel between ASICS.

  7. Prediction of crack propagation paths in the unit cell of SOFC stacks

    SciTech Connect (OSTI)

    Joulaee, N.; Makradi, A.; Ahzi, Said; Khaleel, Mohammad A.; Koeppel, Brian J.

    2009-08-01

    Planar Solid Oxide Fuel Cells (SOFC) stacks are multi-material layered systems with different thermo-mechanical properties. Due to their severe thermal loading, these layers have to meet high demands to preserve their mechanical integrity without initiation and propagation of fracture. Here, we focus on a typical unit cell of the stack which consists of positive electrode-electrolyte-negative electrode (PEN). Based on the mechanical properties of each layer and their interfaces, an energy criterion as a function of crack length is used for the prediction of possible crack extensions in the PEN. This criterion is a pure local criterion, independent of applied loads and geometry of the specimen. An analysis of the competition between crack deflections in the interfaces and crack penetration in layers is presented.

  8. Investigations of Low Temperature Time Dependent Cracking

    SciTech Connect (OSTI)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  9. Delayed cure bismaleimide resins

    DOE Patents [OSTI]

    Adams, Johnnie E. (Grandview, MO); Jamieson, Donald R. (Merriam, KS)

    1984-08-07

    Polybismaleimides prepared by delayed curing of bis-imides having the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, Cl or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the --(CH.sub.2).sub.n -- group, optionally, is substituted by 1-3 methyl groups or by fluorine.

  10. Soviet delays raise prices

    SciTech Connect (OSTI)

    Young, I.

    1992-01-15

    The breakup of the Soviet Union is causing massive disruptions to methanol exports. The changeover to a Commonwealth of independent States has created logistical problems which have led some shipments of Russian methanol to be cancelled and delayed other deliveries by up to two weeks. In recent years the Soviet Union has exported 700,000 m.t./year-900,000 m.t./year of methanol, mainly to Western Europe. The product is made at 750,000-m.t./year plants at Tomsk and Gubakha in Russia and transported by rail for shipment from the ports of Ventspils, Latvia, on the Baltic Sea and Yuzhnyy in Ukraine, on the Black Sea. The exports were handled by state export agency Soyuzagrochim, mainly under contract to West European traders and consumers in areas like Scandinavia and France.

  11. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk Jr; Keith Wisecarver

    2005-10-01

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature to remove hydrogen sulfide from furnace gases. (2) An understanding of what causes foaming in c

  12. Constraint effects observed in crack initiation stretch

    SciTech Connect (OSTI)

    Lambert, D.M.; Ernst, H.A.

    1995-12-31

    The current paper characterizes constraint in fracture: J-modified resistance (Jr) curves were developed for two tough structural materials, 6061-T651 (aluminum) and IN718-STA1 (nickel-base superalloy). A wide variety of configurations was tested to consider load configurations from bending to tension including three specimen types (compact tension, center-crack tension, and single-edge notched tension), and a range of ligament lengths and thicknesses, as well as side-grooved and smooth-sided ligaments. The Jr curves exhibited an inflection point after some crack extension, and the data were excluded beyond the inflection. Qualified Jr curves for the two materials showed similar behavior, but R-curves were identical for equal ligament length-to-thickness ratio (RL), for the aluminum alloy, with increasing slope for increasing RL, while for the nickel, the resistance curves aligned for equal ligament thickness, B, and the slope increased for decreasing B. Displacements at the original crack tip (CToD) were recorded throughout the test for several specimens. CToD-versus-crack extension curves were developed, and data were excluded beyond the inflection point (as with the Jr curves). The data collapsed into two distinct curves, thought to represent the surface, plane stress effect and the central, plane strain effect. This was observed for both materials. A technique called profiling is presented for the aluminum alloy only, where the crack face displacements are recorded at the final point of the test as a function of the position throughout the crack cavity, along with an effort to extract the observations in a usable form. Displacements were consistent throughout the cross-section at and behind the original crack tip. In the region where the crack grew, this displacement was developed by a combination of stretch and crack growth. The stretch required to initiate crack extension was a function of the depth beneath the surface into the cross-section.

  13. Delayed unlatching mechanism

    DOE Patents [OSTI]

    Bzorgi, Fariborz M.

    2015-05-19

    In various embodiments an apparatus is presented for securing a structure such as a door, window, hatch, or gate that moves between an open and a closed position relative to a fixed structure to provide or deny access to a compartment, a room, an outdoor area, or a facility. Various embodiments provide a delay in opening the closure of sufficient duration to frustrate a rapid activation that might be desired by a person who is attempting to pass through the closure for some illicit purpose. Typically, hydraulics are used to activate the apparatus and no electrical energy or electronic signals are employed. In one embodiment, a plurality of actuations of a hand lever operates a hydraulic pump that moves a locking bolt from a first position in which a locking bolt is engaged with a recess in the fixed structure (preventing opening of a gate) to a second position in which the locking bolt is disengaged from the recess to permit opening of the gate.

  14. High resolution digital delay timer

    DOE Patents [OSTI]

    Martin, Albert D. (Los Alamos, NM)

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  15. Uncommon Deformation Mechanisms during Fatigue-Crack Propagation...

    Office of Scientific and Technical Information (OSTI)

    Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in Nanocrystalline Alloys Prev Next Title: Uncommon Deformation Mechanisms during Fatigue-Crack Propagation ...

  16. Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystall...

    Office of Scientific and Technical Information (OSTI)

    Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals Citation Details In-Document Search Title: Intergranular Strain Evolution near Fatigue Crack Tips ...

  17. Cracked-fuel mechanics. [PWR; BWR

    SciTech Connect (OSTI)

    Williford, R.E.; Lanning, D.D.

    1982-01-01

    This paper presents a modelling concept and a set of measurable parameters that have been shown to improve the prediction of the mechanical behavior of cracked fuel/cladding systems without added computational expense. The transition from classical annular gap/cylindrical pellet models to modified bulk properties and further to local behavior for cracked fuel systems is discussed. The results of laboratory experiments to verify these modelling parameters are shown. Data are also presented from laboratory experiments on unirradiated and irradiated rods which show that fuel rod mechanical response depends on fuel fragment size. The impact of these data on cracked fuel behavior and failure modelling is also discussed.

  18. 3:2:1 Crack Spread

    Gasoline and Diesel Fuel Update (EIA)

    :2:1 Crack Spread Figure 1 Source: U.S. Energy Information Administration, based on Thomson Reuters. A crack spread measures the difference between the purchase price of crude oil and the selling price of finished products, such as gasoline and distillate fuel, that a refinery produces from the crude oil. Crack spreads are an indicator of the short-term profit margin of oil refineries because they compare the cost of the crude oil inputs to the wholesale, or spot, prices of the outputs (although

  19. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (?3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The effect of neutron irradiation on the fracture toughness of austenitic SSs was also evaluated at dose levels relevant to BWR internals.

  20. Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline

    Office of Scientific and Technical Information (OSTI)

    Metals (Journal Article) | SciTech Connect Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals Citation Details In-Document Search Title: Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress

  1. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect (OSTI)

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  2. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    SciTech Connect (OSTI)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  3. UWB delay and multiply receiver

    DOE Patents [OSTI]

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  4. Flaw Tolerance for Multiple Fatique Cracks

    SciTech Connect (OSTI)

    Gosselin, Stephen R.; Simonen, Fredric A.; Carter, R. G.

    2005-07-01

    This paper documents important details of the technical bases for changes to Appendix L. Calculations identified aspect ratios for equivalent single cracks (ESC) between the extremes of a 6:1 ratio and a full circumferential crack that can be used in Appendix L flaw tolerance assessments to account for the initiation, growth, and linking of multiple fatigue cracks. Probabilistic fracture mechanics (PFM) calculations determined ESC aspect ratios that result in the same through-wall crack probability as multiple small cracks (0.02 inch depth) that initiate and coalesce. The computations considered two materials (stainless and low alloy steels), three pipe diameters, five cyclic membrane-to-gradient stress ratios and a wide range of primary loads. Subsequent deterministic calculations identified the ESC aspect ratio for the hypothetical reference flaw depth assumptions in Appendix L. This paper also describes computations that compare the Appendix L flaw tolerance allowable operating period for the ESC models with results obtained when the a single default 6:1 aspect ratio reference flaw.

  5. STRESS CORROSION CRACKING IN TEAR DROP SPECIMENS

    SciTech Connect (OSTI)

    Lam, P; Philip Zapp, P; Jonathan Duffey, J; Kerry Dunn, K

    2009-05-01

    Laboratory tests were conducted to investigate the stress corrosion cracking (SCC) of 304L stainless steel used to construct the containment vessels for the storage of plutonium-bearing materials. The tear drop corrosion specimens each with an autogenous weld in the center were placed in contact with moist plutonium oxide and chloride salt mixtures. Cracking was found in two of the specimens in the heat affected zone (HAZ) at the apex area. Finite element analysis was performed to simulate the specimen fabrication for determining the internal stress which caused SCC to occur. It was found that the tensile stress at the crack initiation site was about 30% lower than the highest stress which had been shifted to the shoulders of the specimen due to the specimen fabrication process. This finding appears to indicate that the SCC initiation took place in favor of the possibly weaker weld/base metal interface at a sufficiently high level of background stress. The base material, even subject to a higher tensile stress, was not cracked. The relieving of tensile stress due to SCC initiation and growth in the HAZ and the weld might have foreclosed the potential for cracking at the specimen shoulders where higher stress was found.

  6. Fracture of surface cracks loaded in bending

    SciTech Connect (OSTI)

    Chao, Y.J.; Reuter, W.G.

    1997-12-31

    Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.

  7. Crack detection using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Migliori, A.; Bell, T.M.; Rhodes, G.W.

    1994-10-04

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

  8. Crack detection using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Migliori, Albert (Santa Fe, NM); Bell, Thomas M. (Santa Fe, NM); Rhodes, George W. (Albuquerque, NM)

    1994-01-01

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

  9. Environmentally assisted cracking of LWR materials.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Kassner, T. F.; Park, J. H.; Shack, W. J.; Zhang, J.; Brust, F. W.; Dong, P.

    1997-12-05

    The effect of dissolved oxygen level on fatigue life of austenitic stainless steels is discussed and the results of a detailed study of the effect of the environment on the growth of cracks during fatigue initiation are presented. Initial test results are given for specimens irradiated in the Halden reactor. Impurities introduced by shielded metal arc welding that may affect susceptibility to stress corrosion cracking are described. Results of calculations of residual stresses in core shroud weldments are summarized. Crack growth rates of high-nickel alloys under cyclic loading with R ratios from 0.2-0.95 in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 C are summarized.

  10. Strip edge cracking simulation in cold rolling

    SciTech Connect (OSTI)

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  11. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Authors Lou, M.; Rial and J.A. Published Journal...

  12. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    SciTech Connect (OSTI)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection methods often need to be addressed as plants age. Shutdown inspection intervals can only be designed using creep and creep-fatigue crack growth techniques. (5) The use of crack growth procedures can aid in examining the seriousness of creep damage in structural components. How cracks grow can be used to assess margins on components and lead to further safe operation. After examining the pros and cons of all these methods, the R5 code was chosen as the most up-to-date and validated high temperature creep and creep fatigue code currently used in the world at present. R5 is considered the leader because the code: (1) has well established and validated rules, (2) has a team of experts continually improving and updating it, (3) has software that can be used by designers, (4) extensive validation in many parts with available data from BE resources as well as input from Imperial college's database, and (5) was specifically developed for use in nuclear plants. R5 was specifically developed for use in gas cooled nuclear reactors which operate in the UK and much of the experience is based on materials and temperatures which are experienced in these reactors. If the next generation advanced reactors to be built in the US used these same materials within the same temperature ranges as these reactors, then R5 may be appropriate for consideration of direct implementation within ASME code NH or Section XI. However, until more verification and validation of these creep/fatigue crack growth rules for the specific materials and temperatures to be used in the GEN IV reactors is complete, ASME should consider delaying this implementation. With this in mind, it is this authors opinion that R5 methods are the best available for code use today. The focus of this work was to examine the literature for creep and creep-fatigue crack growth procedures that are well established in codes in other countries and choose a procedure to consider implementation into ASME NH. It is very important to recognize that all creep and creep fatigue crack growth procedures that are part of high temperature design codes are related and very similar. This effort made no attempt to develop a new creep-fatigue crack growth predictive methodology. Rather examination of current procedures was the only goal. The uncertainties in the R5 crack growth methods and recommendations for more work are summarized here also.

  13. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  14. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, Richard D. (Lisle, IL)

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  15. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  16. Improvement of microbead cracking catalyst manufacture

    SciTech Connect (OSTI)

    Mirskii, Ya.B.; Kosolapova, A.P.; Meged, N.F.

    1986-11-01

    In order to improve the manufacturing process for KMTsR microbead catalyst for use in new cracking units, the authors consider the method of increasing the content of aluminum oxide in its amorphous part. A microbead catalyst of zeolite, containing rare-earth elements of the KMTsR type was obtained by spray-drying a slurry prepared by mechanical dispersion of hydrogel beads, with the subsequent molding and processing operations the same as in the production of bead catalyst.

  17. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore »the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  18. Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking

    SciTech Connect (OSTI)

    Vashishta, Priya

    2014-12-01

    Reaction Dynamics in Energetic Materials: Detonation is a prototype of mechanochemistry, in which mechanically and thermally induced chemical reactions far from equilibrium exhibit vastly different behaviors. It is also one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. The CACS group has performed multimillion-atom reactive MD simulations to reveal a novel two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine (RDX) crystal. Rapid production of N2 and H2O within ~10 ps is followed by delayed production of CO molecules within ~ 1 ns. They found that further decomposition towards the final products is inhibited by the formation of large metastable C- and O-rich clusters with fractal geometry. The CACS group has also simulated the oxidation dynamics of close-packed aggregates of aluminum nanoparticles passivated by oxide shells. Their simulation results suggest an unexpectedly active role of the oxide shell as a nanoreactor.

  19. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    SciTech Connect (OSTI)

    Das, S.K.; Ningileri, S.; Long, Z.; Saito, K.; Khraisheh, M.; Hassan, M.H.; Kuwana, K.; Han, Q.; Viswanathan, S.; Sabau, A.S.; Clark, J.; Hyrn, J. (ANL)

    2006-08-15

    Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting process has been the mainstay of the aluminum industry for the production of ingots due largely to its robust nature and relative simplicity. Though the basic process of DC casting is in principle straightforward, the interaction of process parameters with heat extraction, microstructural evolution, and development of solidification stresses is too complex to analyze by intuition or practical experience. One issue in DC casting is the formation of stress cracks [1-15]. In particular, the move toward larger ingot cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies have increased industry efficiencies but have made it more difficult to predict the occurrence of stress crack defects. The Aluminum Industry Technology Roadmap [16] has recognized the challenges inherent in the DC casting process and the control of stress cracks and selected the development of 'fundamental information on solidification of alloys to predict microstructure, surface properties, and stresses and strains' as a high-priority research need, and the 'lack of understanding of mechanisms of cracking as a function of alloy' and 'insufficient understanding of the aluminum solidification process', which is 'difficult to model', as technology barriers in aluminum casting processes. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack incidence is important for improving product quality and consistency as well as for saving resources and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, by reducing the scalping thickness of the ingot before rolling, and by eliminating butt sawing. Full-scale industrial implementation of the results of the proposed research would lead to energy savings in excess of 6 trillion Btu by the year 2020. The research undertaken in this project aimed to achieve this objective by a collaboration of industry, university, and national laboratory personnel through Secat, Inc., a consortium of aluminum companies. During the four-year project, the industrial partners and the research team met in 16 quarterly meetings to discuss research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot production. The project focused on the development of a fundamental understanding of ingot cracking and detailed models of thermal conditions, solidification, microstructural evolution, and stress development during the initial transient in DC castings of the aluminum alloys 3004 and 5182. The microstructure of the DC casting ingots was systematically characterized. Carefully designed experiments were carried out at the national laboratory and university facilities as well as at the industrial locations using the industrial production facilities. The advanced computational capabilities of the national laboratories were used for thermodynamic and kinetic simulations of phase transformation, heat transfer and fluid flow, solidification, and stress-strain evolution during DC casting. The achievements of the project are the following: (1) Identified the nature of crack formation during DC casting; (2) Developed a novel method for determining the mechanical properties of an alloy at the nonequilibrium mushy zone of the alloy; (3) Measured heat transfer coefficients (HTCs) between the solidifying ingot and the cooling water jet; (4) Determined the material constitutive model at high temperatures; and (5) Developed computational capabilities for the simulation of cracking formation in DC casting ingot. The models and the database de

  20. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    SciTech Connect (OSTI)

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  1. Method and apparatus for generating a natural crack

    DOE Patents [OSTI]

    Fulton, Fred J. (Livermore, CA); Honodel, Charles A. (Tracy, CA); Holman, William R. (Danville, CA); Weingart, Richard C. (Livermore, CA)

    1984-01-01

    A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A non-sustained single pressure pulse is then generated in the vicinity of the primary notch, resulting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

  2. Method and apparatus for generating a natural crack

    DOE Patents [OSTI]

    Fulton, F.J.; Honodel, C.A.; Holman, W.R.; Weingart, R.C.

    1982-05-06

    A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A nonsustained single pressure pulse is then generated in the vicinity of the primary notch, reuslting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

  3. P wave anisotropy, stress, and crack distribution at Coso geothermal...

    Open Energy Info (EERE)

    scalar. The resulting anisotropy distribution is used to estimate variations in crack density, stress distribution and permeability within the producing geothermal field. A...

  4. LABORATORY DELAYED OPENING, CLOSURE, OR EMERGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DELAYED OPENING, CLOSURE, OR EMERGENCY Los Alamos National Laboratory (LANL) may at times experience a work delay or closure due to inclement weather or unexpected Laboratory emergencies. In the event of a delay, closure, or emergency, Laboratory New Hires should call the following number to receive information regarding the delay or closure: LANL Update Hotline: 505-667-6622, 1-877-723-4101, and/or http://www.lanl.gov (Please note, the LANL hotline and webpage are updated by 5:30 a.m.) New Hire

  5. Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity

    SciTech Connect (OSTI)

    Maharrey, Sean; Wiese-Smith, Deneille; Highley, Aaron M.; Steill, Jeffrey D.; Behrens, Richard; Kay, Jeffrey J.

    2015-04-01

    This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable for a delayed, more violent release.

  6. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    SciTech Connect (OSTI)

    Singbeil, D.L.; Prescott, R.; Keiser, J.R.; Swindeman, R.W.

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  7. Predicting crack growth in continuous-fiber composite materials

    SciTech Connect (OSTI)

    Cordes, J.A.; Yazici, R.

    1995-12-31

    Pre-notched composite lamina with unidirectional fibers were studied experimentally and using finite element analysis. Experiments were conducted on notched graphite/aluminum and glass/epoxy panels and the results were compared to a finite element method. Under remote tensile loading, cracks in the graphite/aluminum panels propagated perpendicular to the applied load without stable crack growth. In the glass/epoxy panels, crack propagation was initially stable and parallel to the fibers. A nonlinear damage zone method (DZM) was used to predict the crack growth directions, estimate damages, model stable and unstable crack growths, and predict the loads at failure. For both materials, the predicted loads at failure were within 20% of experimental loads.

  8. Cracking in liquid petroleum gas Horton spheres

    SciTech Connect (OSTI)

    Trivedi, D.K. Gupta, S.C.

    1997-07-01

    A gas processing plant on the western coast of India produces sweet gas after processing sour natural gas. Liquid petroleum gas (LPG) is recovered from the sweet gas. The LPG, containing a H{sub 2}S concentration of 10 ppm to 20 ppm, is stored in Horton spheres, each 17 m in diameter with a capacity of {minus}27 C to 55 C. Horton spheres for containing liquid petroleum gas (LPG) were fabricated on-site using prestressed plates of high-strength carbon steel (CS) SA 537 Class-1 with post-weld heat treatment. High-residual tensile stresses and hydrogen absorption from H{sub 2}S present in LPG could be the cause of cracking at weld and heat-affected zone interfaces at high hardness locations. Recommendations are given for inspection and use of lower-strength CS and improved welding procedures.

  9. Three-dimensional crack growth assessment by microtopographic examination

    SciTech Connect (OSTI)

    Lloyd, W.R.; Piascik, R.S.

    1995-12-31

    The initial stage of the stable tearing process in two 2.3 mm sheet 2024-T3 aluminum alloy M(T) specimens are analyzed using fracture surface microtopography reconstruction techniques. The local crack tip opening angles (CTOA) in the interior of the specimens are determined relative to both crack extension and through-thickness position. The microtopographic analysis of cracks grown in the L-T and T-L orientations reveal that interior CTOA is comparable to those measured on the surface using standard optical analysis methods. Similar to surface CTOA results, interior (mid-thickness) CTOA exhibit a transient behavior; CTOA transitions from high angles, at near crack initiation, to a lower steady-state value of 5 deg. and 4.2 deg. for L-T and T-L, respectively, at crack lengths greater than 1.5mm. Fracture surface topographic projection maps are used to study the evolution of crack front tunneling during the initial stage of the fracture process. Stable tearing initiates at mid-thickness followed by a crack front tunneling process to a depth of approximately 2mm. A brief discussion of the basis of the fracture process reconstruction method is provided and comments on the general utility of microtopographic fracture surface examination for general assessment of elastic-plastic and fully-plastic fracture processes are made.

  10. Fatigue crack growth behavior of Ti-1100 at elevated temperature

    SciTech Connect (OSTI)

    Maxwell, D.C.; Nicholas, T.

    1995-12-31

    Effects of temperature, frequency, and cycles with superimposed hold times are evaluated in Ti-1100 in order to study the complex creep-fatigue-environment interactions in this material. Crack growth rate tests conducted at cyclic loading frequency of 1.0 Hz show that raising the temperature from 593 to 650 C has only a slightly detrimental effect on crack growth rate, although these temperatures produce growth rates significantly higher than at room temperature. From constant {Delta}K tests, the effects of temperature at constant frequency show a minimum crack growth rate at 250 C. From the minimum crack growth rate at 250 C, the crack growth rate increases linearly with temperature. Increases in frequency at constant temperatures of 593 and 650 C produce a continuous decrease in growth rate in going from 0.001 to 1.0 Hz, although the behavior is primarily cycle dependent in this region. Tests at 1.0 Hz with superimposed hold times from 1 to 1,000 s are used to evaluate creep-fatigue-environment interactions. Hold times at maximum load are found to initially decrease and then increase the cyclic crack growth rate with increasing duration. This is attributed to crack-tip blunting during short hold times and environmental degradation at long hold times. Hold times at minimum load show no change in growth rates, indicating that there is no net environmental degradation to the bulk material beyond that experienced during the baseline 1 Hz cycling.

  11. Stress-corrosion cracking of copper single crystals

    SciTech Connect (OSTI)

    Sieradzki, K.; Newman, R.C.; Sabatini, R.L.

    1984-10-01

    Constant extension rate tests have been carried out in a sodium nitrite solution. Crack velocities up to 30 nm per second were obtained at 30/sup 0/C. If dynamic straining is stopped, the cracks apparently stop growing within about 20 ..mu..m. The steps between adjacent flat facets are more energy-absorbing than in ..cap alpha..-brass, providing a possible explanation for the importance of dynamic strain. Simultaneous acoustic emission and electrochemical current transients suggest that cracking proceeds by discontinuous cleavage.

  12. Fault-induced delayed voltage recovery in a long inhomogeneous...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Fault-induced delayed voltage recovery in a long inhomogeneous power-distribution feeder Citation Details In-Document Search Title: Fault-induced delayed voltage ...

  13. MHK Technologies/Tidal Delay | Open Energy Information

    Open Energy Info (EERE)

    Tidal Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd...

  14. Stress corrosion cracking of zirconium used in the reprocessing plant

    SciTech Connect (OSTI)

    Kato, Chiaki; Motooka, Takafumi; Yamamoto, Masahiro

    2007-07-01

    We investigated stress corrosion cracking (SCC) of zirconium by constant load test and the small-scale mock-up test simulated the fuel dissolve. These tests operated in the simulated solution, which substituted non-radioactive elements, i.e. V with radioactive elements such as Pu and Np. From the results of constant load test, the cracks were not observed on 150 MPa after 908 hours in approximately 3 % strain. However a lot of cracks caused by SCC were observed over 20 % strain under high tensile stress in the simulated solution and the heat-transfer condition having more corrosive circumstance and noble potential accelerated the susceptibility of SCC. The cracking behavior would be caused by the creep phenomena. The small-scale mock-up test had been operated for about 50000 hours during 7 year. From the results, zirconium showed excellent corrosion resistance and no SCC was observed during these long-term operations. (authors)

  15. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect (OSTI)

    Chin-An Wang; Chin, B.A.; Grossbeck, M.L.

    1992-12-31

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  16. Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control | Department of Energy Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control PDF icon hot_rolling.pdf More Documents & Publications ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual Progress Report ITP Aluminum: Aluminum Industry Technology Roadmap

  17. Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in

    Office of Scientific and Technical Information (OSTI)

    Nanocrystalline Alloys (Journal Article) | DOE PAGES Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in Nanocrystalline Alloys « Prev Next » Title: Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in Nanocrystalline Alloys Authors: Cheng, Sheng ; Lee, Soo Yeol ; Li, Li ; Lei, Changhui ; Almer, Jon ; Wang, Xun-Li ; Ungar, Tamas ; Wang, Yinmin ; Liaw, Peter K. Publication Date: 2013-03-25 OSTI Identifier: 1103961 Type: Publisher's Accepted Manuscript Journal

  18. Analytical determination of critical crack size in solar cells

    SciTech Connect (OSTI)

    Chen, C.P.

    1988-05-01

    Although solar cells usually have chips and cracks, no material specifications concerning the allowable crack size on solar cells are available for quality assurance and engineering design usage. Any material specifications that the cell manufacturers use were developed for cosmetic reasons that have no technical basis. Therefore, the Applied Solar Energy Corporation (ASEC) has sponsored a continuing program for the fracture mechanics evaluation of GaAs. Fracture mechanics concepts were utilized to develop an analytical model that can predict the critical crack size of solar cells. This model indicates that the edge cracks of a solar cell are more critical than its surface cracks. In addition, the model suggests that the material specifications on the allowable crack size used for Si solar cells should not be applied to GaAs solar cells. The analytical model was applied to Si and GaAs solar cells, but it would also be applicable to the semiconductor wafers of other materials, such as a GaAs thin film on a Ge substrate, using appropriate input data.

  19. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    SciTech Connect (OSTI)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impeded hydrogen diffusion across the banded pearlite.

  20. Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.

    DOE Patents [OSTI]

    Green, David J. (State College, PA); Sglavo, Vincenzo M. (Roncegno, IT); Tandon, Rajan (Fremont, CA)

    2003-02-11

    Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.

  1. Delay correlation analysis and representation for vital complaint VHDL models

    DOE Patents [OSTI]

    Rich, Marvin J.; Misra, Ashutosh

    2004-11-09

    A method and system unbind a rise/fall tuple of a VHDL generic variable and create rise time and fall time generics of each generic variable that are independent of each other. Then, according to a predetermined correlation policy, the method and system collect delay values in a VHDL standard delay file, sort the delay values, remove duplicate delay values, group the delay values into correlation sets, and output an analysis file. The correlation policy may include collecting all generic variables in a VHDL standard delay file, selecting each generic variable, and performing reductions on the set of delay values associated with each selected generic variable.

  2. Multiple use of waste catalysts with and without regeneration for waste polymer cracking

    SciTech Connect (OSTI)

    Salmiaton, A.; Garforth, A.A.

    2011-06-15

    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C{sub 2}-C{sub 7}) remained fairly constant. For the first time, these results indicate that 'waste' FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.

  3. Fatigue crack growth behavior of Al-Li alloy 1441

    SciTech Connect (OSTI)

    Prakash, R.V.; Parida, B.K.

    1995-12-31

    Fatigue crack growth behavior of Al-Li alloy 1441 having a marginally lower lithium content, compared to 80xx and 20xx series Al-Li alloys is presented in this paper. This investigation was conducted on single edge tension--SE(T)--specimens, under constant amplitude as well as under MiniLCA flight spectrum loading with the specific objective of determining the effects of stress ratio, orientation, thickness and cladding. Three thicknesses were considered: 1.2 mm(clad and unclad), 2.0 mm(clad and unclad) and 8.0 mm unclad. Constant amplitude fatigue tests were conducted at stress ratios of {minus}0.3, 0.1 and 0.7. Testing was performed under ambient conditions and along three orientations, namely L-T, T-L and L+45 degrees. Crack growth characteristics of this alloy are compared with that of BS:L73 (2014-T4 equivalent) for assessing the possibility of replacing BS:L73. Significant effect of stress ratio on crack growth rate was observed in all thicknesses. However, in case of 1.2 and 2.0 mm thick sheets, the effect was minimal at intermediate-crack growth regime. The orientation of the specimen does not adversely affect the fatigue crack growth behavior of 8.0 mm and 2.0 mm thick specimens. However, for 1.2 mm unclad sheet crack growth resistance in L-T direction was found to be superior to that along T-L direction. In majority of test cases considered, no significant effect was observed on crack growth rate due to thickness or cladding. Crack growth characteristics of Al-Li alloy 1441 and Al-Cu alloy BS:L73 under constant amplitude as well as MiniLCA spectrum loading are similar in the low and intermediate-crack growth rate regime. Based on these observations, it is felt that this Al-Li alloy has the potential for future aerospace applications.

  4. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    SciTech Connect (OSTI)

    Spencer, B. W.; Huang, H.; Dolbow, J. E.; Hales, J. D.

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes discontinuities in both temperature and displacement fields at crack locations has been developed and is being applied to thermal fracture of LWR fuel. A DEM model of coupled heat conduction and solid mechanics has been developed and used to simulate random initiation and propagation of thermally driven cracks during initial power cycles. This DEM model predicts the formation of realistic radial cracking patterns during power rise and circumferential cracks as power is ramped down. These initial results are very encouraging, and these techniques are expected to provide improved understanding of fuel behavior in a wide variety of conditions.

  5. Method for fabrication of crack-free ceramic dielectric films

    DOE Patents [OSTI]

    Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

    2014-02-11

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  6. Relationships between stress corrosion cracking tests and utility operating experience

    SciTech Connect (OSTI)

    Baum, Allen

    1999-10-22

    Several utility steam generator and stress corrosion cracking databases are synthesized with the view of identifying the crevice chemistry that is most consistent with the plant cracking data. Superheated steam and neutral solution environments are found to be inconsistent with the large variations in the observed SCC between different plants, different support plates within a plant, and different crevice locations. While the eddy current response of laboratory tests performed with caustic chemistries approximates the response of the most extensively affected steam generator tubes, the crack propagation kinetics in these tests differ horn plant experience. The observations suggest that there is a gradual conversion of the environment responsible for most steam generator ODSCC from a concentrated, alkaline-forming solution to a progressively more steam-enriched environment.

  7. Weld solidification cracking in 304 to 304L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W; Lienert, Thomas J; Martinez, Jesse N; Martinez, Raymond J; Johnson, Matthew Q

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  8. Weld solidification cracking in 304 to 204L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  9. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    SciTech Connect (OSTI)

    Foster, John T.

    2009-10-01

    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model is then validated against one class of problems showing good agreement with experimental results.

  10. Cracking a Cold Case and Enduring Mystery | Department of Energy

    Office of Environmental Management (EM)

    Cracking a Cold Case and Enduring Mystery Cracking a Cold Case and Enduring Mystery July 1, 2013 - 3:04pm Addthis Chris Brandon of the ROMACONS project collects a sample of ancient Roman concrete drilled from a breakwater in Pozzuoli Bay, near Naples, Italy. The breakwater dates back to roughly 37 B.C. | Photo courtesy of J.P. Oleson. Chris Brandon of the ROMACONS project collects a sample of ancient Roman concrete drilled from a breakwater in Pozzuoli Bay, near Naples, Italy. The breakwater

  11. Time delay measurement in the frequency domain

    SciTech Connect (OSTI)

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible by simply extending the data acquisition time.

  12. Time delay measurement in the frequency domain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible bymore » simply extending the data acquisition time.« less

  13. Coherence delay augmented laser beam homogenizer

    DOE Patents [OSTI]

    Rasmussen, P.; Bernhardt, A.

    1993-06-29

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  14. Coherence delay augmented laser beam homogenizer

    DOE Patents [OSTI]

    Rasmussen, Paul (Livermore, CA); Bernhardt, Anthony (Berkeley, CA)

    1993-01-01

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  15. The application of a logic framework for fatigue crack growth analyses to microstructural effects

    SciTech Connect (OSTI)

    Xu, J.G.; Liu, H.W.

    1995-12-31

    {Delta}K has been widely used to correlate da/dN data. The relation between da/dN and {Delta}K is usually found empirically. However, fatigue crack growth relations can also be derived theoretically. Three fatigue crack growth theories are derived for the state of small scale yielding and plane strain. These three theories constitute a logic framework useful for fatigue crack growth analyses. The application of the logic framework to the analyses of microstructural effects on fatigue crack growth is illustrated. The fatigue crack growth curve of 7075-T651 aluminum alloy has five distinct regions. A fatigue crack grows by crack-tip shear decohesion forming striations and by brittle fractures of particles followed by localized shear decohesion at these microcracks forming dimples. The logic framework helps to relate the fatigue crack growth behaviors in these five regions to the fractures of inclusions and to the resistance of grain boundaries and dispersoids to shear decohesion.

  16. Device build at ODU to crack nature's code takes ride to JLab (Device build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at ODU to crack nature's code takes ride to JLab | Jefferson Lab hamptonroads.com/2012/02/device-built-odu-crack-natures-code-takes-ride Submitted: Tuesday, February 14

  17. Thin film with oriented cracks on a flexible substrate

    DOE Patents [OSTI]

    Feng, Bao; McGilvray, Andrew; Shi, Bo

    2010-07-27

    A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.

  18. Incipient Crack Detection in Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Taylor, Stuart G.; Choi, Mijin; Jeong, Hyomi; Jang, Jae Kyeong; Park, Gyuhae; Farinholt, Kevin; Farrar, Charles R.; Ammerman, Curtt N.; Todd, Michael D.; Lee, Jung-Ryul

    2012-08-28

    This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results in detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.

  19. Method of making crack-free zirconium hydride

    DOE Patents [OSTI]

    Sullivan, Richard W. (Denver, CO)

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  20. Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meirer, F.; Kalirai, S.; Weker, J. Nelson; Liu, Y.; Andrews, J. C.; Weckhuysen, B. M.

    2015-04-14

    Metal accumulation at the catalyst particle surface plays a role in particle agglutination during fluid catalytic cracking.

  1. Dependence of dynamic fracture resistance on crack velocity in tungsten: Pt. II. Bicrystals and polycrystals

    SciTech Connect (OSTI)

    Liv, J.M.; Shen, B.W.

    1986-06-01

    The experimental techniques for crack velocity measurements have been applied to bicrystals of tungsten with twist orientations about (100) and polycrystals. The hesitation of the propagating cleavage crack in the vicinity of the grain boundary is examined. The contributions to energy dissipation from deformation and fracture processes in the grain boundary region as well as the in direct effects of crack deceleration are discussed. These findings have been applied to explain th dynamic fracture resistance and crack arrest in polycrystals.

  2. Modelling the microstructure of thermal barrier coatings

    SciTech Connect (OSTI)

    Cirolini, S.; Marchese, M.; Jacucci, G.; Harding, J.H.; Mulheran, P.A.

    1994-12-31

    Thermal barrier coatings produced by plasma spraying have a characteristic microstructure of lamellae, pores and cracks. The lamellae are produced by the splashing of particles onto the substrate. As the coating grows, the lamellae pile on top of each other, producing an interlocking structure. In most cases the growth is rapid and chaotic. The result is a microstructure characterized by pores and cracks. The authors present an improved model for the deposition process of thermal barrier coatings. The task of modeling the coating growth is split into two parts: first the authors consider a description of the particle on arrival at the film, based on the available theoretical, numerical and experimental findings. Second they define and discuss a set of physically-based rules for combining these events to obtain the film. The splats run along the surface and are permitted to curl up (producing pores) or interlock. The computer model uses a mesh to combine these processes and build the coating. They discuss the use of the proposed model in predicting microstructures and hence in correlating the properties of these coatings with the parameters of the process used to make them.

  3. Ultrasonic Flaw Detection of Cracks and Machined Flaws as Observed Through Austenitic Stainless Steel Piping Welds

    SciTech Connect (OSTI)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.

    2009-07-01

    Piping welds in the pressure boundary of light water reactors (LWRs) are subject to a volumetric examination based on Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Due to access limitations and high background radiation levels, the technique used is primarily ultrasonic rather than radiographic. Many of the austenitic welds in safety-related piping systems provide limited access to both sides of the weld, so a far-side examination is necessary. Historically, far-side inspections have performed poorly because of the coarse and elongated grains that make up the microstructures of austenitic weldments. The large grains cause the ultrasound to be scattered, attenuated, and redirected. Additionally, grain boundaries or weld geometry may reflect coherent ultrasonic echoes, making flaw detection and discrimination a more challenging endeavor. Previous studies conducted at the Pacific Northwest National Laboratory (PNNL) on ultrasonic far-side examinations in austenitic piping welds involved the application of conventional transducers, use of low-frequency Synthetic Aperture Focusing Techniques (SAFT), and ultrasonic phased-array (PA) methods on specimens containing implanted thermal fatigue cracks and machined reflectors [1-2]. From these studies, PA inspection provided the best results, detecting nearly all of the flaws from the far side. These results were presented at the Fifth International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components in 2006. This led to an invitation to examine field-removed specimens containing service-induced intergranular stress corrosion cracks (IGSCC) at the Electric Power Research Institute’s (EPRI) Nondestructive Evaluation (NDE) Center, in Charlotte, North Carolina. Results from this activity are presented.

  4. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    SciTech Connect (OSTI)

    Felice, Maria V.; Velichko, Alexander Wilcox, Paul D.; Barden, Tim; Dunhill, Tony

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  5. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  6. Formulation of cracking catalyst based on zeolite and natural clays

    SciTech Connect (OSTI)

    Aliev, R.R.; Lupina, M.I.

    1995-11-01

    Domestically manufactured cracking catalysts are based on a synthetic amorphous aluminosilicate matrix and Y zeolite. A multistage {open_quotes}gel{close_quotes} technology is used in manufacturing the catalysts. The process includes mixing solutions of sodium silicate and acidic aluminum sulfate, forming, syneresis, and activation of the beaded gel. In the manufacture of bead catalysts, the next steps in the process are washing, drying, and calcining; in the manufacture of microbead catalysts, the next steps are dispersion and formation of a hydrogel slurry, spray-drying, and calcining. The Y zeolite is either introduced into the alumina-silica sol in the stage of forming the beads, or introduced in the dispersion stage. With the aim of developing an active and selective cracking catalyst based on Y zeolite and natural clays, with improved physicomechanical properties, the authors carried out a series of studies, obtaining results that are set forth in the present article.

  7. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  8. Crack growth monitoring in harsh environments by electrical potential measurements

    SciTech Connect (OSTI)

    W. R. Lloyd; W. G. Reuter; D. M. Weinberg

    1999-09-19

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique is applicable to many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  9. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    SciTech Connect (OSTI)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-09-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  10. Scattering and; Delay, Scale, and Sum Migration

    SciTech Connect (OSTI)

    Lehman, S K

    2011-07-06

    How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a signal, and seismic migration in which wide band time series are shifted but not to form images per se. Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in Section 8. Finally, proof-of-principle experiments are present in Section 9.

  11. Microsecond delays on non-real time operating systems

    SciTech Connect (OSTI)

    Angstadt, R.; Estrada, J.; Diehl, H.T.; Flaugher, B.; Johnson, M.; /Fermilab

    2007-05-01

    We have developed microsecond timing and profiling software that runs on standard Windows and Linux based operating systems. This software is orders of magnitudes better than most of the standard native functions in wide use. Our software libraries calibrate RDTSC in microseconds or seconds to provide two different types of delays: a ''Guaranteed Minimum'' and a precision ''Long Delay'', which releases to the kernel. Both return profiling information of the actual delay.

  12. Delayed Fission Gamma-ray Characteristics of Th-232 U-233 U-235 U-238 and Pu-239

    SciTech Connect (OSTI)

    Lane, Taylor; Parma, Edward J.

    2015-08-01

    Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution to the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.

  13. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  14. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  15. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  16. Dependence of dynamic fracture resistance on crack velocity in tungsten: Pt. 1. Single crystals

    SciTech Connect (OSTI)

    Liv, J.M.; Shen, B.W.

    1984-06-01

    The dependence of dynamic fracture resistance on crack propagation velocity on (100) in tungsten has been examined. A correlation is obtained between the measured local crack velocity with the surfac and subsurface deformations. Based on the experimental results on one pass, two passes, and prestrained, electron beam zone refined single crystals, a discussion is given on the slip modes activated at the crack tip, the contributions to the dynamic fracture resistance from dislocations and surface features and from the preexisting deformed microstructure.

  17. J-integral for a semi-elliptical surface crack at a bimaterial interface

    SciTech Connect (OSTI)

    Sharobeam, M.H.; Landes, J.D.

    1995-12-31

    Surface cracks are common defects in welded, bonded, and composite structures. The elastic-plastic fracture of these defects may be analyzed using the J-integral. The authors have recently developed a new approach to evaluate the J-integral for semi-elliptical surface cracks in panels made of homogeneous materials and subject to remote tension. This approach, which is based on load separation, allows the evaluation of J for such a three-dimensional geometry using a single specimen test record. It is analogous to the single specimen technique in two-dimensional geometries. In this article, the authors extend their study to surface cracks at bimaterial interfaces. A three-dimensional finite element model is developed to model such a crack. The J-integral is evaluated along the crack front using the virtual crack extension method. The elastic-plastic fracture behavior of the crack is studied. Load separation is also examined and the new single specimen approach for surface cracks in single material panels is extended to those at bimaterial interfaces. The study also includes a comparison between the results of surface cracks in single material panels and those at bimaterial interfaces.

  18. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    SciTech Connect (OSTI)

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K[sub ISCC], crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  19. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    SciTech Connect (OSTI)

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K{sub ISCC}, crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  20. Innovative Approach to Establish Root Causes for Cracking in Aggressive Reactor Environments

    SciTech Connect (OSTI)

    Bruemmer, Stephen M.; Thomas, Larry E.; Vetrano, John S.; Simonen, Edward P.

    2003-10-31

    The research focuses on the high-resolution characterization of degradation microstructures and microchemistries in specimens tested under controlled conditions for the environment and for the material where in-service complexities can be minimized. Thermodynamic and kinetic modeling of crack-tip processes is employed to analyze corrosion-induced structures and gain insights into degradation mechanisms. Novel mechanistic ''fingerprinting'' of crack-tip structures is used to isolate causes of environmental cracking in tandem with quantitative measurements of crack growth. Sample preparation methods and advanced analytical techniques are used to characterize corrosion/oxidation reactions and crack-tip structures at near atomic dimensions in order to gain insight into fundamental environmental cracking mechanisms. Reactions at buried interfaces, not accessible by conventional approaches, are being systematically interrogated. Crack-growth experiments in high-temperature water environments are evaluating and isolating the effects of material condition (matrix strength, grain boundary composition and precipitation) on stress corrosion cracking (SCC). The fundamental understanding of crack advance mechanisms will establish the basis to design new corrosion-resistant alloys for current light-water reactors and advanced reactor systems.

  1. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  2. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  3. The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine

    SciTech Connect (OSTI)

    Wuermel, J.; Silke, E.J.; Curran, H.J.; O Conaire, M.S.; Simmie, J.M.

    2007-10-15

    The diluent gas used in the preparation of test fuel/oxygen mixtures is inert and does not take part in the chemical reaction. However, it does have an effect on the measured ignition delay time both in rapid compression machines and in shock tubes - argon decelerates ignition in the RCM, but accelerates it in the shock tube under some conditions. This opposite effect is due to the times scales involved in these experimental devices. Typical ignition delay times in the RCM are in the region of 1-200 ms, while those in the shock tube are much shorter (10-1000 {mu}s). Comparative RCM experiments and simulations for helium, argon, xenon, and nitrogen have shown extreme heat loss in the postcompression period, particularly for helium. Autoignition measurements of 2,3-dimethylpentane have highlighted a direct dependency of ignition delay time on the type of diluent used, where longer ignition delay time were recorded with argon. This increased ignition delay time is due to the extreme cooling of argon in the postcompression period. This observation was strengthened by comparative experiments with helium and argon, where the diluent effect was even stronger for helium, caused by its higher thermal conductivity. In the shock tube, the diluent effect is opposite to that in the RCM. For dilute mixtures of isooctane, calculations have predicted that mixtures with argon will ignite faster than those with nitrogen, based on the relative heat capacities of the two diluent gases. Overall, we conclude that the choice of diluent gases in experimental devices must be made with care, as ignition delay times can depend strongly on the type of diluent gas used. (author)

  4. Development of a statistically based access delay timeline methodology.

    SciTech Connect (OSTI)

    Rivera, W. Gary; Robinson, David Gerald; Wyss, Gregory Dane; Hendrickson, Stacey M. Langfitt

    2013-02-01

    The charter for adversarial delay is to hinder access to critical resources through the use of physical systems increasing an adversary's task time. The traditional method for characterizing access delay has been a simple model focused on accumulating times required to complete each task with little regard to uncertainty, complexity, or decreased efficiency associated with multiple sequential tasks or stress. The delay associated with any given barrier or path is further discounted to worst-case, and often unrealistic, times based on a high-level adversary, resulting in a highly conservative calculation of total delay. This leads to delay systems that require significant funding and personnel resources in order to defend against the assumed threat, which for many sites and applications becomes cost prohibitive. A new methodology has been developed that considers the uncertainties inherent in the problem to develop a realistic timeline distribution for a given adversary path. This new methodology incorporates advanced Bayesian statistical theory and methodologies, taking into account small sample size, expert judgment, human factors and threat uncertainty. The result is an algorithm that can calculate a probability distribution function of delay times directly related to system risk. Through further analysis, the access delay analyst or end user can use the results in making informed decisions while weighing benefits against risks, ultimately resulting in greater system effectiveness with lower cost.

  5. Apparatus and method for prevention of cracking in welded brittle alloys

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC); Younkins, Robert M. (New Ellenton, SC)

    2000-01-01

    An apparatus and method for reducing cracking in a heated material as the material cools. The apparatus includes a variable frequency electric signal generator that is coupled to a transducer. The transducer produces a variable frequency acoustic signal in response to the variable frequency electric signal, which is applied to the heated material to reduce cracking as the material cools.

  6. Delayed Start or Cancellation of Business Hours | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Delayed Start or Cancellation of Business Hours When start of regular business hours is delayed The laboratory may delay the start of regular business hours because of weather conditions. Personnel who have been explicitly designated as essential by their line management or whose assigned shift starts or ends outside the hours of 6:30 a.m. to 6:30 p.m. should report to work as usual. Employees who do not feel that they can safely drive to the laboratory because of weather or road

  7. Stress Corrosion Cracking Issues in Light Metals for Automotive Applications

    SciTech Connect (OSTI)

    Jones, Russell H.; Danielson, Michael J.; Baer, Donald R.; Windisch, Charles F.; Vetrano, John S.; Edwards, Daniel J.

    2000-12-31

    The Partnership for New Generation Vehicle has the goal of producing lightweight automobiles that achieve 80 mpg. To accomplish this will require liberal use of Al and Mg alloys such as AA5083 and AZ91D. The corrosion and stress corrosion of alloy AA5083 is controlled by the precipitation of the b-phase (Al3Mg2) at grain boundaries and by the precipitation of the g-phase (Mg17Al12) in AZ91D. The b-phase is anodic to the Al matrix while the g-phase is cathodic to the Mg matrix. The effects of crack propagation along grain boundaries with electrochemically active particles is a key factor in the SCC performance of these materials.

  8. CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-10-01

    Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably well developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work was planned to evaluate the strength degradation, modulus and failure in more representative environment of the SOFCs.

  9. Time-delayed directional beam phased array antenna

    DOE Patents [OSTI]

    Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron

    2004-10-19

    An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.

  10. Opportunities for Process Monitoring Techniques at Delayed Access Facilities

    SciTech Connect (OSTI)

    Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

    2013-09-20

    Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as delayed access, this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

  11. Effects of Cosmic Infrared Background on High Energy Delayed...

    Office of Scientific and Technical Information (OSTI)

    Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts Citation Details In-Document Search Title: Effects of Cosmic Infrared Background on...

  12. Femtosecond Time-Delay X-ray Holography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow...

  13. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    SciTech Connect (OSTI)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  14. Device For Trapping Laser Pulses In An Optical Delay Line

    DOE Patents [OSTI]

    Yu, David U. L. (Rancho Palos Verdes, CA); Bullock, Donald L. (Los Angeles, CA)

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  15. Fault-induced delayed voltage recovery in a long inhomogeneous

    Office of Scientific and Technical Information (OSTI)

    power-distribution feeder (Journal Article) | SciTech Connect Journal Article: Fault-induced delayed voltage recovery in a long inhomogeneous power-distribution feeder Citation Details In-Document Search Title: Fault-induced delayed voltage recovery in a long inhomogeneous power-distribution feeder Authors: Stolbova, Irina ; Backhaus, Scott ; Chertkov, Michael Publication Date: 2015-02-23 OSTI Identifier: 1180264 Grant/Contract Number: AC52-06NA25396 Type: Publisher's Accepted Manuscript

  16. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  17. Calculation of delayed-neutron energy spectra in a QRPA-Hauser...

    Office of Scientific and Technical Information (OSTI)

    of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model Theoretical beta-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase...

  18. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect (OSTI)

    Hunt, R. M.; Abbott, R. P.; Havstad, M. A.; Dunne, A. M.

    2013-06-01

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80100 ?m into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 ?m without assistance from creep or grain erosion phenomena.

  19. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect (OSTI)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  20. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  1. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

  2. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  3. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  4. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    SciTech Connect (OSTI)

    Kanne, W.R. Jr.

    1988-01-01

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  5. Coolant Sub-Channel and Smeared-Cracking Models in BISON | Department of

    Energy Savers [EERE]

    Energy Coolant Sub-Channel and Smeared-Cracking Models in BISON Coolant Sub-Channel and Smeared-Cracking Models in BISON January 29, 2013 - 10:45am Addthis Coolant Sub-Channel and Smeared-Cracking Models in BISON A single-pin coolant sub-channel model was implemented in BISON, the pin-scale simulation code. This enables BISON to compute the heat transfer coefficient and coolant temperature as a function of axial position along the fuel pin (rather than requiring this information to be

  6. Webinar: Impacts of Impurities on Hydrogen Assisted Fatigue Crack Growth in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structural Steels | Department of Energy Impacts of Impurities on Hydrogen Assisted Fatigue Crack Growth in Structural Steels Webinar: Impacts of Impurities on Hydrogen Assisted Fatigue Crack Growth in Structural Steels January 12, 2016 12:00PM to 1:00PM EST The Energy Department will present a live webinar titled "Impacts of Impurities on Hydrogen Assisted Fatigue Crack Growth in Structural Steels" on Tuesday, January 12, from 12 to 1 p.m. Eastern Standard Time (EST).

  7. On the Use of the Polynomial Annihilation Edge Detection for Locating Cracks in Beam-Like Structures

    SciTech Connect (OSTI)

    Saxena, Rishu; Surace, Cecilia; Archibald, Richard K

    2013-01-01

    A crack in a structure causes a discontinuity in the first derivative of the mode shapes: On this basis, a numerical method for detecting discontinuities in smooth piecewise functions and their derivatives, based on a polynomial annihilation technique, has been applied to the problem of crack detection and localisation in beam-like structures for which only post-damage mode shapes are available. Using a finite-element model of a cracked beam, the performance of this methodology has been analysed for different crack depths and increasing amounts of noise. Given the crack position, a procedure to estimate its depth is also proposed and corresponding results shown.

  8. Impacts of Time Delays on Distributed Algorithms for Economic Dispatch

    SciTech Connect (OSTI)

    Yang, Tao; Wu, Di; Sun, Yannan; Lian, Jianming

    2015-07-26

    Economic dispatch problem (EDP) is an important problem in power systems. It can be formulated as an optimization problem with the objective to minimize the total generation cost subject to the power balance constraint and generator capacity limits. Recently, several consensus-based algorithms have been proposed to solve EDP in a distributed manner. However, impacts of communication time delays on these distributed algorithms are not fully understood, especially for the case where the communication network is directed, i.e., the information exchange is unidirectional. This paper investigates communication time delay effects on a distributed algorithm for directed communication networks. The algorithm has been tested by applying time delays to different types of information exchange. Several case studies are carried out to evaluate the effectiveness and performance of the algorithm in the presence of time delays in communication networks. It is found that time delay effects have negative effects on the convergence rate, and can even result in an incorrect converge value or fail the algorithm to converge.

  9. STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER

    SciTech Connect (OSTI)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.; Bruemmer, Stephen M.

    2015-08-15

    As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagated both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.

  10. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured (temporal) surface temperature data. The predicted effusivity is a direct function of depth, not an average or convolved parameter, so it is an accurate (and more sensitive) representation of local property along depth.« less

  11. Methodology for extracting local constants from petroleum cracking flows

    DOE Patents [OSTI]

    Chang, Shen-Lin (Woodridge, IL); Lottes, Steven A. (Naperville, IL); Zhou, Chenn Q. (Munster, IN)

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  12. An Assessment of Remote Visual Testing System Capabilities for the Detection of Service Induced Cracking

    SciTech Connect (OSTI)

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2005-09-01

    Remote visual testing is typically employed to ascertain the condition of materials in components that are inaccessible for direct examination. In the power and petrochemical industries, remote visual testing is used to assess whether service-related degradation is being manifested that, if left unchecked, may eventually impair the structural reliability of a component. Several codes and standards require that visual examinations be periodically conducted. Many of these inspections must be performed remotely due to harsh environments or design geometries of the subject components. This paper describes the attributes and limitations of remote visual testing, performance demonstration standards for camera systems, typical dimensions for service-induced cracking phenomena, and an assessment of the reliability of remote video camera systems at finding cracks. Because many forms of service-induced cracks have very small crack opening dimensions, the reliability of remote visual testing may not be adequate to ensure component integrity, given the capabilities of current camera systems and application practices.

  13. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E.

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  14. Aluminum nitride transitional layer for reducing dislocation density and cracking of AIGan epitaxial films

    DOE Patents [OSTI]

    Allerman, Andrew A. (Tijeras, NM); Crawford, Mary H. (Albuquerque, NM); Koleske, Daniel D. (Albuquerque, NM); Lee, Stephen R. (Albuquerque, NM)

    2011-03-29

    A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

  15. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    Broader source: Energy.gov [DOE]

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today’s nuclear power reactor fleet and affects critical structural components within the reactor core. The...

  16. Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection

    DOE Patents [OSTI]

    Sun, Jiangang; Deemer, Chris

    2003-01-01

    A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

  17. Evolution of an interfacial crack on the concrete-embankment boundary

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Evolution of an interfacial crack on the concrete-embankment boundary Citation Details In-Document Search Title: Evolution of an interfacial crack on the concrete-embankment boundary Authors: Glascoe, L ; Antoun, T ; Kanarska, Y ; Lomove, I ; Hall, R ; Woodson, S ; Smith, J Publication Date: 2013-07-10 OSTI Identifier: 1119958 Report Number(s): LLNL-TR-645956 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research

  18. Tests and analyses for fully plastic fracture mechanics of plane strain mode I crack growth

    SciTech Connect (OSTI)

    McClintock, F.A.; Parks, D.M.; Kim, Y.J.

    1995-12-31

    Under monotonic loading, structures should ideally be ductile enough to provide continued resistance during crack growth. For fully plastic crack growth in low strength alloys, existing asymptotic solutions for elastic-plastic growing cracks are not applicable because they reach the fracture strain only in regions small compared to the inhomogeneities of the actual fracture process. For the limiting case of non-hardening fully-plastic plane strain crack growth, in a number of geometries and loadings the near-tip fields are characterized in terms of three parameters: an effective angle 2{theta}{sub s} between a pair of slip planes, and the normal stress {sigma}{sub s} and the increment of displacement {delta}u{sub s} across the planes. This three-parameter characterization is in contrast to the one- or two-parameter (K or J and T or Q) characterization in linear or non-linear elastic fracture mechanics. These {theta}{sub s}, {sigma}{sub s}, and {delta}u{sub s} parameters are found form the far-field geometries and loadings through slip line fields or least upper bound analyses based on circular arcs. The resulting crack growth, in terms of the crack tip opening angle (CTOA), is a function of {theta}{sub s}, {sigma}{sub s}, and the material. The geometry of the crack growing between two moving slip planes emanating from its tip reduces this function to the critical fracture shear strain left behind the slip planes, {gamma}f, as a function of {sigma}{sub s}. {gamma}f({sigma}{sub s}) is found theoretically from a hole initiation and growth model. It is also found from preliminary fully plastic crack growth experiments on unequally grooved specimens with fixed-grip extension or 4-point bending of a 1018 CF steel.

  19. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect (OSTI)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  20. Fatigue-crack propagation in aluminum-lithium alloys processed by power and ingot metallurgy

    SciTech Connect (OSTI)

    Venkateswara Rao, K.T.; Ritchie, R.O. ); Kim, N.J. ); Pizzo, P.P. )

    1990-04-01

    Fatigue-crack propagation behavior in powder-metallurgy (P/M) aluminum-lithium alloys, namely, mechanically-alloyed (MA) Al-4.0Mg-1.5Li-1.1C-0.80{sub 2} (Inco 905-XL) and rapid-solidification-processed (RSP) Al-2.6Li-1.0Cu-0.5Mg-0.5Zr (Allied 644-B) extrusions, has been studied, and results compared with data on an equivalent ingot-metallurgy (I/M) Al-Li alloy, 2090-T81 plate. Fatigue-crack growth resistance of the RSP Al-Li alloy is found to be comparable to the I/M Al-Li alloy; in contrast, crack velocities in MA 905-XL extrusions are nearly three orders of magnitude faster. Growth-rate response in both P/M Al-Li alloys, however, is high anisotropic. Results are interpreted in terms of the microstructural influence of strengthening mechanism, slip mode, grain morphology and texture on the development of crack-tip shielding from crack-path deflection and crack closure. 14 refs., 7 figs., 2 tabs.

  1. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  2. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect (OSTI)

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged AlZnMgCu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  3. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  4. Delayed energy injection model for gamma-ray burst afterglows

    SciTech Connect (OSTI)

    Geng, J. J.; Huang, Y. F.; Yu, Y. B. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: hyf@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-12-10

    The shallow decay phase and flares in the afterglows of gamma-ray bursts (GRBs) are widely believed to be associated with the later activation of the central engine. Some models of energy injection involve a continuous energy flow since the GRB trigger time, such as the magnetic dipole radiation from a magnetar. However, in the scenario involving a black hole accretion system, the energy flow from the fall-back accretion may be delayed for a fall-back time ?t {sub fb}. Thus, we propose a delayed energy injection model. The delayed energy would cause a notable rise to the Lorentz factor of the external shock, which will 'generate' a bump in the multiple band afterglows. If the delayed time is very short, our model degenerates to the previous models. Our model can explain the significant re-brightening in the optical and infrared light curves of GRB 081029 and GRB 100621A. A considerable fall-back mass is needed to provide the later energy; this indicates that GRBs accompanied with fall-back material may be associated with a low energy supernova so that the fraction of the envelope can survive during eruption. The fall-back time can give meaningful information on the properties of GRB progenitor stars.

  5. A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909

    SciTech Connect (OSTI)

    Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun; Hu, Xiyuan; Wang, Tianjiao; Li, Jianmin; Li, Guozhu

    2013-04-15

    In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residual hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. LavesNi{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ? It is a new process for the forming of GH909 alloy via laser welding. ? The forming mechanism of laser welding defects in GH909 has been studied. ? It may be a means to improve the efficiency of aircraft engine production.

  6. Electron transfer statistics and thermal fluctuations in molecular junctions

    SciTech Connect (OSTI)

    Goswami, Himangshu Prabal; Harbola, Upendra

    2015-02-28

    We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.

  7. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  8. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  9. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  10. Unified continuum damage model for matrix cracking in composite rotor blades

    SciTech Connect (OSTI)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  11. Cracking of n-butane catalyzed by iron- and maganese-promoted sulfated zirconia

    SciTech Connect (OSTI)

    Cheung, T.K.; d`Itri, J.L.; Gates, B.C.

    1995-05-01

    Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, the significant reactions were isomerization and disproportionation; in the range of 225-300{degrees}C, these reactions were accompanied by cracking, and at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup {minus}9}mol/(g of catalyst {center_dot}s). This comparison suggests that the catalytic activity of the promoted sulfated zirconia at 450{degrees}C is about the same as that of the zeolite, although its activity for n-butane isomerization and disproportionation at temperatures <100{degrees}C is orders of magnitude greater than those of zeolites. Thus the indication of superacidity of the promoted sulfated zirconia does not extend to high temperatures. The results raise questions about the nature of the presumed superacidity: perhaps the low-temperature reactions may involve catalyst functions other than the acidic function responsible for high-temperature cracking reactions or perhaps superacidic sites may be very rapidly poisoned at cracking temperatures. 14 refs., 8 figs., 3 tabs.

  12. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Kassner, T. F.; Ruther, W. E.; Shack, W. J.; Smith, J. L.; Soppet, W. K.; Strain; R. V.

    1999-10-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vessel and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.

  13. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  14. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  15. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  16. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  17. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  18. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  19. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. The effect of residuals on the presence of intergranular surface cracks on continuously cast billets

    SciTech Connect (OSTI)

    Wijngaarden, M.J.U.T. van; Visagie, G.P.

    1996-12-31

    During 1991, Iscor Vereeniging experienced a dramatic increase in the rejection rate of specialty steel bars rolled from continuously cast billets due to the presence of seams on the bars. The seams originated from tearing of the billets during the first 2 passes in the roughing mill during hot rolling. The defective billets were found to contain fine intergranular cracks on the surface. Such cracks have been described in the literature and have been attributed to the presence of high levels of residuals resulting in the well-known phenomenon of surface hot shortness which results from the enrichment of residuals at the grain boundaries after preferential oxidation of iron during scaling of the steel. The present investigation revealed that the effect of residuals on intergranular surface cracking is a complex interaction between steel composition and casting conditions such as casting speed, intensity of secondary cooling, section size, and mold type. This paper quantifies the effect of residuals on the intergranular surface cracking of continuously cast billets and quantitatively relates the incidence of these cracks to parameters which can be controlled during steelmaking and continuous casting.

  1. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    SciTech Connect (OSTI)

    Zhang Jun; Li, Victor C

    2004-02-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K{sub IC}) and the crack bridging law, so-called stress-crack width ({sigma}-{delta}) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K{sub IC} and ({sigma}-{delta}) relationship, are known.

  2. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  3. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOE Patents [OSTI]

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  4. Fracture toughness results and preliminary analysis for International Cooperative Test Program on specimens containing surface cracks

    SciTech Connect (OSTI)

    Reuter, W.G.; Elfer, N.C.; Hull, D.A.; Newman, J.C. Jr.; Munz, D.; Panontin, T.L.

    1997-12-31

    Specimens containing surface cracks were tested in either tension or bending to compare the stress intensity factor at failure with plane strain fracture toughness (K{sub Ic}) in an International Cooperative Test Program. The material was heat treated to {sigma}{sub ys} = 1 587 MPa and K{sub Ic} = 54 MPa m{sub 1/2}. Because substantial stable crack growth occurred for some specimens, the test plan was modified to include detecting the onset of crack growth. It is shown that P{sub max} and the original fatigue precrack size cannot be employed to calculate K{sub max} for comparison with K{sub Ic} when significant stable crack growth occurs. However, using P{sub init} (load at which stable crack growth is initiated) and the original fatigue precrack size to calculate K{sub max} or K{sub {phi}=30{degree}} provides a very useful comparison with K{sub Ic}. The influence of variations in fatigue precrack configuration on test results are also discussed.

  5. Fracture behavior of ceramic laminates in bending-I. Modeling of crack propagation

    SciTech Connect (OSTI)

    Phillipps, A.J.; Clegg, W.J.; Clyne, T.W. . Dept. of Materials Science and Metallurgy)

    1993-03-01

    This paper concerns the fracture behavior of specimens made up of ceramic sheets, separated by thin interlayers, which act to deflect cracks and thus to prevent catastrophic failure of the specimen. The treatment is divided into two parts. In this paper, the behavior of this type of material during bending is quantitatively modeled. The model is based on through-thickness cracks propagating when a critical stress is reached and interfacial cracks then advancing a distance dictated by the available energy. The variation in laminae strengths is modeled using a Monte Carlo method to determine the strength of successive laminae for a given Weibull modulus. The model is used to predict load/displacement plots and to explore the effects of changes in loading geometry and specimen variables, including Young's modulus, lamina strength, loading span, interfacial toughness, as well as lamina and sample thickness. A distinction is drawn between the energy actually absorbed in causing complete failure of the specimen as measured from the area under the load/displacement curve, and the amount of energy necessary to cause the crack propagation which occurred. These differ if the energy available to drive the interfacial cracks is more than sufficient for them to reach the ends of the specimen or if energy is dissipated elsewhere in the system. A criterion is derived by which specimens can be designed so as to minimize the difference between these two quantities. The significance of this concept in optimizing the toughness of these laminated materials is briefly discussed.

  6. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  7. Stochastic dynamics of a delayed bistable system with multiplicative noise

    SciTech Connect (OSTI)

    Dung, Nguyen Tien E-mail: dungnt@fpt.edu.vn

    2014-05-15

    In this paper we investigate the properties of a delayed bistable system under the effect of multiplicative noise. We first prove the existence and uniqueness of the positive solution and show that its moments are uniformly bounded. Then, we study stochastic dynamics of the solution in long time, the lower and upper bounds for the paths and an estimate for the average value are provided.

  8. Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells

    DOE Patents [OSTI]

    Delnick, F.M.

    1993-04-13

    Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl[sub 2] and SO[sub 2]Cl[sub 2] electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl[sub 2] and Li/SO[sub 2]Cl[sub 2] batteries.

  9. Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells

    DOE Patents [OSTI]

    Delnick, Frank M. (Albuquerque, NM)

    1993-01-01

    Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl.sub.2 and SO.sub.2 Cl.sub.2 electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl.sub.2 and Li/SO.sub.2 Cl.sub.2 batteries.

  10. Complex network synchronization of chaotic systems with delay coupling

    SciTech Connect (OSTI)

    Theesar, S. Jeeva Sathya Ratnavelu, K.

    2014-03-05

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lure system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.

  11. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect (OSTI)

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  12. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  13. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    1997-01-01

    A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

  14. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequenciesmore » relevant to PSA vessel operation.« less

  15. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, P.C.

    1997-05-06

    A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

  16. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    SciTech Connect (OSTI)

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (?K) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ?K values up to 18.5 MPa m1/2, the baseline da/dN versus ?K relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ?K values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequencies relevant to PSA vessel operation.

  17. Can surface cracks and unipolar arcs explain breakdown and gradient limits?

    SciTech Connect (OSTI)

    Insepov, Zeke; Norem, Jim

    2013-01-15

    The authors argue that the physics of unipolar arcs and surface cracks can help understand rf breakdown and vacuum arc data. They outline a model of the basic mechanisms involved in breakdown and explore how the physics of unipolar arcs and cracks can simplify the picture of breakdown and gradient limits in accelerators, tokamaks as well as laser ablation, micrometeorites, and other applications. Cracks are commonly seen in SEM images of arc damage and they are produced as the liquid metal cools. They can produce the required field enhancements to explain field emission data and can produce mechanical failure of the surface that would trigger breakdown events. Unipolar arcs can produce currents sufficient to short out rf structures, and can cause the sort of damage seen in SEM images. They should be unstable, and possibly self-quenching, as seen in optical fluctuations and surface damage. The authors describe some details and consider the predictions of this simple model.

  18. Method and apparatus for detecting external cracks from within a metal tube

    DOE Patents [OSTI]

    Caffey, Thurlow W. H. (Albuquerque, NM)

    2001-08-07

    A method and tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is described for the detection of external sidewall cracks and other anomalies in boiler tubes and other enclosures. The invention utilizes the concept of radar backscatter rather than eddy-currents or ultrasound, which are sometimes used in prior art crack-detection methods. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to -40 dB in thin-walled boiler tubes.

  19. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  20. Hard x-ray delay line for x-ray photon correlation spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS Citation Details In-Document Search Title: Hard x-ray delay line for...

  1. Flexible pulse delay control up to picosecond for high-intensity...

    Office of Scientific and Technical Information (OSTI)

    Flexible pulse delay control up to picosecond for high-intensity twin electron bunches Citation Details In-Document Search Title: Flexible pulse delay control up to picosecond for ...

  2. Thermal analysis finds optimum FCCU revamp scheme

    SciTech Connect (OSTI)

    Aguilar-Rodriquez, E.; Ortiz-Estrada, C.; Aguilera-Lopez, M. )

    1994-11-07

    The 25,000 b/d fluid catalytic cracking unit (FCCU) at Petroleos Mexicanos' idle Azcapotzalco refinery near Mexico City has been relocated to Pemex's 235,000 b/d Cadereyta refinery. The results of a thermal-integration analysis are being used to revamp the unit and optimize its vapor-recovery scheme. For the case of the Azcapotzalco FCCU, the old unit was designed in the 1950s, so modifications to the reactor/regenerator section incorporate many important changes, including a new riser, feed nozzles, cyclones, air distributor, and other internals. For the new scheme, the analysis was based on the following restrictions: (1) Two cases concerning gas oil feed conditions must be met. In the hot-feed case, feed is introduced from a processing unit outside battery limits (OSBL) at 188 C. For the cold-feed case, feed is introduced from OSBL from storage tanks at 70 C. (2) No new fire heaters are to be installed. (3) Existing equipment must be reused whenever possible. The paper describes and analyzes three alternative schemes.

  3. Mechanisms of stress corrosion cracking for iron-based alloys in high-temperature water

    SciTech Connect (OSTI)

    Zhou, X.Y.; Congleton, J.; Bahraloloom, A.

    1998-11-01

    Stress corrosion cracking (SCC) susceptibilities of a series of iron-based alloys (IBA), including some high-purity irons, were evaluated in lithiated water at temperatures up to 300 C. Inclusion distributions in each material were established using quantitative metallography and energy dispersive x-ray analysis (EDX). Electrochemical measurements were performed to investigate film formation kinetics. Results showed the minimum potential for SCC was a function of the inclusion content. Reducing the inclusion content in IBA moved the minimum potential for SCC in the anodic direction and/or increased the temperature for the onset of cracking but did not eliminate SCC.

  4. A tool to detect external cracks from within a metal tube

    SciTech Connect (OSTI)

    Caffey, T.W.H.

    1997-01-01

    A tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is outlined for the detection of external sidewall cracks in boiler tubes. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to 40dB in thin-walled boiler tubes.

  5. Proceedings of the Workshop on the Structural Cracking of the Cupola of

    Office of Scientific and Technical Information (OSTI)

    Santa Maria del Fiore (Technical Report) | SciTech Connect Proceedings of the Workshop on the Structural Cracking of the Cupola of Santa Maria del Fiore Citation Details In-Document Search Title: Proceedings of the Workshop on the Structural Cracking of the Cupola of Santa Maria del Fiore × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  6. Cracking Molecular Structures with Bright Lights - and a Few Good Eggs |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Cracking Molecular Structures with Bright Lights - and a Few Good Eggs Cracking Molecular Structures with Bright Lights - and a Few Good Eggs June 22, 2012 - 11:04am Addthis This rendering shows a lysozyme structural model against its X-ray diffraction pattern from SLAC’s Linac Coherent Light Source (LCLS), a powerful X-ray laser facility. Researchers have achieved high-resolution images of these simple biomolecules using advanced crystallography at LCLS. | Photo by

  7. Cohesive Modeling of Dynamic Crack Growth in Homogeneous and Functionally Graded Materials

    SciTech Connect (OSTI)

    Zhang Zhengyu; Paulino, Glaucio H.; Celes, Waldemar

    2008-02-15

    This paper presents a Cohesive Zone Model (CZM) approach for investigating dynamic crack propagation in homogeneous and Functionally Graded Materials (FGMs). The failure criterion is incorporated in the CZM using both a finite cohesive strength and work to fracture in the material description. A novel CZM for FGMs is explored and incorporated into a finite element framework. The material gradation is approximated at the element level using a graded element formulation. A numerical example is provided to demonstrate the efficacy of the CZM approach, in which the influence of the material gradation on the crack growth pattern is studied.

  8. Keep Customers-and Energy-From Slipping Through the Cracks | Department

    Energy Savers [EERE]

    of Energy Keep Customers-and Energy-From Slipping Through the Cracks Keep Customers-and Energy-From Slipping Through the Cracks A photo of three people standing and talking to each other, two men and a woman, inside a home. The most successful energy efficiency upgrade programs have customers who are willing and able to implement energy efficiency upgrades. This may seem like an obvious statement; however, many upgrade programs are struggling to reach their upgrade goals because they allow

  9. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales are important and provide additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  10. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  11. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  12. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  13. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  14. Preliminary Simulations for Geometric Optimization of a High-Energy Delayed Gamma Spectrometer for Direct Assay of Pu in Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Campbell, Luke W.; Rodriguez, Douglas C.

    2012-06-07

    High-energy, beta-delayed gamma-ray spectroscopy is under investigation as part of the Next Generation Safeguard Initiative effort to develop non-destructive assay instruments for plutonium mass quantification in spent nuclear fuel assemblies. Results obtained to date indicate that individual isotope-specific signatures contained in the delayed gamma-ray spectra can potentially be used to quantify the total fissile content and individual weight fractions of fissile and fertile nuclides present in spent fuel. Adequate assay precision for inventory analysis can be obtained using a neutron generator of sufficient strength and currently available detection technology. In an attempt to optimize the geometric configuration and material composition for a delayed gamma measurement on spent fuel, the current study applies MCNPX, a Monte Carlo radiation transport code, in order to obtain the best signal-to-noise ratio. Results are presented for optimizing the neutron spectrum tailoring material, geometries to maximize thermal or fast fissions from a given neutron source, and detector location to allow an acceptable delayed gamma-ray signal while achieving a reasonable detector lifetime while operating in a high-energy neutron field. This work is supported in part by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  15. Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

    SciTech Connect (OSTI)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-09-16

    Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loading conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.

  16. Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-09-16

    Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less

  17. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    SciTech Connect (OSTI)

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    2015-04-01

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturing is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.

  18. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    SciTech Connect (OSTI)

    Jordan, Eric; Gell, Maurice

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm?K? in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al?O? and TiO?, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium zirconate Coating made by the SPPS process. Noteworthy was the fact that the YSZ to GZO interface made by the SPPS process was not the failure location as had been observed in APS coatings.

  19. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOE Patents [OSTI]

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  20. Catalytic cracking. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  1. Catalytic cracking. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  2. Numerical modeling and experiments of creep crack growth under cyclic loading

    SciTech Connect (OSTI)

    Brust, F.W.

    1995-12-31

    This paper presents a summary of some recent studies of creep crack growth under history dependent load conditions. The effect of a proper constitutive law is illustrated. Moreover, the asymptotic fields are reconsidered under cyclic creep conditions. In addition, several experiments are modeled and the behavior of integral parameters is discussed.

  3. Cracking catalysts comprising phosphorus and method of preparing and using the same

    SciTech Connect (OSTI)

    Absil, R.P.L.; Herbst, J.A.

    1993-07-27

    A zeolite catalyst is described for cracking hydrocarbons formed by a process comprising the steps of: forming a slurry comprising clay, a source of phosphorus and an acid stable zeolite; and spray drying said slurry in the absence of other non-zeolitic inorganic oxide matrices at a pH which is sufficiently low to provide a calcined attrition index of [<=] 10.

  4. The crystallography of fatigue crack initiation in Incoloy-908 and A-286 steel

    SciTech Connect (OSTI)

    Krenn, C.R. |

    1996-12-01

    Fatigue crack initiation in the austenitic Fe-Ni superalloys Incoloy-908 and A-286 is examined using local crystallographic orientation measurements. Results are consistent with sharp transgranular initiation and propagation occurring almost exclusively on {l_brace}111{r_brace} planes in Incoloy-908 but on a variety of low index planes in A-286. This difference is attributed to the influence of the semicoherent grain boundary {eta} phase in A-286. Initiation in each alloy occurred both intergranularly and transgranularly and was often associated with blocky surface oxide and carbide inclusions. Taylor factor and resolved shear stress and strain crack initiation hypotheses were tested, but despite an inconclusive suggestion of a minimum required {l_brace}111{r_brace} shear stress, none of the hypotheses were found to convincingly describe preferred initiation sites, even within the subsets of transgranular cracks apparently free from the influence of surface inclusions. Subsurface inclusions are thought to play a significant role in crack initiation. These materials have applications for use in structural conduit for high field superconducting magnets designed for fusion energy use.

  5. Fatigue of polycrystalline silicon for MEMS applications: Crack growth and stability under resonant loading conditions

    SciTech Connect (OSTI)

    Muhlstein, C.L.; Howe, R.T.; Ritchie, R.O.

    2001-12-05

    Although bulk silicon is not known to exhibit susceptibility to cyclic fatigue, micron-scale structures made from silicon films are known to be vulnerable to degradation by fatigue in ambient air environments, a phenomenon that has been recently modeled in terms of a mechanism of sequential oxidation and stress-corrosion cracking of the native oxide layer.

  6. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOE Patents [OSTI]

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  7. Fast, moment-based estimation methods for delay network tomography (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Fast, moment-based estimation methods for delay network tomography Citation Details In-Document Search Title: Fast, moment-based estimation methods for delay network tomography Consider the delay network tomography problem where the goal is to estimate distributions of delays at the link-level using data on end-to-end delays. These measurements are obtained using probes that are injected at nodes located on the periphery of the network and sent to other nodes also

  8. Vitrification of lead-based paint using thermal spray

    SciTech Connect (OSTI)

    Kumar, A.; Covey, S.W.; Lattimore, J.L.; Boy, J.H.

    1996-12-31

    Lead-based paint (LBP) primers have been used to protect steel structures from corrosion. Abrasive blasting is currently used to remove old LBP. During abrasive blasting a containment structure is required to keep the hazardous lead dust from contaminating air, soil, or water. A thermal spray vitrification (TSV) process to remove LBP was developed. Dried glass powder is melted in the high temperature flame of the thermal spray torch. When the glass strikes the substrate it is molten and reacts with the paint on the substrate. The organic components of the paint are pyrolyzed, while the lead ions are trapped on the surface of glass. The quenching stresses in the glass cause the glass to crack and spall off the substrate. The crumbled glass fragments can be collected and remelted, immobilizing the lead ions within the glass network, thereby preventing leaching. The resulting glass can be disposed of as non-hazardous waste. The process is dust-free, eliminating the need for containment. The volume of residue waste is less than for abrasive blasting and is nonhazardous. The concept and techniques of using the thermal spray vitrification process for the removal and the containment of lead from a section of a bridge containing lead-based paint have been successfully demonstrated.

  9. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  10. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  11. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  12. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  13. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  14. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  15. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  16. Testing the Delayed Gamma Capability in MCNP6

    SciTech Connect (OSTI)

    Weldon, Robert A.; Fensin, Michael L.; Mckinney, Gregg W.

    2014-01-01

    The mission of the Domestic Nuclear Detection Office is to quickly and reliably detect unauthorized attempts to import or transport special nuclear material for use against the United States. Developing detection equipment to meet this objective requires accurate simulation of both the detectable signature and detection mechanism. A delayed particle capability was initially added to MCNPX 2.6.A in 2005 to sample the radioactive fission product parents and emit decay particles resulting from the decay chain. To meet the objectives of detection scenario modelling, the capability was designed to sample a particular time for emitting particular multiplicity of a particular energy. Because the sampling process of selecting both time and energy is interdependent, to linearize the time and emission sampling, atom densities are computed at several discrete time steps, and the time integrated production is computed by multiplying the atom density by the decay constant and time step size to produce a cumulative distribution function for sampling the emission time, energy and multiplicity. The delayed particle capability was initially given a time bin structure to help reasonably reproduce, from a qualitative sense, a fission benchmark by D. Beddingfield, which examined the delayed gamma emission. This original benchmark was only qualitative and did not contain the magnitudes of the actual measured data, but did contain relative graphical representation of the spectra. A better benchmark with measured data was later provided by A. W.Hunt, Vladimir Mozin, E.T.E. Reedy, H.A. Selpel and Steve Tobin at the Idaho Accelerator Center; however, due to the complexity of the benchmark setup, sizable systematic errors were expected in the modeling, and initial results compared to MCNPX 2.7.0 showed errors outside of statistical fluctuation. Presented here is a more simplified approach to benchmarking, utilizing closed form analytic solutions to the granddaughter equations for 2 particular sets of decay systems. We examine five different decay chains (two stage decay to stable), and show the predictability of the MCNP6 delayed gamma feature. Results do show that while the default delayed gamma calculations available in the MCNP6 1.0 release can give accurate results for some isotopes (e.g. Ba-137), the percent differences between the closed form analytic solutions and the MCNP6 calculations were often greater than 40% (Mg-28, Al-28, K- 42, Ca-47, Sc-47, Co-60). With the MNCP6 1.1 Beta release, the 10th entry on the DBCN card allows improved calculation within less than 5% as compared to the closed form analytic solutions for immediate parent emissions and transient equilibrium systems. While the 10th entry on the DBCN card for MCNP6 1.1 gives much better results for transient equilibrium systems and parent emissions in general, it did little to improve daughter emissions of secular equilibrium systems. Hypotheses were presented as to why daughter emissions of secular equilibrium systems might be mispredicted in some cases and not in others.

  17. Simulation and Experiment of Thermal Fatigue in the CPV Die Attach: Preprint

    SciTech Connect (OSTI)

    Bosco, N.; Silverman, T.; Kurtz, S.

    2012-05-01

    FEM simulation and accelerated thermal cycling have been performed for the CPV die attach. Trends in fatigue damage accumulation and equivalent test time are explored and found to be most sensitive to temperature ramp rate. Die attach crack growth is measured through cycling and found to be in excellent agreement with simulations of the inelastic strain energy accumulated. Simulations of an entire year of weather data provides for the relative ranking of fatigue damage between four cites as well as their equivalent accelerated test time.

  18. In-Line Crack and Stress Detection in Silicon Solar Cells Using Resonance Ultrasonic Vibrations

    SciTech Connect (OSTI)

    Ostapenko, Sergei

    2013-04-03

    Statement of Problem and Objectives. Wafer breakage in automated solar cell production lines is identified as a major technical problem and a barrier for further cost reduction of silicon solar module manufacturing. To the best of our knowledge, there are no commercial systems addressing critical needs for in-line inspection of the mechanical quality of solar wafers and cells. The principal objective of the SBIR program is to validate through experiments and computer modeling the applicability of the Resonance Ultrasonic Vibrations system, which ultimately can be used as a real-time in-line manufacturing quality control tool for fast detection of mechanically unstable silicon solar cells caused by cracks. The specific objective of Phase II is to move the technology of in-line crack detection from the laboratory level to commercial demonstration through development of a system prototype. The fragility of silicon wafers possessing low mechanical strength is attributed to peripheral and bulk millimeter-length cracks. The research program is based on feasibility results obtained during Phase I, which established that: (i) the Resonance Ultrasonic Vibrations method is applicable to as-cut, processed wafers and finished cells; (ii) the method sensitivity depends on the specific processing step; it is highest in as-cut wafers and lowest in wafers with metallization pattern and grid contacts; (iii) the system is capable of matching the 2.0 seconds per wafer throughput rate of state-of-art solar cell production lines; (iv) finite element modeling provides vibration mode analysis along with peak shift versus crack length and crack location dependence; (v) a high 91% crack rejection rate was confirmed through experimentation and statistical analysis. The Phase II project has the following specific tasks: (i) specify optimal configurations of the in-line system?¢????s component hardware and software; (ii) develop and justify a system prototype that meets major specifications for an in-line crack detection unit, such as high throughput rate, high level of stability, reproducibility of data acquisition and analysis, and high sensitivity with respect to crack length and crack location; (iii) design a system platform that allows easy integration within and adaptation to various solar cell belt-type production lines; (iv) develop a testing protocol providing quality certification of the production-grade system. Commercial Application of the proposed activity consists of bringing to the solar market a new high-tech product based on an innovative solution and patented methodology to contribute to cost reduction of silicon solar module production. The solar industry, with crystalline silicon as a dominant segment, shows outstanding performance, with approximately 25% yearly growth during the last years. Despite a slowdown with only 5.6 GW installations in 2009, solar module production for the 2010 and 2011 years was recovered. According to European Photonics Industry Consortium new solar PV installations grow by 56% compared to 2010 reached 64.7 GW in 2011. Revenues in the PV industry reached a record high of $93 billion in 2011, a 13.4 percent gain over 2010 â?? and 150 percent over 2009. This growth was forecasted to continue in 2013 with double digits growth. The solar industry is economically driven to make solar panels of the highest conversion efficiency and reliability at the lowest production cost. The Resonance Ultrasonic Vibration system addresses critical needs of the silicon-based solar industry by providing a quality control method and tool, which will improve productivity, increase reliability of products and reduce manufacturing cost of solar panels.

  19. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  20. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  1. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  2. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2002-04-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on the mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity range on crack growth rates in air.

  3. The effect of in-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288 C water

    SciTech Connect (OSTI)

    Andresen, P.L.; Angeliu, T.

    1996-10-01

    Stress corrosion cracking (SCC), especially in existing boiling water reactor (BVM) components, is most effectively accomplished by reducing the corrosion potential. This was successfully demonstrated by adding hydrogen to BNM water, which reduced oxidant concentration and corrosion potential by recombining with the radiolytically formed oxygen and hydrogen peroxide. However, reduction in the corrosion potential for some vessel internals is difficult, and others require high hydrogen addition rates, which results in an increase in the main steam radiation level from volatile N{sup 16}. Noble metal electrocatalysis provides a unique opportunity to efficiently achieve a dramatic reduction in corrosion potential and SCC in BWRs, by catalytically reacting all oxidants that diffuse to a (catalytic) metal surface with hydrogen. There are many techniques for creating catalytic surfaces, including alloying with noble metals or applying noble metal alloy powders to existing BWR components by thermal spraying or weld cladding. A novel system-wide approach for producing catalytic surfaces on all wetted components has been developed which employs the reactor coolant water as the medium of transport. This approach is termed in-situ noble metal chemical addition (NMCA), and has been successfully used in extensive laboratory tests to coat a wide range of pre-oxidized structural materials. In turn, these specimens have maintained catalytic response in long term, cyclic exposures to extremes in dissolved gases, impurity levels, pH, flow rate, temperature, straining, etc. With stoichiometric excess H{sub 2}, the corrosion potential drops dramatically and crack initiation and growth are greatly reduced, even at high O{sub 2} or H{sub 2}O{sub 2} levels. Without excess H{sub 2} (i.e., in normal BWR water chemistry), noble metals do not increase the corrosion potential or SCC.

  4. Radiation-induced instability of MnS precipitates and its possible consequences on irradiation-induced stress corrosion cracking of austenitic stainless steels

    SciTech Connect (OSTI)

    Chung, H.M.; Sanecki, J.E.; Garner, F.A.

    1996-12-01

    Irradiation-assisted stress corrosion cracking (IASCC) is a significant materials issue for the light water reactor (LWR) industry and may also pose a problem for fusion power reactors that will use water as coolant. A new metallurgical process is proposed that involves the radiation-induced release into solution of minor impurity elements not usually thought to participate in IASCC. MnS-type precipitates, which contain most of the sulfur in stainless steels, are thought to be unstable under irradiation. First, Mn transmutes strongly to Fe in thermalized neutron spectra. Second, cascade-induced disordering and the inverse Kirkendall effect operating at the incoherent interfaces of MnS precipitates are thought to act as a pump to export Mn from the precipitate into the alloy matrix. Both of these processes will most likely allow sulfur, which is known to exert a deleterious influence on intergranular cracking, to re-enter the matrix. To test this hypothesis, compositions of MnS-type precipitates contained in several unirradiated and irradiated heats of Type 304, 316, and 348 stainless steels (SSs) were analyzed by Auger electron spectroscopy. Evidence is presented that shows a progressive compositional modification of MnS precipitates as exposure to neutrons increases in boiling water reactors. As the fluence increases, the Mn level in MnS decreases, whereas the Fe level increases. The S level also decreases relative to the combined level of Mn and Fe. MnS precipitates were also found to be a reservoir of other deleterious impurities such as F and O which could be also released due to radiation-induced instability of the precipitates.

  5. Spectrometer employing optical fiber time delays for frequency resolution

    DOE Patents [OSTI]

    Schuss, Jack J.; Johnson, Larry C.

    1979-01-01

    This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.

  6. High Temperature Thermal Array for Next Generation Solar Thermal Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_obrey.pdf More Documents & Publications A Method for Evaluating Fire After Earthquake Scenarios for Single

  7. Microstructure-based approach for predicting crack initiation and early growth in metals.

    SciTech Connect (OSTI)

    Cox, James V.; Emery, John M.; Brewer, Luke N.; Reedy, Earl David, Jr.; Puskar, Joseph David; Bartel, Timothy James; Dingreville, Remi P. M.; Foulk, James W., III; Battaile, Corbett Chandler; Boyce, Brad Lee

    2009-09-01

    Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models for deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.

  8. Analysis of Mode III Elastodynamic Cracked Plane using the Fractal Two-Level Finite Element Method

    SciTech Connect (OSTI)

    Fan, J.; Lee, Y. Y.; Leung, A. Y. T.

    2010-05-21

    In this study, the fractal two-level finite element method, which has mainly been used for static cracked plane problems, is applied to the cracked plane problem. Using the transformation process in the proposed method, the infinite dimension of the finite element matrices that are assembled for a singular region is made finite in terms of the dynamics stress intensity factors directly, and thus the computational time can be reduced significantly. The Newmark time integration scheme is then used to obtain the dynamic stress intensity factors. The results from the proposed method are in reasonable agreement with those of classical methods. The main drawback of the time integration scheme is that numerical oscillations are induced in some cases.

  9. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach

    Office of Scientific and Technical Information (OSTI)

    model (Journal Article) | SciTech Connect Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model Citation Details In-Document Search Title: Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter

  10. System for sensing droplet formation time delay in a flow cytometer

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect System for sensing droplet formation time delay in a flow cytometer Citation Details In-Document Search Title: System for sensing droplet formation time delay in a flow cytometer A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously

  11. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  12. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  13. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  14. Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Improved Performance Demanded of Future Aircraft  significant weight savings needed to reduce fuel consumption and emissions  longer inspection intervals over baseline  lower life-cycle cost  fault tolerant design depends on understanding of crack growth!  Objectives  Develop integrated models that

  15. Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control Improving Energy Efficiency in Hot Rolling by Increasing Recovery Rates Hot rolling of large ingots is the predominant process for producing plate, sheet, and foil aluminum products. Hot rolling has typical recovery rates of 82%, because 18% of the original material is lost as planned end cuts and scalping, or as incidental (unplanned) scrap. Hot rolled scrap is then typically re-melted to either form fresh ingot

  16. Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control

    Office of Environmental Management (EM)

    Armand J Beaudoin Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 Project Objective  Objectives  Develop integrated models that link properties of aluminum alloy plate to microstructure and rolling process parameters.  Validate the model by predicting the stress intensity factor at onset of crack branching in hard alloys within 20%.  Provide a

  17. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  18. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  19. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  20. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  1. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermal energy power conversion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  2. Aluminum nitride transitional layer for reducing dislocation density and cracking of AlGaN epitaxial films

    DOE Patents [OSTI]

    Allerman, Andrew A.; Crawford, Mary H.; Lee, Stephen R.

    2013-01-08

    A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

  3. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels and Alloy 690 from Halden Phase-II Irradiations

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Dietz Rago, Nancy L.; Shack, W. J.

    2008-09-01

    This work is an ongoing effort at Argonne National Laboratory on the mechanistic study of irradiation-assisted stress corrosion cracking (IASCC) in the core internals of light water reactors.

  4. Production of hydrogen by thermocatalytic cracking of natural gas. Task 4 report; Annual report

    SciTech Connect (OSTI)

    1995-10-01

    The conventional methods of hydrogen production from natural gas, for example, steam reforming (SR), are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere. One alternative is the single-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. The comparative assessment of SR and TCC processes was conducted. Thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500--900 C) and flow rates was conducted. Two types of fix bed catalytic reactors were designed, built and tested: continuous flow and pulse reactors. Ni-Mo/Alumina and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at the range of temperatures 600--800 C. Fe-catalyst demonstrated fairly good stability, whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity. Methane decomposition reaction over Ni-Mo/alumina was studied over wide range of space velocities in a continuous flow fixed bed catalytic reactor. The experimental results indicate that the hydrogen yield decreases noticeably with an increase in the space velocity of methane. The pulse type catalytic reactor was used to test the activity of the catalysts. It was found that induction period on the kinetic curve of hydrogen production corresponded to the reduction of metal oxide to metallic form of the catalyst. SEM method was used to study the structure of the carbon deposited on the catalyst surface.

  5. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect (OSTI)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  6. Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reedy, E. D.

    2014-09-06

    The Cohesive zone (CZ) fracture analysis techniques are used to predict the initiation of crack growth from the interface corner of an adhesively bonded butt joint. In this plane strain analysis, a thin linear elastic adhesive layer is sandwiched between rigid adherends. There is no preexisting crack in the problem analyzed, and the focus is on how the shape of the traction–separation (T–U) relationship affects the predicted joint strength. Unlike the case of a preexisting interfacial crack, the calculated results clearly indicate that the predicted joint strength depends on the shape of the T–U relationship. Most of the calculations usedmore » a rectangular T–U relationship whose shape (aspect ratio) is defined by two parameters: the interfacial strength σ* and the work of separation/unit area Γ. The principal finding of this study is that for a specified adhesive layer thickness, there is any number of σ*, Γ combinations that generate the same predicted joint strength. For each combination there is a corresponding CZ length. We developed an approximate CZ-like elasticity solution to show how such combinations arise and their connection with the CZ length.« less

  7. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect (OSTI)

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  8. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    SciTech Connect (OSTI)

    Bannikov, Mikhail E-mail: oborin@icmm.ru Oborin, Vladimir E-mail: oborin@icmm.ru Naimark, Oleg E-mail: oborin@icmm.ru

    2014-11-14

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by in-situ infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue and gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ?300 ?m has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.

  9. A system for the measurement of delayed neutrons and gammas from special nuclear materials

    SciTech Connect (OSTI)

    Andrews, M. T.; Corcoran, E. C.; Goorley, J. T.; Kelly, D. G.

    2014-11-27

    The delayed neutron counting (DNC) system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting (DNGC) system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six He and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine U content and determine fissile mass with an average relative error and accuracy of -2.2 and 1.5 %, respectively.

  10. A system for the measurement of delayed neutrons and gammas from special nuclear materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andrews, M. T.; Corcoran, E. C.; Goorley, J. T.; Kelly, D. G.

    2014-11-27

    The delayed neutron counting (DNC) system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting (DNGC) system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six ³He and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine ²³³U content and determine fissile mass with an average relative error and accuracy of -2.2 and 1.5 %, respectively.

  11. Ultra-compact optical true time delay device for wideband phased array

    Office of Scientific and Technical Information (OSTI)

    radars. (Conference) | SciTech Connect Ultra-compact optical true time delay device for wideband phased array radars. Citation Details In-Document Search Title: Ultra-compact optical true time delay device for wideband phased array radars. An ultra-compact optical true time delay device is demonstrated that can support 112 antenna elements with better than six bits of delay in a volume 16-inch x 5-inch x 4-inch including the box and electronics. Free-space beams circulate in a White cell,

  12. Calculation of delayed-neutron energy spectra in a QRPA-Hauser...

    Office of Scientific and Technical Information (OSTI)

    National Technical Information Service, Springfield, VA at www.ntis.gov. Theoretical beta-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase...

  13. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  14. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  15. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  16. Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi.

    SciTech Connect (OSTI)

    Daymond, M. R.; Young, M. L.; Almer, J. D.; Dunand, D. C.; Queen's Univ.; Northwestern Univ.

    2007-06-01

    In situ synchrotron X-ray diffraction measurements are used to create two-dimensional maps of elastic strain and texture, averaged over a compact-tension specimen thickness, near a crack tip in a martensitic NiTi alloy. After fatigue crack propagation, the material ahead of the crack and in its wake exhibits a strong texture, which is eliminated by subsequent shape-memory heat treatment, indicating that this texture is due to detwinning, the main deformation mechanism of NiTi. Upon subsequent application of a static tensile stresses, the highly textured zone reappears and grows around the crack tip as the applied stress is increased. At the highest applied stress intensity of 35MPam1/2, large tensile strains are measured ahead of the crack tip and considerable elastic anisotropy is observed. This detwinning zone is similar to the plastic zone produced by dislocation slip present around cracks in other metals. The texture in this zone is not significantly altered after mechanical unloading, despite the development of substantial triaxial compressive residual strains in this zone.

  17. Cyclic fatigue-crack propagation in ceramics: Behavior in overaged and partially-stabilized MgO-zirconia

    SciTech Connect (OSTI)

    Dauskardt, R.H.; Marshall, D.B.; Ritchie, R.O.; Rockwell International Corp., Thousand Oaks, CA; Lawrence Berkeley Lab., CA )

    1988-06-01

    The growth of fatigue cracks under (tension-tension) cyclic loading is unequivocally demonstrated for ceramic materials, based on experiments using compact-tension specimens of a MgO partially-stabilized zirconia (PSZ), heat treated to vary the fracture toughness K{sub c} from {approximately}3 MPa{radical}m (overaged condition) to 16 MPa{radical}m (peak-toughness condition) and tested in inert and moist environments. Analogous to behavior in metals, cyclic fatigue-crack growth rates (over the range 10{sup {minus}11} to 10{sup {minus}5} m/cycle) are found to be a function of the stress-intensity range, environment, fracture toughness and load ratio, and to show evidence of crack closure. Similarly under variable-amplitude cyclic loading conditions, crack-growth rates show transient accelerations following low-high block overloads and transient retardations following high-low block overloads or single tensile overloads, again analogous to behavior commonly observed in ductile meals. Cyclic crack-growth rates are observed at stress intensities as low as 50% of K{sub c}, and are typically some 7 orders of magnitude faster than corresponding stress-corrosion crack-growth rates under sustained-loading conditions. 23 refs., 6 figs.

  18. Environmentally assisted cracking in light water reactors - annual report, January-December 2001.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E; Hiller, R. W.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2003-06-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2001. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (c) EAC of Alloy 600. The effects of key material and loading variables, such as strain amplitude, strain rate, temperature, dissolved oxygen (DO) level in water, and material heat treatment, on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The mechanism of fatigue crack initiation in austenitic SSs in LWR environments has also been examined. The results indicate that the presence of a surface oxide film or difference in the characteristics of the oxide film has no effect on fatigue crack initiation in austenitic SSs in LWR environments. Slow-strain-rate tensile tests and post-test fractographic analyses were conducted on several model SS alloys irradiated to {approx}2 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) ({approx}3 dpa) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. Corrosion fatigue tests were conducted on nonirradiated austenitic SSs in high-purity water at 289 C to establish the test procedure and conditions that will be used for the tests on irradiated materials. A comprehensive irradiation experiment was initiated to obtain many tensile and disk specimens irradiated under simulated pressurized water reactor conditions at {approx}325 C to 5, 10, 20, and 40 dpa. Crack growth tests were completed on 30% cold-worked Alloy 600 in high-purity water under various environmental and loading conditions. The results are compared with data obtained earlier on several heats of Alloy 600 tested in high-DO water under several heat treatment conditions.

  19. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W.; Cameron, Christopher Stan

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  20. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  1. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  2. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  3. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  4. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  5. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  6. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  7. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  8. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  9. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  10. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  11. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    DOE Patents [OSTI]

    Johnsen, Richard (Waterbury, CT); Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT)

    2011-05-10

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  12. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  13. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide ...

  14. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  15. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  16. Analysis Of Ductile Crack Growth In Pipe Test In STYLE Project

    SciTech Connect (OSTI)

    Yin, Shengjun; Williams, Paul T; Klasky, Hilda B; Bass, Bennett Richard

    2012-01-01

    The Oak Ridge National Laboratory (ORNL) is conducting structural analyses, both deterministic and probabilistic, to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). The paper summarizes current ORNL analyses of STYLE s Mock-up3 experiment to simulate/evaluate ductile crack growth in a cladded ferritic pipe. Deterministic analyses of the large-scale bending test of ferritic surge pipe, with an internal circumferential crack, are simulated with a number of local micromechanical approaches, such as Gurson-Tvergaard-Needleman (GTN) model and cohesive-zone model. Both WARP 3D and ABAQUS general purpose finite element programs are being used to predict the failure load and the failure mode, i.e. ductile tearing or net-section collapse, as part of the pre-test phase of the project. Companion probabilistic analyses of the experiment are utilizing the ORNL developed open-source Structural Integrity Assessment Modular - Probabilistic Fracture Mechanics (SIAM-PFM) framework. SIAM-PFM contains engineering assessment methodology such as the tearing instability (J-T analysis) module developed for inner surface cracks under bending load. The driving force J-integral estimations are based on the SC.ENG1 or SC.ENG2 models. The J-A2 methodology is used to transfer (constraint-adjust) J-R curve material data from standard test specimens to the Mock-up3 experiment configuration. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those generated using the deterministic finite element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions.

  17. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    Office of Scientific and Technical Information (OSTI)

    Aluminum Industry of the Future Managed by UT-Battelle, LLC Final Technical Report Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking June 2006 Principal Investigator: Subodh K. Das Secat, Inc. ORNL/TM-2006/56 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the

  18. Transient Eddy Current Response Due to a Subsurface Crack in a Conductive Plate

    SciTech Connect (OSTI)

    Fangwei Fu

    2006-08-09

    Eddy current nondestructive evaluation (NDE) is usually carried out by exciting a time harmonic field using an inductive probe. However, a viable alternative is to use transient eddy current NDE in which a current pulse in a driver coil produces a transient .eld in a conductor that decays at a rate dependent on the conductivity and the permeability of the material and the coil configuration. By using transient eddy current, it is possible to estimate the properties of the conductive medium and to locate and size potential .aws from the measured probe response. The fundamental study described in this dissertation seeks to establish a theoretical understanding of the transient eddy current NDE. Compared with the Fourier transform method, the derived analytical formulations are more convenient when the transient eddy current response within a narrow time range is evaluated. The theoretical analysis provides a valuable tool to study the effect of layer thickness, location of defect, crack opening as well as the optimization of probe design. Analytical expressions have been developed to evaluate the transient response due to eddy currents in a conductive plate based on two asymptotic series. One series converges rapidly for a short time regime and the other for a long time regime and both of them agree with the results calculated by fast Fourier transform over all the times considered. The idea of asymptotic expansion is further applied to determine the induced electromotive force (EMF) in a pick-up coil due to eddy currents in a cylindrical rod. Starting from frequency domain representation, a quasi-static time domain dyadic Green's function for an electric source in a conductive plate has been derived. The resulting expression has three parts; a free space term, multiple image terms and partial reflection terms. The dyadic Green's function serves as the kernel of an electric field integral equation which defines the interaction of an ideal crack with the transient eddy currents in a conductive plate. The crack response is found using the reciprocity theorem. Good agreement is observed between the predictions of the magnetic field due to the crack and experimental measurements.

  19. EXPERT PANEL OVERSIGHT COMMITTEE ASSESSMENT OF FY2008 CORROSION AND STRESS CORROSION CRACKING SIMULANT TESTING PROGRAM

    SciTech Connect (OSTI)

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) has been overseeing the implementation of selected parts of Recommendation III of the final report, Expert Panel workshop for Hanford Site Double-Shell Tank Waste Chemistry Optimization, RPP-RPT-22126. Recommendation III provided four specific requirements necessary for Panel approval of a proposal to revise the chemistry control limits for the Double-Shell Tanks (DSTs). One of the more significant requirements was successful performance of an accelerated stress corrosion cracking (SCC) experimental program. This testing program has evaluated the optimization of the chemistry controls to prevent corrosion in the interstitial liquid and supernatant regions of the DSTs.

  20. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  1. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne (Pittsburg, PA)

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  3. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Moore, Troy K. (Los Alamos, NM)

    1988-01-01

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  4. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J. (Littleton, CO)

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  5. Pacific Northwest National Laboratory Investigation of the Stress Corrosion Cracking in Nickel-Base Alloys, Volume 2

    SciTech Connect (OSTI)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2012-03-01

    The objective of this program is to evaluate the primary water stress corrosion cracking (PWSCC) susceptibility of high chromium alloy 690 and its weld metals, establish quantitative measurements of crack-growth rates and determine relationships among cracking susceptibility, environmental conditions and metallurgical characteristics. Stress-corrosion, crack-growth rates have been determined for 12 alloy 690 specimens, 11 alloy 152/52/52M weld metal specimens, 4 alloy 52M/182 overlay specimens and 2 alloy 52M/82 inlay specimens in simulated PWR primary water environments. The alloy 690 test materials included three different heats of extruded control-rod-drive mechanism (CRDM) tubing with variations in the initial material condition and degree of cold work for one heat. Two cold-rolled (CR) alloy 690 plate heats were also obtained and evaluated enabling comparisons to the CR CRDM materials. Weld metal, overlay and inlay specimens were machined from industry mock ups to provide plant-representative materials for testing. Specimens have been tested for one alloy 152 weld, two alloy 52 welds and three alloy 52M welds. The overlay and inlay specimens were prepared to propagate stress-corrosion cracks from the alloy 182 or 82 material into the more resistant alloy 52M. In all cases, crack extension was monitored in situ by direct current potential drop (DCPD) with length resolution of about +1 m making it possible to measure extremely low growth rates approaching 5x10-10 mm/s. Most SCC tests were performed at 325-360C with hydrogen concentrations from 11-29 cc/kg; however, environmental conditions were modified during a few experiments to evaluate the influence of temperature, water chemistry or electrochemical potential on propagation rates. In addition, low-temperature (~50C) cracking behavior was examined for selected alloy 690 and weld metal specimens. Extensive characterizations have been performed on material microstructures and stress-corrosion cracks by optical and electron microscopy techniques and linked to crack-growth test results to help define material and environmental parameters controlling SCC susceptibility.

  6. Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

    SciTech Connect (OSTI)

    Wang, Jy-An John; Tan, Ting; Jiang, Hao; Zhang, Wei; Feng, Zhili

    2012-10-01

    The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials.

  7. Nuclear reactor with internal thimble-type delayed neutron detection system

    DOE Patents [OSTI]

    Gross, Kenny C. (Lemont, IL); Poloncsik, John (Downers Grove, IL); Lambert, John D. B. (Wheaton, IL)

    1990-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus is located in the primary heat exchanger which conveys part of the reactor coolant past at least three separate delayed-neutron detectors mounted in this heat exchanger. The detectors are spaced apart such that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  8. Derivation of a crack opening deflection relationship for fibre reinforced concrete panels using a stochastic model: Application for predicting the flexural behaviour of round panels using stress crack opening diagrams

    SciTech Connect (OSTI)

    Nour, Ali; Massicotte, Bruno; De Montaignac, Renaud; Charron, Jean-Philippe

    2011-09-15

    This study is aimed at proposing a simple analytical model to investigate the post-cracking behaviour of FRC panels, using an arbitrary tension softening, stress crack opening diagram, as the input. A new relationship that links the crack opening to the panel deflection is proposed. Due to the stochastic nature of material properties, the random fibre distribution, and other uncertainties that are involved in concrete mix, this relationship is developed from the analysis of beams having the same thickness using the Monte Carlo simulation (MCS) technique. The softening diagrams obtained from direct tensile tests are used as the input for the calculation, in a deterministic way, of the mean load displacement response of round panels. A good agreement is found between the model predictions and the experimental results.

  9. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  10. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  11. Assessment of NDE Technologies for Detection and Characterization of Stress Corrosion Cracking in LWRs

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Toloczko, Mychailo B.; Bond, Leonard J.; Montgomery, Robert O.

    2012-12-31

    Stress corrosion cracking (SCC) in light water reactors (LWRs) has been a persistent form of degradation in the nuclear industry. Examples of SCC can be found for a range of materials in boiling and pressurized water reactor environments, including carbon steels, stainless steels, and nickel-base stainless alloys. The evolution of SCC is often characterized by a long initiation stage followed by a phase of more rapid crack growth to failure. This provides a relatively short window of opportunity to detect the start of observable SCC, and it is conceivable that SCC could progress from initiation to failure between subsequent examinations when managed by applying periodic in-service inspection techniques. Implementation of advanced aging management paradigms in the current fleet of LWRs will require adaptation of existing measurement technologies and development of new technologies to perform on-line measurements during reactor operation to ensure timely detection of material degradation and to support the implementation of advanced diagnostics and prognostics. This paper considers several non-destructive examination (NDE) technologies with known sensitivity to detection of indicators for SCC initiation and/or propagation, and assesses these technologies with respect to their ability to detect and accurately characterize the significance of an SCC flaw. Potential strategies to improve SCC inspection or monitoring performance are offered to benefit management of SCC degradation in LWRs.

  12. Effect of material heat treatment on fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Alexandreanu, B.; Shack, W. J.; Energy Technology

    2005-07-31

    The ASME Boiler and Pressure Vessel Code provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify design curves for applicable structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. The existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives of austenitic stainless steels (SSs) can be a factor of 20 lower in water than in air. This report presents experimental data on the effect of heat treatment on fatigue crack initiation in austenitic Type 304 SS in LWR coolant environments. A detailed metallographic examination of fatigue test specimens was performed to characterize the crack morphology and fracture morphology. The key material, loading, and environmental parameters and their effect on the fatigue life of these steels are also described. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic SSs as a function of material, loading, and environmental parameters. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented.

  13. Mechanism and estimation of fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Energy Technology

    2002-08-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of fatigue crack initiation in austenitic stainless steels in LWR coolant environments. The existing fatigue {var_epsilon}-N data have been evaluated to establish the effects of key material, loading, and environmental parameters (such as steel type, strain range, strain rate, temperature, dissolved-oxygen level in water, and flow rate) on the fatigue lives of these steels. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. The influence of reactor environments on the mechanism of fatigue crack initiation in these steels is also discussed.

  14. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect (OSTI)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  15. Microstructure and Mesh Sensitivities of Mesoscale Surrogate Driving Force Measures for Transgranular Fatigue Cracks in Polycrystals

    SciTech Connect (OSTI)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipated fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.

  16. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    SciTech Connect (OSTI)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  17. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  18. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  19. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect (OSTI)

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  20. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J. (Albuquerque, NM); Fulcher, Clay W. G. (Sandia Park, NM)

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  1. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  2. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with ??Kalwall?? building panels. An added feature of the ??Kalwall? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  3. Motor Thermal Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Control Motor Thermal Control 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape030_bennion_2010_p.pdf More Documents & Publications Thermal Management of PHEV / EV Charging Systems Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration

  4. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  5. Thermal Enhancer - Airless Exhaust Thermal Management Device | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Enhancer - Airless Exhaust Thermal Management Device Thermal Enhancer - Airless Exhaust Thermal Management Device Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_coker.pdf More Documents & Publications Heavy Duty Vehicle In-Use Emission Performance Why Light Duty Diesels Make Sense in the North American Market Scalable, Low-Cost, High

  6. Ultra-compact optical true time delay device for wideband phased...

    Office of Scientific and Technical Information (OSTI)

    The input is a fiber-and-microlens array, whose output spots are re-imaged multiple times ... The fiber-to-detector insertion loss is 7.82 dB for the shortest delay path. Authors: ...

  7. Modulating resonance behaviors by noise recycling in bistable systems with time delay

    SciTech Connect (OSTI)

    Sun, Zhongkui Xu, Wei; Yang, Xiaoli; Xiao, Yuzhu

    2014-06-01

    In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been found analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.

  8. Remote facility sharing with ATM networks [PC based ATM Link Delay Simulator (LDS)]. Final report

    SciTech Connect (OSTI)

    Kung, H. T.

    2001-06-01

    The ATM Link Delay Simulator (LDS) adds propagation delay to the ATM link on which it is installed, to allow control of link propagation delay in network protocol experiments simulating an adjustable piece of optical fiber. Our LDS simulates a delay of between 1.5 and 500 milliseconds and is built with commodity PC hardware, only the ATM network interface card is not generally available. Our implementation is special in that it preserves the exact spacing of ATM data cells a feature that requires sustained high performance. Our implementation shows that applications demanding sustained high performance are possible on commodity PC hardware. This illustrates the promise that PC hardware has for adaptability to demanding specialized testing of high speed network.

  9. Ku-band 6-bit RF MEMS time delay network. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Ku-band 6-bit RF MEMS time delay network. Citation Details In-Document Search Title: Ku-band 6-bit RF MEMS time delay network. No abstract prepared. Authors: Nordquist, Christopher Daniel ; Sullivan, Charles Thomas ; Kraus, Garth Merlin ; Austin, Franklin, IV [1] ; Finnegan, Patrick Sean [1] ; Ballance, Mark H. [1] ; Dyck, Christopher William + Show Author Affiliations (LMATA Government Services, LLC, Albuquerque, NM) Publication Date: 2008-10-01 OSTI Identifier: 966236 Report

  10. Flexible pulse delay control up to picosecond for high-intensity twin

    Office of Scientific and Technical Information (OSTI)

    electron bunches (Journal Article) | SciTech Connect Flexible pulse delay control up to picosecond for high-intensity twin electron bunches Citation Details In-Document Search Title: Flexible pulse delay control up to picosecond for high-intensity twin electron bunches Authors: Zhang, Zhen ; Ding, Yuantao ; Emma, Paul ; Huang, Zhirong ; Marinelli, Agostino ; Tang, Chuanxiang Publication Date: 2015-09-10 OSTI Identifier: 1233964 Grant/Contract Number: AC02-76SF00515 Type: Published Article

  11. Flexible pulse delay control up to picosecond for high-intensity twin electron bunches

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Ding, Yuantao; Emma, Paul; Huang, Zhirong; Marinelli, Agostino; Tang, Chuanxiang

    2015-09-10

    Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.

  12. n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations

    SciTech Connect (OSTI)

    Healy, D.; Curran, H.J.; Donato, N.S.; Aul, C.J.; Petersen, E.L.; Zinner, C.M.; Bourque, G.

    2010-08-15

    Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors' knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air. (author)

  13. Delayed muons in extensive air showers and double-front showers

    SciTech Connect (OSTI)

    Beisembaev, R. U.; Vavilov, Yu. N. Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V.; Takibaev, J. S.

    2009-11-15

    The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

  14. System for sensing droplet formation time delay in a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1997-01-01

    A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustment which may then act with analysis equipment to revise the time delay estimate actually applied during processing. The automatic sampler can be controlled through a microprocessor and appropriate programming to bracket an initial droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.

  15. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  16. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  17. An experimental study of CTOD for Mode I/Mode II stable crack growth in thin 2024-T3 aluminum specimens

    SciTech Connect (OSTI)

    Amstutz, B.E.; Sutton, M.A.; Dawicke, D.S.; Newman, J.C.

    1995-12-31

    An experimental study of crack tip opening displacement (CTOD) for Mode I/Mode II stable crack growth in thin sheet 2024-T3 aluminum has been conducted. To perform the experiments, an Arcan specimen and fixture was modified so that (1) slippage in the grips was eliminated, (2) large rotations of the fixture components were achievable and (3) bending stresses were minimized. Defining {Theta} to be the angle between the Mode I loading direction (perpendicular to the crack line) and the direction of applied loading, experimental results indicate that (a) for large amounts of crack extension, a {ge} 10mm, the value of CTOD at 1 mm behind the crack tip appears to approach a constant value of 0.1 mm for all modes of loading, (b) the direction of crack extension varied with applied mixed mode loading, (c) Mode I crack extension is predominant for 0{degree} {le} {Theta} {le} 60{degree}, (d) Mode II crack extension is predominant for 75{degree} {le} {Theta} {le} 90{degree} and (e) a transition zone exists for angles {Theta} near 75{degree}.

  18. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  19. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Concentrating Solar Power (CSP)/National Solar Thermal Test Facility - National Solar Thermal Test Facilityadmin2016-02-25T20:11:27+00:00 Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and

  20. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  1. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  2. Radiography used to image thermal explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October » Radiography used to image thermal explosions Radiography used to image thermal explosions Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the explosion. October 9, 2012 Tabletop X-ray radiography of a thermal explosion. Tabletop X-ray radiography of a thermal explosion. Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the

  3. Improvement of Design Codes to Account for Accident Thermal Effects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The pre-cracking branch was almost identical for all reinforcement levels. The analysis results of this study show that the reinforcement ratio and temperature amplitude have ...

  4. Validation and transfer of NDI techniques for corrosion quantification and small crack/disbond detection

    SciTech Connect (OSTI)

    Smith, C.D.; Shurtleff, W.W.

    1997-07-01

    A coordinated program in inspection system research was started at the Federal Aviation Administration (FAA) Technical Center in 1990 as part the National Aging Aircraft Research Program. The primary objectives of the Inspection Systems Research Initiative are to act in concert with other government agencies and private industry to develop improved inspection techniques to address specific airframe and engine inspection problems and to evaluate and validate existing and emerging inspection systems. Advanced conventional technologies, emerging technologies, or combinations of technologies are investigated for their ability to accurately and reliably detect cracks, disbonds, corrosion, and other damage. This paper will present an overview of the FAA inspection system research initiative with special focus on the successes through validation and technology transfer.

  5. Methods of cracking a crude product to produce additional crude products

    DOE Patents [OSTI]

    Mo, Weijian; Roes, Augustinus Wilhelmus Maria; Nair, Vijay

    2009-09-08

    A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

  6. Method for the preparation of catalyst composition for use in cracking hydrocarbons

    SciTech Connect (OSTI)

    Nishimura, Y.; Ogata, M.; Ida, T.

    1987-01-13

    A method is described for preparing a catalyst composition for cracking hydrocarbons, which consists essentially of: spray drying an aqueous slurry containing (i) flash calcined alumina particles which have been prepared by contacting aluminum hydroxide which has been made by the Bayer process, with hot air having a temperature in the range of 350/sup 0/ to 700/sup 0/C., for 5 seconds or less, (ii) kaolin, (iii) a precursor of a siliceous inorganic oxide matrix, and (iv) a crystalline aluminosilicate zeolite, to obtain catalyst particles consisting essentially of from 10 to 30 wt. % of the flash-calcined alumina, from 30 to 55 wt. % of the kaolin, from 3 to 40 wt. % crystalline aluminosilicate zeolite and the balance is the siliceous inorganic oxide matrix. A method is also described in which the zeolite is rare earth exchange zeolite Y or hydrogen exchanged zeolite Y.

  7. Analysis of Gas Turbine Thermal Performances | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Gas Turbine Thermal Performances

  8. Amulaire Thermal Technology | Open Energy Information

    Open Energy Info (EERE)

    Amulaire Thermal Technology Jump to: navigation, search Name: Amulaire Thermal Technology Address: 11555 Sorrento Valley Road Place: San Diego, California Zip: 92121 Region:...

  9. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

  10. Thermal-Mechanical Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of thermal-mechanical research includes: Single and two phase heat transfer Nanomaterial synthesis Heat transfer fluids Engine and power electronics cooling Thermal energy...

  11. Develop & evaluate materials & additives that enhance thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    evaluate materials & additives that enhance thermal & overcharge abuse Develop & evaluate materials & additives that enhance thermal & overcharge abuse 2009 DOE Hydrogen Program ...

  12. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel ...

  13. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances...

  14. Nextreme Thermal Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Nextreme Thermal Solutions Inc Jump to: navigation, search Name: Nextreme Thermal Solutions Inc Place: North Carolina Zip: 27709-3981 Product: String representation "Manufactures...

  15. Chemically homogeneous and thermally reversible oxidation of...

    Office of Scientific and Technical Information (OSTI)

    Chemically homogeneous and thermally reversible oxidation of epitaxial graphene Citation Details In-Document Search Title: Chemically homogeneous and thermally reversible oxidation ...

  16. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Broader source: Energy.gov (indexed) [DOE]

    Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world's ocean thermal ...

  17. Stewart Thermal Ltd | Open Energy Information

    Open Energy Info (EERE)

    Thermal Ltd Jump to: navigation, search Name: Stewart Thermal Ltd Place: United Kingdom Sector: Biomass Product: Provides specialist advice in the field of biomass energy....

  18. NREL: Energy Storage - Energy Storage Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative ...

  19. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect (OSTI)

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be related to the formation of second-phases under irradiation, although further examination is required

  20. An Assessment of Remote Visual Methods to Detect Cracking in Reactor Components

    SciTech Connect (OSTI)

    Cumblidge, Stephen E.; Anderson, Michael T.; Doctor, Steven R.; Simonen, Fredric A.; Elliot, Anthony J.

    2008-01-01

    Recently, the U.S. nuclear industry has proposed replacing current volumetric and/or surface examinations of certain components in commercial nuclear power plants, as required by the American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI, “Inservice Inspection of Nuclear Power Plant Components,” with a simpler visual testing (VT) method. The advantages of VT are that these tests generally involve much less radiation exposure and time to perform the examination than do volumetric examinations such as ultrasonic testing. The issues relative to the reliability of VT in determining the structural integrity of reactor components were examined. Some piping and pressure vessel components in a nuclear power station are examined using VT as they are either in high radiation fields or component geometry precludes the use of ultrasonic testing (UT) methodology. Remote VT with radiation-hardened video systems has been used by nuclear utilities to find cracks in pressure vessel cladding in pressurized water reactors, core shrouds in boiling water reactors, and to investigate leaks in piping and reactor components. These visual tests are performed using a wide variety of procedures and equipment. The techniques for remote VT use submersible closed-circuit video cameras to examine reactor components and welds. PNNL conducted a parametric study that examined the important variables influencing the effectiveness of a remote visual test. Tested variables included lighting techniques, camera resolution, camera movement, and magnification. PNNL also conducted a limited laboratory test using a commercial visual testing camera system to experimentally determine the ability of the camera system to detect cracks of various widths under ideal conditions. The results of these studies and their implications are presented in this paper.

  1. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility - Sandia's Continuously Recirculating Falling-Particle Receiver Placed Atop the Solar Tower Sandia began first-of-its-kind testing using its continuously recirculating falling-particle receiver atop the National Solar Thermal Test Facility (NSTTF). The falling-particle receiver drops sand-like ceramic particles through NSTTF's concentrated sunlight beam, capturing and storing the heated particles in an insulated tank. Compared to conventional molten-salt

  2. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  3. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  4. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  5. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting Americas wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  6. SRNL SHELF LIFE STUDIES - SCC STUDIES AT ROOM TEMPERTURE [stress corrosion cracking

    SciTech Connect (OSTI)

    Mickalonis, J.; Duffey, J.

    2014-11-12

    Phase II, Series 2 corrosion testing performed by the Savannah River National Laboratory (SRNL) for the Department of Energy 3013 container has been completed. The corrosion tests are part of an integrated plan conducted jointly by Los Alamos National Laboratory and the Savannah River Site. SRNL was responsible for conducting corrosion studies in small-scale vessels to address the influence of salt composition, water loading, and type of oxide/salt contact on the relative humidity inside a 3013 container and on the resulting corrosion of Type 304L and 316L stainless steel (304L and 316L). This testing was conducted in two phases: Phase I evaluated a broad spectrum of salt compositions and initial water loadings on the salt mixtures exposed to 304L and 316L and the resulting corrosion; Phase II evaluated the corrosion of 304L at specific water loadings and a single salt composition. During Phase I testing at high initial moisture levels (0.35 to 1.24 wt%)a, the roomtemperature corrosion of 304L exposed to a series of plutonium oxide/chloride salt mixtures ranged from superficial staining to pitting and stress corrosion cracking (SCC). 304L teardrop coupons that exhibited SCC were directly exposed to a mixture composed of 98 wt % PuO2, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl2. Cracking was not observed in a 316L teardrop coupon. Pitting was also observed in this environment for both 304L and 316L with depths ranging from 20 to 100 ?m. Neither pitting nor SCC was observed in mixtures with a greater chloride salt concentration (5 and 28 wt%). These results demonstrated that for a corrosive solution to form a balance existed between the water loading and the salt chloride concentration. This chloride solution results from the interaction of loaded water with the hydrating CaCl2 salt. In Phase II, Series 1 tests, the SCC results were shown to be reproducible with cracking occurring in as little as 85 days. The approximate 0.5 wt% moisture level was found to result in an initial relative humidity of ~55% within the small-scale vessels. Pits were found to be associated with cracks and appeared to act as initiators for the cracking. In a vapor-space only exposure, the weld oxide, which results from the TIG closure weld used to fabricate the teardrop coupon, was also shown to be more susceptible to pitting corrosion than a surface free from weld oxide. This result has important implications for the closure weld of the 3013 inner can since the weld oxide on the can internal surface cannot be removed. The results from the Phase II, Series 2 tests further demonstrated the significance of forming a solution with a critical chloride concentration for corrosion to proceed. 304L teardrop coupons were found to corrode only by pitting with a similar oxide/salt mixture as used in Series 1 testing but with a lower water loading of 0.2 wt%, which resulted in an initial relative humidity of 35-38%. These tests ran twice as long as those for Series 1 testing. The exposure condition was also found to impact the corrosion with salt-exposed surfaces showing lower corrosion resistance. Additional analyses of the Series 2 coupons are recommended especially for determining if cracks emanate from the bottom of pits. Data generated under the 2009 3013 corrosion test plan, as was presented here, increased the understanding of the corrosion process within a sealed 3013 container. Along with the corrosion data from destructive evaluations of 3013 containers, the inner can closure weld region (ICCWR) has been identified as the most vulnerable area of the inner can where corrosion may lead to corrosive species leaking to the interior surface of the outer container, thereby jeopardizing the integrity of the 3013 container. A new corrosion plan has been designed that will characterize the corrosion at the ICCWR of 3013 DEs as well as parameters affecting this corrosion.

  7. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  8. POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS

    SciTech Connect (OSTI)

    Lam, P.; Stripling, C.; Fisher, D.; Elder, J.

    2010-04-26

    The evaporator recycle streams of nuclear waste tanks may contain waste in a chemistry and temperature regime that exceeds the current corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history found that two of these A537 carbon steel tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved tanks of similar construction. Therefore, it appears that the efficacy of stress relief of welding residual stress is the primary corrosion-limiting mechanism. The objective of this experimental program is to test A537 carbon steel small scale welded U-bend specimens and large welded plates (30.48 x 30.38 x 2.54 cm) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in these nuclear waste tanks. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test was completed after 12 weeks of immersion in a similar solution at 125 C except that the aluminate concentration was reduced to 0.3 M. Visual inspection of the plate revealed that stress corrosion cracking had not initiated from the machined crack tips in the weld or in the heat affected zone. NDE ultrasonic testing also confirmed subsurface cracking did not occur. Based on these results, it can be concluded that the environmental condition of these tests was unable to develop stress corrosion cracking within the test periods for the small welded U-bends and for the large plates, which were welded with an identical procedure as used in the construction of the actual nuclear waste tanks in the 1960s. The absence of evidence of stress corrosion cracking and general corrosion in the laboratory-scaled specimens indicate that this type of nuclear waste tank is not susceptible to highly caustic solutions up to 12 M hydroxide at 125 C when sufficient nitrite inhibitor is present.

  9. Analysis of incident-energy dependence of delayed neutron yields in actinides

    SciTech Connect (OSTI)

    Nasir, Mohamad Nasrun bin Mohd Metorima, Kouhei Ohsawa, Takaaki Hashimoto, Kengo

    2015-04-29

    The changes of delayed neutron yields (?{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ?{sub d}=?Y{sub i} P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ?{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.

  10. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2013-05-15

    Fission gas bubble is one of evolving microstructures, which affect thermal mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking, in operating nuclear fuels. Therefore, fundamental understanding of gas bubble evolution kinetics is essential to predict the thermodynamic property and performance changes of fuels. In this work, a generic phasefield model was developed to describe the evolution kinetics of intra-granular fission gas bubbles in UO2 fuels under post-irradiation thermal annealing conditions. Free energy functional and model parameters are evaluated from atomistic simulations and experiments. Critical nuclei size of the gas bubble and gas bubble evolution were simulated. A linear relationship between logarithmic bubble number density and logarithmic mean bubble diameter is predicted which is in a good agreement with experimental data.

  11. Thermal spray removal of lead-based paint from the viaduct bridge at Rock Island Arsenal, IL. Final report

    SciTech Connect (OSTI)

    Boy, J.H.; Weber, R.A.; Kumar, A.

    1998-06-01

    This report documents a field demonstration at the Rock Island Arsenal, IL, that validated the thermal spray vitrification (TSV) process as a safe and effective technique for removing lead-based paint from a steel bridge. Specially formulated glass was applied in a molten state to painted steel using a conventional thermal spray application system. The molten glass reacts with the paint, and encapsulates the lead. The cooled glass readily cracks and falls off, removing the paint. After onsite remelting of the glass waste to complete the encapsulation process, the final waste product is chemically inert and may be disposed of in a regular landfill. The Illinois Environmental Protection Agency, Division of Air Pollution Control determined that the glass remelt process could be considered a paint-removal operation for which no air quality permit was required.

  12. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    SciTech Connect (OSTI)

    Virbhadra, K. S.; Keeton, C. R.

    2008-06-15

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.

  13. Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures

    SciTech Connect (OSTI)

    Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang

    2014-07-07

    We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height or incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.

  14. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  15. Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography

    SciTech Connect (OSTI)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2008-06-06

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 {mu}s. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.

  16. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  17. Integrated Vehicle Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Integrated Vehicle Thermal Management 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss028_thornton_2010_o.pdf More Documents & Publications Motor Thermal Control Thermal Management of PHEV / EV Charging Systems Power Electronic Thermal System Performance and Integration

  18. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  19. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    SciTech Connect (OSTI)

    Cuta, Judith M.; Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.

    2013-08-15

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. Three specific areas of interest were identified for this study. degradation of the canister backfill gas from pure helium to a mixture of air and helium, resulting from postulated leakage due to stress corrosion cracking (SCC) of canister welds changes in surface emissivity of system components, resulting from corrosion or other aging mechanisms, which could cause potentially significant changes in temperatures and temperature distributions, due to the effect on thermal radiation exchange between components changes in fuel and basket temperatures due to changes in fuel assembly position within the basket cells in the canister The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  20. Device for thermal transfer and power generation

    DOE Patents [OSTI]

    Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  1. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    SciTech Connect (OSTI)

    Brett, Tobias Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  2. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    SciTech Connect (OSTI)

    Gary S. Was; Michael Atzmon; Lumin Wang

    2003-04-28

    The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole controlling factor in the irradiation assisted stress corrosion cracking of austenitic stain

  3. Thermal conductivity of semitransparent materials

    SciTech Connect (OSTI)

    Fine, H.A.; Jury, S.H.; McElroy, D.L.; Yarbrough, D.W.

    1981-01-01

    The three-region approximate solution for coupled conductive and radiative heat transfer and an exact solution for uncoupled conductive and radiative heat transfer in a grey semitransparent medium bounded by infinite parallel isothermal plates are employed to establish the dependence of the apparent thermal conductivity of semitransparent materials on other material properties and boundary conditions. An application of the analyses which uses apparent thermal conductivity versus density data to predict the dependence of apparent thermal conductivity on temperature is demonstrated. The predictions for seven sets of R-11 fiberglass and rock wool insulations agree with published measured values to within the limits of experimental error (+- 3%). Agreement for three sets of R-19 fiberglass insulations was, however, not good.

  4. Thermal trim for a luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-02-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  5. Patent: MEMS based pyroelectric thermal energy harvester | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    MEMS based pyroelectric thermal energy harvester Citation Details Title: MEMS based pyroelectric thermal energy harvester

  6. Time delay of wave packets during their tunnelling through a quantum diode

    SciTech Connect (OSTI)

    Ivanov, N A; Skalozub, V V

    2014-04-28

    A modified saddle-point method is used to investigate the process of propagation of a wave packet through a quantum diode. A scattering matrix is constructed for the structure in question. The case of tunnelling of a packet with a Gaussian envelope through the diode is considered in detail. The time delay and the shape of the wave packet transmitted are calculated. The dependence of the delay time on the characteristics of the input packet and the internal characteristics of the quantum diode is studied. Possible applications of the results obtained are discussed. (laser applications and other topics in quantum electronics)

  7. A Nano Surface Icephobic Coating Delays Ice Formation | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Surface Icephobic Coating Delays Ice Formation Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) A Nano Surface Icephobic Coating Delays Ice Formation Azar Alizadeh 2012.03.08 Hi folks, As many of you may know ice could be a huge problem in everyday life. For many of us who live in the North East of the US, dealing

  8. Delayed Complications in Patients Surviving at Least 3 Years After Stereotactic Radiosurgery for Brain Metastases

    SciTech Connect (OSTI)

    Yamamoto, Masaaki; Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo ; Kawabe, Takuya; Department of Neurosurgery, Kyoto Prefectural University of Medicine Graduate School of Medical Sciences, Kyoto ; Higuchi, Yoshinori; Sato, Yasunori; Nariai, Tadashi; Barfod, Bierta E.; Kasuya, Hidetoshi; Urakawa, Yoichi

    2013-01-01

    Purpose: Little is known about delayed complications after stereotactic radiosurgery in long-surviving patients with brain metastases. We studied the actual incidence and predictors of delayed complications. Patients and Methods: This was an institutional review board-approved, retrospective cohort study that used our database. Among our consecutive series of 2000 patients with brain metastases who underwent Gamma Knife radiosurgery (GKRS) from 1991-2008, 167 patients (8.4%, 89 women, 78 men, mean age 62 years [range, 19-88 years]) who survived at least 3 years after GKRS were studied. Results: Among the 167 patients, 17 (10.2%, 18 lesions) experienced delayed complications (mass lesions with or without cyst in 8, cyst alone in 8, edema in 2) occurring 24.0-121.0 months (median, 57.5 months) after GKRS. The actuarial incidences of delayed complications estimated by competing risk analysis were 4.2% and 21.2% at the 60th month and 120th month, respectively, after GKRS. Among various pre-GKRS clinical factors, univariate analysis demonstrated tumor volume-related factors: largest tumor volume (hazard ratio [HR], 1.091; 95% confidence interval [CI], 1.018-1.154; P=.0174) and tumor volume {<=}10 cc vs >10 cc (HR, 4.343; 95% CI, 1.444-12.14; P=.0108) to be the only significant predictors of delayed complications. Univariate analysis revealed no correlations between delayed complications and radiosurgical parameters (ie, radiosurgical doses, conformity and gradient indexes, and brain volumes receiving >5 Gy and >12 Gy). After GKRS, an area of prolonged enhancement at the irradiated lesion was shown to be a possible risk factor for the development of delayed complications (HR, 8.751; 95% CI, 1.785-157.9; P=.0037). Neurosurgical interventions were performed in 13 patients (14 lesions) and mass removal for 6 lesions and Ommaya reservoir placement for the other 8. The results were favorable. Conclusions: Long-term follow-up is crucial for patients with brain metastases treated with GKRS because the risk of complications long after treatment is not insignificant. However, even when delayed complications occur, favorable outcomes can be expected with timely neurosurgical intervention.

  9. Draft HAB Advice on Delaying Decisions Associated with the Final Tank Closure and Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee Draft Advice - TC&WM EIS Delayed Decisions v1 - Mattson, et.al. Page 1/1 Draft HAB Advice on Delaying Decisions Associated with the Final Tank Closure and Waste Management EIS Background: The Hanford Advisory Board (HAB or Board) spent a considerable amount of time developing advice on the Draft Tank Closure and Waste Management Environmental Impact Statement (TC&WM EIS, EIS). The U.S. Department of Energy (DOE) has spent over $80 million on the EIS, and thousands of people

  10. System for sensing droplet formation time delay in a flow cytometer

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect System for sensing droplet formation time delay in a flow cytometer Citation Details In-Document Search Title: System for sensing droplet formation time delay in a flow cytometer × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  11. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect (OSTI)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  12. Proceedings of the IAEA specialists` meeting on cracking in LWR RPV head penetrations

    SciTech Connect (OSTI)

    Pugh, C.E.; Raney, S.J.

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists` meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV material behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately.

  13. Eddy Current for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.

    2014-01-01

    The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The eddy current technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stress corrosion cracking (SCC). Results are presented that demonstrate that eddy current can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from eddy current measurements.

  14. What can recycling in thermal reactors accomplish?

    SciTech Connect (OSTI)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-07-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  15. HYDROGEOLOGY OF THE THERMAL LANDSLIDE

    SciTech Connect (OSTI)

    Vantine, J.

    1985-01-22

    The large Thermal Landslide overlies the initial area of geothermal development at The Geysers. The landslide is waterbearing while the underlying Franciscan formation bedrock units are essentially non-waterbearing except where affected by hydrothermal alteration. Perched ground water moving through the landslide is heated prior to discharge as spring flow.

  16. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  17. INVESTIGATION OF THE POTENTIAL FOR CAUSTIC STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Lam, P.

    2009-10-15

    The evaporator recycle streams contain waste in a chemistry and temperature regime that may be outside of the current waste tank corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history (1998-2008) of Tanks 30 and 32 showed that these tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved F-Area tanks. Therefore, for the Type III/IIIA waste tanks the efficacy of the stress relief of welding residual stress is the only corrosion-limiting mechanism. The objective of this experimental program is to test carbon steel small scale welded U-bend specimens and large welded plates (12 x 12 x 1 in.) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in Tanks 30 and 32. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test is currently in progress, but no cracking has been observed after 9 weeks of immersion. Based on the preliminary results, it appears that the environmental conditions of the tests are unable to develop stress corrosion cracking within the duration of these tests.

  18. Using convolutional decoding to improve time delay and phase estimation in digital communications

    DOE Patents [OSTI]

    Ormesher, Richard C. (Albuquerque, NM); Mason, John J. (Albuquerque, NM)

    2010-01-26

    The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.

  19. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  20. Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2013-01-01

    This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

  1. Development of a novel technique to assess the vulnerability of micro-mechanical system components to environmentally assisted cracking.

    SciTech Connect (OSTI)

    Enos, David George; Goods, Steven Howard

    2006-11-01

    Microelectromechanical systems (MEMS) will play an important functional role in future DOE weapon and Homeland Security applications. If these emerging technologies are to be applied successfully, it is imperative that the long-term degradation of the materials of construction be understood. Unlike electrical devices, MEMS devices have a mechanical aspect to their function. Some components (e.g., springs) will be subjected to stresses beyond whatever residual stresses exist from fabrication. These stresses, combined with possible abnormal exposure environments (e.g., humidity, contamination), introduce a vulnerability to environmentally assisted cracking (EAC). EAC is manifested as the nucleation and propagation of a stable crack at mechanical loads/stresses far below what would be expected based solely upon the materials mechanical properties. If not addressed, EAC can lead to sudden, catastrophic failure. Considering the materials of construction and the very small feature size, EAC represents a high-risk environmentally induced degradation mode for MEMS devices. Currently, the lack of applicable characterization techniques is preventing the needed vulnerability assessment. The objective of this work is to address this deficiency by developing techniques to detect and quantify EAC in MEMS materials and structures. Such techniques will allow real-time detection of crack initiation and propagation. The information gained will establish the appropriate combinations of environment (defining packaging requirements), local stress levels, and metallurgical factors (composition, grain size and orientation) that must be achieved to prevent EAC.

  2. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  3. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  4. Conceptual Thermal Treatment Technologies Feasibility Study

    SciTech Connect (OSTI)

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  5. Thermal synthesis apparatus and process

    DOE Patents [OSTI]

    Fincke, James R.; Detering, Brent A.

    2004-11-23

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  6. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  7. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  8. Irradiation-assisted stress corrosion cracking of austenitic stainless steels: Recent progress and new approaches

    SciTech Connect (OSTI)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Hins, A.; Zaluzec, N.J.; Kassner, T.F.

    1996-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of several types of BWR field components fabricated from solution-annealed austenitic stainless steels (SSs), including a core internal weld, were investigated by means of slow-strain-rate test (SSRT), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), and field-emission-gun advanced analytical electron microscopy (FEG-AAEM). Based on the results of the tests and analyses, separate effects of neutron fluence, tensile properties, alloying elements and major impurities identified in the American Society for Testing and Materials (ASTM) specifications, minor impurities, water chemistry, and fabrication-related variables were determined. The results indicate strongly that minor impurities not specified by the ASTM-specifications play important roles, probably through a complex synergism with grain-boundary Cr depletion. These impurities, typically associated with steelmaking and component fabrication processes, are very low or negligible in solubility in steels and are the same impurities that have been known to promote intergranular SCC significantly when they are present in water as ions or soluble compounds. It seems obvious that IASCC is a complex integral problem which involves many variables that are influenced strongly by not only irradiation conditions, water chemistry, and stress but also iron and steelmaking processes, fabrication of the component, and joining and welding. Therefore, for high-stress components in particular, it would be difficult to mitigate IASCC problems at high fluence based on the consideration of water chemistry alone, and other considerations based on material composition and fabrication procedure would be necessary as well.

  9. Tunable Thermal Link - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Thermal Link Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryThermal links are incorporated into everything from frying pans to internal combustion engine spark plugs and heat sinks on integrated circuit boards. Typically, the link's thermal resistance is fixed and cannot be tuned after manufacture. While the ability to tune electrical resistors is widespread, virtually no tunable thermal resistance link exists, which has held back the

  10. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  11. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  12. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  13. NREL: Transportation Research - Vehicle Thermal Management Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Thermal Management Facilities Image of a building with two semi truck cabs in front of it. The VTIF is used for thermal testing of every class of on-road vehicle. Photo by Dennis Schroeder, NREL The National Renewable Energy Laboratory (NREL) uses research and testing facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and Integration Facility The Vehicle Testing and Integration Facility features a test pad to conduct vehicle thermal soak testing

  14. Thermomechanical measurements on thermal microactuators. (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Technical Report: Thermomechanical measurements on thermal microactuators. Citation Details In-Document Search Title: Thermomechanical measurements on thermal microactuators. Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements

  15. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  16. Electric thermal storage demonstration program

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  17. Electric thermal storage demonstration program

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  18. Thermal Stability Of Formohydroxamic Acid

    SciTech Connect (OSTI)

    Fondeur, F. F.; Rudisill, T. S.

    2011-10-21

    The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}?C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}?C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}?C and thermally decomposed at 90 {degree}?C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}?C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

  19. Overview of Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Management Overview of Thermal Management 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_13_routbort.pdf More Documents & Publications Nanofluids for Thermal Conditions … Underhood Heat Transfer Nanofluid Development for Engine Cooling Systems Erosion of Radiator Materials by Nanofluids

  20. Electric Motor Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape030_bennion_2012_o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

  1. Electric Motor Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape030_bennion_2011_o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management

  2. Development of a Thermal Transport Database for Air Plasma Sprayed...

    Office of Scientific and Technical Information (OSTI)

    Due to the complicated microstructure and other processing related parameters, thermal ... thermal diffusivity and thermal barrier coating Word Cloud More Like This Full Text ...

  3. Biomass Thermal Energy Council (BTEC) | Open Energy Information

    Open Energy Info (EERE)

    Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Thermal Energy Council (BTEC) AgencyCompany Organization: Biomass Thermal Energy...

  4. Thermal Multi-layer Coating Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Multi-layer Coating Analysis Key to Argonne's thermal multi-layer analysis method is the numerical algorithm used for automated analysis of thermal imaging data for...

  5. Sandia Energy - Thermal Pulses for Boeing Test Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Pulses for Boeing Test Article Home Renewable Energy Energy Partnership News EC Concentrating Solar Power Solar National Solar Thermal Test Facility Thermal Pulses for...

  6. Linearly Polarized Thermal Emitter for More Efficient Thermophotovolta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices...

  7. Development of an Airless Thermal Enhancer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a Thermal Enhancer for Combined Partial Range Burning and Hydrocarbon Dosing Thermal Enhancer - Airless Exhaust Thermal Management Device SCR...

  8. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    SciTech Connect (OSTI)

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D.; Nagaraj, B.A.

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  9. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening

    SciTech Connect (OSTI)

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Chow, S. )

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  10. Preventing Delayed Voltage Recovery with Voltage-Regulating Distributed Energy Resources

    SciTech Connect (OSTI)

    Adhikari, Sarina; Li, Fangxing; Li, Huijuan; Xu, Yan; Kueck, John D; Rizy, D Tom

    2009-01-01

    With the large use of residential air conditioner (A/C) motors during the summer peaks, the potential of motor stalling events have increased in the recent years. The stalled motor loads have been found to be the most important cause of delayed voltage recovery following severe system disturbances, such as a subtransmission fault. The proper modeling of the stalled motors is a very important factor in identifying the effect of these motors in voltage recovery after the fault. This paper presents a methodology for modeling the stalled low inertia induction motors based on a sample utility system and a small primary distribution circuit. The prevention of the stalling of motors plays an important role in maintaining the voltage profile of the system after system disturbances. Distributed Energy Resource (DER) is used to prevent the motor stalling events so that the delayed voltage recovery of the system may be avoided.

  11. Delays in Reducing Waterborne and Water-related Infectious Diseases in China under Climate Change

    SciTech Connect (OSTI)

    Hodges, Maggie; Belle, Jessica; Carlton, Elizabeth; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C.; Liu, Yang; Gao, Yang; Hess, Jeremy; Remais, Justin V.

    2014-12-01

    Despite Chinas rapid progress improving water, sanitation and hygiene (WSH) infrastructure and access, in 2011, 471 million people lacked access to improved sanitation, and 401 million people lacked access to household piped water. Infectious diseases are sensitive to changes in climate, particularly temperature, and WSH conditions. To explore possible impacts of climate change on these diseases in China in 2020 and 2030, we coupled estimates of the temperature sensitivity of diarrheal disease and three vector-borne diseases, temperature projections from global climate models using four emissions pathways, WSH-infrastructure development scenarios and projected demographic changes. By 2030, the projected impacts would delay Chinas historically rapid progress toward reducing the burden of WSH-attributable infectious disease by 8-85 months. This developmental delay provides a key summary measure of the impact of climate change in China, and in other societies undergoing rapid social, economic, and environmental change.

  12. Variable Delay Element For Jitter Control In High Speed Data Links

    DOE Patents [OSTI]

    Livolsi, Robert R. (Shokan, NY)

    2002-06-11

    A circuit and method for decreasing the amount of jitter present at the receiver input of high speed data links which uses a driver circuit for input from a high speed data link which comprises a logic circuit having a first section (1) which provides data latches, a second section (2) which provides a circuit generates a pre-destorted output and for compensating for level dependent jitter having an OR function element and a NOR function element each of which is coupled to two inputs and to a variable delay element as an input which provides a bi-modal delay for pulse width pre-distortion, a third section (3) which provides a muxing circuit, and a forth section (4) for clock distribution in the driver circuit. A fifth section is used for logic testing the driver circuit.

  13. Thermal wake/vessel detection technique

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM); Nandy, Prabal (Albuquerque, NM); Post, Brian N (Albuquerque, NM)

    2012-01-10

    A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

  14. -delayed ?-proton decay in ??Zn: Analysis of the charged-particle spectrum

    SciTech Connect (OSTI)

    Orrigo, S. E.A.; Rubio, B.; Fujita, Y.; Blank, B.; Agramunt, J.; Algora, A.; Ascher, P.; Cceres, L.; Cakirli, R. B.; Fujita, H.; Ganio?lu, E.; Gerbaux, M.; Kozer, H. C.; Kucuk, L.; Kurtukian-Nieto, T.; Popescu, L.; Rogers, A. M.; Susoy, G.; Stodel, C.; Suzuki, T.; Tamii, A.; Thomas, J. C.

    2015-01-01

    A study of the ? decay of the proton-rich Tz = 2 nucleus ??Zn has been reported in a recent publication. A rare and exotic decay mode, ?-de-layed ?-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focusing on the charged particle spectrum.

  15. Formulation reproducing the ignition delays simulated by a detailed mechanism: Application to n-heptane combustion

    SciTech Connect (OSTI)

    Imbert, Bruno; Lafosse, Fabien; Catoire, Laurent; Paillard, Claude-Etienne; Khasainov, Boris

    2008-11-15

    This article is part of the project to model the kinetics of high-temperature combustions, occurring behind shock waves and in detonation waves. The ''conventional'' semi-empirical correlations of ignition delays have been reformulated, by keeping the Arrhenius equation form. It is shown how a polynomial with 3{sup N} coefficients (where N element of is the number of adjustable kinetic parameters, likely to be simultaneously chosen among the temperature T, the pressure P, the inert fraction X{sub Ar}, and the equivalence ratio {phi}) can reproduce the delays predicted by the Curran et al. [H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 129 (2002) 253-280] detailed mechanism (565 species and 2538 reactions), over a wide range of conditions (comparable with the validity domain). The deviations between the simulated times and their fits (typically 1%) are definitely lower than the uncertainties related to the mechanism (at least 25%). In addition, using this new formalism to evaluate these durations is about 10{sup 6} times faster than simulating them with SENKIN (CHEMKIN III package) and only 10 times slower than using the classical correlations. The adaptation of the traditional method for predicting delays is interesting for modeling, because those performances are difficult to obtain simultaneously with other reduction methods (either purely mathematical, chemical, or even mixed). After a physical and mathematical justification of the proposed formalism, some of its potentialities for n-heptane combustion are presented. In particular, the trends of simulated delays and activation energies are shown for {sub T} {sub element} {sub of} {sub [1500} {sub K,1900} {sub K},} {sub P} {sub element} {sub of} {sub [10kPa,1MPa]}, X{sub Ar} element of [0,0.7], and {phi} element of {sub [0.25,4.0]}. (author)

  16. Attosecond delays in above-threshold ionization and the uncoupling of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrons from the molecular frame | Stanford Synchrotron Radiation Lightsource Attosecond delays in above-threshold ionization and the uncoupling of electrons from the molecular frame Wednesday, February 17, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Lucas Zipp, PULSE Program Description As our ability to probe atomic and molecular processes in the time domain approaches the attosecond time scale, it has become possible (and necessary) to revisit some fundamental ideas

  17. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    SciTech Connect (OSTI)

    Humbert, P.; Authier, N.; Richard, B.; Grivot, P.; Casoli, P.

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present the point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)

  18. Delayed charging. A means to improve two-stroke engine characteristics

    SciTech Connect (OSTI)

    Rochelle, P.H.C.

    1994-09-01

    We have developed and patented a new simple device which reduces the amount of short-circuited fresh charge in two-stroke cycle engines and produces stratified charging and combustion. The principle consists in scavenging the burnt gases with fresh air and delaying the introduction of the fresh charge in the cylinder. A numerical simulation showed a good promise of consumption and pollution improvement for this configuration. Then, preliminary bench tests have been carried out with a 50 cc production engine and the same modified engine including a delay-circuit. Due to delayed charging, brake specific fuel consumption shows a mean 20% reduction, down to a maximum of 25% comparing to production engine figures; unburnt hydrocarbons show a mean 35% reduction, down to more than 50%; carbon-monoxide production decreases to a mean 1% concentration; and torque increases at low r.p.m., but lowers at higher speeds of revolution due to the diminished permeability of this first prototype engine. 23 refs., 10 figs.

  19. Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

    2010-02-16

    Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

  20. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect (OSTI)

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. The use of existing, available, materials and the generation of additional materials via irradiation in a research reactor are considered.

  1. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  2. Thermal Analysis of Closed Systems

    Energy Science and Technology Software Center (OSTI)

    1987-10-01

    TAP-LOOP is a finite-difference program designed for steady-state and transient thermal analysis of recirculating fluid loops and associated heat transfer equipment; however, it is not limited to loop analysis. TAP-LOOP was developed to perform scoping and conceptual design analyses for closed test loops in the Fast Flux Test Facility (FFTF), but it can handle a variety of problems which can be described in terms of potentials, sources, sinks, and storage including, in addition to heatmore » transfer problems, studies of potential fluid flow, electrical networks, and stress analysis.« less

  3. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  4. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  5. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  6. Develop and Evaluate Materials and Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop & evaluate materials & additives that enhance thermal & overcharge abuse Develop & Evaluate Materials & Additives that Enhance Thermal & ...

  7. Next-Generation LED Package Architectures Enabled by Thermally...

    Energy Savers [EERE]

    LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent ...

  8. Develop and Evaluate Materials and Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse High Voltage ...

  9. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  10. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM)

    1993-01-01

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  11. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)

    1996-01-01

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  12. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, S.Y.

    1996-01-30

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  13. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  14. AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN

    Office of Scientific and Technical Information (OSTI)

    GAMMA-RAY BURSTS (Journal Article) | SciTech Connect AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS Citation Details In-Document Search Title: AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi

  15. Pressurized electrolysis stack with thermal expansion capability

    DOE Patents [OSTI]

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  16. Application of Direct Current Potential Drop for the J-integral vs. Crack Growth Resistance Curve Characterization

    SciTech Connect (OSTI)

    Chen, Xiang; Nanstad, Randy K; Sokolov, Mikhail A

    2014-01-01

    The direct current potential drop (DCPD) technique has been applied to derive the J-integral vs. crack growth resistance curve (J-R curve) for fracture toughness characterization of structural materials. The test matrix covered three materials including type 316LN stainless steels, Ni-based alloy 617, and one ferritic-martensitic steel, three specimen configurations including standard compact, single edge bending, and disk-shaped compact specimens, and temperatures ranging from 20 C to 650 C. When compared with baseline J-R curves derived from the ASTM normalization method, the original J-R curves from the DCPD technique yielded much smaller Jq values due to the influence of crack blunting, plastic deformation, etc. on potential drop. To counter these effects, a new procedure for adjusting DCPD J-R curves was proposed. After applying the new adjustment procedure, the average difference in Jq between the DCPD technique and the normalization method was only 5.2% and the difference in tearing modulus was 7.4%. The promising result demonstrates the applicability of the DCPD technique for the J-R curve characterization especially in extreme environments, such as elevated temperatures, where the conventional elastic unloading compliance method faces considerable challenges.

  17. Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering

    SciTech Connect (OSTI)

    Subhash, Ghatu; Wu, Kuang-Hsi; Tulenko, James

    2014-03-10

    Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. Despite its numerous advantages such as high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation, it suffers from low thermal conductivity that can result in large temperature gradients within the UO2 fuel pellet, causing it to crack and release fission gases. Thermal swelling of the pellets also limits the lifetime of UO2 fuel in the reactor. To mitigate these problems, we propose to develop novel UO2 fuel with uniformly distributed carbon nanotubes (CNTs) that can provide high-conductivity thermal pathways and can eliminate fuel cracking and fission gas release due to high temperatures. CNTs have been investigated extensively for the past decade to explore their unique physical properties and many potential applications. CNTs have high thermal conductivity (6600 W/mK for an individual single- walled CNT and >3000 W/mK for an individual multi-walled CNT) and high temperature stability up to 2800C in vacuum and about 750C in air. These properties make them attractive candidates in preparing nano-composites with new functional properties. The objective of the proposed research is to develop high thermal conductivity of UO2CNT composites without affecting the neutronic property of UO2 significantly. The concept of this goal is to utilize a rapid sintering method (515 min) called spark plasma sintering (SPS) in which a mixture of CNTs and UO2 powder are used to make composites with different volume fractions of CNTs. Incorporation of these nanoscale materials plays a fundamentally critical role in controlling the performance and stability of UO2 fuel. We will use a novel in situ growth process to grow CNTs on UO2 particles for rapid sintering and develop UO2-CNT composites. This method is expected to provide a uniform distribution of CNTs at various volume fractions so that a high thermally conductive UO2-CNT composite is obtained with a minimal volume fraction of CNTs. The mixtures are sintered in the SPS facility at a range of temperatures, pressures, and time durations so as to identify the optimal processing conditions to obtain the desired microstructure of sintered UO2-CNT pellets. The second objective of the proposed work is to identify the optimal volume fraction of CNTs in the microstructure of the composites that provides the desired high thermal conductivity yet retaining the mechanical strength required for efficient function as a reactor fuel. We will systematically study the resulting microstructure (grain size, porosity, distribution of CNTs, etc.) obtained at various SPS processing conditions using optical microscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM). We will conduct indentation hardness measurements and uniaxial strength measurements as a function of volume fraction of CNTs to determine the mechanical strength and compare them to the properties of UO2. The fracture surfaces will be studied to determine the fracture characteristics that may relate to the observed cracking during service. Finally, we will perform thermal conductivity measurements on all the composites up to 1000 C. This study will relate the microstructure, mechanical properties, and thermal properties at various volume fractions of CNTs. The overall intent is to identify optimal processing conditions that will provide a well-consolidated compact with optimal microstructure and thermo-mechanical properties. The deliverables include: (1) fully characterized UO2-CNT composite with optimal CNT volume fraction and high thermal conductivity and (2) processing conditions for production of UO2-CNT composite pellets using SPS method.

  18. Plasma-Thermal Synthesis - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Synthesis Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels. Description This process provides a method and apparatus for increasing acetylene yield from the thermal conversion of natural gas. The reactants inserted into the reactor chamber are applied at a high temperature of ionized gas. At this time, the reactants are changed to

  19. A nanostructure thermal property measurement platform. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect A nanostructure thermal property measurement platform. Citation Details In-Document Search Title: A nanostructure thermal property measurement platform. Measurements of the electrical and thermal transport properties of one-dimensional nanostructures (e.g., nanotubes and nanowires) typically are obtained without detailed knowledge of the specimen's atomic-scale structure or defects. To address this deficiency we have developed a microfabricated, chip-based characterization

  20. Scattering Solar Thermal Concentrators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scattering Solar Thermal Concentrators Scattering Solar Thermal Concentrators "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show

  1. ARM - Lesson Plans: Thermal Expansion of Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Expansion of Water Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Thermal Expansion of Water Objective The objective of this activity is to demonstrate the concept of thermal expansion of water when heated. Materials Each student or group of students will need the

  2. NREL: Transportation Research - Electric Motor Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Motor Thermal Management A photo of a piece of laboratory testing equipment. NREL research in electric motors is helping to improve the performance and reliability of electric-drive vehicles. Photo by Kevin Bennion, NREL NREL's electric motor thermal management research generates experimental data and simulation processes for the modeling, analysis, design, and construction of new electric motors. Electric motor thermal management involves a multifaceted interaction of motor operating

  3. NREL: Transportation Research - Power Electronics Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the cost and improve the performance of electric-drive vehicles. Photo by Dennis Schroeder, NREL NREL investigates and develops thermal management strategies for power electronics systems that use wide-bandgap technology, which enables the development of devices that are smaller than those based on other materials, demonstrating

  4. NREL: Transportation Research - Thermal Performance Benchmarking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Performance Benchmarking A photo of the internal components of an automotive inverter. NREL thermal performance benchmarking of state-of-the-art power electronics and electric motors helps guide future R&D efforts as well as industry product-development efforts. Photo by Scot Waye, NREL NREL's thermal performance benchmarking research focuses on state-of-the-art technologies used in electric-drive vehicle (EDV) systems. Benchmarks are shared with industry so that systems can be

  5. NREL: Transportation Research - Vehicle Thermal Management Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Explore NREL's recent publications about light- and heavy-duty vehicle thermal management. For the complete collection of NREL's vehicle thermal management publications, search the NREL Publications Database. All Light-Duty Electric-Drive Light-Duty Conventional Heavy-Duty 2015 Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement. Leighton, D. (2015). SAE Int. J. Passeng. Cars - Mech. Syst. 8(2):711-720. (Presented at the SAE 2015 World Congress and

  6. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (67) Areas (48) Regions (4) NEPA(33) Exploration...

  7. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  8. Thermal Management Using Carbon Nanotubes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Management Using Carbon Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Vertically Aligned Carbon Nanotubes Vertically Aligned Carbon Nanotubes...

  9. Thermal Scout Software - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search Thermal Scout Software National Renewable Energy Laboratory Contact NREL About This Technology Publications:...

  10. Thermal Waters of Nevada | Open Energy Information

    Open Energy Info (EERE)

    to library Report: Thermal Waters of Nevada Abstract Abstract unavailable. Authors Larry J. Garside and John H. Schilling Organization Nevada Bureau of Mines and Geology Published...

  11. Thermal tolerant avicelase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant (thermostable) cellulase that is a member of the...

  12. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  13. Thermal tolerant exoglucanase from acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  14. Thermal tolerant cellulase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  15. Thermal tolerant cellulase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  16. Thermal tolerant avicelase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of...

  17. Thermal tolerant exoglucanase from Acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  18. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  19. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  20. Trinity Thermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Place: Texas Zip: 75028 Product: Trinity Thermal Systems provides power storage products aimed a shifting energy use from air conditioning systems to off-peak times....

  1. Power Electronics and Thermal Management Breakout Sessions

    Broader source: Energy.gov (indexed) [DOE]

    THERMAL MANAGEMENT EV Everywhere Workshop July 24, 2012 Breakout Session 1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets *...

  2. ThermalSoul | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Austin, Texas-based parabolic trough-based solar thermal electrical generation systems maker. Coordinates: 30.267605, -97.742984 Show Map Loading...

  3. NRG Thermal LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: NRG Thermal LLC Place: Minneapolis, Minnesota Zip: 55402-2200 Product: A subsidiary of NRG Energy that specialises in district energy systems...

  4. Thermal Ion Dispersion | Open Energy Information

    Open Energy Info (EERE)

    Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0)...

  5. Solar Thermal Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories 1 Success Stories Category Title and Abstract Company Laboratories Date Solar Thermal NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy Huge ...

  6. Integrated External Aerodynamic and Underhood Thermal Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean,...

  7. Design method addresses subsea pipeline thermal stresses

    SciTech Connect (OSTI)

    Suman, J.C.; Karpathy, S.A. )

    1993-08-30

    Managing thermal stresses in subsea pipelines carrying heated petroleum requires extensive thermal-stress analysis to predict trouble spots and to ensure a design flexible enough to anticipate stresses and expansions. Explored here are various methods for resolving predicaments posed by thermal loads and resulting deformations by keeping the stresses and deformations in the pipeline system within allowable limits. The problems posed by thermal stresses are not unique; the solutions proposed here are. These methods are based on recent work performed for a major Asian subsea pipeline project currently under construction.

  8. Thermal Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Jump to: navigation, search Name: Thermal Energy Systems Place: London, United Kingdom Sector: Biomass Product: UK based company that constructs and installs boilers...

  9. Southside Thermal Services Ltd | Open Energy Information

    Open Energy Info (EERE)

    Services Ltd Jump to: navigation, search Name: Southside Thermal Services Ltd Place: London, Greater London, United Kingdom Zip: SW7 2AZ Product: String representation "Southside...

  10. Radiography used to image thermal explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and have created a model that captures both the gas-phase convection and subsonic solid-state combustion. Understanding the thermal response of energetic materials to...

  11. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Areas (1) Raft River Geothermal Area Regions (0)...

  12. Thermal breeder fuel enrichment zoning

    DOE Patents [OSTI]

    Capossela, Harry J. (Schenectady, NY); Dwyer, Joseph R. (Albany, NY); Luce, Robert G. (Schenectady, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY)

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  13. Thermal hydraulics development for CASL

    SciTech Connect (OSTI)

    Lowrie, Robert B

    2010-12-07

    This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

  14. Thermal shock resistance ceramic insulator

    DOE Patents [OSTI]

    Morgan, Chester S. (Oak Ridge, TN); Johnson, William R. (Maynardville, TN)

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  15. Studies of delayed hypersensitivity responses in children in an industrialized region of Italy

    SciTech Connect (OSTI)

    La Rosa, M.; Mancuso, G.R.; Greco, D.; Di Paola, M.; Schiliro, G.; Bagnato, G.F.; Bellanti, J.A. )

    1991-06-01

    The purpose of the present study was to evaluate the effects of chronic exposure to chemical pollutants on cell mediated immune responses in a pediatric population living in Priolo, an industrialized area of Italy, by means of skin test (Multitest CMI). The results suggest that children living in Priolo display significantly lower delayed type hypersensitivity (DTH) response than those seen in an age-matched and socioeconomically similar group of children living in Taormina, a nonindustrialized area. The lowered incidence of DTH scores in Priolo is not due to the number of positive skin test responses to individual antigens, but rather to the size of individual reactions.

  16. Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations

    SciTech Connect (OSTI)

    Healy, D.; Curran, H.J.; Donato, N.S.; Aul, C.J.; Petersen, E.L.; Zinner, C.M.; Bourque, G.

    2010-08-15

    Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study. (author)

  17. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    SciTech Connect (OSTI)

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Hunt, Alan W.; Reedy, Edward T.E.; Seipel, Heather A.

    2015-09-28

    This project has been a collaborative effort of researchers from four National Laboratories, Lawrence Berkley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL), and Idaho State Universitys (ISU) Idaho Accelerator Center (IAC). Experimental measurements at the Oregon State University (OSU) were also supported. The research included two key components, a strong experimental campaign to characterize the delayed gamma-ray signatures of the isotopes of interests and of combined targets, and a closely linked modeling effort to assess system designs and applications. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Detailed signature knowledge is essential for analyzing the capabilities of the delayed gamma technique, optimizing measurement parameters, and specifying neutron source and gamma-ray detection system requirements. The research was divided into three tasks: experimental measurements, characterization of fission yields, and development of analysis methods (task 1), modeling in support of experiment design and analysis and for the assessment of applications (task 2), and high-rate gamma-ray detector studies (task 3).

  18. Crossing-over in rearranging chromosomes of Drosophila: The role of delayed pairing

    SciTech Connect (OSTI)

    Chadov, B.F.; Chadova, E.V.; Khotskina, E.A.

    1995-11-01

    A Df(2R)MS2-10 deletion of pericentromeric heterochromatin and an Is(Y;2L)419 insertion of Y material in the region 34A, as well as nondisjunction of chromosomes 2 in 2/F(2L); F(2R) females did not directly prevent chromosome arms in chromosome 2 of Drosophila from pairing. However, these events resulted in (1) two- to four-fold decrease in the rate of crossing-over in chromosome 2; (2) a decreased proportion of exchange tetrads two to three times greater for multiple-exchange tetrads than for single-exchange ones; and (3) a decreased rate of crossing-over throughout the entire chromosome arm enhanced in a proximal direction. An In(1)dl-49+B{sup M1}inversion in the X chromosome cancelled the suppression of crossing-over. Crossing-over increased due to an increasing proportion of single-exchange tretrads. The changes in crossing-over found cannot be explained by asynapsis in the chromosomes with rearrangements. According to the authors, these changes are probably accounted for by a delayed pairing of these chromosomes. The delayed pairing of individual chromosome regions or the whole chromosome is considered the most common type of pairing disturbance. It effects on meiosis are discussed. 39 refs., 6 figs., 1 tab.

  19. Partners assume risks, lower finance costs of delayed coker-cogeneration project in Chile

    SciTech Connect (OSTI)

    Alveal, E.D.; Karpenski, M.J.

    1997-03-31

    Foster Wheeler Power Systems Inc., and its partners--Petrox SA Refineria de Petroleo and Empresa Nacional de Petroleo (ENAP), the Chilean national oil company--closed on the financing of Petropower Energia Limitada, a $237 million financed combination delayed coker-cogeneration facility. The facility is now under construction adjacent to Petrox`s 84,000 b/d Talcahuano refinery, near Concepcion. In addition to the low interest rate of 7.36%--only 170 basis points over the 10 year US Treasury yield--the project was rated investment-grade by Standard and Poor`s. The Petropower project also has the distinction of having the longest term--18 years--for any project financing in Latin America. The project is unique in other ways: it is the Republic of Chile`s first public/private partnership and also the first project to combine petroleum coking technology with cogeneration technology in a single project financing. The paper discusses risk assumption, the Petropower project, organization, delayed coker facility, hydrotreater unit, cogeneration facility, environmental assessment, Chile`s changing market, and project benefit.

  20. Description of true and delayed ternary nuclear fission accompanied by the emission of various third particles

    SciTech Connect (OSTI)

    Kadmensky, S. G., E-mail: kadmensky@vsu.ru; Kadmensky, S. S.; Lyubashevsky, D. E. [Voronezh State University (Russian Federation)

    2010-08-15

    The mechanisms and the features of the main types of nuclear ternary fission (that is, true ternary fission, in which a third particle is emitted before the rupture of the fissioning nucleus into fragments, and delayed ternary fission, in which a third particle is emitted from fission fragments going apart) are investigated within quantum-mechanical fission theory. The features of T-odd asymmetry in true ternary nuclear fission induced by cold polarized neutrons are investigated for the cases where alpha particles, prescission neutrons, and photons appear as third particles emitted by fissioning nuclei, the Coriolis interaction of the spin of the polarized fissioning nucleus with the spin of the third particle and the interference between the fission amplitudes for neutron resonances excited in the fissioning nucleus in the case of projectile-neutron capture being taken into account. For the cases where third particles emitted by fission fragments are evaporated neutrons or photons, T-odd asymmetries in delayed ternary nuclear fission induced by cold polarized neutrons are analyzed with allowance for the mechanism of pumping of large fission-fragment spins oriented orthogonally to the fragment-emission direction and with allowance for the interference between the fission amplitudes for neutron resonances.