National Library of Energy BETA

Sample records for thermal conversion tables

  1. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  2. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  3. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  4. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  5. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    310, the Ocean the Ocean Energy Thermal Energy Conversionfor the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary

  6. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat...

  7. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

  8. Assessment of ocean thermal energy conversion

    E-Print Network [OSTI]

    Muralidharan, Shylesh

    2012-01-01

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  9. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  10. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large will unavoidably affect pelagic fish... ­ Noise and water pollution ­ FAD effects ­ Entrainment and Impingement

  11. Ocean Thermal Energy Conversion LUIS A. VEGA

    E-Print Network [OSTI]

    demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 OOcean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean the OTEC plant. The difference between gross power and in-plant power consumption needed to run all sweater

  12. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    making direct thermal energy storage methods, e.g. thosethermal shorting, that limits the energy conversion efficiency of direct thermoelectric energy conversion methods.

  13. Novel Transparent Phosphor Conversion Matrix with High Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Novel Transparent Phosphor Conversion...

  14. Supplementary table Name Ref. Proxy Conversion Duration t lon lat

    E-Print Network [OSTI]

    Huybers, Peter

    Supplementary table Name Ref. Proxy Conversion Duration t lon lat 1. Clim. Anl. Cent. [1] instrum. N/A 33 1/12 global -- 2. Clim. Res. Unit [2] instrum. N/A 135 1/12 global -- 3. Rarotonga Coral [3. [9] Mg/Ca -- 46600 2440 159 2 14. NCEP [13] instrum. N/A 55 1/12 -- -- 15. Clim. Res. Unit [14

  15. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  16. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    the consumed thermal energy, and this process can be greatlythermal energy to electric energy must be based on processesprocess of an indirect energy conversion system consists of multiple steps to convert thermal

  17. A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2013-01-01

    nental Assessment, Ocean Thermal Energy Conversion (OTEC)Impact Assessment Ocean Thermal Energy Conversion (OTEC),Intake Screens for Ocean Thermal Energy M.S. Thesis. Oregon

  18. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  19. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    storage and direct solar energy conversion to work. FocusManagement and Solar Energy Conversion Applications By DusanThermal Management and Solar Energy Conversion Applications

  20. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    to all US Island Territories. #12;OTEC 11 Other Applications: AC Cold deep water as the chiller fluid ? #12;Thermal Resource Temperature Difference between Surface Water and 1,000 m Water (want > 20 °C: Truisms · OTEC plants could supply all the electricity and potable water consumed in the State, {but

  1. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  2. Appendix A-2 Appendix A: Units and Conversions TABLE A.2 International Definitions of the SI Base Unitsa

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Appendix A-2 Appendix A: Units and Conversions TABLE A.2 International Definitions of the SI Base Candela cd #12;Appendix A-3Appendix A: Units and Conversions TABLE A.3 SI-Derived Units with Special Unitsa Unit of length (m) Meter is the length of the path traveled by light in vacuum during a time

  3. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the...

  4. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    ocean thermal energy, distributed solar thermal energy,heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demand

  5. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

  6. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  7. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    Recycling of Wasted Energy : Thermal to Electrical EnergyRecycling of Wasted Energy : Thermal to Electrical Energyelectric energy generation and thermal energy conduction

  8. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    and nuclear power plants, solar thermal energy, geothermalpower plants, distributed solar thermal energy, geo/ocean-power plants and concentrated solar thermal energy farms.

  9. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  10. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  11. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  12. PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods

    E-Print Network [OSTI]

    Kjelstrup, Signe

    PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

  13. Quantum-coupled single-electron thermal to electric conversion scheme

    E-Print Network [OSTI]

    Wu, D. M.

    Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Microgap thermophotovoltaics take advantage of evanescent ...

  14. Comparison of Biological and Thermal (Pyrolysis) Pathways for Conversion of Lignocellulose to Biofuels 

    E-Print Network [OSTI]

    Imam, Tahmina 1983-

    2012-11-30

    Because of the limited supply of imported crude oil and environmental degradation, renewable energy is becoming commercially feasible and environmentally desirable. In this research, biological and thermal (pyrolysis) conversion pathways for biofuel...

  15. Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation

    E-Print Network [OSTI]

    Jirka, Gerhard H.

    Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

  16. Quantum-coupled single-electron thermal to electric conversion scheme

    E-Print Network [OSTI]

    Wu, Dennis M. (Dennis Meng-Jiao)

    2008-01-01

    A new thermal to electric conversion scheme based on an excitation transfer and tunneling mechanism is studied theoretically. Coulomb coupling dominates when the hot side and the cold side are very close. Two important ...

  17. FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties

    E-Print Network [OSTI]

    Malen, Jonathan A.

    FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface on fundamental transport properties of metal­ molecule­metal junctions that are related to thermoelectric energy

  18. Energy conversion using thermal transpiration : optimization of a Knudsen compressor

    E-Print Network [OSTI]

    Klein, Toby A. (Toby Anna)

    2012-01-01

    Knudsen compressors are devices without any moving parts that use the nanoscale phenomenon of thermal transpiration to pump or compress a gas. Thermal transpiration takes place when a gas is in contact with a solid boundary ...

  19. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    electrode surfaces, and electric energy is stored as surfacetemperature end and electric energy is generated, thermalbeing the generated electric energy and the consumed thermal

  20. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

  1. On the transition from photoluminescence to thermal emission and its implication on solar energy conversion

    E-Print Network [OSTI]

    Manor, Assaf; Rotschild, Carmel

    2014-01-01

    Photoluminescence (PL) is a fundamental light-matter interaction, which conventionally involves the absorption of energetic photon, thermalization and the emission of a red-shifted photon. Conversely, in optical-refrigeration the absorption of low energy photon is followed by endothermic-PL of energetic photon. Both aspects were mainly studied where thermal population is far weaker than photonic excitation, obscuring the generalization of PL and thermal emissions. Here we experimentally study endothermic-PL at high temperatures. In accordance with theory, we show how PL photon rate is conserved with temperature increase, while each photon is blue shifted. Further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also show how endothermic-PL generates orders of magnitude more energetic photons than thermal emission at similar temperatures. Relying on these observations, we propose and theoretically study thermally enhanced PL (TEPL) for highly eff...

  2. Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense load renewable energy system to achieve energy security for DoD facilities and bases Schofield Barracks and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

  3. Thermal neutron cross sections for the 1991 table of the isotopes

    SciTech Connect (OSTI)

    Holden, N.E.

    1991-05-01

    It has been a decade since the last publication of the Barn Book,'' BNL-325. In preparing a revision to the Table of the Isotopes, a re-evaluation of all of the thermal neutron cross sections has been performed, utilizing the previous data base of the Barn Book'' and all of the more recently published experiments. 5 refs.

  4. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect (OSTI)

    Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

  5. The Third Way of Thermal-Electric Conversion beyond Seebeck and Pyroelectric Effects

    SciTech Connect (OSTI)

    Ren, Jie

    2014-02-14

    Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, people are aware of only two ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with distinct working conditions and limitations. Here, we report the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, the-third-way converts the time-dependent ambient temperature fluctuation into electricity, similar to the behavior of pyroelectricity. However, the-third-way is also distinct from pyroelectric effect in the sense that it does not require polar materials but applies to general conducting systems. We demonstrate that the-third-way results from the temperature-fluctuation-induced dynamical charge redistribution. It is a consequence of the fundamental nonequilibrium thermodynamics and has a deep connection to the topological phase in quantum mechanics. Our findings expand our knowledge and provide new means of thermal-electric energy harvesting.

  6. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  7. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 20, NO. 1, MARCH 2005 25 Thermal Modeling of Lundell Alternators

    E-Print Network [OSTI]

    Perreault, Dave

    IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 20, NO. 1, MARCH 2005 25 Thermal Modeling of Lundell Alternators Sai Chun Tang, Member, IEEE, Thomas A. Keim, and David J. Perreault, Member, IEEE Abstract--Thermal analysis of Lundell alternators used in automobiles is presented. An analytical thermal model for Lun- dell

  8. Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current

    E-Print Network [OSTI]

    Fry, David J. (David James)

    1981-01-01

    This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

  9. Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants

    E-Print Network [OSTI]

    Rodríguez Buño, Mariana

    2013-01-01

    The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

  10. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    E-Print Network [OSTI]

    Boriskina, Svetlana V

    2013-01-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells ...

  11. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

    SciTech Connect (OSTI)

    Bowyer, J.M.

    1984-04-15

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

  12. Definitional mission report: NAPCOR thermal-power-conversion project, Philippines. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    The National Power Corporation (NAPCOR) of Philippines has requested the Trade and Development Program (TDP) to fund a study to evaluate the technical and economic feasibility of converting its existing oil and coal fired power plants to natural gas. The decision to undertake the study resulted from preliminary information on a large gas find off the coast of Palawan island. However, a second exploration well has come up dry. Now, the conversion of the existing power plants to natural gas seems very questionable. Even if the proven gas reserves prove to be commercially viable, the gas will not be available until 1998 or later for utilization. At that time several of NAPCOR's plants would have aged further, the political and economic situation in Philippines could have altered significantly, possibly improved, private power companies might be able to use the gas more efficiently by building state-of-the-art combined cycle power plants which will make more economic sense than converting existing old boilers to natural gas. In addition, most of the existing power equipment was manufactured by Japanese and/or European firms. It makes sense for NAPCOR to solicit services from these firms if it decides to go ahead with the implementation of the power plant conversion project. The potential for any follow on work for U.S. businesses is minimal to zero in the thermal conversion project. Therefore, at this time, TDP funding for the feasibility would be premature and not recommended.

  13. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Riccardo Messina; Philippe Ben-Abdallah

    2012-07-05

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

  14. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    reclamation and solar thermal energy," Energy [accepted]. [as geothermal energy [55], solar thermal energy [41], wastetemperature geothermal and solar thermal energy. His results

  15. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Nanotubes as High-Energy Density Solar Thermal Fuels,” Nanolatent heat energy storage and solar thermal applications,[for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  16. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    concentrated solar thermal energy and low grade waste heatreclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  17. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    2002, “Survey of Thermal Energy Storage for Parabolic TroughChange Materials for Thermal Energy Storage,” Renewable andTemperature Thermal Energy Storage for Power Generation.

  18. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  19. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

  20. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    SA Kalogirou, "Solar thermal collectors and applications,"axis concentrating solar thermal (collectors such as linearof non- concentrated solar thermal collectors also operate

  2. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  3. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    doing so would reduce thermal pollution and overall planthave been wasted. Thermal pollution and the production of

  4. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    industrial waste heat; (b) Distribution of rejected utility waste heat. Reprinted with permission from Elsevier: Energy Conversion and Management,industrial waste heat; (b) Distribution of rejected utility waste heat. Reprinted with permission from Elsevier: Energy Conversion and Management,

  5. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

  6. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    Solar Thermal Energy Research," in Sandia National Laboratory Science and Engineering Exposition 2011, Albuquerque, New Mexico,

  7. Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems

    E-Print Network [OSTI]

    Greenhut, Andrew David

    2010-01-01

    Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

  8. Thermal hydraulic design and analysis of a large lead-cooled reactor with flexible conversion ratio

    E-Print Network [OSTI]

    Nikiforova, Anna S., S.M. Massachusetts Institute of Technology

    2008-01-01

    This thesis contributes to the Flexible Conversion Ratio Fast Reactor Systems Evaluation Project, a part of the Nuclear Cycle Technology and Policy Program funded by the Department of Energy through the Nuclear Energy ...

  9. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

  10. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    energy source stream transfers energy to the ORC workingmatching to the energy reservoir stream during heat additionenergy in the thermal energy source stream is discarded or

  11. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    lowers cycle efficiency based on Carnot considerations.of the cycle and poor efficiency results based on Carnotand lowers cycle thermal efficiencies based on Carnot

  12. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    focus only on the solar collector and catalytic converterfluid, a microfluidic solar collector, and a catalytic heatS. a. , 2004, “Solar Thermal Collectors and Applications,”

  13. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    low and mid temperature solar collectors," Journal of SolarSA Kalogirou, "Solar thermal collectors and applications,"analysis of the solar collector system is presented. Results

  14. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    such as nuclear, Concentrated Solar Power (CSP), and coal,energies, such as concentrated solar power (CSP) [165]. CSPand non- concentrated solar thermal, vapor power cycles

  15. Appendix B: Technical Projection Tables, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Tables B-2 Last updated: November 2014 Table B-2: Terrestrial Feedstock Supply and Logistics Costs to Supply Feedstock to a Pyrolysis Conversion Process Processing Area Cost...

  16. Where solar thermal meets photovoltaic for high-efficiency power conversion

    E-Print Network [OSTI]

    Bierman, David M. (David Matthew)

    2014-01-01

    To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

  17. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01

    Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  18. Catalytic conversion of solar thermal produced pyrolysis gases to liquid fuels

    SciTech Connect (OSTI)

    Hanley, T.R.; Benham, C.B.

    1981-01-01

    The conversion of a simulated pyrolysis gas and synthesis gas using a Fischer-Tropsch catalyst system in a fluidized-bed reactor is investigated. Liquid fuels were produced between 550 and 660/sup 0/F (288 and 349/sup 0/C) for the simulated pyrolysis gas feed. An analysis of both liquid and gaseous product streams is performed. This investigation indicates a need for more extensive research with respect to hydrogen-to-carbon-monoxide usage ratios and with respect to the role of alkenes in fuel production.

  19. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOE Patents [OSTI]

    Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  20. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore »and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  1. Economics of Ocean Thermal Energy Conversion (OTEC): Luis A. Vega Ph.D., National Marine Renewable Energy Center at the University of Hawai'i

    E-Print Network [OSTI]

    .D., National Marine Renewable Energy Center at the University of Hawai'i Copyright 2010, Offshore TechnologyOTC 21016 Economics of Ocean Thermal Energy Conversion (OTEC): An Update Luis A. Vega Ph for the production of electricity, desalinated water and energy intensive products. It is postulated that the US

  2. Table of Contents Superhydrophilic and Superhydrophobic Nanostructured Surfaces for Microfluidics and Thermal Management 4-1

    E-Print Network [OSTI]

    Voldman, Joel

    for Microfluidics and Thermal Management 4-1 Design of a Micro-breather for Venting Vapor Slugs in Two-phase Microchannels 4-2 Microfluidic Patterning of P-Selectin for Cell Separation through Rolling 4-3 Electrical Membranes in Thermoplastic Microfluidic Devices 4-5 Teflon Films for Chemically-inert Microfluidic Valves

  3. Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules

    SciTech Connect (OSTI)

    Salvador, James R.; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E.; Thompson, Alan; Sharp, Jeff W.; Konig, Jan; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeff; Wang, Hsin; Wereszczak, Andrew A; Meisner, G P

    2013-01-01

    The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

  4. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1989-12-01

    This paper reports the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC). Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving a predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7% to 60% of dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 9 to 35 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20% to 60%. The dependence of oxygen desorption with flow rate could not be determined. The data also indicated that at typical OC-OTEC evaporator pressures when flashing occurred, 75% to 95% of dissolved oxygen was desorbed overall from the warm seawater. The uncertainty in results is larger than one would desire. These uncertainties are attributed to the uncertainties and difficulties in the dissolved oxygen measurements. Methods to improve the measurements for future gas desorption studies for warm surface and cold deep seawater under OC-OTEC conditions are recommended. 14 refs., 5 figs., 2 tabs.

  5. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  6. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  7. Table Search (or Ranking Tables)

    E-Print Network [OSTI]

    Halevy, Alon

    ;Table Search #3 #12;Outline · Goals of table search · Table search #1: Deep Web · Table search #3 search Table search #1: Deep Web · Table search #3: (setup): Fusion Tables · Table search #2: WebTables ­Version 1: modify document search ­Version 2: recover table semantics #12;Searching the Deep Web store

  8. Thermal hydraulic limits analysis for the MIT Research Reactor low enrichment uranium core conversion using statistical propagation of parametric uncertainties

    E-Print Network [OSTI]

    Chiang, Keng-Yen

    2012-01-01

    The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design from 15 to 18 plates per element, a reactor ...

  9. Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications

    E-Print Network [OSTI]

    O'Sullivan, Francis M. (Francis Martin), 1980-

    2004-01-01

    Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

  10. Ocean thermal energy conversion preliminary data report for the November 1977 GOTEC-02 cruise to the Gulf of Mexico Mobile Site

    SciTech Connect (OSTI)

    Commins, M. L; Duncan, C. P.; Estrella, D. J.; Frisch, J. D.; Horne, A. J.; Jones, K.; Johnson, P. W.; Oldson, J. C.; Quinby-Hunt, M. S.; Ryan, C. J.; Sandusky, J. C.; Tatro, M.; Wilde, P.

    1980-03-01

    This is the second in a series of preliminary data reports from cruises to potential Ocean Thermal Energy Conversion (OTEC) sites in the Gulf of Mexico. The data are from the GOTEC-02 cruise to a site at approximately 29/sup 0/N, 88/sup 0/W, the Mobile Site. Twelve oceanographic stations were visited. Due to bad weather, the results are scanty. The reader will note that much of the data is questionable. Current meter results are presented elsewhere (Molinari, Hazelworth and Ortman, 1979). Determinations of the biomass indicators - chlorophyll a, phaeophytins and adenosine triphosphate - and zooplankton, are presented. Results were generally those that might have been predicted from previous studies in the area.

  11. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect (OSTI)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  12. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    SciTech Connect (OSTI)

    Ball, Sydney J; Corradini, M.; Fisher, Stephen Eugene; Gauntt, R.; Geffraye, G.; Gehin, Jess C; Hassan, Y.; Moses, David Lewis; Renier, John-Paul; Schultz, R.; Wei, T.

    2008-03-01

    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC).

  13. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    the other hand, energy transfer by thermal radiation betweenit was shown that energy transfer by thermal radi- ationpyroelectric energy conversion and nanoscale thermal

  14. MUTUAL CONVERSION SOLAR AND SIDEREAL

    E-Print Network [OSTI]

    Roegel, Denis

    TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

  15. Natural gas/diesel conversions - the outlook

    SciTech Connect (OSTI)

    Fiore, V.B.; Joyce, T.J.

    1986-01-01

    High conversion costs and technical inadequacies of available equipment have limited diesel to compressed natural gas (CNG) conversions, a process which can use either fumigation, pilot oil injection, or spark-ignition for vehicle ignition. An overview of Gas Research Institute conversion research projects includes a summary of major problems associated with performance, cost, and reliability of the systems. A summary table identifies projects by organization and location, then provides project objectives, funding, future plans, and comments where the information is available.

  16. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  17. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  18. E2I EPRI Assessment Offshore Wave Energy Conversion Devices

    E-Print Network [OSTI]

    E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

  19. Notices TABLE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    determination that the transfer will not have an adverse material impact on the domestic uranium enrichment, conversion, or mining industries. DOE will receive concurrence from...

  20. Quantum conversion

    E-Print Network [OSTI]

    Michael Mazilu

    2015-08-06

    The electromagnetic momentum transferred transfered to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ($\\hbar k$) does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the transformation, including units, of the classical fields to wave-function equivalent fields.

  1. General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities NuclearlongGeneral Tables The General Tables for

  2. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  3. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  4. 2003 CBECS RSE Tables

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of the Excel tables (access from main detailed tables page) or in PDF format here: Building Characteristics for All Buildings (Tables A1-A8) RSE Tables: PDF, 16 pages, 312KB...

  5. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    cell. The solar cell’s power conversion efficiency, ? is theEfficiency ..5 Thermal Managements of SolarTemperature on Efficiency Photons incident on a solar cell

  6. Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes

    SciTech Connect (OSTI)

    Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 46–80 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 804–8503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2014-07-07

    Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

  7. Advanced nanofabrication of thermal emission devices

    E-Print Network [OSTI]

    Hurley, Fergus (Fergus Gerard)

    2008-01-01

    Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

  8. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    boch open- and closed-power cycles in land-based, moored andopen- and closed-power cycle), plant configurations (land-demonstration. The closed-power cycle may be used for land-

  9. Thermal tolerant cellulase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  10. Thermal tolerant avicelase from Acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of...

  11. Thermal tolerant exoglucanase from Acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  12. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes for the Conversion of Biomass to Biofuels and Chemicals Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  13. Tables of thermodynamic properties of sodium

    SciTech Connect (OSTI)

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  14. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    solar energy conversion .This new paradigm of solar energy conversion, based on theon this field, solar energy conversion aimed at photovoltaic

  15. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsAlyssa...

  16. 3. Energy conversion, balances, efficiency, equilibrium

    E-Print Network [OSTI]

    Zevenhoven, Ron

    1/124 3. Energy conversion, balances, efficiency, equilibrium (Introduction to Thermodynamics) Ron and Flow Engineering | 20500 Turku | Finland 2/124 3.1: Energy Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/124 What is energy? /1 "Energy is any quantity that changes

  17. Nanoscale thermal transport. II. 2003–2012

    E-Print Network [OSTI]

    Cahill, David G.

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale ...

  18. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    environmentally sound method of using thermal energy storageconcept of thermal energy of energy conversion methods tothermal energy, particularly cavern storage, appears to offer a promising near-term method

  19. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2012-01-01

    Appendix A: Thermal Unit Conversion Factors. Washington, DC:Appendix A: Thermal Unit Conversion Factors. Washington, DC:Appendix Table 43: Unit conversion factors From this unit

  20. Thermoelectrics and aerogels for solar energy conversion systems

    E-Print Network [OSTI]

    McEnaney, Kenneth

    2015-01-01

    Concerns about climate change, the world's growing energy needs, and energy independence are driving demand for solar energy conversion technologies. Solar thermal electricity generation has the potential to ll this demand. ...

  1. Selected tools Table 9. Summary list of tools for both wood and paper-based products

    E-Print Network [OSTI]

    3.4 Selected tools Table 9. Summary list of tools for both wood and paper-based products Focus Europe WOOD & PAPER- BASED PRODUCTS #12;3.5 Selected tools Forest conversion Social issues Pollution

  2. Hot cell examination table

    DOE Patents [OSTI]

    Gaal, Peter S. (Monroeville, PA); Ebejer, Lino P. (Weston, MA); Kareis, James H. (Slickville, PA); Schlegel, Gary L. (McKeesport, PA)

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  3. SEP Program Transition Tables

    Broader source: Energy.gov [DOE]

    The Program Transition Tables provide information concerning the level of effort required to move from a traditional, industrial incentive program to Strategic Energy Management, ISO 50001, or SEP.

  4. Description of Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    for the 1999 Commercial Buildings Energy Consumption Survey (CBECS) consists of building characteristics tables B1 through B39, which contain the number of buildings and...

  5. SCHOOLOFSCIENCE Table of Contents

    E-Print Network [OSTI]

    Varela, Carlos

    SCHOOLOFSCIENCE Table of Contents Degrees Offered and Associated Departments 330 Overview Environmental Science 403 Interdisciplinary Science 407 Multidisciplinary Science 409 The Darrin Fresh Water

  6. Environmental Justice Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... H-1 Table H-1. Poverty Thresholds in 1999 by Size of Family and Number of Related Children Under 18 Years...

  7. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil Tables (10 pages, 58 kb) CONTENTS PAGES Table 26. Total Fuel Oil Consumption and Expenditures, 1995 Table 27. Fuel Oil Consumption and Expenditure Intensities, 1995 Table...

  8. TABLE OF NUCLIDES

    E-Print Network [OSTI]

    Shirley, V.S.

    2008-01-01

    1980) RECEIVED TABLE OF NUCLIDES V. S. Shirley and C. M.Office of Standard Reference Data. -ii- TABLE OF NUCLIDESNuclide Z EI 0 n I H A B B Abundance or t 1 / 2 10.6 m 12.33

  9. Unit 9: Spatial Data Conversion

    E-Print Network [OSTI]

    9, CCTP; Dodson, Rustin

    1998-01-01

    UNIT 9: SPATIAL DATA CONVERSION Written by Rustin Dodson,Programs Page 1 Unit 9: Spatial Data Conversion freezingPrograms Page 2 Unit 9: Spatial Data Conversion Export USGS

  10. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  11. Solid-state power conversion handbook

    SciTech Connect (OSTI)

    Tarter, R.E.

    1993-01-01

    This new handbook is the first to be devoted to the field of solid-state power conversion. The material in this book is to be used in engineering practice and is oriented toward application rather than theory. The purpose of the book is to assemble in a single volume all the pertinent and comprehensive information necessary to meet the growing demands placed upon solid-state power conversion equipment. These demands include increased efficiency, improved reliability, higher packaging density, improved performance, and meeting safety and electromagnetic compatibility (EMC) requirements. The material presented includes a thorough analysis of fundamental electrical and magnetic aspects of power conversion plus thermal, protection, and reliability considerations. Attention is focused on semi-conductor and magnetic components and on analysis of various topologies. The handbook is organized into four sections. (1) Chapters 1-3 present the relations of various waveforms, transient components with emphasis on power semiconductors and magnetic components. (2) Chapters 4-12 deal with single-level conversion of rectifier circuits, filters, inverters and converters, feedback and stability analysis, and modulators and pulse-forming networks. (3) Chapters 13-16 discuss ancillary topics related to safety, EMC, thermal management, and reliability. (4) Chapters 17-19 cover design and operation of power supplies and systems from a detailed building block standpoint.

  12. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  13. 2003 CBECS Detailed Tables: Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Tables 2003 CBECS Detailed Tables most recent available Released: September 2008 Building Characteristics | Consumption & Expenditures | End-Use Consumption In the 2003 CBECS,...

  14. DANISHBIOETHANOLCONCEPT Biomass conversion for

    E-Print Network [OSTI]

    DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISØ and DTU Anne Belinda Thomsen (RISØ) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

  15. SCHOOLOFSCIENCE Table of Contents

    E-Print Network [OSTI]

    Varela, Carlos

    SCHOOLOFSCIENCE Table of Contents Degrees Offered and Associated Departments 324 Overview The Darrin Fresh Water Institute 401 New York Center for Studies on the Origins of Life 402 New York State

  16. Proceedings of the 25th intersociety energy conversion engineering conference

    SciTech Connect (OSTI)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

  17. Energy conversion system

    SciTech Connect (OSTI)

    Wang, F.E.

    1981-06-30

    A thermal-mechanical energy converting device is disclosed that has at least two rotatably supported wheels and with one or more endless transmission elements of a material having a memory effect capable in the bending mode of converting thermal energy into mechanical energy when heated from a temperature below its transition temperature to a temperature above its transition temperature; the transmission elements serve to drive one wheel from the other wheel upon application of thermal energy to the transmission elements, whereby the thermal energy is transferred from the other wheel to the transmission elements over at least a major portion of the circumferential contact of the transmission elements with the other wheel.

  18. Tuning energy transport in solar thermal systems using nanostructured materials

    E-Print Network [OSTI]

    Lenert, Andrej

    2014-01-01

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  19. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  20. Thermal stability of nano-structured selective emitters for thermophotovoltaic systems

    E-Print Network [OSTI]

    Lee, Heon Ju, 1977-

    2012-01-01

    A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of materials and devices at high operational temperatures. This study focuses on the thermal stability of tungsten selective ...

  1. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy Levels Counter Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy

  2. ENERGY CONVERSION Spring 2011

    E-Print Network [OSTI]

    Bahrami, Majid

    , 5th Edition Michael J. Moran and Howard N. Shapiro, John Wiley and Sons Inc., New York, NY, 2004, John Willey 2010. 3) Alternative Energy Systems and Applications, by B.K. Hodge, John Willey 2010. 41 ENSC 461 ENERGY CONVERSION Spring 2011 Instructor: Dr. Majid Bahrami 4372 Email

  3. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  4. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n p o J d

  5. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n p o J dPercent

  6. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Tables (35 pages, 218 kb) CONTENTS PAGES Table 9. Total Electricity Consumption and Expenditures, 1995 Table 10. Electricity Consumption and Expenditure Intensities,...

  7. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    kb) CONTENTS PAGES Table 1. Total Energy Consumption by Major Fuel, 1995 Table 9. Total Electricity Consumption and Expenditures, 1995 Table 20. Total Natural Gas Consumption and...

  8. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    pages, 95 kb) CONTENTS PAGES Table 3. Consumption for Sum of Major Fuels, 1995 Table 10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas...

  9. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    kb) CONTENTS PAGES Table 2. Total Energy Expenditures by Major Fuel, 1995 Table 9. Total Electricity Consumption and Expenditures, 1995 Table 20. Total Natural Gas Consumption and...

  10. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    pages, 95 kb) CONTENTS PAGES Table 4. Expenditures for Sum of Major Fuels, 1995 Table10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas...

  11. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  12. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  13. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  14. ISSUE TABLE OF CONTENTS

    E-Print Network [OSTI]

    SPECTRA HOME CURRENT ISSUE TABLE OF CONTENTS TECHNOLOGY BUSINESS PRESSTIME BULLETIN ARTICLE Thomas Young's classic setup for the demonstration of interference features light from one source incident on two vertical slits because the phenomenon occurs only if the light from the slits has a well

  15. Table of Contents Introduction

    E-Print Network [OSTI]

    Nagy, Eric Sándor

    include nitrogen oxides (NOx = NO + NO2 ), nitric acid (HNO3 ), nitrous oxide (N2 O, a greenhouse gas.TheHaber-BoschprocessalsosuppliesNH3 for industrial processes. Anthropogenic sources of nitrogen are twice as large as natural terDRAFT - 1 #12;2 - DRAFT Table of Contents Introduction What is Reactive Nitrogen and Why

  16. TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ........................................................ 2 City Selection ................................................ 2 Weather Data and Building Loads. MONTHLY HEAT GAIN/LOSS FACTORS ........................... 5 TABLE 2. BASE TEMPERATURES

  17. Energy.gov Data Tables

    Broader source: Energy.gov [DOE]

    Follow these guidelines for creating Section 508-compliant data tables in the Energy.gov Drupal environment.

  18. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy Biological Conversion of Sugars...

  19. Conversion of Questionnaire Data

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

  20. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  1. Evaluation of ethane as a power conversion system working fluid for fast reactors

    E-Print Network [OSTI]

    Perez, Jeffrey A

    2008-01-01

    A supercritical ethane working fluid Brayton power conversion system is evaluated as an alternative to carbon dioxide. The HSC® chemical kinetics code was used to study thermal dissociation and chemical interactions for ...

  2. Energy conversion Subject Information

    E-Print Network [OSTI]

    Greff, Isabelle

    The purpose of this course is to study the different ways of converting energy resources into useful energy thermal energy system. Wave energy: available resource, Wave energy converters (Oscillating water column from geothermal resources. Efficiency of power production from geothermal resources, economic aspects

  3. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    webinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates...

  4. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  5. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  6. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  7. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  8. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  9. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  10. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  11. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

  12. A=19 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion1AJ01)72AJ02) (See Energy1959AJ76) (See95TI07)Tables for

  13. A=20 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion1AJ01)72AJ02) (See72AJ02)1959AJ76)83AJ01)Tables for A =

  14. 9He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351APPLICATION OFsaferHe General Table The

  15. 9Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351APPLICATION OFsaferHe General Table

  16. A = 10 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351APPLICATIONPostdoctoral10 General Tables

  17. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1:PhysicsSyndicated Contentwo2 TABLE OF

  18. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1:PhysicsSyndicated Contentwo2 TABLE OF

  19. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1:PhysicsSyndicated Contentwo2 TABLE OF

  20. FY 2005 Statistical Table

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress More Documents & PublicationsTable of

  1. Annual Coal Distribution Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc. Real73 Table

  2. compare_tables.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 Cooling Degree-Days by038.2Natural

  3. Microsoft Word - table_11

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO) Highlights1199,0,26,27 Table 11

  4. Microsoft Word - table_13

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO) Highlights1199,0,26,27 Table 11

  5. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  6. Health Care Buildings: Subcategories Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Subcategories Table Selected Data by Type of Health Care Building Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet) Percent of Floorspace Square...

  7. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  8. 1999 Commercial Building Characteristics--Detailed Tables--Principal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Principal Building Activities > Detailed Tables-Principal Building Activities Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Principal Building Activities Table B1....

  9. 1999 Commercial Building Characteristics--Detailed Tables--Year...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Constructed > Detailed Tables-Year Constructed Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Year Constructed Table B8. Year Constructed, Number of Buildings...

  10. HELIOPHYSICS II. ENERGY CONVERSION PROCESSES

    E-Print Network [OSTI]

    Hudson, Hugh

    with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other formsHELIOPHYSICS II. ENERGY CONVERSION PROCESSES edited by CAROLUS J. SCHRIJVER Lockheed Martin of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X

  11. High conversion hydrocracking process

    SciTech Connect (OSTI)

    Stine, L.O.; Reno, M.E.; Munro, W.H.; Hamper, S.J.

    1990-10-09

    This patent describes a process for hydrocracking a heavy hydrocarbon feed stream having a 10 percent boiling point above about 316{degrees} C. It comprises: passing the feedstream into a catalytic hydrocracking reaction zone in contact with hydrocracking catalyst comprising at least one metal selected from the group consisting of chromium, nickel, cobalt, platinum, palladium, tungsten and molybdenum, at a temperature above about 316{degrees} C. and a total pressure above 1480 kPa, the catalytic hydrocracking reaction zone operating at a feed stream conversion rate above 70 wt. percent with a hydrogen circulation rate in excess at 1777 m{sup 3}/m{sup 3}, to produce a reaction zone effluent stream, subjecting the reaction zone effluent stream to cooling and a vapor-liquid separation to yield a recycle hydrogen stream and a liquid phase stream, heating the liquid phase stream recovered from the vapor-liquid separation to vaporize at least 90 volume percent of the liquid phase stream, passing the heated and at least partially vaporized liquid phase stream to a fractionation zone wherein the stream is separated into at least a net bottoms stream, a heavy distillate stream, and at least one light distillate stream which is removed as the distillate product stream, removing all of the net bottoms stream from the process, and recycling substantially all of the heavy distillate stream to the catalytic hydrocracking zone.

  12. Optical characterization of thermal transport from the nanoscale to the macroscale

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2008-01-01

    The thermal properties of thin films and material interfaces play an important role in many technologies such as microelectronics and solid-state energy conversion. This thesis examines the characterization of thermal ...

  13. Table of Contents Executive Summary

    E-Print Network [OSTI]

    McDonald, Kirk

    Table of Contents Page Executive Summary I. Introduction 1 Neutrino Oscillation Results from Solar and Atmospheric Neutrino Data 1 Tables 7 References 5 Figures 9 II. Overview of the Long Baseline Experiment 17 Magnetic Moment, Charge Radius, and Extra Z-bosons 261 VII. Cost and Schedule 265 Project schedule 267 Work

  14. Supplemental Material Table of Contents

    E-Print Network [OSTI]

    Kuchta, Shawn R.

    1 Supplemental Material Table of Contents Text on the multiple individuals per population phylogeny: pg 4 Supplemental Figure 1: Phylogram of U. stansburiana populations from the complete data set that included multiple individuals per population. pg 5 Supplemental Table 1: Population locations and years

  15. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    SciTech Connect (OSTI)

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  16. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Level Intensities (percentile) (6 pages, 39 kb) CONTENTS PAGES Table 10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas Consumption and...

  17. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Census Region for Sum of Major Fuels, 1995 Table 11. Electricity Consumption and Conditional Energy Intensity by Census Region, 1995 Table 22....

  18. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Year Constructed for Sum of Major Fuels, 1995 Table 14. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1995 Table...

  19. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Building Size for Sum of Major Fuels, 1995 Table13. Electricity Consumption and Conditional Energy Intensity by Building Size, 1995 Table 24....

  20. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Category (6 pages, 36 kb) CONTENTS PAGES Table 17. Peak Electricity Demand Category, Number of Buildings, 1995 Table 18. Peak Electricity Demand Category, Floorspace, 1995 These...

  1. Commercial Small Fruit Table of Contents

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    ........................................................................................................................................ 2-1 Strawberries.................................................................................................................................................... 2-2 Table 2.1a - Strawberry Diseases, At Planting......................................................................................... 2-2 Table 2.1b - Strawberry Diseases, Post

  2. Commerial Buildings Characteristics, 1995 (Table of Contents...

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Buildings and Relative Standard Errors, 1995 Table I.2. Participation in Energy Conservation Programs, Floorspace and Relative Standard Errors, 1995 Table J.1....

  3. Trends in Commercial Buildings--Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Home > Trends in Commercial Buildings > Energy Consumption - Part 1> Site Energy Consumption Tables Table 1. Total site energy consumption, relative standard errors, and 95%...

  4. Conversation View Outlook Web App User Guide

    E-Print Network [OSTI]

    Calgary, University of

    Conversation View Outlook Web App User Guide Email conversations that include multiple replies and sent messages can be viewed simultaneously using Conversation View. In Exchange 2010 Outlook Web App

  5. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    include the choice of power cycle (open or closed), plat-both closed- and open-power cycles and 1~volve. land-based,

  6. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    of open and hybrid OTEC power cycles. Pages VII 45 - VII 67.6 ALTERNATIVES 6 • 1 POWER CYCLE 6.2 PLATFORM CONFIGURATION.features of a closed power cycle include: Release of trace

  7. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    Microgrid: A Conceptual Solution”, 35th Annul IEEE Power Elecrronics Specialisrs Conference (2004) [60] R.J. Krane, Energy Storage

  8. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    p 540 [99] D. Tanner, Renewable Energy, Vol. 6 (3), pp. 367-K. Mahkamov, Renewable and Sustainable Energy Reviews, Vol.S. Wongwises, Renewable and Sustainable Energy Reviews, Vol.

  9. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    3). The counties of Hawaii, Maui and Kauai, comprise 9%, 7%,POPULATION = 33,800) KAUAI HAWAII COUNTY -------. ; (Hawaii and Maui will increase to 10% to 12%, and 8% to 9%, respectively, and Kauai

  10. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    LIST OF FIGURES Fig.1.1. Schematic of the Organic Rankineis achieved by using Organic Rankine Cycle or Sterlingtechnologies such as Organic Rankine Cycle (ORC) mahines,

  11. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    possible Plate-Type Heat Exchanger Estimated Relationshipseawater plate-type heat exchanger design is illustrated in6. One possible Plate Type Heat Exchanger Source: Berndt and

  12. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    U. M. Khan, Surface Electrochemistry, Springer, New York [Journal of Applied Electrochemistry, Vol. 21, pp.1103- [15]M. Gamboa-Aldeco, Modern Electrochemistry 2A, 2 nd edition,

  13. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    SciTech Connect (OSTI)

    Sands, M. D.

    1980-01-01

    This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

  14. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  15. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    KILOMETERS () = FOSSIL GENERATING PLANT NUMBER WITHIN PLANTKaupo o () = FOSSIL GENERATING PLANT NUMBER WITHIN PLANTSea o = o FOSSIL GENERATING PLANT HYDROELECTRIC GENERATING

  16. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Working Fluid Process Product Process Requirement FuelNo fuel in a conventional sense 1S used. working fluid is

  17. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    fauna associated with offshore platforms in Mexico. Fish.aspects of siting OTEC plants offshore the United States onthe high seas, and offshore other countries. In G. L.

  18. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    fauna associated with offshore platforms in the northeasternaspects of siting OTEC plants offshore the United States onthe high seas, and offshore other countries. In G. L.

  19. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Mexico. Energy Research and Development Administration, Division of SolarMexico. Energy Research and Development Administration, Division of Solar

  20. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    a) Schematic of Sterling engine (b) P-V plot of the SterlingSterling engines. Organic Rankine Cycle or Sterling Engines. On the one hand,

  1. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Sperm whale E Dugong E Caribbean manatee Hawaiian monk sealCaribbean monk seal E E Northwest Hawaiian Islands (NWHI) E

  2. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    Caribbean Monachus schauinslandi Hawaiian monk seal EHawaiian Islands Monachus troeicalis Caribbean monk seal E

  3. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    manatee E Off Florida, Caribbean Hawaiian monk seal ENorthwest Hawaiian Islands (NWHI) Caribbean monk seal E

  4. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    respectively; ? c is the Carnot cycle efficiency; and ? Z iswhere ? c = ?T/T h is the Carnot cycle limit and ? s is theT of LGH is small, the Carnot cycle limit becomes low and,

  5. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    pumps. The numerous moving parts also increase the installation, operational, and maintenance costs.maintenance, and operational costs associated with the expensive supporting components and moving parts, such as pumps,

  6. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    as Organic Rankine Cycle (ORC) mahines, Sterling engines,Organic Rankine Cycle (ORC) system or Sterling Engine (SE)an organic Rankine cycle (ORC) system generates electricity

  7. Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling - Depth...

    Open Energy Info (EERE)

    Author National Renewable Energy Laboratory Maintainer Nicholas Langle bureaucode 019:20 Catalog DOE harvestobjectid 3ba3acfd-d54a-4a3d-a971-1cf4ac97fcb0 harvestsourceid...

  8. Thermal-to-electric energy conversion using ferroelectric film capacitors

    SciTech Connect (OSTI)

    Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I. [Saint-Petersburg State Electrotechnical University, 5 Professor Popov Street, St-Petersburg 197376 (Russian Federation)

    2014-10-28

    The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5??m) Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100?K to 350?K under different electric fields up to 80?V/?m, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of ±15?K around room temperature and electric field about 40?V/?m, the harvested energy was estimated as 30 mJ/cm{sup 3}. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

  9. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    skipjack tuna, Katsuwonnus pelamis, in an offshore area oflittle tuna), Katsuwonus pelamis (skipj ack), spp. ,

  10. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    various types of Stirling engine have been developed, whichThermogalvanic cell Stirling Engine ORC Internal Combustionof Sterling engine [17] year inventor Robert Stirling John

  11. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    to electrical energy by turbine engines. Organic Rankineheat and rotating turbine engines. Figure 1.1 is a schematicthe gas stream rotates the turbine engine. The gas stream is

  12. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    treatment As above eFederal Aviation Administration Heliport licensing Point source discharge See Safety/Health Section 5 Federal Water Pollution

  13. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search Name:NREL's RenewableOpenOcean

  14. News - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide captureTransportationCSTEC Newsletters Fall 2013

  15. News - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide captureTransportationCSTEC Newsletters Fall

  16. Papers Published - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/Research TeamArchival, Peer-Reviewed

  17. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashomeResearchResearch

  18. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashomeResearchResearchIn the

  19. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashomeResearchResearchIn theWe

  20. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashomeResearchResearchIn theWeThe

  1. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedulesScience Highlights

  2. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergyDepartment13Department of EnergyMEAs

  3. Advisory Board - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act RecoveryTechnologies |AppliancesWater

  4. Contact - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact To contact

  5. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what you were lookingAboutDirectorAssociate Directors Prof.

  6. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what you were lookingAboutDirectorAssociate Directors

  7. Facilities - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy Technologies | Blandinenewsand Privacy

  8. Investigators - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat PumpsfacilityviaGasfor Gasdiffusivities

  9. Management Council - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies

  10. Welcome - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae modelsearch this siteSearch Go! US ITER ABOUT

  11. Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy of the White House. PushingLoanRulemakingof

  12. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlights High Energy0 Click

  13. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlights High Energy0 Click1

  14. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlights High Energy0 Click12

  15. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlights High Energy0

  16. Tidal Conversion by Supercritical Topography

    E-Print Network [OSTI]

    Balmforth, Neil J.

    Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

  17. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  18. Technical Market Analysis for Biochemical Conversion Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Market Analysis for Biochemical Conversion March 23, 2015 Biochemical Conversion Jim Collett and Mark Butcher PNNL This presentation does not contain any proprietary,...

  19. Unit Conversions and Formulas to Know

    E-Print Network [OSTI]

    rroames

    2007-12-06

    Math 139. Unit Conversions and Formulas to Memorize. Fall 2007. Unit Conversions to know: 1 foot = 12 inches. 1 centimeter = 10 millimeters. 1 yard = 3 feet.

  20. Annual Energy Outlook (AEO) 2006 - Supplemental Tables - All Tables

    SciTech Connect (OSTI)

    None

    2009-01-18

    Tables describing regional energy consumption and prices by sector; residential, commercial, and industrial demand sector data; transportation demand sector; electricity and renewable fuel; and petroleum, natural gas, and coal data.

  1. Table Notes Schedule of Updates

    E-Print Network [OSTI]

    Hansen, James E.

    Nuclear Renewables Total Conventional Thermal Hydroelectric Pumped Storage Total Net GenerationHydroelectricNon-Hydroelectric

  2. Investigation of nanoscale thermal radiation : theory and experiments

    E-Print Network [OSTI]

    Narayanaswamy, Arvind

    2007-01-01

    The ability to control the radiative properties of objects is of prime importance in diverse areas like solar and thermophotovoltaic energy conversion, narrowband thermal emitters, and camouflage in military applications. ...

  3. Thermal Transport Measurement of Silicon-Germanium Nanowires 

    E-Print Network [OSTI]

    Gwak, Yunki

    2010-10-12

    Thermal properties of one dimensional nanostructures are of interest for thermoelectric energy conversion. Thermoelectric efficiency is related to non dimensional thermoelectric figure of merit, ZT=S^2 o T/k, where S ,o , k and T are Seebeck...

  4. Table of tables: A database design tool for SYBASE

    SciTech Connect (OSTI)

    Brown, B.C.; Coulter, K.; Glass, H.D.; Glosson, R.; Hanft, R.W.; Harding, D.J.; Trombly-Freytag, K.; Walbridge, D.G.C.; Wallis, D.B. ); Allen, M.E. )

    1991-01-04

    The Table of Tables' application system captures in a set of SYBASE tables the basic design specification for a database schema. Specification of tables, columns (including the related defaults and rules for the stored values) and keys is provided. The feature which makes this application specifically useful for SYBASE is the ability to automatically generate SYBASE triggers. A description field is provided for each database object. Based on the data stored, SQL scripts for creating complete schema including the tables, their defaults and rules, their indexes, and their SYBASE triggers, are written by TOT. Insert, update and delete triggers are generated from TOT to guarantee integrity of data relations when tables are connected by single column foreign keys. The application is written in SYBASE's APT-SQL and includes a forms based data entry system. Using the features of TOT we can create a complete database schema for which the data integrity specified by our design is guaranteed by the SYBASE triggers generated by TOT. 3 refs.

  5. Thermal neutron capture gamma-rays

    SciTech Connect (OSTI)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  6. Thermal engine

    SciTech Connect (OSTI)

    Karnes, T.E.; Trupin, R.J.

    1984-01-03

    A thermal engine utilizing a strip of nitinol material or other thermally responsive shape memory effect material to drive a reciprocating output shaft, said strip of material forming a common wall between two different alternating temperature sources which thermally cycle the material.

  7. Renewable Energies III Photovoltaics, Solar & Geo-Thermal

    E-Print Network [OSTI]

    Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 on the principles of solar energy conversion. Theoretical knowledge will be complemented with practical workshops of solar energy conversion. Theoretical knowledge will be comple- mented with practical workshops

  8. LUNAR SEISMIC PROFILING EXPERIMENT DESIGN VERIFICATION THERMAL PAGI OF

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ATM 1109 LUNAR SEISMIC PROFILING EXPERIMENT DESIGN VERIFICATION THERMAL PAGI OF VACUUM TEST DATE 9 SEISMIC PROFILING EXPERIMENT DESIGN VERIFICATION THERMAL VACUUM TEST LIST OF TABLES AND FIGURES;Figure 4.9 5. 1 5.2 5.3-5.4 5.5 5.6 5.7-5.8 LUNAR SEISMIC PROFILING EXPERIMENT DESIGN VERIFICATION

  9. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  10. Table of Contents Deschutes Subbasin Plan

    E-Print Network [OSTI]

    Table of Contents Deschutes Subbasin Plan Table of Contents Executive Summary 1. Purpose and Scope.1. Physical, Natural and Human Landscape ................................................2.1 2.2. Water, Table of Contents Page 1 #12;Table of Contents 7. Limiting Factors and Conditions .........

  11. Regulations and Basic Information Table of Contents

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Regulations and Basic Information Table of Contents Safe and Effective Use.) for Various Quantities of Water

  12. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    Spin-to-orbital conversion of the angular momentum of light and its classical and quantum apply. View the table of contents for this issue, or go to the journal homepage for more Home Search momentum of light and its classical and quantum applications Lorenzo Marrucci1,2 , Ebrahim Karimi1 , Sergei

  13. TABLE OF CONTENTS Content Page

    E-Print Network [OSTI]

    Li, Jiuyong "John"

    #12;TABLE OF CONTENTS Content Page Version 5.1 iii September 2012 Contents 1 INTRODUCTION 1-1 1;TABLE OF CONTENTS Content Page Version 5.1 iv September 2012 3 PLANNING AND DESIGN GUIDELINES 3-1 3 Noise 3-25 3.3.15 Optimise Light 3-25 3.3.16 Save Water 3-25 3.3.17 Minimise Waste 3-25 3.4 Green Star

  14. Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion

    SciTech Connect (OSTI)

    LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

    2003-03-01

    Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

  15. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  16. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  17. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  18. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  19. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Kaufman, A. N. [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Tracy, E. R. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2008-08-15

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  20. Direct conversion technology: Annual summary report CY 1988

    SciTech Connect (OSTI)

    Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

  1. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  2. Rationality and Conversation: A Thesis on Grice’s Theory of Conversation 

    E-Print Network [OSTI]

    Schoolfield, Matthew D

    2007-11-27

    H. P. Grice first presented his theory of conversational implicature in “Logic and Conversation.” This theory is comprised of conversational maxims that are based on the Cooperative Principle. Since then, it has become ...

  3. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  4. SPS energy conversion and power management workshop. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

  5. Microsoft Word - table_15.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0 Table

  6. Thermal tolerant avicelase from Acidothermus cellulolyticus

    DOE Patents [OSTI]

    Ding, Shi-You (Golden, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

    2009-05-26

    The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

  7. Thermal tolerant avicelase from Acidothermus cellulolyticus

    DOE Patents [OSTI]

    Ding, Shi-You (Golden, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

    2008-04-29

    The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  9. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  10. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  11. Table Of Contents Section: Page

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 2 SANITATION Table Of Contents Section: Page 02.A General Water......................................................... 2-1 02.D Non-Potable Water and openings. 02.C DRINKING WATER #12;EM 385-1-1 XX Sep 13 2-2 02.C.01 An adequate supply of potable water

  12. THINKING THESIS Table of Contents

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    THINKING THESIS GUIDEBOOK #12;#12;Table of Contents Part One: Getting Started 1. What the Honors aides 5. Final Turn in of the Thesis Appendix I. Sample Title Page II. Honors Mentor Declaration Form on to better things. Theodore Roosevelt #12;#12;Honors College Thesis Requirements There are several forms

  13. OUTLOOK BYLAWS Table of Contents

    E-Print Network [OSTI]

    OUTLOOK BYLAWS Table of Contents Article I - Legal Authority to Operate Article II - Scope-in-Chief and Responsible Director Article VIII - Funding of Outlook Article IX - Unused Funds Article X - Composition The publication of Outlook is authorized under a license granted to AUB by decision No. 113 issued by the Lebanese

  14. Table of Contents INTRODUCTION 2

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    #12;1 Table of Contents INTRODUCTION 2 SECTION ONE: PRINCIPLES OF GOOD PRACTICE 4 SECTION TWO, it offers a practical guide to staff and volunteers who work with children by outlining a number of fundamental principles of good practice, highlighting the key elements of each one and discussing the issues

  15. Student Handbook TABLE OF CONTENTS

    E-Print Network [OSTI]

    Horowitz, Leah S.

    1 Student Handbook 2014-2015 TABLE OF CONTENTS Comprehensive Nondiscrimination Statement 3 Sex Student Handbook Comprehensive Nondiscrimination Policy The provisions of this handbook of the services, programs or activities described in this handbook. The most up-to-date handbook can be found

  16. HOUSING POLICY Table of Contents

    E-Print Network [OSTI]

    HOUSING POLICY Table of Contents Housing Policy Housing Rules and Regulations Appendix I contact: policies@aub.edu.lb. Last updated on: August 14, 2014 #12;HOUSING POLICY Section 1 - Policy Section 2 - Housing Purchase Plan (HPP) Section 3 - Procedure for the Implementation of the Housing

  17. Weather Ready Nation: A Vital Conversation on

    E-Print Network [OSTI]

    Weather Ready Nation: A Vital Conversation on Tornadoes and Severe Weather A Community Report March;WeatherReady Nation: A Vital Conversation on Tornadoes and Severe Weather Report from the December 2011

  18. Siting handbook for small wind energy conversion systems

    SciTech Connect (OSTI)

    Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

    1980-03-01

    This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

  19. New proposal for photovoltaic-thermal solar energy utilization method

    SciTech Connect (OSTI)

    Takashima, Takumi; Tanaka, Tadayoshi; Doi, Takuya ); Kamoshida, Junji ); Tani, Tatsuo ); Horigome, Takashi )

    1994-03-01

    One of the most effective methods of utilizing solar energy is to use the sunlight and solar thermal energy such as a photovoltaic-thermal panel (PV/T panel) simultaneously. From such a viewpoint, systems using various kinds of PV panels were constructed in the world. In these panels, solar cells are set up at an absorber collecting solar thermal energy. Therefore, temperature of solar cell increases up to the prescribed temperature of thermal energy use, although it is lower than the cell temperature when using only solar cell panel. For maintaining cell conversion efficiency at the standard conditions, it is necessary to keep the cell at lower temperature. In this paper, electric and thermal energy obtained form a PV/T panel is evaluated in terms of energy. BAsed on this evaluation, the method of not to decrease cell conversion efficiency with collecting solar thermal energy was proposed.

  20. Transparency in nonlinear frequency conversion

    E-Print Network [OSTI]

    Longhi, Stefano

    2015-01-01

    Suppression of wave scattering and the realization of transparency effects in engineered optical media and surfaces have attracted great attention in the past recent years. In this work the problem of transparency is considered for optical wave propagation in a nonlinear dielectric medium with second-order $\\chi^{(2)}$ susceptibility. Because of nonlinear interaction, a reference signal wave at carrier frequency $\\omega_1$ can exchange power, thus being amplified or attenuated,when phase matching conditions are satisfied and frequency conversion takes place. Therefore, rather generally the medium is not transparent to the signal wave because of 'scattering' in the frequency domain. Here we show that broadband transparency, corresponding to the full absence of frequency conversion in spite of phase matching, can be observed for the signal wave in the process of sum frequency generation whenever the effective susceptibility $\\chi^{(2)}$ along the nonlinear medium is tailored following a suitable spatial apodiza...

  1. TABLE OF CONTENTS: Building Executive Definition.......................................................................3

    E-Print Network [OSTI]

    Capogna, Luca

    #12;TABLE OF CONTENTS: Building Executive Definition.......................................................................3 Building Executives Areas of Responsibilities ...................................................................................5 Building Safety and Security Issues

  2. Optomechanical conversion by mechanical turbines

    E-Print Network [OSTI]

    Kneževi?, Miloš; Warner, Mark

    2014-10-30

    has mov- ing parts gives it a disadvantage over conventional photo- voltaics, though rubber is highly durable and tough — for instance car tyres survive long use in harsh, abra- sive conditions. Another difficulty, that could perhaps be solved... ’effect du frottement dans l’equilibre,” Mem. Acad. Sci. , pp. 265 (1762). 7[14] L. R. G. Treloar, The Physics of Rubber Elasticity (Ox- ford University Press, Oxford, 2005). [15] M. Knez?evic´ and M. Warner, “Photoferroelectric solar to electrical conversion...

  3. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  4. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartmentof EnergyTheConversion

  5. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  6. Table Contents Page i 2013 Nonresidential Compliance Manual January 2014

    E-Print Network [OSTI]

    Table Contents Page i 2013 Nonresidential Compliance Manual January 2014 Table of Contents........................................................................5 Table F-1 Small Water Heater Test Methods ..................................................................................6 Table F-2 Large Water Heater Test Methods

  7. 1999 Commercial Building Characteristics--Detailed Tables--Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Region > Detailed Tables-Census Region Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Census Region Table B3. Census Region, Number of Buildings and Floorspace...

  8. Thermal Neutron Capture y's (CapGam)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Nuclear Data Center (NNDC) presents two tables showing energy and photon intensity with uncertainties of gamma rays as seen in thermal-neutron capture.  One table is organized in ascending order of gamma energy, and the second is organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %I? (per 100 n-captures) for the strongest transition is given, where known. All data are taken from the Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated nuclear structure data and from the eXperimental Unevaluated Nuclear Data List (XUNDL). (Specialized Interface)

  9. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOE Patents [OSTI]

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  10. Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal) systems convert solar energy into electricity via thermally radiated photons at tailored wavelengths highly scalable for a wide range of power capacities, have no moving parts, and allow solar energy

  11. A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon

    E-Print Network [OSTI]

    Pilon, Laurent

    of waste mechanical energy include fluid flow, household appliances, industrial equipment, motor vehiclesA novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon of a novel cycle converting thermal and mechanical energy directly into electrical energy. The new cycle

  12. Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive

    E-Print Network [OSTI]

    Tan, Weihong

    and solar energy harvesting. energy conversion localized surface plasmon photo-driven nanomotor Plants harvest solar energy by photosynthesis, in which photo- sensitive biomolecules absorb energy from sunlight and con- vert it into chemical energy. Human beings utilize solar energy by fossil fuels, solar thermal

  13. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  14. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  15. Sandia Energy - Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion Efficiency Home

  16. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -Technologies forBig SavingsConversion

  17. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Energy Conversion and Storage Systems By Andrew Mark DuffinEnergy Conversion and Storage Systems by Andrew Mark Duffin

  18. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

  19. 1997 Housing Characteristics Tables Home Office Equipment Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n p o J d VPercent

  20. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  1. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED STATES

  2. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED STATES4

  3. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED STATES48

  4. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED STATES4838

  5. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED

  6. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED5.4 from

  7. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED5.4 from6

  8. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED5.4

  9. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED5.47AJ02):

  10. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT

  11. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some electromagnetic

  12. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some electromagnetic1AJ01):

  13. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some

  14. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some2012KE01): Some

  15. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some2012KE01): Some5TI07):

  16. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some2012KE01):

  17. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some2012KE01):2002TI10):

  18. LED Street Lighting Conversion Workshop Presentations

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

  19. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrolyze the cellulose and hemicellulose in biomass to free the sugars for conversion. The program is working to identify the most productive, naturally occurring...

  20. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News &...

  1. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

  2. Limits in high efficiency quantum frequency conversion

    E-Print Network [OSTI]

    Nicolás Quesada; J. E. Sipe

    2015-08-13

    Frequency conversion is an enabling process in many quantum information protocols. In this letter we study fundamental limits to high efficiency frequency conversion imposed by time ordering corrections. Using the Magnus expansion, we argue that these corrections, which are usually considered detrimental, can be used to increase the efficiency of conversion under certain circumstances. The corrections induce a nonlinear behaviour in the probability of upconversion as a function of the pump intensity, significantly modifying the sinusoidal Rabi oscillations that are otherwise expected. Finally, by using a simple scaling argument, we explain why cascaded frequency conversion devices attenuate time ordering corrections, allowing the construction of near ideal quantum pulse gates.

  3. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  4. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  5. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  6. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  7. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  8. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  9. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  10. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  11. Conversion Technologies for Advanced Biofuels ? Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for host organism in the presentence of limited six carbon sugars Identify cellular transporters and regulators required for maximum sugar to hydrocarbon conversion ...

  12. Environmental regulatory update table, July 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-08-01

    This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  13. Environmental Regulatory Update Table, December 1989

    SciTech Connect (OSTI)

    Houlbert, L.M.; Langston, M.E. ); Nikbakht, A.; Salk, M.S. )

    1990-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  14. Environmental Regulatory Update Table, December 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1992-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  15. Environmental Regulatory Update Table, September 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-10-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  16. Environmental Regulatory Update Table, November 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-12-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  17. Environmental Regulatory Update Table, October 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  18. Environmental Regulatory Update Table, August 1991

    SciTech Connect (OSTI)

    Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

    1991-09-01

    This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  19. Environmental Regulatory Update Table, October 1990

    SciTech Connect (OSTI)

    Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

    1990-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  20. Table-top job analysis

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The purpose of this Handbook is to establish general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at Department of Energy (DOE) nuclear facilities. TTJA is not the only method of job analysis; however, when conducted properly TTJA can be cost effective, efficient, and self-validating, and represents an effective method of defining job requirements. The table-top job analysis is suggested in the DOE Training Accreditation Program manuals as an acceptable alternative to traditional methods of analyzing job requirements. DOE 5480-20A strongly endorses and recommends it as the preferred method for analyzing jobs for positions addressed by the Order.

  1. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S.End-Use Equipment Tables

  2. Microsoft Word - table_07.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table 7.

  3. Microsoft Word - table_08.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table 7.5

  4. Microsoft Word - table_09.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table 7.50

  5. Microsoft Word - table_13.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table 7.503

  6. Microsoft Word - table_14.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table

  7. Microsoft Word - table_17.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0

  8. Microsoft Word - table_18.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table05

  9. Microsoft Word - table_19.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table057

  10. Microsoft Word - table_20.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0578

  11. Microsoft Word - table_21.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table05789

  12. Microsoft Word - table_22.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table057890

  13. Microsoft Word - table_23.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0578906

  14. Microsoft Word - table_24.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0578906

  15. Microsoft Word - table_26.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy87 Table 27.

  16. Microsoft Word - table_27.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy87 Table 27.98

  17. All Consumption Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural gasU.S.Day)4)

  18. All Consumption Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural gasU.S.Day)4)7)

  19. All Consumption Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural

  20. All Consumption Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural2) June 2014

  1. All Price Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural2) June 20144)

  2. All Price Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural2) June 20144)7)

  3. All Price Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural2) June

  4. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  5. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  6. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    15] O. A. Hamed, "THERMAL PERFORMANCE OF MULTISTAGE FLASHdesa4.aspx. [18] Encon, "Thermal Evaporators," June 2013. [http://www.evaporator.com/thermal-evaporator. [19] Y. Tian

  7. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    This requires no thermal storage tanks, but can have athe need for large thermal storage equipment, the evaporatorinclude analysis of thermal storage. A way of keeping the

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  10. Experimental study of thermal conductivity reduction of silicon-germanium nanocomposite for thermoelastic application

    E-Print Network [OSTI]

    Lee, Hohyun, 1978-

    2005-01-01

    To improve the thermoelectric energy conversion efficiency of silicon germanium (SiGe), two methods were used to decrease the thermal conductivity by increasing phonon boundary scattering at interfaces. In the first method, ...

  11. TABLE53.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

  12. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  13. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

  14. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  15. TABLE54.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

  16. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    (3 pages, 20 kb) CONTENTS PAGES Table 19. Distribution of Peak Watts per Square Foot and Load Factors, 1995 These data are from the 1995 Commercial Buildings Energy...

  17. TableHC2.7.xls

    Gasoline and Diesel Fuel Update (EIA)

    Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 2005 Household Income Housing Units (millions)...

  18. STRATEGIC RESEARCH PLAN TABLE OF CONTENTS

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    SFU STRATEGIC RESEARCH PLAN 2010-2015 #12;TABLE OF CONTENTS Introduction........................................................................................ 2 Major Objectives of the Strategic Research Plan (SRP.................................................................................................27 Impact of the Strategic Research Plan

  19. GIS DEVELOPMENT GUIDE Table of Contents

    E-Print Network [OSTI]

    Ghelli, Giorgio

    GIS DEVELOPMENT GUIDE Volume II Table of Contents SURVEY OF AVAILABLE DATA Introduction ...................................................................................13 EVALUATING GIS HARDWARE AND SOFTWARE Introduction ...................................................................................14 Sources of Information About GIS......................................................14 GIS

  20. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    15. Season of Peak Electricity Demand, Number of Buildings and Floorspace, 1995 Table 16. Electricity Consumption and Conditional Energy Intensity by Season of Peak Demand, 1995...

  1. 2011 Annual Report Table of Contents

    E-Print Network [OSTI]

    ) ...................12 Smart Grid Cyber Security.....................................................13 ICT Supply ChainComputer Security Division 2011 Annual Report #12;Table of Contents Welcome ................................................................. 1 Division Organization .................................................2 The Computer Security

  2. Catalog of Studies Table of Contents

    E-Print Network [OSTI]

    Capogna, Luca

    2014-15 GRADUATE Catalog of Studies TM #12;Table of Contents Welcome to the University of Arkansas ............................. 26 Arkansas Water Resources Center ................................................ 26 Bessie Boehm

  3. Catalog of Studies Table of Contents

    E-Print Network [OSTI]

    Capogna, Luca

    2015-16 GRADUATE Catalog of Studies TM #12;Table of Contents Welcome to the University of Arkansas ............................. 26 Arkansas Water Resources Center ................................................ 26 Bessie Boehm

  4. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    reported for fewer than 20 buildings. Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding RSE column and RSE row factors. * See Glossary for...

  5. I-5 DEIS Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Visual Assessment Appendix F Electrical Effects Appendix G Research on Extremely Low Frequency Electric and Magnetic Fields and Health Appendix H Environmental Justice Tables...

  6. Health Care Buildings : Basic Characteristics Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Basic Characteristics Tables Buildings and Size Data by Basic Characteristics for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million...

  7. PROPERTY TABLES AND CHARTS (SI UNITS) Table A1 Molar mass, gas constant, and

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Table A­20 Ideal-gas properties of carbon dioxide, CO2 Table A­21 Ideal-gas properties of carbon.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304.2 7.39 0Appendix 1 PROPERTY TABLES AND CHARTS (SI UNITS) Table A­1 Molar mass, gas constant, and critical

  8. IRA Pivot Table Review Using Analyze to Modify Reports

    E-Print Network [OSTI]

    1 IRA Pivot Table Review and Using Analyze to Modify Reports For help, email Financial.Reports in a downloadable table) and summarizes them at a higher level using a defined structure. For help, email Financial.Reports@dartmouth.edu Grand Total Section is a pivot table of the detail in the downloadable table or report table. #12;3 What

  9. Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  10. Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses

    E-Print Network [OSTI]

    Kane, Shaun K.

    Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

  11. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  12. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    Castrejon-Pita, A A

    2006-01-01

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  13. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    A. A. Castrejon-Pita; G. Huelsz

    2006-10-12

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  14. Unit Conversion Factors Quantity Equivalent Values

    E-Print Network [OSTI]

    Ashurst, W. Robert

    Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

  15. The high conversion LC-Fining process

    SciTech Connect (OSTI)

    VanDriesen, R.P.; Strangio, V.A.; Rhoe, A.; Kolstad, J.J.

    1986-01-01

    Residual oil hydrocracking has been practiced at moderate conversions for many years on a wide range of feedstocks. Processes utilizing expanded bed reactors have been proven to be effective in the hydrocracking of these heavy residual feedstocks. Conversions up to 60% vacuum bottoms to distillates were routinely obtained in several commercial units. More recently Amoco has been operating an LC-Fining unit in their Texas City refinery at conversions as high as 80%. Normal conversion in this plant however is 60-65%. LC-Fining is an expanded bed resid hydrocracking and hydrodesulfurization process developed by Cities Service and Lummus Crest. There are a number of factors which may limit the conversion in any given plant site. These include compatibility problems with the liquid product, settling out of heavy hydrocarbons in downstream equipment or fouling of the catalyst in the reactor which in the extreme results in coking of the catalyst bed. The operator of a residual hydrocracker maintains conversion at a sufficiently low level to avoid these problems. Recent advances in the LC-Fining technology have led to the development of the High Conversion LC-Fining Process which is capable of operation at conversions of 95% and higher without any of these problems.

  16. Data Conversion in Residue Number System

    E-Print Network [OSTI]

    Zilic, Zeljko

    ;2 Abstract This thesis tackles the problem of data conversion in the Residue Number System (RNS). The RNS has the use of RNS at the applications. In this thesis, we aim at developing efficient schemes for the conversion from the conventional representation to the RNS representation and vice versa. The conventional

  17. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  18. Thermal Transport in Nanoporous Materials for Energy Applications

    E-Print Network [OSTI]

    Fang, Jin

    2012-01-01

    Thermal Conductivity Measurement . . . . . . . . . . . . .Thermal ConductivityThermal Conductivity . . . . . . . . . . . . . . . .Thermal

  19. Supplemental Tables to the Annual Energy Outlook

    Reports and Publications (EIA)

    2015-01-01

    The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

  20. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  1. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  2. 1999 Commercial Building Characteristics--Detailed Tables--Size...

    U.S. Energy Information Administration (EIA) Indexed Site

    Complete Set of 1999 CBECS Detailed Tables Detailed Tables- of Buildings Table B6. Building Size, Number of Buildings b6.pdf (PDF file), b6.xls (Excel spreadsheet file), b6.txt...

  3. 1999 Commercial Buildings Characteristics--Detailed Tables--Conservati...

    U.S. Energy Information Administration (EIA) Indexed Site

    as rowstubs in most detailed tables. Total buildings, total floorspace, and average building size for these categories are shown in Table B1. The PDF and spreadsheet data tables...

  4. Minimum Efficiency Requirements Tables for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency...

  5. 1999 CBECS Summary Table for All Building Activities

    U.S. Energy Information Administration (EIA) Indexed Site

    Tables 1999 Commercial Buildings Consumption Survey SUMMARY TABLES FOR ALL PRINCIPAL BUILDING ACTIVITIES Number of Buildings (thousand) Floorspace (million square feet) Square...

  6. First-principles opacity table of warm dense deuterium forinertial...

    Office of Scientific and Technical Information (OSTI)

    First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications Citation Details In-Document Search Title: First-principles opacity table of...

  7. HORTICULTURAL & FOREST CROPS 2013 Table of Contents 1

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    HORTICULTURAL & FOREST CROPS 2013 Table of Contents 1 1 Regulations and Basic Information Safe Quantities of Water ............................................................................ 1-29 Table 1

  8. HORTICULTURAL & FOREST CROPS 2014 Table of Contents 1

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    HORTICULTURAL & FOREST CROPS 2014 Table of Contents 1 1 Regulations and Basic Information Safe Quantities of Water ............................................................................ 1-29 Table 1

  9. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    of table. 134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per...

  10. Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  11. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  12. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  13. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  14. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  15. Microsoft Word - Permit Table of Contents 2-2014 (2).docx

    Office of Environmental Management (EM)

    Table of Contents February 2014 WIPP Permit - Table of Contents PART 1 - GENERAL PERMIT CONDITIONS ... 1...

  16. Approved Module Information for EE1F03, 2014/5 Module Title/Name: Energy Conversion and Energy

    E-Print Network [OSTI]

    Rebollo-Neira, Laura

    in rotating systems using energy & co-energy. Thermal systems ? Heat energy, gas equations, compressionApproved Module Information for EE1F03, 2014/5 Module Title/Name: Energy Conversion and Energy circuits * Identify the energy changes in magnetic systems. * Apply transformer principles to simple

  17. Laboratory for Alternative Energy Conversion (LAEC),

    E-Print Network [OSTI]

    Bahrami, Majid

    generation rates [1­3], and presents a great chal- lenge to thermal engineers. A number of failure mechanisms to thermal effects. Accord- ing to Arrhenius law, the rate of these failures is approximately doubled failures have thermal roots [4]. In addition, the fluctuations in the system loads can adversely impact

  18. Summer Series 2012 - Conversation with Omar Yaghi

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  19. Summer Series 2012 - Conversation with Kathy Yelick

    SciTech Connect (OSTI)

    Kathy Yelick

    2012-07-23

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  20. The Conversion of Waste to Energy 

    E-Print Network [OSTI]

    John, T.; Cheek, L.

    1980-01-01

    Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

  1. ME 533: Energy Conversion Emily M Ryan

    E-Print Network [OSTI]

    aspects of modern energy conversion systems, including traditional systems such as steam power plants, gas turbines and internal combustion engines and refrigeration systems, and renewable systems such as solar

  2. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  3. Radio frequency dc-dc power conversion

    E-Print Network [OSTI]

    Rivas, Juan, 1976-

    2007-01-01

    THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

  4. Collaboration on Topic Change in Conversation

    E-Print Network [OSTI]

    Howe, Mary

    1991-01-01

    Conversations are cooperatively achieved speech events. Analysis of topic changes shows that topic endings are negotiated by participants over a series of turns, using the following specific types of indicators: summary assessments, acknowledgment...

  5. Electrical power conversion is essential for improving

    E-Print Network [OSTI]

    Langendoen, Koen

    Electrical power conversion is essential for improving energy efficiency and harvesting renewable energy. Diploma Master of Science Embedded Systems Credits 120 ECTS, 24 months Starts in September universities of technology in the Netherlands - Delft University of Technology, Eindhoven University

  6. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Environmental Management (EM)

    Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater...

  7. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  8. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  9. First-of-its-Kind Carbon Capture and Conversion Demonstration...

    Office of Environmental Management (EM)

    First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

  10. Project Profile: Brayton Solar Power Conversion System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Conversion System Project Profile: Brayton Solar Power Conversion System Brayton Energy logo Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the...

  11. 2015 Peer Review Presentations-Thermochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2015 Peer Review Presentations-Thermochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at...

  12. 2015 Peer Review Presentations-Biochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2015 Peer Review Presentations-Biochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the...

  13. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  14. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  15. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer Dynamics in Photocatalytic CO2 Conversion Electron Transfer Dynamics in Photocatalytic CO2 Conversion Coal is the workhorse of our power industry, responsible for...

  16. Composites for Multi-energy conversion & waste heat recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites for Multi-energy conversion & waste heat recovery Composites for Multi-energy conversion & waste heat recovery Discusses development of a composite that transfers energy...

  17. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons:...

  18. Novel Vertimass Catalyst for Conversion of Ethanol and Other...

    Office of Environmental Management (EM)

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Novel Vertimass Catalyst for Conversion of Ethanol...

  19. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  20. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  1. 2011 Biomass Program Platform Peer Review: Biochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

  2. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  3. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  4. August 2011 Environmental Assessment of Ocean Thermal Energy

    E-Print Network [OSTI]

    August 2011 1 Environmental Assessment of Ocean Thermal Energy Conversion in Hawaii Available data and a protocol for baseline monitoring Christina M. Comfort and Luis Vega, Ph.D. Hawaii National Marine Renewable Energy Center Hawaii Natural Energy Institute University of Hawaii at Manoa Honolulu, HI ccomfort

  5. Methods of using thermal tolerant avicelase from Acidothermus cellulolyticus

    DOE Patents [OSTI]

    Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Ding, Shih-You (Golden, CO); Himmel, Michael E. (Golden, CO)

    2011-04-26

    The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus, and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

  6. Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove

    E-Print Network [OSTI]

    Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove Solar Thermal Group technical pathways for biomass gasification and shows their advantages and disadvantages especially in connection with the use of solar heat as energy source for the conversion reaction. Biomass gasification

  7. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  8. Section 4. Inventory Table of Contents

    E-Print Network [OSTI]

    Section 4. Inventory Table of Contents 4.1 Existing Legal Protections Protections Level Name Clean Water Act Endangered Species Act Migratory Bird Treaty Act National Environmental State Instream Water Rights ­ Oregon Water Resources Department Morrow County Zoning Ordinance ­ Morrow

  9. Volume III, Chapter 4 TABLE OF CONTENTS

    E-Print Network [OSTI]

    Volume III, Chapter 4 Eulachon #12;TABLE OF CONTENTS 4.0 EULACHON (Thaleichthys pacificus..................................................................................................................... 4-4 4.1.5 Movements in Fresh Water ........................................................... 4-8 4.4.1 Water Development

  10. TableHC5.13.xls

    Gasoline and Diesel Fuel Update (EIA)

    to 1989 1990 to 1999 2000 to 2005 Table HC5.13 Lighting Usage Indicators by Year of Construction, 2005 Year of Construction Housing Units (millions) Before 1940 1940 to 1949 1950...

  11. TABLE OF CONTENTS Hand and Power Tools

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 30 Nov 14 13-i Section 13 TABLE OF CONTENTS Hand and Power Tools Section: Page 13.A-4 13.D Pneumatic Power Tools ................................................................................. 13-5 13.E Explosive-Actuated Tools

  12. TableHC2.12.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Q 0.3 Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 2005 Household Income Housing Units (millions)...

  13. Laboratory Safety Manual Table of Contents

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Safety Manual Table of Contents I. Emergency Procedures a. Laboratory Contact Information b. Location of Laboratory Emergency Equipment c. Laboratory Hazard and Evacuation Maps d. University Emergency Procedures II. University Policies and Procedures a. Rice University Laboratory Safety

  14. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  15. Technical Note/ Improved Water Table Dynamics in MODFLOW

    E-Print Network [OSTI]

    Barrash, Warren

    Technical Note/ Improved Water Table Dynamics in MODFLOW by Tom Clemo1 Abstract The standard as the location of a cell node. Simulations of a dynamic water table can be improved if the node of a cell containing the water table is located at the water table rather than at the center of the cell. The LPF

  16. Effects of thermal fluctuations on thermal inflation

    E-Print Network [OSTI]

    Takashi Hiramatsu; Yuhei Miyamoto; Jun'ichi Yokoyama

    2014-12-25

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  17. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels

    SciTech Connect (OSTI)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

    2014-03-31

    This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance and destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  19. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  1. Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics for the alluvium (Stephens et al.).

    E-Print Network [OSTI]

    A-1 Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics Deviation .1708 4.274 28.95 Harmonic Mean Number of Observations 9 8 8 2 2 2 2 2 Table A2. Hydraulic.3×10-5 Number of Observations 10 10 10 34 34 4 4 4 #12;A-2 Table A3. Hydraulic properties statistics

  2. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  3. DNA Engine Thermal Cycler

    E-Print Network [OSTI]

    Raizada, Manish N.

    ® Peltier Thermal Cycler PTC-0200 DNA Engine Cycler Operations Manual Version 4.0 #12;ii Tech Support: 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi The DNA Engine® Peltier Thermal Cycler Introduction

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  5. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  6. Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda

    E-Print Network [OSTI]

    Novak Jr., Gordon S.

    Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda Department of Computer Sciences conversion and unit checking in a programming language is described. Index Terms -- unit conversion, unit if the type system does not include units of measurement. Conversion of units must be done explicitly

  7. ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported

    E-Print Network [OSTI]

    ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

  8. Strong converse theorems using Rényi entropies

    E-Print Network [OSTI]

    Felix Leditzky; Nilanjana Datta

    2015-06-08

    We use a R\\'enyi entropy approach to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [arXiv:1404.5940] to prove the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the $(e,q)$-plane, where $e$ and $q$ denote the entanglement cost and quantum communication cost, respectively. This extends a recent strong converse theorem for the quantum communication cost of state redistribution, proved by Berta et al. [arXiv:1409.4338]. For the other tasks as well, we provide new proofs for strong converse theorems which were previously established using smooth entropies.

  9. 9. Table Definition in SQL 9-1 Part 9: Table Definition

    E-Print Network [OSTI]

    Brass, Stefan

    9. Table Definition in SQL 9-1 Part 9: Table Definition References: · Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999. Chap. 8, "SQL -- The Relational Database Standard" · Kemper/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison-Wesley, 1997. · van der Lans: SQL, Der ISO

  10. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  11. A Personalized System for Conversational Recommendations

    E-Print Network [OSTI]

    Goker, M H; Thompson, C A; 10.1613/jair.1318

    2011-01-01

    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and nu...

  12. Optical Design Considerations for High Conversion Efficiency in Photovoltaics

    E-Print Network [OSTI]

    Ganapati, Vidya

    2015-01-01

    Efficiency of Best Multi-BandgapReaching Carnot Efficiency . . . . . . . . . . . . . . . . .x List of Tables Efficiency of Best Dual Bandgap

  13. Zachary-Fort Lauderdale pipeline construction and conversion project: final supplement to final environmental impact statement. Docket No. CP74-192

    SciTech Connect (OSTI)

    None

    1980-05-01

    This Final Supplement to the Final Environmental Impact Statement (Final Supplement) evaluates the economic, engineering, and environmental aspects of newly developed alternatives to an abandonment/conversion project proposed by Florida Gas Transmission Company (Florida Gas). It also updates the staff's previous FEIS and studies revisions to the original proposal. Wherever possible, the staff has adopted portions of its previous FEIS in lieu of reprinting portions of that analysis which require no change. 60 references, 8 figures, 35 tables.

  14. Thermal Regimes of Northeast Streams

    E-Print Network [OSTI]

    Thermal Loading (USGS) Stormwater and Streams ­ Optimizing Stormwater Management to Protect the Thermal

  15. 2009 Biochemical Conversion Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  16. Polarization conversion loss in birefringent crystalline resonators

    E-Print Network [OSTI]

    Polarization conversion loss in birefringent crystalline resonators Ivan S. Grudinin,* Guoping Lin gallery modes in birefringent crystalline resonators are investigated. We experimentally investigate://dx.doi.org/10.1364/OL.38.002410 Crystalline whispering gallery mode (WGM) resonators are known for compact size

  17. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  18. Power Conversion APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Efficiency for different steam cycles. 17.2 Close cycle gas turbine: The closed cycle gas turbine has. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

  19. ENERGY SERIES "Emerging High Power Conversion Technologies"

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "Emerging High Power Conversion Technologies" Dujic Drazen Professor, Power of embedded renewable energy sources. Whatever the renewable source of the prime energy is (wind, solar, hydro, storage or use. This is where power electronics come into a play, as key enabling technology for flexible

  20. Conversational Programming in Action Alexander Repenning

    E-Print Network [OSTI]

    Repenning, Alexander

    Conversational Programming in Action Alexander Repenning AgentSheets Inc. Boulder 80301, Colorado.0 culture, end-user programming, which is programming by end users with limited, if any, formal programming programming languages such as Logo have made programming substantially more accessible to end users. More