Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

2

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

3

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

4

22 - Conversion Factors  

Science Journals Connector (OSTI)

Abstract This chapter details the viscosity and pressure conversion chart. To convert absolute or dynamic viscosity from one set of units to another, one must locate the given set of units in the left-hand column then multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also explains that to convert kinematic viscosity from one set of units to another, one must locate the given set of units in the left-hand column and multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also defines how the conversion from natural gas to other fuels has progressed from possibility to reality for many companies and will become necessary for many others in months and years ahead. Fuels that are considered practical replacements for gas include coal, heavy fuel oils, middle distillates (such as kerosine–typeturbo fuel and burner fuel oils) and liquefied petroleum gas.

2014-01-01T23:59:59.000Z

5

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

1980. Ocean Thermal Energy Conversion Draft ProgrammaticPlan. Ocean Thermal Energy Conversion. U.S. DOE Assistantl OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENT

Sands, M.Dale

2013-01-01T23:59:59.000Z

6

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

of ocean thermal energy conversion technology. U.S. DOE.ocean thermal energy conversion. A preliminary engineeringCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

7

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

Commercial ocean thermal energy conversion (OTEC) plants byFifth Ocean Thermal Energy Conversion Conference, February1980. Ocean thermal energy conversion (OTEC) pilot plant

Sullivan, S.M.

2014-01-01T23:59:59.000Z

8

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.Sixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

9

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Nanoporous Thermal-to-Electrical Energy Conversion System (of Wasted Energy : Thermal to Electrical Energy Conversion AArticles: 1. “ Thermal to electrical energy conversion” , Yu

Lim, Hyuck

2011-01-01T23:59:59.000Z

10

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process Energy Conversion. At first, OTEC plantships providing electricity, via submarine power cables, to shore

11

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990’s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

12

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

13

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

14

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS  

E-Print Network (OSTI)

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS FOR THE 2014 FISHING YEAR NOAA FISHERIES, ALASKA via the GAF electronic reporting system. If no GAF were harvested in a year, the conversion factor is the first calendar year that GAF regulations will be in effect. Therefore, the conversion factors are based

15

2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors  

E-Print Network (OSTI)

with the standard conversion factors at Annex 1. If, however, you export energy or heat to another business (or2008 Guidelines to Defra's GHG Conversion Factors 2008 Guidelines to Defra's GHG Conversion Factors yellow = Calculation results Page 1 of 15 #12;2008 Guidelines to Defra's GHG Conversion Factors Annex 1

16

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega or other energy carriers to be delivered to shore... 13luisvega@hawaii.edu #12;US Federal Government OTEC period estimated at 3 to 4 years. #12;luisvega@hawaii.edu 20 Energy Carriers · OTEC energy could

17

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network (OSTI)

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramOcean Thermal Energy Conversion (OTEC), U.S. Department offor Ocean Thermal Energy Conversion (OTEC) plants. Argonne,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

18

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

19

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

20

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

of an open cycle ocean thermal difference power plant. M.S.screens for ocean thermal energy conversion power plants.1958. Ocean cooling water system for 800 MW power station.

Sands, M. D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Unit Conversion Factors Quantity Equivalent Values  

E-Print Network (OSTI)

Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2.921 inHg at 0 C Energy 1 J = 1 N·m = 107 ergs = 107 dyne·cm = 2.778�10-7 kW·h 1 J = 0.23901 cal = 0·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

Ashurst, W. Robert

22

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

23

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

24

Nominal Performance Biosphere Dose Conversion Factor Analysis  

SciTech Connect

This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from drinking water for beta- and photon-emitting radionuclides. Another objective of this analysis was to re-qualify the output of the previous revision (BSC 2003 [DIRS 164403]).

M. Wasiolek

2004-09-08T23:59:59.000Z

25

Nominal Performance Biosphere Dose Conversion Factor Analysis  

SciTech Connect

This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states (present day, monsoon, and glacial transition) considered in the TSPA-LA, as well as conversion factors for compliance evaluation with the groundwater protection standards. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from drinking water for beta- and photon-emitting radionuclides.

M.A. Wasiolek

2005-04-28T23:59:59.000Z

26

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network (OSTI)

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means

New Hampshire, University of

27

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherOffice of Solar Power Applications. Division of Ocean Energy

Sullivan, S.M.

2014-01-01T23:59:59.000Z

28

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherpower from the temperature differential between warm surface and cold deep-ocean

Sullivan, S.M.

2014-01-01T23:59:59.000Z

29

Energy Down-Conversion and Thermalization in Metal Absorbers  

Science Journals Connector (OSTI)

There are the two significant factors associated with down-conversion phonons. The first is the dependence of the energy loss on the distance of the absorption ... from the escape interface. A photon of energy E....

A. Kozorezov

2012-05-01T23:59:59.000Z

30

Disruptive Event Biosphere Dose Conversion Factor Analysis  

SciTech Connect

This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). For the volcanic ash exposure scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process model for this scenario uses the surface deposition of contaminated ash as the source of radionuclides in the biosphere. The initial atmospheric transport and dispersion of the ash as well as its subsequent redistribution by fluvial and aeolian processes are not addressed within the biosphere model. These processes influence the value of the source term that is calculated elsewhere and then combined with the BDCFs in the TSPA model to calculate expected dose to the receptor. Another objective of this analysis was to re-qualify the output of the previous revision (BSC 2003 [DIRS 163958]).

M. Wasiolek

2004-09-08T23:59:59.000Z

31

Thermal energy conversion to motive power  

SciTech Connect

Performance evaluations of both ideal and actual organic Rankine cycle (ORC) and steam Rankine cycles (SRC) are presented for systems that may be candidates for Solar Total Energy Systems (STES). Many organic fluids and heat engines (turbines or expanders) are being developed; therefore, performance of a few representative ORCs are evaluated. The electrical power outputs range from several kW to <10 MW with maximum cycle temperatures of 482/sup 0/C (900 F). Conclusions from basic Rankine cycle analyses are that the Carnot cycle concept should not be used as a standard of comparison for different cycle fluids, even when they are operating at the same inlet and exhaust temperatures. The ideal Rankine cycle with the maximum conversion efficiency, when based on exact physical properties of fluids, should provide a better standard for actual cycles. Three sets of maximum (ideal) Rankine cycle efficiency (n/sub r/) curves are estimated for steam and several organic fluids for exhaust temperatures of 38/sup 0/C, 100/sup 0/C, and 149/sup 0/C (100 F, 212 F, and 300F). These curves of n/sub r/ versus peak temperature at the expander inlet are referred to as Criterion Curves for basic Rankine cycles, in which corresponding inlet pressures are selected such that n/sub r/ will be a maximum. Basic cycle efficiencies indicate some fluids preferred for solar total energy applications.

Meador, J.T.

1980-01-01T23:59:59.000Z

32

Disruptive Event Biosphere Doser Conversion Factor Analysis  

SciTech Connect

The purpose of this report was to document the process leading to, and the results of, development of radionuclide-, exposure scenario-, and ash thickness-specific Biosphere Dose Conversion Factors (BDCFs) for the postulated postclosure extrusive igneous event (volcanic eruption) at Yucca Mountain. BDCF calculations were done for seventeen radionuclides. The selection of radionuclides included those that may be significant dose contributors during the compliance period of up to 10,000 years, as well as radionuclides of importance for up to 1 million years postclosure. The approach documented in this report takes into account human exposure during three different phases at the time of, and after, volcanic eruption. Calculations of disruptive event BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. The pathway analysis included consideration of different exposure pathway's contribution to the BDCFs. BDCFs for volcanic eruption, when combined with the concentration of radioactivity deposited by eruption on the soil surface, allow calculation of potential radiation doses to the receptor of interest. Calculation of radioactivity deposition is outside the scope of this report and so is the transport of contaminated ash from the volcano to the location of the receptor. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA), in which doses are calculated to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

M. Wasiolek

2000-12-28T23:59:59.000Z

33

Nominal Performance Biosphere Dose Conversion Factor Analysis  

SciTech Connect

The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

Wasiolek, Maryla A.

2000-12-21T23:59:59.000Z

34

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents (OSTI)

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

35

Release of Inorganic Constituents from Leached Biomass during Thermal Conversion  

Science Journals Connector (OSTI)

Release of Inorganic Constituents from Leached Biomass during Thermal Conversion ... This suggests that while leaching reduces fuel nitrogen, it may also affect the nitrogen combustion chemistry in that a larger fraction of the fuel-bound nitrogen was converted to NO(g) during combustion of the leached samples compared to the unleached samples. ... Six biomasses with different chemical compositions ... ...

D. C. Dayton; B. M. Jenkins; S. Q. Turn; R. R. Bakker; R. B. Williams; D. Belle-Oudry; L. M. Hill

1999-04-28T23:59:59.000Z

36

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )...

37

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion COUNTRY NOTES  

E-Print Network (OSTI)

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 573 and personal communication. Valuable inputs were provided by Don Lennard of Ocean Thermal Energy Conversion in the technology. #12;2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 574

38

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORTto potential Ocean Thermal Energy Conversion (OTEC) sites inOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,

Commins, M.L.

2010-01-01T23:59:59.000Z

39

VOICE CONVERSION BASED ON NON-NEGATIVE MATRIX FACTORIZATION USING PHONEME-CATEGORIZED DICTIONARY  

E-Print Network (OSTI)

VOICE CONVERSION BASED ON NON-NEGATIVE MATRIX FACTORIZATION USING PHONEME-CATEGORIZED DICTIONARY using Non-negative matrix factorization (NMF) is employed for spectral conversion between different conversion, sparse representation, non- negative matrix factorization, sub-dictionary 1. INTRODUCTION

Takiguchi, Tetsuya

40

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Proceedings of the Ocean Thermal Energy Conversion...Claude, G. 1930. Power from the tropical seas...Metz, W. D. 1977. Ocean thermal energy: the biggest gamble in solar power. Science 198:178-180...studies, p. 1-53. In Ocean Thermal Energy Conversion...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Is G a conversion factor or a fundamental unit?  

E-Print Network (OSTI)

By using fundamental units c, h, G as conversion factors one can easily transform the dimensions of all observables. In particular one can make them all ``geometrical'', or dimensionless. However this has no impact on the fact that there are three fundamental units, G being one of them. Only experiment can tell us whether G is basically fundamental.

G. Fiorentini; L. Okun; M. Vysotsky

2001-12-04T23:59:59.000Z

42

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

43

Department for Environment, Food and Rural Affairs Guidelines to Defra's Greenhouse Gas Conversion Factors for  

E-Print Network (OSTI)

Factors for Company Reporting June 2008 What are Greenhouse Gas Conversion Factors? These conversion of activities, including energy use and transport activities Who should use these factors? These factors by organisations or individuals overseas as the conversion factors are specific to the UK. What should I use

44

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal Energy...

45

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Press Inc., New York. 14. Hirshman...Ocean Thermal Energy Conversion...Press Inc., New York. 24. Mathis...Ocean thermal energy: the biggest...Department of Energy, part II. U...Pergamon Press, New York. 28. Perrigo...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

46

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network (OSTI)

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France. Thermophotovoltaic devices are energy-conversion , IR sensing and spectroscopy11,12 and has paved the way to a new generation of NTPV energy-conversion

Paris-Sud XI, Université de

47

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties  

E-Print Network (OSTI)

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface and as an energy conversion technology. Aviram and Ratner's revolutionary suggestion that molecules could behave

Malen, Jonathan A.

48

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC)  

Energy.gov (U.S. Department of Energy (DOE))

Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion

49

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

density, making direct thermal energy storage methods, e.g.reduced. Conventional thermal energy harvesting and storageharvesting, storage, and utilization of thermal energy has

Lim, Hyuck

2011-01-01T23:59:59.000Z

50

Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies  

Science Journals Connector (OSTI)

Photovoltaic and solar-thermal are two conversion technologies receiving a great deal of attention. ... Solar-thermal conversion uses the full solar spectrum and generates electricity by conventional electromagnetic induction methods. ... Resource and environmental impact considerations will play an increasingly important role in reaching decisions concerning the practicality of thermoelectric power generation systems. ...

Ming Xie; Dieter M. Gruen

2010-03-02T23:59:59.000Z

51

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...publication 23 July 1979 A project to investigate biofouling...to ocean thermal energy conversion heat exchangers...in ocean thermal energy conversion heat exchangers...for man to harvest solar energy involves exploitation...exchanger units. The project was conducted from...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

52

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

53

Economics of Ocean Thermal Energy Conversion Luis A. Vega, Ph.D.  

E-Print Network (OSTI)

Economics of Ocean Thermal Energy Conversion (OTEC) by Luis A. Vega, Ph.D. Published and 100 MW Plants 15 Co-Products of OTEC 16 OTEC Energy Carriers 19 Externalities in the Production Thermal Energy Conversion (OTEC) Luis A. Vega, Ph.D.1, 2 Abstract A straightforward analytical model

54

2008 Guidelines to Defra's GHG Conversion Methodology Paper for Transport Emission Factors  

E-Print Network (OSTI)

2008 Guidelines to Defra's GHG Conversion Factors: Methodology Paper for Transport Emission Factors by the Department for Environment, Food and Rural Affairs #12;2008 Guidelines to Defra's GHG Conversion Factors and to update the Guidelines to Defra's Greenhouse Gas (GHG) Conversion Factors, which represent the current

55

2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting  

E-Print Network (OSTI)

2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors October 2009 www.defra.gov.uk #12;2009 Guidelines to Defra / DECC's GHG Conversion Factors and Rural Affairs #12;2009 Guidelines to Defra / DECC's GHG Conversion Factors: Methodology Paper

56

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

power plants, solar thermal energy, geothermal energy, oceanpower plants, distributed solar thermal energy, geo/ocean-power plants [59]. Other LGH sources include solar thermal energy, geo-thermal energy, ocean

Lim, Hyuck

2011-01-01T23:59:59.000Z

57

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

58

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

59

Study of thermal conversion of naphthenic oils on the basis of analysis of their middle fractions  

SciTech Connect

The composition of the middle fractions of the thermal decomposition products of naphthenic oils obtained at 300, 350, and 400{degrees}C was studied. It was shown that the character of conversions of petroleum hydrocarbons is governed by the intensity of thermal treatment and by the chemical nature of the starting oil. The removal of aliphatic chains from high-boiling components of the petroleum at a temperature below 350{degrees}C results in the new formation of linear and isoprene alkanes in their middle fractions similarly to the catagenic transformations of oils in deposits. The rise in temperature up to 400{degrees}C enhances the destruction processes related to extension of the reactions of the homolytic cleavage of C-C bonds in aliphatic chains. This results in practically complete destruction of isoprene alkanes and in predominance of low-molecular homologs among the linear alkanes. On the basis of the results obtained it can be supposed that the thermal treatment is an important factor in the conversion of naphthenic oils into paraffin oils. 10 refs., 2 figs., 3 tabs.

Kayukova, G.P.; Kurbskii, G.P.; Mutalapova, R.I. [A.E. Arbuzov Inst. of Organic and Physical Chemistry, Kazan (Russian Federation)] [and others

1994-05-10T23:59:59.000Z

60

2010 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting  

E-Print Network (OSTI)

2010 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors October 2010 www.defra.gov.uk #12;2010 Guidelines to Defra / DECCs GHG Conversion Factors by the Department for Environment, Food and Rural Affairs #12;2010 Guidelines to Defra / DECCs GHG Conversion

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Guidelines to Defra's GHG conversion factors for company reporting Annexes updated June 2007  

E-Print Network (OSTI)

with the standard conversion factors at Annex 1. If, however, you export energy or heat to another business (or2007 Guidelines to Defra's GHG conversion factors for company reporting Annexes updated June 2007 results #12;Annex 1 - Fuel Conversion Factors Last updated: Jun-07 Table 1 Fuel Type Amount used per year

62

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

biological thermal energy, geothermal energy, wasted heatpower plants, solar thermal energy, geothermal energy, oceansolar radiation, and the geothermal energy. [16] Fig. 1.1.

Lim, Hyuck

2011-01-01T23:59:59.000Z

63

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

solar radiation, and the geothermal energy. [16] Fig. 1.1.thermal energy, geothermal energy, wasted heat from athermal energy, geothermal energy, ocean thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

64

The Dose Rate Conversion Factors for Nuclear Fallout  

SciTech Connect

In a previous paper, the composite exposure rate conversion factor (ECF) for nuclear fallout was calculated using a simple theoretical photon-transport model. The theoretical model was used to fill in the gaps in the FGR-12 table generated by ORNL. The FGR-12 table contains the individual conversion factors for approximate 1000 radionuclides. However, in order to calculate the exposure rate during the first 30 minutes following a nuclear detonation, the conversion factors for approximately 2000 radionuclides are needed. From a human-effects standpoint, it is also necessary to have the dose rate conversion factors (DCFs) for all 2000 radionuclides. The DCFs are used to predict the whole-body dose rates that would occur if a human were standing in a radiation field of known exposure rate. As calculated by ORNL, the whole-body dose rate (rem/hr) is approximately 70% of the exposure rate (R/hr) at one meter above the surface. Hence, the individual DCFs could be estimated by multiplying the individual ECFs by 0.7. Although this is a handy rule-of-thumb, a more consistent (and perhaps, more accurate) method of estimating the individual DCFs for the missing radionuclides in the FGR-12 table is to use the linear relationship between DCF and total gamma energy released per decay. This relationship is shown in Figure 1. The DCFs for individual organs in the body can also be estimated from the estimated whole-body DCF. Using the DCFs given FGR-12, the ratio of the organ-specific DCFs to the whole-body DCF were plotted as a function of the whole-body DCF. From these plots, the asymptotic ratios were obtained (see Table 1). Using these asymptotic ratios, the organ-specific DCFs can be estimated using the estimated whole-body DCF for each of the missing radionuclides in the FGR-12 table. Although this procedure for estimating the organ-specific DCFs may over-estimate the value for some low gamma-energy emitters, having a finite value for the organ-specific DCFs in the table is probably better than having no value at all. A summary of the complete ECF and DCF values are given in Table 2.

Spriggs, G D

2009-02-13T23:59:59.000Z

65

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

Energy.gov (U.S. Department of Energy (DOE))

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

66

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid...

67

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the...

68

Science Highlights- Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Abstracts and Highlight Slides Efficiency of Thermoelectric Energy Conversion in Biphenyl-dithiol Junctions: Effect of Electron-Phonon Interactions Plasmonic Backscattering...

69

Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Experimental Study  

Science Journals Connector (OSTI)

The direct non-oxidative conversion of methane to higher hydrocarbons in non-thermal plasma, namely dielectric barrier discharge and corona discharge, has been investigated experimentally at atmospheric pressure....

Yun Yang

2003-06-01T23:59:59.000Z

70

Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass  

Science Journals Connector (OSTI)

Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass ... Six biomasses with different chemical compositions ... ... Therefore, different types of woody biomass and biomass residues (shells) were thermochemically converted in an atmospheric flow ... ...

Jacob N. Knudsen; Peter A. Jensen; Weigang Lin; Kim Dam-Johansen

2005-02-10T23:59:59.000Z

71

Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion  

Science Journals Connector (OSTI)

Selective coatings consisting of a bright nickel interlayer and black nickel overlayer for solar-to-thermal energy conversion have been electrodeposited onto stainless steel...2, NiOOH, Ni2O3..., NiO, water and m...

F. I. Lizama-Tzec; J. D. Macías…

2014-08-01T23:59:59.000Z

72

Quantum-coupled single-electron thermal to electric conversion scheme  

E-Print Network (OSTI)

Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Microgap thermophotovoltaics take advantage of evanescent ...

Wu, D. M.

73

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network (OSTI)

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two. The performance of energy conversion processes can be evaluated using several types of efficiencies.2 Nowadays Gross,*, Ad Verkooijen, and Signe Kjelstrup, Department of Process & Energy, Delft Uni

Kjelstrup, Signe

74

Science Highlights- Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission in Type-II GaSbGaAs Quantum Dots and Prospects for intermediate band solar energy conversion Angular Selective Semi-Transparent Photovoltaics Mechanisms of Nanorod...

75

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an...

76

Science Highlights- Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Physics Letters, 97, 171908 (2010) Sb2Te3 is a key material for thermoelectric energy conversion technology. We have found that the crystal structure of Sb2Te3 thin...

77

Biosphere dose conversion Factor Importance and Sensitivity Analysis  

SciTech Connect

This report presents importance and sensitivity analysis for the environmental radiation model for Yucca Mountain, Nevada (ERMYN). ERMYN is a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis concerns the output of the model, biosphere dose conversion factors (BDCFs) for the groundwater, and the volcanic ash exposure scenarios. It identifies important processes and parameters that influence the BDCF values and distributions, enhances understanding of the relative importance of the physical and environmental processes on the outcome of the biosphere model, includes a detailed pathway analysis for key radionuclides, and evaluates the appropriateness of selected parameter values that are not site-specific or have large uncertainty.

M. Wasiolek

2004-10-15T23:59:59.000Z

78

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance Heat dissipation in Atomic-Scale Junctions A General Strategy to...

79

Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors  

SciTech Connect

An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

Ilas, Dan [ORNL] ORNL

2013-10-01T23:59:59.000Z

80

MULTIMODAL VOICE CONVERSION USING NON-NEGATIVE MATRIX FACTORIZATION IN NOISY ENVIRONMENTS  

E-Print Network (OSTI)

MULTIMODAL VOICE CONVERSION USING NON-NEGATIVE MATRIX FACTORIZATION IN NOISY ENVIRONMENTS Kenta 1-1, Rokkodai, Nada, Kobe, 6578501, Japan ABSTRACT This paper presents a multimodal voice conversion with that of a conventional Gaussian Mixture Model (GMM)-based method. Index Terms-- voice conversion, multimodal, image

Takiguchi, Tetsuya

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Voice Conversion based on Non-negative Matrix Factorization in Noisy Environments  

E-Print Network (OSTI)

Voice Conversion based on Non-negative Matrix Factorization in Noisy Environments Takao Fujii, Ryo conversion (VC) tech- nique for noisy environments. We prepared parallel exemplars (dictionary) that consist. In the proposed method, a Gaussian Mixture Model (GMM) -based conversion method is also applied to the feature

Takiguchi, Tetsuya

82

Energy Conversion of Fully Random Thermal Relaxation Times  

E-Print Network (OSTI)

Thermodynamic random processes in thermal systems are generally associated with one or several relaxation times, the inverse of which are formally homogeneous with energy. Here, we show in a precise way that the periodic modification of relaxation times during temperature-constant thermodynamic cycles can be thermodynamically beneficiary to the operator. This result holds as long as the operator who adjusts relaxation times does not attempt to control the randomness associated with relaxation times itself as a Maxwell 'demon' would do. Indirectly, our result also shows that thermal randomness appears satisfactorily described within a conventional quantum-statistical framework, and that the attempts advocated notably by Ilya Prigogine to go beyond a Hilbert space description of quantum statistics do not seem justified - at least according to the present state of our knowledge. Fundamental interpretation of randomness, either thermal or quantum mechanical, is briefly discussed.

François Barriquand

2005-07-26T23:59:59.000Z

83

Potential environmental consequences of ocean thermal energy conversion (OTEC) plants. A workshop  

SciTech Connect

The concept of generating electrical power from the temperature difference between surface and deep ocean waters was advanced over a century ago. A pilot plant was constructed in the Caribbean during the 1920's but commercialization did not follow. The US Department of Energy (DOE) earlier planned to construct a single operational 10MWe Ocean Thermal Energy Conversion (OTEC) plant by 1986. However, Public Law P.L.-96-310, the Ocean Thermal Energy Conversion Research, Development and Demonstration Act, and P.L.-96-320, the Ocean Thermal Energy Conversion Act of 1980, now call for acceleration of the development of OTEC plants, with capacities of 100 MWe in 1986, 500 MWe in 1989, and 10,000 MWe by 1999 and provide for licensing and permitting and loan guarantees after the technology has been demonstrated.

Walsh, J.J. (ed.)

1981-05-01T23:59:59.000Z

84

INDIVIDUALITY-PRESERVING VOICE CONVERSION FOR ARTICULATION DISORDERS BASED ON NON-NEGATIVE MATRIX FACTORIZATION  

E-Print Network (OSTI)

- based spectral conversion using Non-negative Matrix Factorization (NMF) is applied to a voiceINDIVIDUALITY-PRESERVING VOICE CONVERSION FOR ARTICULATION DISORDERS BASED ON NON-NEGATIVE MATRIX FACTORIZATION Ryo AIHARA, Ryoichi TAKASHIMA, Tetsuya TAKIGUCHI, Yasuo ARIKI Graduate School of System

Takiguchi, Tetsuya

85

On the transition from photoluminescence to thermal emission and its implication on solar energy conversion  

E-Print Network (OSTI)

Photoluminescence (PL) is a fundamental light-matter interaction, which conventionally involves the absorption of energetic photon, thermalization and the emission of a red-shifted photon. Conversely, in optical-refrigeration the absorption of low energy photon is followed by endothermic-PL of energetic photon. Both aspects were mainly studied where thermal population is far weaker than photonic excitation, obscuring the generalization of PL and thermal emissions. Here we experimentally study endothermic-PL at high temperatures. In accordance with theory, we show how PL photon rate is conserved with temperature increase, while each photon is blue shifted. Further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also show how endothermic-PL generates orders of magnitude more energetic photons than thermal emission at similar temperatures. Relying on these observations, we propose and theoretically study thermally enhanced PL (TEPL) for highly eff...

Manor, Assaf; Rotschild, Carmel

2014-01-01T23:59:59.000Z

86

Factors Affecting UV-Induced Superhydrophilic Conversion of a TiO2 Surface  

Science Journals Connector (OSTI)

Factors Affecting UV-Induced Superhydrophilic Conversion of a TiO2 Surface ... Particularly, the maximum extrema in spectral dependence of the efficiency of photoinduced hydrophilic conversion correspond to the energies of the first indirect and first direct electronic band-to-band transitions in TiO2. ... To estimate the efficiency of the photoinduced surface hydrophilic conversion, we used two parameters: initial rate of contact angle alteration and initial rate of surface energy alteration. ...

Alexei V. Emeline; Aida V. Rudakova; Munetoshi Sakai; Taketoshi Murakami; Akira Fujishima

2013-05-17T23:59:59.000Z

87

2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC)  

E-Print Network (OSTI)

2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA;2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Introduction Last updated: Aug-11 emissions conversion factors. What are Greenhouse Gas Conversion Factors? These conversion factors allow

88

External dose-rate conversion factors for calculation of dose to the public  

SciTech Connect

This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

Not Available

1988-07-01T23:59:59.000Z

89

The influence of different electricity-to-emissions conversion factors on the choice of insulation materials  

Science Journals Connector (OSTI)

Abstract The current practice of building energy upgrade typically uses thick layers of insulation in order to comply with the energy codes. Similarly, the Norwegian national energy codes for residential buildings are moving towards very low U-values for the building envelope. New and more advanced materials, such as vacuum insulation panels (VIPs) and aerogel, have been presented as alternative solutions to commonly used insulation materials. Both aerogel and \\{VIPs\\} offer very high thermal resistance, which is a favourable characteristic in energy upgrading as the same insulation level can be achieved with thinner insulation layers. This paper presents the results of energy use and lifecycle emissions calculations for three different insulation materials (mineral wool, aerogel, and vacuum insulation panels) used to achieve three different insulation levels (0.18 W/m2 K, 0.15 W/m2 K, and 0.10 W/m2 K) in the energy retrofitting of an apartment building with heat pump in Oslo, Norway. As advanced insulation materials (such as VIP and aerogel) have reported higher embodied emissions per unit of mass than those of mineral wool, a comparison of performances had to be based on equivalent wall U-values rather than same insulation thicknesses. Three different electricity-to-emissions conversion factors (European average value, a model developed at the Research Centre on Zero Emission Buildings – ZEB, and the Norwegian inland production of electricity) are used to evaluate the influence of the lifecycle embodied emissions of each insulation alternative. If the goal is greenhouse gas abatement, the appraisal of buildings based solely on their energy use does not provide a comprehensive picture of the performance of different retrofitting solutions. Results show that the use of the conversion factor for Norwegian inland production of electricity has a strong influence on the choice of which of the three insulation alternatives gives the lowest lifecycle emissions.

Nicola Lolli; Anne Grete Hestnes

2014-01-01T23:59:59.000Z

90

Thermal component of residuum conversion in two-stage coal liquefaction  

SciTech Connect

An experimental investigation was conducted to ascertain the contribution of thermal reactions to the conversion of residuum in the hydroprocessing reactor of two-stage liquefaction processes. Feedstocks prepared from residuum produced at the Wilsonville Advanced Coal Liquefaction Test Facility (ACLTF) and solvents produced by the catalytic hydrotreatment of solvent obtained from the Wilsonville ACLTF were reacted in the absence of a catalyst at temperatures ranging from 720/sup 0/F to 850/sup 0/F. Detailed characterization of the composite feedstock and product samples as well as of three fractions of each obtained by vacuum distillation was performed to ascertain the extent of residuum conversion, heteroatom removal, and hydrogen rearrangement. The results showed that hydrogenation of the solvent portion of the hydrotreater feedstock neither enhances residuum conversion nor results in the transfer of hydrogen to the residuum. Higher reaction temperatures enhanced the removal of sulfur but had little effect on other reactions. The results suggest that the conversion of residuum in the hydroprocessing reactor of two-stage liquefaction processes must occur catalytically rather than thermally. 10 refs., 1 fig., 30 tabs.

Stiegel, G.J.; Lett, R.G.; Cillo, D.L.; Mima, J.A.; Tischer, R.E.; Narain, N.K.

1985-06-01T23:59:59.000Z

91

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

clean and efficient energy conversion in power systems," inSteam Power Plant," in Energy conversion, YG Goswami and Fazeotropic mixture energy conversion," Energy Conversion and

Ho, Tony

2012-01-01T23:59:59.000Z

92

Energy partition and conversion of solar and thermal radiation into sensible and latent heat in a greenhouse under arid conditions  

Science Journals Connector (OSTI)

For a greenhouse thermal analysis, it is essential to know the energy partition and the amount of solar and thermal radiation converted into sensible and latent heat in the greenhouse. Factors that are frequently needed are: efficiency of utilization of incident solar radiation (?), and sensible and latent heat factors (? and ?). Previous studies considered these factors as constant parameters. However, they depend on the environmental conditions inside and outside the greenhouse, plants and soil characteristics, and structure, orientation and location of the greenhouse. Moreover, these factors have not yet been evaluated under the arid climatic conditions of the Arabian Peninsula. In this study, simple energy balance equations were applied to investigate ?, ? and ?; energy partitioning among the greenhouse components; and conversion of solar and thermal radiation into sensible and latent heat. For this study, we used an evaporatively cooled, planted greenhouse with a floor area of 48 m2. The parameters required for the analysis were measured on a sunny, hot summer day. The results showed that value of ? was almost constant (?0.75); whereas the values of ? and ? strongly depended on the net radiation over the canopy (Rna); and could be represented by exponential decay functions of Rna. At a plant density corresponding to a leaf area index (LAI) of 3 and an integrated incident solar energy of 27.7 MJ m?2 d?1, the solar and thermal radiation utilized by the greenhouse components were 20.7 MJ m?2 d?1 and 3.74 MJ m?2 d?1, respectively. About 71% of the utilized radiation was converted to sensible heat and 29% was converted to latent heat absorbed by the inside air. Contributions of the floor, cover and plant surfaces on the sensible heat of the inside air were 38.6%, 48.2% and 13.2%, respectively.

I.M. Al-Helal; A.M. Abdel-Ghany

2011-01-01T23:59:59.000Z

93

Energy content of macrobenthic invertebrates: general conversion factors from weight to energy  

Science Journals Connector (OSTI)

In ecological studies, especially in those dealing with energy circulation in nature, determinations of the energy content of organisms are inevitable. Energy determinations are, however, laborious and time-consuming. Average conversion factors based on different species form various areas and seasons may often be a shortcut for overcoming this problem. To establish general energy conversion factors for aquatic invertebrate groups, we used 376 values of J · mg?1 DW and 255 values of J · mg?1 AFDW, representing 308 and 229 species, respectively. The dry-weight-to-energy factors were highly variable both within and between taxonomic groups, e.g.: Porifera, 6.1 J · mg?1 DW; insect larvae, 22.4 J · mg?1 DW (median values). The energy-conversion factors related to AFDW showed a much smaller dispersion with a minimum median value of 19.7 J · mg?1 AFDW (Ascidiacea) and a maximum of 23.8 J · mg?1 AFDW (insect larvae). Within taxonomic groups, the 95% confidence intervals (AFDW) were only a few percent of the median values. The use of energy-conversion factors based on AFDW is preferable due to their lower dispersion. For aquatic macrobenthic invertebrates, a general conversion factor of 23 J · mg?1 AFDW can be used.

Thomas Brey; Heye Rumohr; Sven Ankar

1988-01-01T23:59:59.000Z

94

Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management  

SciTech Connect

The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B. [eds.

1996-12-31T23:59:59.000Z

95

Calculation of conversion factors for effective dose for various interventional radiology procedures  

SciTech Connect

Purpose: To provide dose-area-product (DAP) to effective dose (E) conversion factors for complete interventional procedures, based on in-the-field clinical measurements of DAP values and using tabulated E/DAP conversion factors for single projections available from the literature. Methods: Nine types of interventional procedures were performed on 84 patients with two angiographic systems. Different calibration curves (with and without patient table attenuation) were calculated for each DAP meter. Clinical and dosimetric parameters were recorded in-the-field for each projection and for all patients, and a conversion factor linking DAP and effective doses was derived for each complete procedure making use of published, Monte Carlo calculated conversion factors for single static projections. Results: Fluoroscopy time and DAP values for the lowest-dose procedure (biliary drainage) were approximately 3-fold and 13-fold lower, respectively, than those for the highest-dose examination (transjugular intrahepatic portosystemic shunt, TIPS). Median E/DAP conversion factors from 0.12 (abdominal percutaneous transluminal angioplasty) to 0.25 (Nephrostomy) mSvGy{sup -1} cm{sup -2} were obtained and good correlations between E and DAP were found for all procedures, with R{sup 2} coefficients ranging from 0.80 (abdominal angiography) to 0.99 (biliary stent insertion, Nephrostomy and TIPS). The DAP values obtained in this study showed general consistency with the values provided in the literature and median E values ranged from 4.0 mSv (biliary drainage) to 49.6 mSv (TIPS). Conclusions: Values of E/DAP conversion factors were derived for each procedure from a comprehensive analysis of projection and dosimetric data: they could provide a good evaluation for the stochastic effects. These results can be obtained by means of a close cooperation between different interventional professionals involved in patient care and dose optimization.

Compagnone, Gaetano; Giampalma, Emanuela; Domenichelli, Sara; Renzulli, Matteo; Golfieri, Rita [Medical Physics Department, S. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138 Bologna (Italy); Radiology Department, S. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138 Bologna (Italy); Medical Physics Department, S. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138 Bologna (Italy); Radiology Department, S. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138 Bologna (Italy)

2012-05-15T23:59:59.000Z

96

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Techniques,” Energy Conversion and Management, 39 (11),and Applications,” Energy Conversion and Management, 45 ,and direct solar energy conversion to work. Focus should be

Coso, Dusan

2013-01-01T23:59:59.000Z

97

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants  

SciTech Connect

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

Bowyer, J.M.

1984-04-15T23:59:59.000Z

98

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants  

SciTech Connect

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

Bowyer, J.M.

1984-04-01T23:59:59.000Z

99

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

SciTech Connect

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

100

Performance analysis of an absorption power cycle for ocean thermal energy conversion  

Science Journals Connector (OSTI)

Abstract An absorption power cycle with two ejectors is proposed for ocean thermal energy conversion. The ammonia–water is used as the working fluid. The ejectors are driven by vapor and solution from the sub-generator. Based on the first and second law, the mathematical model for this cycle is developed and theoretical analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of this cycle. Results show that the absorption temperature is increased by 2.0–6.5 °C by employing the two-stage ejector sub-cycle, which indicates that this proposed cycle can be driven with a lower temperature difference. Further, the thermal efficiency, net thermal efficiency and exergy efficiency of this cycle can reach to 4.17%, 3.10% and 39.92% respectively. Besides, the generation pressure, the heating source temperature, the solution concentration, and the expansion ratio, as well as the entrainment ratio of the first stage ejector have significant effects on the absorption temperature, the thermal efficiency, the exergy efficiency and the exergy loss of this cycle. In addition, 49.80% of exergy loss in this proposed cycle occurs in the generators and reheater, followed by the ejectors of 36.12%.

Han Yuan; Ning Mei; Peilin Zhou

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Molecular line intensities as measures of cloud masses - II. Conversion factors for specific galaxy types  

E-Print Network (OSTI)

We present theoretically-established values of the CO-to-H2 and C-to-H2 conversion factors that may be used to estimate the gas masses of external galaxies. We consider four distinct galaxy types, represented by M51, NGC 6946, M82 and SMC N27. The physical parameters that best represent the conditions within the molecular clouds in each of the galaxy types are estimated using a chi^2 analysis of several observed atomic fine structure and CO rotational lines. This analysis is explored over a wide range of density, radiation field, extinction, and other relevant parameters. Using these estimated physical conditions in methods that we have previously established, CO-to-H2 conversion factors are then computed for CO transitions up to J=9-8. For the conventional CO(1-0) transition, the computed conversion factor varies significantly below and above the canonical value for the Milky Way in the four galaxy types considered. Since atomic carbon emission is now frequently used as a probe of external galaxies, we also present, for the first time, the C-to-H2 conversion factor for this emission in the four galaxy types considered.

T. A. Bell; S. Viti; D. A. Williams

2007-04-19T23:59:59.000Z

102

Comparison of 50-year and 70-year internal-dose-conversion factors  

SciTech Connect

The 50-year inhalation and ingestion dose commitments associated with an acute intake (of a radionuclide) of 3.7 x 10/sup 4/ Bq (1 ..mu..Ci) in one day were compared with the corresponding dose commitments calculated for a 70-year integration period resulting from a chronic intake of the same amount at a rate of 101 Bq/d (0.00274 ..mu..Ci/d) for one year. These values, known as dose conversion factors, estimate the dose accumulated during a given period of time following a unit of intake of a radionuclide. It was demonstrated that the acute intake of 3.7 x 10/sup 4/ Bq in one day and the chronic intake of 101 Bq/d for one year (a total intake of 3.7 x 10/sup 4/ Bq) result in essentially the same dose commitment for a relatively long integration period. Therefore, the comparison of 50-year acute dose conversion factors and 70-year chronic dose conversion factors is essentially only a measure of the additional dose accumulated in the 50 to 70 year period. It was found that for radionuclides with atomic mass less than 200 the percent difference in the 70-year and 50-year dose conversion factors was essentially zero in most cases. Differences of approximately 5 to 50% were obtained for dose conversion factors for most alpha emitters with atomic masses of greater than 200. Comparisons were made on the basis of both organ dose equivalent and effective dose equivalent. The implications and significance of these results are discussed.

Ryan, M.T.; Dunning, D.E. Jr.

1981-03-01T23:59:59.000Z

103

A computational analysis of the evaporator/artery of an alkali metal thermal to electric conversion (AMTEC) PX series cell  

E-Print Network (OSTI)

, while minimizing mass. Current technology, such as Radioisotope Thermoelectric Generators (RTG's) are reliable, but do not supply the power conversion efficiencies desired for future space missions. That leads to Alkali Metal Thermal to Electric...-series cells to generate electricity for the deep space vehicle. The higher efficiency of AMTEC compared to other conversion technologies, such as Radioisotope Thermoelectric Generators (RTG's), results in less energy source material being launched...

Pyrtle, Frank

1999-01-01T23:59:59.000Z

104

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network (OSTI)

Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

Riccardo Messina; Philippe Ben-Abdallah

2012-07-05T23:59:59.000Z

105

Influencing factors on NOX emission level during grate conversion of three pelletized energy crops  

Science Journals Connector (OSTI)

Abstract NOX emission behavior of three different pelletized energy crops, a herbaceous one, Brassica carinata, a short rotation coppice, Populus sp., and a blend of them, was assessed during fixed grate conversion. Measurements of NOX emissions were done at combustion conditions that yielded both thermal efficiency and CO emissions according to the European norm (EN 303-5:2012), and results compared to limits established by the Austrian deviations. Based on the experimental data, NOX results fulfilled the Austrian restrictions except during combustion of brassica, which exhibited the highest Fuel-N content. The Fuel-NOX was identified as the main formation mechanism. An opposite relation was determined between the specific NOX emissions and the Fuel-N conversion ratio obtained between the N-rich and the N-lean fuels tested here. The influence of the air supply (amount and distribution) on the NOX formation was also noticeable. In general, a higher proportion of air increased the specific NOX emissions and the Fuel-N conversion ratio. Possibilities to control the NOX emissions level by air staging were rather limited, particularly, during combustion of brassica and the blend because of their peculiarities as ash-rich fuels with high slag formation risk. For attaining an appropriate conversion of these fuels, primary air requirements substantially increased. Due to limitations found during the energy crops conversion, efforts to minimize the level of NOX emissions identified here for the troublesome fuels tested should be mainly focused on attaining both a properly designed air supply system and the grate temperature control as well as on conditioning the Fuel-N content, for instance, by blending.

Maryori Díaz-Ramírez; Fernando Sebastián; Javier Royo; Adeline Rezeau

2014-01-01T23:59:59.000Z

106

The Metallicity Dependence of the CO-to-H$_2$ Conversion Factor from Observations of Local Group Galaxies  

E-Print Network (OSTI)

High-resolution CO maps of 9 molecular clouds in IC 10 are combined with the new measurement of the distance to this nearby metal poor galaxy to measure accurately the CO-to-H2 conversion factor. The result for IC 10 is combined with published data for four other Local Group galaxies (M31, M33, NGC 6822, the SMC) to trace the dependence of the CO-to-H2 conversion factor on oxygen abundance. These data show conclusively that the CO-to-H$_2$ conversion factor increases as the metallicity of the host galaxy decreases, with the conversion factor increasing by a factor of 4.6 for a factor of 10 decrease in metallicity.

C. D. Wilson

1995-06-20T23:59:59.000Z

107

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor  

Science Journals Connector (OSTI)

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor ... The first design uses optimal control theory to obtain a more uniform distribution of the entropy production. ... This optimized design is found to perform the best, but it requires significant changes in the heating equipment in order to approximately realize the optimal temperature profiles. ...

Leen V. van der Ham; Joachim Gross; Ad Verkooijen; Signe Kjelstrup

2009-08-06T23:59:59.000Z

108

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

on Sustainable thermal Energy Storage Technologies, Part I:2009, “Review on Thermal Energy Storage with Phase Change2002, “Survey of Thermal Energy Storage for Parabolic Trough

Coso, Dusan

2013-01-01T23:59:59.000Z

109

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

Coso, Dusan

2013-01-01T23:59:59.000Z

110

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

111

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

112

Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012  

SciTech Connect

The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

2012-06-30T23:59:59.000Z

113

Dose-rate conversion factors for external exposure to photons and electrons  

SciTech Connect

Dose-rate conversion factors for external exposure to photons and electrons have been calculated for approximately 500 radionuclides of potential importance in environmental radiological assessments. The dose-rate factors were obtained using the DOSFACTER computer code. The results given in this report incorporate calculation of electron dose-rate factors for radiosensitive tissues of the skin, improved estimates of organ dose-rate factors for photons, based on organ doses for monoenergetic sources at the body surface of an exposed individual, and the spectra of scattered photons in air from monoenergetic sources in an infinite, uniformly contaminated atmospheric cloud, calculation of dose-rate factors for other radionuclides in addition to those of interest in the nuclear fuel cycle, and incorporation of updated radioactive decay data for all radionuclides. Dose-rate factors are calculated for three exposure modes - immersion in contaminated air, immersion in contaminated water, and exposure at a height of 1 m above a contaminated ground surface. The report presents the equations used to calculate the external dose-rate factors for photons and electrons, documentation of the revised DOSFACTER computer code, and a complete tabulation of the calculated dose-rate factors. 30 refs., 12 figs.

Kocher, D.C.

1981-08-01T23:59:59.000Z

114

Factors for conversion between human and automatic read-outs of CDMAM images  

SciTech Connect

Purpose: According to the European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) image quality of digital mammography devices has to be assessed using human evaluation of the CDMAM contrast-detail phantom. This is accomplished by the determination of threshold thicknesses of gold disks with different diameters (0.08-2 mm) and revealed to be very time consuming. Therefore a software solution based on a nonprewhitening matched filter (NPW) model was developed at University of Nijmegen. Factors for the conversion from automatic to human readouts have been determined by Young et al.[Proc. SPIE 614206, 1-13 (2006) and Proc. SPIE 6913, 69131C1 (2008)] using a huge amount of data of both human and automatic readouts. These factors depend on the observer groups and are purely phenomenological. The authors present an alternative approach to determine the factors by using the Rose observer model. Methods: Their method uses the Rose theory which gives a relationship between threshold contrast, diameter of the object and number of incident photons. To estimate the conversion factors for the five diameters from 0.2 to 0.5 mm they exposed with five different current-time products which resulted in 25 equations with five unknowns. Results: The theoretical conversion factors (in dependence of the diameters) amounted to be 1.61 {+-} 0.02 (0.2 mm diameter), 1.67 {+-} 0.02 (0.25 mm), 1.85 {+-} 0.02 (0.31 mm), 2.09 {+-} 0.02 (0.4 mm), and 2.28 {+-} 0.02 (0.5 mm). The corresponding phenomenological factors found in literature are 1.74 (0.2 mm), 1.78 (0.25 mm), 1.83 (0.31 mm), 1.88 (0.4 mm), and 1.93 (0.5 mm). Conclusions: They transferred the problem of determining the factors to a well known observer model which has been examined for many years and is also well established. This method reveals to be reproduceable and produces factors comparable to the phenomenological ones.

Figl, Michael; Hoffmann, Rainer; Kaar, Marcus; Semturs, Friedrich; Brasik, Natasa; Birkfellner, Wolfgang; Homolka, Peter; Hummel, Johann [Center for medical Physics and Biomedical Engineering, Medical University of Vienna, Austria A-1090 (Austria); Department of Radiology, Medical University of Vienna, Austria A-1090 (Austria); Center for medical Physics and Biomedical Engineering, Medical University of Vienna, Austria A-1090 (Austria); Center for medical Physics and Biomedical Engineering, Medical University of Vienna, Austria A-1090 and Department of Radio-oncology, Wilhelminenspital, Vienna, Austria A-1160 (Austria)

2011-09-15T23:59:59.000Z

115

5022 Biochemistry 1983, 22, 5022-5028 Conversion of Nerve Growth Factor-Receptor Complexes to a Slowly  

E-Print Network (OSTI)

5022 Biochemistry 1983, 22, 5022-5028 Conversion of Nerve Growth Factor-Receptor Complexes to a Slowly Dissociating, Triton X-100 Insoluble State by Anti Nerve Growth Factor Antibodied Ronald D. Vale and Eric M. Shooter* ABSTRACT: Two populations of nerve growth factor (NGF) receptors can be distinguished

Vale, Ronald D.

116

Revision of the APGEMS Dose Conversion Factor File Using Revised Factors from Federal Guidance Report 12 and 13.  

SciTech Connect

The Air Pollutant Graphical Environmental Monitoring System (APGEMS) is used by the Hanford Emergency Operation Center (EOC) to provide refined plume modeling of releases involving radionuclides. The dose conversion factors (DCFs) used by APGEMS to convert air concentration to dose are stored in a file called HUDUFACT.dat; the DCFs are based primarily on ICRP 30 compiled in the late 1980’s. This report updates the DCFs using more recent values reported in the Environmental Protection Agencies (EPAs) Federal Guidance Report (FGR) 12 and 13. FGR 12 provides external exposure (air submersion) DCFs for radionuclides in air; FGR 13 provides DCFs for radionuclides from inhalation. DCFs were updated for only those radionuclides listed in the original HUDUFACT.dat file. Since FGR 13 provides inhalation dose conversion factors as a function of age, revised DCF files were created for APGEMS for each age group. The “adult” DCF file is the most relevant to compare to the original DCF file being used in APGEMS; these DCF values are compared in this report.

Hay, Tristan R.; Rishel, Jeremy P.

2013-09-30T23:59:59.000Z

117

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Thermal Energy Storage,” Renewable and Sustainable EnergyReview on Sustainable thermal Energy Storage Technologies,Energy Storage Using Phase Change Materials,” Renewable and Sustainable Energy

Coso, Dusan

2013-01-01T23:59:59.000Z

118

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

Ho, Tony

2012-01-01T23:59:59.000Z

119

Impact of different macronutrient definitions and energy conversion factors on energy supply estimations  

Science Journals Connector (OSTI)

The magnitude of differences in energy supply using different definitions for carbohydrates and protein as well as different energy conversion factors was investigated. Food supply data for 1999–2001 from FAOSTAT were used for nine countries with different types of diets. Nutrient values were derived from USDA and the British food composition tables for three definitions of carbohydrate (total, available by difference, available as monosaccharide equivalents), three protein definitions (nitrogen (N)×Jones factors, N×6.25, sum of amino acids), fat, and two dietary fibre definitions (AOAC, non-starch polysaccharide). Then three sets of energy conversion factors were applied (Merrill & Watt, general Atwater with/without energy value for fibre, and gross energy—GE). Using the same nutrient definitions, differences between general and specific Atwater factors accounted for 50–320 kJ/capita/day (10–75 kcal/capita/day) and for 290–1500 kJ/capita/day (70–360 kcal/capita/day) between GE and metabolizable energy supply calculations. Protein definitions have a minor impact on per capita energy supply values. They generate differences of less than 1%, or 4–105 kJ (1–25 kcal), with N×6.25 values providing the highest values, followed by Jones factors and the sum of amino acids. The largest differences observed in per capita energy supply calculations are due to carbohydrate definitions. Differences of 3.5–8% or 330–780 kJ/capita/day (80–190 kcal/capita/day) are observed between total and available carbohydrates as monosaccharide equivalents within the general Atwater system. Differences in energy supply between total and available carbohydrates could be minimized by applying an energy factor of 8 kJ/g (2 kcal/g) for dietary fibre, resulting in a higher energy supply of 100–250 kJ/capita/day (25–60 kcal/capita/day) or 1–2%. Differences in energy supply are less influenced by the energy factors as such than by the nutrient definition used, especially for carbohydrates. Differences in energy supply of up to 780 kJ/capita/day (160 kcal/capita/day) or 8% may be statistically relevant and might change research results, estimates of the dietary energy supply and consequently the estimation of the prevalence of undernourishment which may affect nutrition program and policies. Global harmonization of macronutrient definitions and energy factors is important to achieve unambiguous and comparable macronutrient and energy values among countries.

U.R Charrondiere; S Chevassus-Agnes; S Marroni; B Burlingame

2004-01-01T23:59:59.000Z

120

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

Solar Thermal Energy Research," in Sandia National Laboratory Science and Engineering Exposition 2011, Albuquerque, New Mexico,

Ho, Tony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low-temperature TiO2 Films for Dye-sensitized Solar Cells: Factors Affecting Energy Conversion Efficiency  

Science Journals Connector (OSTI)

Low-temperature TiO2 Films for Dye-sensitized Solar Cells: Factors Affecting Energy Conversion Efficiency ... The difference in short-circuit current is a factor of 2.2 with the Ru-based dye N719 and is 3.5 with the organic dye D5. ...

Alexander G. Agrios; Anders Hagfeldt

2008-06-18T23:59:59.000Z

122

Studies on the Red Marrow Dosimetry in Radioimmunotherapy: An Experimental Investigation of Factors Influencing the Radiation-induced Myelotoxicity in Therapy with ?-, Auger/Conversion Electron-, or ?-Emitters  

Science Journals Connector (OSTI)

...high-linear energy transfer (alpha and Auger/conversion electrons) versus low-linear energy transfer (beta...of their low-energy electrons, which...investigation of factors influencing the...beta-, Auger/conversion electron...

Thomas M. Behr; George Sgouros; Michael G. Stabin; Martin Béhé; Christa Angerstein; Rosalyn D. Blumenthal; Christos Apostolidis; Roger Molinet; Robert M. Sharkey; Lothar Koch; David M. Goldenberg; and Wolfgang Becker

1999-10-01T23:59:59.000Z

123

A novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi, Christopher S. Lynch, and Laurent Pilona)  

E-Print Network (OSTI)

organic Rankine cycles,3 and thermoelectric devices.4,5 Stirling engines and organic Rankine cyclesA novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi) This paper demonstrates a new power cycle for direct conversion of mechanical energy into electrical energy

Pilon, Laurent

124

Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Modeling Study  

Science Journals Connector (OSTI)

The direct non-oxidative conversion of methane to higher hydrocarbons ... dielectric barrier discharges has been investigated theoretically at atmospheric pressure. Preliminary modeling of the results is...2...hy...

Yun Yang

2003-06-01T23:59:59.000Z

125

Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating  

Science Journals Connector (OSTI)

Abstract This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100 kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 20–25% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.

Hakan Aydin; Ho-Saeng Lee; Hyeon-Ju Kim; Seung Kyoon Shin; Keunhan Park

2014-01-01T23:59:59.000Z

126

Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

Lu Xiaowei; Jordan, Beth [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Berge, Nicole D., E-mail: berge@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

2012-07-15T23:59:59.000Z

127

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become an

Ho, Tony

2012-01-01T23:59:59.000Z

128

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

temperature energy resources such as solar thermal,low temperature energy resources such as solar ponds (70 orenewable energy resources such as non-concentrated solar

Ho, Tony

2012-01-01T23:59:59.000Z

129

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

Ho, Tony

2012-01-01T23:59:59.000Z

130

Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric co-generators (STECGs) are an attractive means of supplying electric power and heat simultaneously and economically. Here we examine the effects of environmental factors on the conversion efficiencies of a new type of STECG comprising parabolic trough concentrators and thermoelectric modules (TEMs). Each TEM array was bonded with a solar selective absorber plate and directly positioned on the focal axis of the parabolic concentrator. Glass tubular collectors were not used to encase the TEMs. Although this makes the overall system simpler, the environmental effects become significant. Simulations show that the performance of such a system strongly depends on ambient conditions such as solar insolation, atmospheric temperature and wind velocity. As each of these factors increases, the thermal losses of the STECG system also increase, resulting in reduced solar conversion efficiency, despite the increased radiation absorption. However, the impact of these factors is relatively complicated. Although the electrical efficiency of the system increases with increasing solar insolation, it decreases with increasing ambient temperature and wind velocity. These results serve as a useful guide to the selection and installation of STECGs, particularly in Guangzhou or similar climate region.

Chao Li; Ming Zhang; Lei Miao; Jianhua Zhou; Yi Pu Kang; C.A.J. Fisher; Kaoru Ohno; Yang Shen; Hong Lin

2014-01-01T23:59:59.000Z

131

Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules  

Science Journals Connector (OSTI)

The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential ...

James R. Salvador; Jung Y. Cho; Zuxin Ye…

2013-07-01T23:59:59.000Z

132

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

SciTech Connect

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

133

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network (OSTI)

factors including plant distance offshore, water depth, typeand entrainment by offshore 400-MW OTEC plant is small,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

134

Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals  

DOE Patents (OSTI)

A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

2009-02-24T23:59:59.000Z

135

Ocean Thermal Energy Conversion Primer L. A. Vega, Ph.D.  

E-Print Network (OSTI)

source and the heat sink required for a heat engine. A practical application is found in a system (heat engine) designed to transform the thermal energy into electricity. This is referred to as OTEC for Ocean seawater is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive

136

Assessing the Power Generation Solution by Thermal-chemical Conversion of Meat Processing Industry Waste  

Science Journals Connector (OSTI)

Abstract The paper presents a waste to energy conversion solution using a pyro-air-gasification process applied to biodegradable residues from meat processing industry integrated with small scale thermodynamic cycle for power generation. The solution of air- gasification at atmospheric pressure is based on experimental research and engineering computation developed during the study. The input data, such as: waste chemical composition, low/high heating value and proximate analysis, correspond to real waste products, sampled directly from the industrial processing line. Separate drying as first stage pre-treatment and integrated partial drying inside the reactor was used. The syngas low heating value of about 4.3 MJ/Nm3 is insured by its combustible fraction (H2– 12.2%, CO – 19.2%, CH4 – 1.6%). According to syngas composition the thermodynamic cycle was chosen – Otto gas engine. For a given waste feed-in flow considered in our computation of about 110 kg/h the power output obtained is about 50 kWel. The global energy efficiency of the unit is about 15%. The results offer answers to energy recovery waste disposal for residues with characteristics that are not suitable for classic incineration or limit the energy efficiency of the process making it non-economical (the average humidity of the raw waste is about 42% in mass). The research focused on waste to energy conversion process energy efficiency, waste neutralization and power generation.

Cosmin Marculescu; Florin Alexe

2014-01-01T23:59:59.000Z

137

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

138

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

139

Organic Rankine power conversion subsystem development for the small community solar thermal power system  

SciTech Connect

The development and preliminary test results for an air-cooled, hermetically sealed 20 kW sub E organic Rankine cycle engine/alternator unit for use with point focussing distributed receiver solar thermal power system. A 750 F toluene is the working fluid and the system features a high speed, single-stage axial flow turbine direct-coupled to a permanent magnet alternator. Good performance was achieved with the unit in preliminary tests.

Barber, R.E.; Boda, F.P.

1982-07-01T23:59:59.000Z

140

Factors affecting thermal infrared images at selected field sites  

SciTech Connect

A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL.

Sisson, J.B.; Ferguson, J.S.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power  

E-Print Network (OSTI)

DETERMINATION OF THERMAL-DEGRADATION RATES OF SOME CANDIDATE RANKINE-CYCLE ORGANIC WORKING FLUIDS FOR CONVERSION OF INDUSTRIAL WASTE HEAT INTO POWER Mohan L. Jain, Jack Demirgian, John L. Krazinski, and H. Bushby Argonne National Laboratory..., Argonne, Illinois Howard Mattes and John Purcell U.S. Department of Energy ABSTRACT Serious concerns over the long-term thermal In a previous study [1] based on systems stability of organic working fluids and its effect analysis and covering...

Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

1984-01-01T23:59:59.000Z

142

Direct thermal to electrical energy conversion using very low bandgap TPV cells in a gas-fired furnace system  

Science Journals Connector (OSTI)

Abstract In this paper, electricity generation using very low bandgap InGaAsSb thermophotovoltaic (TPV) cells whose bandgap is 0.53 eV was investigated in a gas-fired furnace system where thermal radiation was emitted from a metal alloy emitter. The electric output of the InGaAsSb TPV cells was characterized under various operating conditions. The cell short circuit density was measured to be 3.01 A/cm2 at an emitter temperature of 1197 °C. At this emitter temperature, an electric power density of 0.65 W/cm2 was produced by the TPV cells. Experimental results show that direct thermal to electrical energy conversion was achieved in a gas-fired heating furnace system. Such a system could be employed to form a micro-combined heat and power (micro-CHP) process where exhaust heat is utilized for home heating needs. The TPV integrated energy system provides an effective means for primary energy savings.

K. Qiu; A.C.S. Hayden

2014-01-01T23:59:59.000Z

143

Solar Thermoelectric Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

144

2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC)  

E-Print Network (OSTI)

2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC) and the Department for Environment, Food and Rural Affairs in calculations yellow = Calculation results Page 1 of 47 #12;2009 Guidelines to Defra / DECC's GHG Conversion

145

An economic and environmental assessment of transporting bulk energy from a grazing ocean thermal energy conversion facility  

Science Journals Connector (OSTI)

Abstract An ocean thermal energy conversion (OTEC) facility produces electrical power without generating carbon dioxide (CO2) by using the temperature differential between the reservoir of cold water at greater depths and the shallow mixed layer on the ocean surface. As some of the best sites are located far from shore, one option is to ship a high-energy carrier by tanker from these open-ocean or “grazing” OTEC platforms. We evaluate the economics and environmental attributes of producing and transporting energy using ammonia (NH3), liquid hydrogen (LH2) and methanol (CH3OH). For each carrier, we develop transportation pathways that include onboard production, transport via tanker, onshore conversion and delivery to market. We then calculate the difference between the market price and the variable cost for generating the product using the OTEC platform without and with a price on CO2 emissions. Finally, we compare the difference in prices to the capital cost of the OTEC platform and onboard synthesis equipment. For all pathways, the variable cost is lower than the market price, although this difference is insufficient to recover the entire capital costs for a first of a kind OTEC platform. With an onboard synthesis efficiency of 75%, we recover 5%, 25% and 45% of the capital and fixed costs for LH2, CH3OH and NH3, respectively. Improving the capital costs of the OTEC platform by up to 25% and adding present estimates for the damages from CO2 do not alter these conclusions. The near-term potential for the grazing OTEC platform is limited in existing markets. In the longer term, lower capital costs combined with improvements in onboard synthesis costs and efficiency as well as increases in CO2 damages may allow the products from OTEC platforms to enter into markets.

Elisabeth A. Gilmore; Andrew Blohm; Steven Sinsabaugh

2014-01-01T23:59:59.000Z

146

Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis  

Science Journals Connector (OSTI)

Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.

Pouria Ahmadi; Ibrahim Dincer; Marc A. Rosen

2013-01-01T23:59:59.000Z

147

Application of Planck's law to thermionic conversion  

SciTech Connect

A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

Caldwell, F.

1998-07-01T23:59:59.000Z

148

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2013-01-01T23:59:59.000Z

149

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2012-01-01T23:59:59.000Z

150

Calculation of extremity neutron fluence-to-dose equivalent conversion factors  

E-Print Network (OSTI)

) Figure 4. Comparison of NCRP 38 and Siebert and Schuhmacher quality factors. Table 2. PNNL dose equivalent averaged quality factors (Q). * Phantom Finger Wrist 30 cm ICRU sphere Composition PMMA PMMA Tissue-and-bone Tissue-and-bone PMMA PMMA... Tissue-and-bone Tissue-and-bone PM MA PMMA (???) 'Adapted from reference 53. Source Bare Cf Moderated Cf Bare Cf Moderated Cf Bare Cf Moderated Cf Bare Cf Moderated Cf Bare Cf Moderated Cf 9. 2 9. 7 9. 2 9. 7 9. 4 9. 7 9. 4 9. 7 10...

Wood-Zika, Annmarie Ruth

1997-01-01T23:59:59.000Z

151

Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams  

SciTech Connect

Purpose: To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Methods: Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k{sub Q} factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k{sub Q} factors. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors are investigated by varying material properties and chamber dimensions. Results: Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k{sub Q} factors were consistent on average within 0.17%. Chamber-to-chamber variations in k{sub Q} factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k{sub Q} factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Conclusions: Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k{sub Q} factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

Muir, B. R.; McEwen, M. R.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)

2012-03-15T23:59:59.000Z

152

Photoelectrochemical solar energy conversion  

Science Journals Connector (OSTI)

In the present paper the progress in the field of solar energy conversion for the production of electricity and storable ... critically analyzed in view of their stability and conversion efficiency. A number of factors

Rüdiger Memming

1988-01-01T23:59:59.000Z

153

DETERMINATION OF IN-VITRO LUNG SOLUBILITY AND INTAKE-TO-DOSE CONVERSION FACTOR FOR TRITIATED LANTHANUM NICKEL ALUMINUM ALLOY  

SciTech Connect

A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate, at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the DOE Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide is less than the DCF for tritiated water and radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

Farfan, E.; Labone, T.; Staack, G.; Cheng, Y.; Zhou, Y.; Varallo, T.

2011-11-11T23:59:59.000Z

154

Dark matter conversion as a source of boost factor for explaining the cosmic ray positron and electron excesses  

E-Print Network (OSTI)

In interacting multi-component dark matter (DM) models, if the DM components are nearly degenerate in mass and the interactions between them are strong enough, the relatively heavy DM components can be converted into lighter ones at late time after the thermal decoupling. Consequently, the relic density of the lightest DM component can be considerably enhanced at late time. This may contribute to an alternative source of boost factor required to explain the positron and electron excesses reported by the recent DM indirect search experiments such as PAMELA, Fermi-LAT and HESS etc..

Ze-Peng Liu; Yue-Liang Wu; Yu-Feng Zhou

2011-12-17T23:59:59.000Z

155

Algae Harvest Energy Conversion  

Science Journals Connector (OSTI)

Resolution of many workshops on algae harvest energy conversion is that low productivity, high capital intensity ... and maintenance, respiration, and photoinhibition are few factors militating against viability ...

Yung-Tse Hung Ph.D.; P.E.; DEE; O. Sarafadeen Amuda Ph.D.…

2010-01-01T23:59:59.000Z

156

Energy Unit Conversion Factors / 1Joule (J) equals 1 2.78 x lO-7 9.49 x 1o-4  

E-Print Network (OSTI)

Energy Unit Conversion Factors J kWh Btu -~ / 1Joule (J) equals 1 2.78 x lO-7 9.49 x 1o-4 1 electron volt (eV) equals 1.60 x lo-l9 4.45 x lo-26 1.52 x 1o-22 Energy Equivalents Crude petroleum (42

Kostic, Milivoje M.

157

Comment on `Update of 40K and 226Ra and 232Th series $\\gamma$-to-dose conversion factors for soil'  

E-Print Network (OSTI)

A letter to the editor of the Journal of Environmental Radioactivity on the article: E. Gasser, A. Nachab, A. Nourreddine, Ch. Roy, and A. Sellam, `Update of 40K and 226Ra and 232Th series $\\gamma$-to-dose conversion factors for soil', J. Environ. Radioactiv. 138, 68-71 (2014), DOI: 10.1016/j.jenvrad.2014.08.002.

Malins, Alex; Saito, Kimiaki

2015-01-01T23:59:59.000Z

158

Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii  

Science Journals Connector (OSTI)

...thermal energy from warm ocean waters. A small fraction...converted to electrical power and waste heat is rejected...water pumped from the ocean depth. Solar energy absorbed by the ocean surface provides the heat...Thermal losses, the power requirements to pump large...

Leslie Ralph Berger; Joyce A. Berger

1986-06-01T23:59:59.000Z

159

Effect of a non-thermal, atmospheric-pressure, plasma brush on conversion of model self-etch adhesive formulations compared to conventional photo-polymerization  

Science Journals Connector (OSTI)

Objective To determine the effectiveness and efficiency of non-thermal, atmospheric plasmas for inducing polymerization of model dental self-etch adhesives. Methods The monomer mixtures used were bis-[2-(methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA), with mass ratios of 70/30, 50/50 and 30/70. Water was added to the above formulations: 10–30 wt%. These monomer/water mixtures were treated steadily for 40 s under a non-thermal atmospheric plasma brush working at temperatures from 32 to 35 °C. For comparison, photo-initiators were added to the above formulations for photo-polymerization studies, which were light-cured for 40 s. The degree of conversion (DC) of both the plasma- and light-cured samples was measured using FTIR spectroscopy with an attenuated total reflectance attachment. Results The non-thermal plasma brush was effective in inducing polymerization of the model self-etch adhesives. The presence of water did not negatively affect the DC of plasma-cured samples. Indeed, DC values slightly increased, with increasing water content in adhesives: from 58.3% to 68.7% when the water content increased from 10% to 30% in the adhesives with a 50/50 (2MP/HEMA) mass ratio. Conversion values of the plasma-cured groups were higher than those of light-cured samples with the same mass ratio and water content. Spectral differences between the plasma- and light-cured groups indicate subtle structural distinctions in the resultant polymer networks. Significance This research if the first to demonstrate that the non-thermal plasma brush induces polymerization of model adhesives under clinical settings by direct/indirect energy transfer. This device shows promise for polymerization of dental composite restorations having enhanced properties and performance.

Mingsheng Chen; Ying Zhang; Xiaomei Yao; Hao Li; Qingsong Yu; Yong Wang

2012-01-01T23:59:59.000Z

160

ALLSMOG: an APEX Low-redshift Legacy Survey for MOlecular Gas. I - molecular gas scaling relations, and the effect of the CO/H2 conversion factor  

E-Print Network (OSTI)

We present ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas. ALLSMOG is a survey designed to observe the CO(2-1) emission line with the APEX telescope, in a sample of local galaxies (0.01 conversion factor. We find an increase in the H2/HI mass ratio with stellar mass which closely matches semi-analytic predictions. We find a mean molecular gas fraction for ALLSMOG galaxies of MH2/M* = (0.09 - 0.13),...

Bothwell, M S; Cicone, C; Maiolino, R; Møller, P; Aravena, M; De Breuck, C; Peng, Y; Espada, D; Hodge, J A; Impellizzeri, C M V; Martín, S; Riechers, D; Walter, F

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

SciTech Connect

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

162

Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications  

E-Print Network (OSTI)

Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

O'Sullivan, Francis M. (Francis Martin), 1980-

2004-01-01T23:59:59.000Z

163

Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda  

E-Print Network (OSTI)

by the programmer; this can be both burdensome and error­prone, since the conversion factors used by the programmer guidelines for use of SI units and tables of conversion factors. Several books provide conversion factors, the accuracy of the conversion factors, and the algorithms that some books present for unit conversion

Novak Jr., Gordon S.

164

Thermophotovoltaic Energy Conversion for Space  

Science Journals Connector (OSTI)

Heat is converted to electricity by using a heated surface (the emitter) that radiates infrared (IR) photons to an adjacent low bandgap photovoltaic cell (typically made with binary, ternary, or quaternary semiconductors such as InGaAs, GaSb, InAs, or InGaAsSb), which converts these IR photons to electricity. ... Solid-state TPV energy conversion uses photovoltaic devices in the form of a p?n diode to convert radiant thermal photons directly into electricity. ... The overall system efficiency of a TPV system is the product of factors attributable to the TPV cell efficiency, the spectral filter, and the cell module factor which includes effects of parasitic photon absorption in the nonactive diode area and is defined as the total photonic energy absorbed in the active diode area divided by the total photonic energy absorption. ...

V. L. Teofilo; P. Choong; J. Chang; Y.-L. Tseng; S. Ermer

2008-05-22T23:59:59.000Z

165

Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers  

E-Print Network (OSTI)

]. Mahan and Sofo have further shown that thermoelectric energy conversion through a single energy level (0 of a drastic reduction in their thermal conductivity, l, and possibilities of enhanced power factors temperature electrical conductivity, Seebeck coefficient, power factor, thermal conductivity, and ZT figure

166

Project Profile: Brayton Solar Power Conversion System  

Energy.gov (U.S. Department of Energy (DOE))

Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the viability and economics of a new concentrating solar thermal power conversion system.

167

Direct Conversion of Light into Work - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Solar Thermal Industrial Technologies Industrial Technologies Find More Like This Return to Search Direct Conversion of Light into Work Lawrence Berkeley National...

168

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

broad importance in many thermal conversion and efficiency applications beyond solar energy. The RG3 team is establishing fundamental principles for thermal photon harvesting...

169

A Novel High-Power-Factor LED-Lamp Driver Based on a Single-Stage Power Conversion  

Science Journals Connector (OSTI)

This paper proposes a novel single-stage driver for supplying a T8-type light-emitting diode (LED) lamp with high power factor. The presented driver integrates a dual buck-boost converter with coupled inductors and a half-bridge series-resonant converter ... Keywords: converter, driver, light-emitting diode (LED)

Chun An Cheng, En Chih Chang, Ching Shien Tseng, Tsung Yuan Chung

2014-06-01T23:59:59.000Z

170

Limiting Values Of Radionuclide Intake And Air Concentraction And Dose Conversion Factors For Inhalation, Submersion, And Ingestion. Federal Guidance Report 11  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Office of EPA-520/1-88-020 Environmental Protection Radiation Program September 1988 Agency Washington, DC 20460 Radiation EPA Limiting Values of Radionuclide Intake And Air Concentration and Dose Conversion Factors For Inhalation, Submersion, And Ingestion Federal Guidance Report No.11 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty express or implied, or assumes any legal liability of responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

171

Encapsulation Strategies in Energy Conversion Materials  

Science Journals Connector (OSTI)

For instance, light is converted to electrical energy in photovoltaic devices and back to light in LEDs, electrical energy is converted to chemical energy and vice versa in batteries or fuel cells, light is converted to chemical energy in water splitting catalysts or related systems, or one form of chemical energy is converted to another form over various types of catalysts. ... Thermoelectric materials are an interesting class of energy conversion materials that convert thermal gradients directly to electricity. ... energy densities ranging up to a factor of 5 beyond conventional Li-ion systems. ...

Ferdi Schüth

2013-10-24T23:59:59.000Z

172

Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying  

SciTech Connect

The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.

Helminiak, M. A. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Yanar, N. M. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Pettit, F. S. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Taylor, T. A. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States); Meier, G. H. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States)

2012-10-01T23:59:59.000Z

174

THE CO-TO-H{sub 2} CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES  

SciTech Connect

We present ?kiloparsec spatial resolution maps of the CO-to-H{sub 2} conversion factor (?{sub CO}) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for ?{sub CO} and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both ?{sub CO} and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, {sup 12}CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our ?{sub CO} results on the more typically used {sup 12}CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for ?{sub CO} and the DGR. On average, ?{sub CO} = 3.1 M{sub ?} pc{sup –2} (K km s{sup –1}){sup –1} for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of ?{sub CO} as a function of galactocentric radius. However, most galaxies exhibit a lower ?{sub CO} value in the central kiloparsec—a factor of ?2 below the galaxy mean, on average. In some cases, the central ?{sub CO} value can be factors of 5-10 below the standard Milky Way (MW) value of ?{sub CO,{sub MW}} = 4.4 M{sub ?} pc{sup –2} (K km s{sup –1}){sup –1}. While for ?{sub CO} we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate ?{sub CO} for studies of nearby galaxies.

Sandstrom, K. M.; Walter, F. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Leroy, A. K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Bolatto, A. D.; Wolfire, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Croxall, K. V.; Crocker, A. [Department of Physics and Astronomy, Mail Drop 111, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Draine, B. T.; Aniano, G. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States); Wilson, C. D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Kennicutt, R. C.; Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Donovan Meyer, J. [Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11794-3800 (United States); Usero, A. [Observatorio Astronómico Nacional, Alfonso XII, 3, E-28014 Madrid (Spain); Bigiel, F. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Brinks, E. [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); De Blok, W. J. G. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Dale, D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Engelbracht, C. W., E-mail: sandstrom@mpia.de [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); and others

2013-11-01T23:59:59.000Z

175

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

176

Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior  

SciTech Connect

Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

1982-02-01T23:59:59.000Z

177

Zinc phosphate conversion coatings  

DOE Patents (OSTI)

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

178

Zinc phosphate conversion coatings  

DOE Patents (OSTI)

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

179

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

180

Nuclear modification factors of pion and light nuclei in a framework of thermal model  

E-Print Network (OSTI)

The particle yields and the nuclear modification factor ($R_{cp}$) for $\\pi^\\pm$, $p(\\bar p)$, $d(\\bar d)$, $t(\\bar t)$ and $^3He(\\bar{^3He})$ are studied in Au + Au collisions at $\\sqrt{S_{NN}}$ = 200 GeV/c based on the blast-wave model and nucleonic coalescence model. The influences of resonance decay on $p(\\bar p)$ and $\\pi$ yields, $p/\\pi$-ratio and nuclear modification factors have been discussed. An apparent number-of-constituent-quark scaling of $R_{cp}$ for $p(\\bar p)$ and $\\pi$ is presented. Similarly, the number-of-nucleon scaling of $R_{cp}$ for $p(\\bar p)$, $d(\\bar d)$, $t(\\bar t)$ and $^3He(\\bar{^3He})$ is also addressed.

Zhou, C S; Zhang, S

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

182

Quantum Solar Energy Conversion and Application to Organic Solar Cells  

Science Journals Connector (OSTI)

When studying the limits of solar energy conversion, either by thermal or quantum processes, the sun has traditionally been treated as a blackbody (thermal equilibrium) radiator with surface temperature 5 800 ...

Gottfried H. Bauer; Peter Würfel

2003-01-01T23:59:59.000Z

183

Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes  

SciTech Connect

Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 46–80 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 804–8503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

2014-07-07T23:59:59.000Z

184

Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant  

E-Print Network (OSTI)

has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

Raiji, Ashok

1980-01-01T23:59:59.000Z

185

Advanced nanofabrication of thermal emission devices  

E-Print Network (OSTI)

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

186

Functionalization of Graphene for Efficient Energy Conversion and Storage  

Science Journals Connector (OSTI)

Functionalization of Graphene for Efficient Energy Conversion and Storage ... Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. ...

Liming Dai

2012-10-03T23:59:59.000Z

187

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network (OSTI)

Proceedings on thermal energy storage and energy conversion;polymer microcomposites for thermal energy storage. SAE SocLow temperature thermal energy storage: a state of the art

Roshandell, Melina

2013-01-01T23:59:59.000Z

188

Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry  

Science Journals Connector (OSTI)

...associated with solar energy conversion in a non-intense...clear that solar energy conversion could be invaluable...to 30 per cent conversion efficiency are...breakdown of our energy needs (DECC...biggest single factor. This is critical...

2013-01-01T23:59:59.000Z

189

Factors affecting the discharge lifetime of lithium-molten nitrate thermal battery cells using soluble cathode materials  

Science Journals Connector (OSTI)

The use of soluble cathode materials in molten nitrate electrolyte thermal battery cells presents several problems related to cathode...? rich separator layer.

G. E. McManis; A. N. Fletcher; M. H. Miles

1986-09-01T23:59:59.000Z

190

Materials aspects of photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

Stabilization of the light-harvesting semiconductor electrode is a key factor in the design of a photoelectrochemical (PEC) system for solar energy conversion. Approaches to circumvent the problem of PEC...

K. Rajeshwar

1985-01-01T23:59:59.000Z

191

Thermodynamic Optimization in Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

As alternative energy sources to oil and uranium, we can consider well known alternative sources such as solar power, geothermal power and wind power. However when we consider the 21st century energy sources, ocean

Y. Ikegami; H. Uehara

1999-01-01T23:59:59.000Z

192

Quantum optical waveform conversion  

E-Print Network (OSTI)

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

D Kielpinski; JF Corney; HM Wiseman

2010-10-11T23:59:59.000Z

193

BETO Conversion Program  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

194

Techno-economic analysis of biomass to fuel conversion via the MixAlco process  

Science Journals Connector (OSTI)

Figure 2 depicts biomass-to-hydrocarbon fuels conversion via the MixAlco process. To make hydrocarbon ... -efficiency vapor-compression evaporator, (4) thermal conversion of salts to ketones, (5) hydrogenation...

Viet Pham; Mark Holtzapple…

2010-11-01T23:59:59.000Z

195

Sustainable systems for the storage and conversion of energy are dependent on interconnected  

E-Print Network (OSTI)

SEMTE abstract Sustainable systems for the storage and conversion of energy are dependent performance buildings, renewable energy conversion, and energy storage can be streamlined by identifying energy systems for harvesting low availability thermal energy and for providing integrated power, cooling

Reisslein, Martin

196

Plasmonic conversion of solar energy  

E-Print Network (OSTI)

a novel method of solar energy conversion that can lead tofundamentals of plasmonic energy conversion are reviewed in3. Plasmonic energy conversion fundamentals Surface plasmons

Clavero, Cesar

2014-01-01T23:59:59.000Z

197

Iterated multidimensional wave conversion  

SciTech Connect

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

198

Further Studies on the Conversion of 4-Hydroxyoxazaphosphorines to Reactive Mustards and Acrolein in Inorganic Buffers  

Science Journals Connector (OSTI)

...increased. The energy of activation...probably the conversion of the intermediate...of these factors on the development...increased. The energy of activation...probably the conversion of the intermediate...of these factors on the development...Thus, these factors are likely...activation energy value for the conversion of 4-hydroxyoxazaphosphorines...

J. E. Low; R. F. Borch; and N. E. Sladek

1983-12-01T23:59:59.000Z

199

Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from Major Evaluated Data Libraries  

E-Print Network (OSTI)

We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellianaveraged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented.

Pritychenko, B

2012-01-01T23:59:59.000Z

200

A nonlinear thermodynamic model for a breakdown of the Onsager symmetry and the efficiency of thermoelectric conversion in nanowires  

Science Journals Connector (OSTI)

...the thermoelectric energy conversion which, under some...the thermoelectric energy-conversion efficiency, one should...which remains the main factor responsible for high...the thermoelectric energy conversion. However, this does...

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Processing and Conversion  

Energy.gov (U.S. Department of Energy (DOE))

The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts...

202

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

203

Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy ... Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ...

Constantine Philippopoulos; Dimitrios Economou; Constantine Economou; John Marangozis

1983-12-01T23:59:59.000Z

204

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction-bandgap photons are not absorbed: Carrier relaxation to band edges: Photon energy exceeding bandgap is lost

Glashausser, Charles

205

Surface Tension Mediated Conversion of Light to Work David Okawa,,  

E-Print Network (OSTI)

to a high energy intermediate (e.g., electrical potential, thermal loading, or chemical fuel), which- taics for conversion to electricity, solar thermal for water heating, fast growing plants to produce rely on weak momentum transfer from photons. Harnessing the energy of photons is a far more powerful

Zettl, Alex

206

Graduate School of Energy Science Outlines of Laboratories Department of ENERGY CONVERSION SCIENCE  

E-Print Network (OSTI)

Graduate School of Energy Science ­ Outlines of Laboratories Department of ENERGY CONVERSION SCIENCE 1 / 2 Group Code: H-1 Group Name: Thermal Energy Conversion Takuji ISHIYAMA, Professor; Hiroshi energy conversion systems with high efficiency and safety while protecting the environment

Takada, Shoji

207

Dynamical mechanism for the conversion of energy at a molecular scale Naoko Nakagawa  

E-Print Network (OSTI)

Dynamical mechanism for the conversion of energy at a molecular scale Naoko Nakagawa Department mechanism of a molecular machine for energy conversion, by considering a simple model describing is thermal ratchet 4­7 , which gives one plausible mechanism for the conversion of energy to mechanical work

Kaneko, Kunihiko

208

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

209

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

210

Avatar augmented online conversation  

E-Print Network (OSTI)

One of the most important roles played by technology is connecting people and mediating their communication with one another. Building technology that mediates conversation presents a number of challenging research and ...

Vilhjálmsson, Hannes Högni

2003-01-01T23:59:59.000Z

211

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

212

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

213

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

of applications, notably energy conversion. As researchnanowires for energy conversion. Chemical Reviews, 2010.Implications for solar energy conversion. Physical Review

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

214

Next-Generation Thermionic Solar Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

215

Structured luminescence conversion layer  

DOE Patents (OSTI)

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

216

A preliminary analysis of comparable cooling-thermal loading-reservoir ownership as a factor in annual recreation attendance  

E-Print Network (OSTI)

the reservoir sought alternatives to private or personal investment and opted for a grant or long term lease of their holdings to the Texas Parks and Wildlife system. In the case of Fairfield reservoir, the 25 Texas Utility Generating Company granted 1200... tion of primary data vev'aIeu lnformat'on concer ning the following factors: (1) access (2) contig- uous surrounding lands (3) grazing leases (4) lake frrnt leases (5) water quality (6) recreation facilities (7) recreation opportunities and (8) law...

Darga, Thomas Jerome

1978-01-01T23:59:59.000Z

217

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation of new and converted filesdatabases; coordinates the...

218

Plasmonic conversion of solar energy  

E-Print Network (OSTI)

of solar energy into electricity in photovoltaic cells orsolar energy conversion aimed at photovoltaic applicationsenergy conversion, opening a new venue for photovoltaic and

Clavero, Cesar

2014-01-01T23:59:59.000Z

219

Plasmonic conversion of solar energy  

E-Print Network (OSTI)

of carriers allows maintaining the energy conversionenergy conversion 8 Timescale of charge separation, carrierin this energy conversion method, i.e. carrier regeneration

Clavero, Cesar

2014-01-01T23:59:59.000Z

220

Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism  

Science Journals Connector (OSTI)

...somewhat slower to save energy for later). The motivational factors are represented by the...events: modelling human energy conversion and metabolism. | The...computational model for energy conversion during bicycle racing...

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Regulatory factors for the assembly of thylakoid membrane protein complexes  

Science Journals Connector (OSTI)

...light and its conversion into chemical energy in oxygenic...known regulatory factors are conserved...Regulatory factors for the assembly...light and its conversion into chemical energy in oxygenic...known regulatory factors are conserved...

2012-01-01T23:59:59.000Z

222

Ortho-para conversion of hydrogen at high pressures  

Science Journals Connector (OSTI)

Ortho-para conversion rates in solid H2 measured as a function of pressure up to 58 GPa are examined theoretically. Analyses of the data provide information on the relative role of diffusion versus intrinsic dependences of the conversion rate on ortho concentration. A theory of the conversion has been developed using a closed-form representation of the conversion promoting nuclear magnetic interaction Hss expanded in spherical harmonics. The mechanisms considered include double conversion, excitations in the J=1 and J=2 manifolds as conversion energy sinks, and a possibility of intermediate states from which the conversion energy is dissipated via the strong electrical quadrupole-quadrupole (EQQ) interaction. Conversion rates were evaluated for a total of 12 new channels; the two other channels considered previously for moderate pressures have been reconsidered to account for factors that influence phonon-assisted energy dissipation, the most important being the compression-related decrease of the conversion energy (gap closing). Contributions from the standard one-phonon channels with single and double conversion yield fairly good agreement with low-pressure data. The proposed new channel identified as responsible for the observed conversion acceleration is the one in which the conversion Hamiltonian Hss only initiates conversion driving the system to a temporarily nonequilibrium state from which the conversion energy is dissipated via EQQ coupling into excitations within the J=1 manifold. Our mechanism predicts a strong and abrupt conversion slowdown at still higher compressions. The abrupt decrease in rate observed at a given pressure at longer times (decreasing ortho fractions) can be explained as due to the inability of slow diffusion to restore the random distribution of ortho species and due to the intrinsic inefficiency of the new channel at low c.

Mikhail A. Strzhemechny; Russell J. Hemley; Ho-kwang Mao; Alexander F. Goncharov; Jon H. Eggert

2002-07-10T23:59:59.000Z

223

Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion  

E-Print Network (OSTI)

ARTICLE Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion Rajeev Kumar degradation products, collectively termed as chars and/or pseudo-lignin. In order to understand the factors derived pseudo-lignin on cellulose conversion at the moderate to low enzyme loadings necessary

California at Riverside, University of

224

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

225

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

226

Lockheed Testing the Waters for Ocean Thermal Energy System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin is developing a design for an OTEC system that would produce...

227

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

228

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle  

SciTech Connect

Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

2009-07-01T23:59:59.000Z

229

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

230

Solar Energy Conversion  

Science Journals Connector (OSTI)

If solar energy is to become a practical alternative to fossil fuels we must have efficient ways to convert photons into electricity fuel and heat. The need for better conversion technologies is a driving force behind many recent developments in biology materials and especially nanoscience.

George W. Crabtree; Nathan S. Lewis

2008-01-01T23:59:59.000Z

231

Campus Conversations: CLIMATE CHANGE  

E-Print Network (OSTI)

review and input from scholars with expertise in climate change and communication. #12; Welcome Thank youCampus Conversations: CLIMATE CHANGE AND THE CAMPUS Southwestern Pennsylvania Program booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994

Attari, Shahzeen Z.

232

Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates  

E-Print Network (OSTI)

conversion (3). Conversely, the thermal resistance of interfaces degrades the performance of materials dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal and improve the performance of thermal bar- riers (2) and of materials used in thermoelec- tric energy

George, Steven M.

233

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

234

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

235

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network (OSTI)

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

236

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

A: Thermal Unit Conversion Factors. Washington, DC: EIA.A: Thermal Unit Conversion Factors. Washington, DC: EIA.Appendix Table 43: Unit conversion factors From this unit

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

237

Thermal stability of nano-structured selective emitters for thermophotovoltaic systems  

E-Print Network (OSTI)

A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of materials and devices at high operational temperatures. This study focuses on the thermal stability of tungsten selective ...

Lee, Heon Ju, 1977-

2012-01-01T23:59:59.000Z

238

Session: Energy Conversion  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

239

Ocean energy conversion systems annual research report  

SciTech Connect

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

240

Voice Conversion Jani Nurminen1, Hanna Siln2, Victor Popa2,  

E-Print Network (OSTI)

of voice conversion, it is essential to understand the factors that determine the perceived speaker0 Voice Conversion Jani Nurminen1, Hanna Silén2, Victor Popa2, Elina Helander2 and Moncef Gabbouj2 1Accenture 2Tampere University of Technology Finland 1. Introduction Voice conversion (VC

Gabbouj, Moncef

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mechanical properties of WC10Co cemented carbides sintered from nanocrystalline spray conversion processed powders  

E-Print Network (OSTI)

Mechanical properties of WC±10Co cemented carbides sintered from nanocrystalline spray conversion as the spray conversion process [2]. The WC particle sizes in powders fabricated by the spray conversion: microstructural parameters such as WC grain size, Co mean free path and WC/WC contiguity; chemical factors

Hong, Soon Hyung

242

Conversion of Questionnaire Data  

SciTech Connect

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

2011-01-01T23:59:59.000Z

243

Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine  

SciTech Connect

Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

Johansson, L. [Stirling Thermal Motors, Inc., Ann Arbor, MI (United States); Ziph, B.; McKeough, W.; Houtman, W.

1996-12-31T23:59:59.000Z

244

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

Nanowires and Nanotubes for Energy Conversion By MelissaNanowires and Nanotubes for Energy Conversion by MelissaNanowires and Nanotubes for Energy Conversion by Melissa

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

245

Advanced Conversion Roadmap Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf More Documents & Publications Conversion...

246

Probing the Role of PrP Repeats in Conformational Conversion and Amyloid Assembly of Chimeric Yeast Prions*S  

E-Print Network (OSTI)

a relatively good understanding of the factors that guide the conformational conversion of the Sup35 prion conversion of the protein Sup35, a translation termina- tion factor. In its prion conformation, Sup35Probing the Role of PrP Repeats in Conformational Conversion and Amyloid Assembly of Chimeric Yeast

Lindquist, Susan

247

Issues related to wind energy conversion systems  

Science Journals Connector (OSTI)

There is growing interest in the development of more sustainable electricity systems employing renewable, low-emission resources. In this context, the number of wind power generators installed in the world is increasing, and there are strong indicators that such growth should continue in the next decades. The intensity of wind power expansion depends on different factors related to technical, economic, environmental, governmental, and regulatory issues. This paper presents an overview on various issues related to wind energy conversion systems.

Walmir Freitas; Ahmed Faheem Zobaa; Jose C.M. Vieira; James S. McConnach

2005-01-01T23:59:59.000Z

248

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . .other pyroelectric energy conversion methods . . . . Chapter6 Pyroelectric Energy Conversion using PLZT and

Lee, Felix

2012-01-01T23:59:59.000Z

249

Improving efficiency of thermoelectric energy conversion devices is a major  

E-Print Network (OSTI)

Abstract · Improving efficiency of thermoelectric energy conversion devices is a major challenge Interdisciplinary Program in Material Science Thermal Physics Lab Vanderbilt University, Nashville, TN 2 S T ZT dominates over increase in Seebeck coefficient leading to poor device performance. Thermoelectric figure

Walker, D. Greg

250

Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review  

Science Journals Connector (OSTI)

Dry anaerobic bio-conversion (D-AnBioC) of high-solid organic ... involved in bioreactor designing; (3) present factors influencing the bio-conversion efficiency; (4) discuss the microbiology of ... existing comm...

Obuli P. Karthikeyan; C. Visvanathan

2013-09-01T23:59:59.000Z

251

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

252

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

253

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

SciTech Connect

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

254

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

255

Wind energy conversion system  

SciTech Connect

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

256

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

257

Biochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products. Lignocellulose (mainly lignin,...

258

Energy conversion by gravitational waves  

Science Journals Connector (OSTI)

... out that if such particles are charged, the accelerations will constitute a mechanism for the conversion of gravitational ... of gravitational energy into electromagnetic ...

H. BONDI; F. A. E. PIRANI

1988-03-17T23:59:59.000Z

259

Biomass Conversion to Energy  

Science Journals Connector (OSTI)

Sunlight is an infinitely abundant source of energy on this earth and all energy on this planet, in principle, is renewable. However, considering the factor of time frame, the present sources of energy such as co...

Maneesha Pande; Ashok N. Bhaskarwar

2012-01-01T23:59:59.000Z

260

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

5, 35333559, 2005 Catalytic conversion  

E-Print Network (OSTI)

measurement technique, employing selective gas- phase catalytic conversion of methanol to formaldehyde it the second most abundant organic trace gas after methane. Methanol can play an important role in upper tropoACPD 5, 3533­3559, 2005 Catalytic conversion of methanol to formaldehyde S. J. Solomon et al. Title

Paris-Sud XI, Université de

262

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon  

E-Print Network (OSTI)

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon of a novel cycle converting thermal and mechanical energy directly into electrical energy. The new cycle is adaptable to changing thermal and mechanical conditions. The new cycle can generate electrical power

Pilon, Laurent

263

Solar energy conversion apparatus  

SciTech Connect

Apparatus is disclosed for converting solar energy to more useful forms, I.E., thermal and electrical energy. Such apparatus includes a photoelectric transducer (E.G., an array of photovoltaic cells), means for concentrating solar energy on the transducer, and means for circulating a liquid between the transducer and the solar energy concentrator. The spectral properties of the liquid are such that the liquid functions as a bandpass filter, transmitting solar energy to which the transducer is responsive and absorbing solar energy to which the transducer is non-responsive. The transmitted solar energy is converted to electrical energy by the transducer, and the absorbed solar energy is converted to heat by the liquid. Preferably, the liquid is circulated through a container which, in the vicinity of the transducer, is constructed so as to provide optical gain to the system and to integrate incident solar energy for the purpose of eliminating ''hot spots'' which could overheat, and thereby damage, the transducer.

Powell, R.A.

1981-07-14T23:59:59.000Z

264

Management and Uses Conversion Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

265

Jet conversions in a quark-gluon plasma  

Science Journals Connector (OSTI)

Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic q(q¯)g?gq(q¯) and the inelastic qq¯?gg scatterings are evaluated in the lowest order in QCD. Including both jet energy loss and conversions in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we have found a net of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/?+ and p¯/?- ratios at high transverse momentum. However, a much larger net quark-to-gluon jet conversion rate than the one given by the lowest order QCD is needed to account for the observed similar ratios in central Au+Au and p+p collisions at the same energy. Implications of our results are discussed.

W. Liu; C. M. Ko; B. W. Zhang

2007-05-04T23:59:59.000Z

266

A System for Transforming the Emotion in Speech: Combining Data-Driven Conversion Techniques for Prosody and Voice Quality  

E-Print Network (OSTI)

variations in an utterance by using a set of perceptually optimized contextual factors. Conversion of phoneA System for Transforming the Emotion in Speech: Combining Data-Driven Conversion Techniques, while dura- tions are transformed using phone-based relative decision trees. For spectral conversion

Young, Steve

267

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

268

Time-Varying Flexible Least Squares for Thermal  

E-Print Network (OSTI)

temperature-dependent activation energies, preexponential factors, and differential conversion functions, T the temperature, the linear heating rate ( = dT /dt), A the preexponential factor, E the activa- tion energy, f-spectral/molecular flow rate conversion factors (abundance-1 molecules s-1 ). Associated errors are in parentheses. rate

Tesfatsion, Leigh

269

Constraining resonant photon-axion conversions in the early universe  

SciTech Connect

The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB ?< 10{sup ?13} GeV{sup ?1} nG for ALP masses below the eV scale.

Mirizzi, Alessandro [Max-Planck-Institut für Physik (Werner Heisenberg Institut), Föhringer Ring 6, 80805 München (Germany); Redondo, Javier [Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Sigl, Günter, E-mail: amirizzi@mppmu.mpg.de, E-mail: javier.redondo@desy.de, E-mail: sigl@iap.fr [II. Institut für theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

2009-08-01T23:59:59.000Z

270

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...multiple carrier generation...renewable energy|solar energy conversion|photovoltaic...photovoltaic energy conversion process...minority carriers in the p-type...efficiency carrier multiplication...for solar energy conversion. Phys...

2007-01-01T23:59:59.000Z

271

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

272

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

273

Apparatus and method for pyroelectric power conversion  

DOE Patents (OSTI)

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.

Olsen, Randall B. (Olivenhain, CA)

1984-01-01T23:59:59.000Z

274

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

1979, Rosslyn, VA. U.S. Dept. of Energy and Argonne NationalLaboratory, Argonne, IL. ANL/OTEC- BCM-002. Bretschneider,Environmental Systems Division, Argonne National Laboratory.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

275

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

stored on the platform and these two chemicals will explodeChemical Categories Nutrients Dissolved Oxygen Biological Categories Phyto- plankton Zooplankton lchthyo- plankton Micro- nekton Nekton Hammals, Birds Benthos Issue Platform

Sullivan, S.M.

2014-01-01T23:59:59.000Z

276

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

stored on the platform and these two chemicals will explodeplatform continuously releases chlorine along with its discharge waters at a concentration of 0.1 mg liter . Chemical

Sullivan, S.M.

2014-01-01T23:59:59.000Z

277

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

stored on the platform and these two chemicals explode whenhandling chemical contaminants on OTEC platforms. The Coastof chemicals or processes used on OTEC platforms, there is a

Sands, M. D.

2011-01-01T23:59:59.000Z

278

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

Division of Central Solar Technology, U.s. Dept. of Energy.Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology, u.s. Dept. of Energy.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

279

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology. , U.S. Dept. ofDivision of Central Solar Technology. USDOE paper 7D-3/1.

Sands, M. D.

2011-01-01T23:59:59.000Z

280

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology, U.S. Dept. of Energy.Division of Central Solar Technology, U.S. Dept. of Energy.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

as Organic Rankine Cycle (ORC) mahines, Sterling engines,Organic Rankine Cycle (ORC) system or Sterling Engine (SE)an organic Rankine cycle (ORC) system generates electricity

Lim, Hyuck

2011-01-01T23:59:59.000Z

282

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

delivered to the local power grid either directly (for Land-Oahu, Hawaii) • • • • Electrical Power Grid for Oahu,Hawaii Electrical Power Grid for Key West, Florida ••

Sullivan, S.M.

2014-01-01T23:59:59.000Z

283

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

Oahu, Hawaii) • . • • . Electrical Power Grid for Oahu,Hawaii • • • Electrical Power Grid for Key West,Florida • • . • . . Electrical Power Grid for Puerto

Sullivan, S.M.

2014-01-01T23:59:59.000Z

284

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Occupational Safety and Health Administration (OSHA) safety, and the Coast Guard covers mar1ne covers some offshore

Sands, M. D.

2011-01-01T23:59:59.000Z

285

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

SciTech Connect

This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

Sands, M. D.

1980-01-01T23:59:59.000Z

286

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Mexico. Energy Research and Development Administration, Division of SolarMexico. Energy Research and Development Administration, Division of Solar

Sands, M. D.

2011-01-01T23:59:59.000Z

287

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

various types of Stirling engine have been developed, whichThermogalvanic cell Stirling Engine ORC Internal Combustion

Lim, Hyuck

2011-01-01T23:59:59.000Z

288

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

50 ing a turning basin in the bight. (See Notice to Marinersbasin to a basin in the SW part of the bight. In 1972. theturning basin just in- side the entrance of Garrison Bight.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

289

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

upper turning basin off Key West Bight, and then 12 feet toso ing a turnmg basin in the bight. (See Nutice to :V1annersbasin to a basin in the SW part of the bight. ln 197 2. the

Sullivan, S.M.

2014-01-01T23:59:59.000Z

290

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

1 1.1. Low Grade Heat (LGH) isvoltage (V) as a function of the LGH temperature (T): (a) Ptresults of the output voltage as a function of the LGH

Lim, Hyuck

2011-01-01T23:59:59.000Z

291

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Organic Rankine Cycle achieved by using Organic Rankine Cycle or Sterling Engines.technologies such as Organic Rankine Cycle (ORC) mahines,

Lim, Hyuck

2011-01-01T23:59:59.000Z

292

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

la. Supplies and repairs. - Bunker C. die-,el oib. and wateragricultur- Supplies. -No bunkers are available; in emergen·3, Vessel Arrival In- cies bunkers and lube oils may be

Sullivan, S.M.

2014-01-01T23:59:59.000Z

293

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

de Ratones. Supplies. -No bunkers are available; in emergen-and agricultur· cies bunkers and lube oils may be deliveredr'..:w h'>urs. Fr..:shwater. bunker C otl. and dtesd oil are

Sullivan, S.M.

2014-01-01T23:59:59.000Z

294

Conversion of Concentrated Solar Thermal Energy into Chemical Energy  

Science Journals Connector (OSTI)

When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500–2500 kW/m2 is absorbed by an excess Frenkel defect formation. This non-equilibrium state ...

Yutaka Tamaura

2012-03-01T23:59:59.000Z

295

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

total energy received by today’s solar panels and is beings best solar panels can convert only ~16% of solar energy to

Lim, Hyuck

2011-01-01T23:59:59.000Z

296

Science Highlights- Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Modes by an Integrated Acoustic Etalon Heterobarrier for Converting Hot-Phonon Energy to Electric Potential MOCVD Growth of Vertically Aligned InGaN Nanowires Resolving...

297

Papers Published - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heterojunction Photovoltaic Cells with Fullerene-Based Electron Filtering Buffers," Adv. Energy Mater. 4, 1301557 (2014). S. Huang, S. J. Kim, X. Q. Pan, and R. S. Goldman,...

298

Science Highlights- Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiencies Approaching 100% Exciton Management in Organic Photovoltaic Multi-donor Energy Cascades Decorative Power Generating Panels Creating Various Colors Benchmarking...

299

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

aspects of siting OTEC plants offshore the United States ongas. phosgene Offshore ammonia plant-ships will presentan facility offshore may expose the plant to power outages

Sands, M. D.

2011-01-01T23:59:59.000Z

300

Facilities - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities CSTEC investigators will have access to high-tech facilities located at the University of Michigan. Center for Ultrafast Optics (CUOS) The Center for Ultrafast Optical...

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advisory Board - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Advisory Board Dr. Sheila G. Bailey Senior Physicist at NASA Glenn Research Center Dr. David J. Eaglesham CEO at Pellion Technologies Dr. Alex Jen (website) BoeingJohnson...

302

Investigators - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigators Director Name Department Email Peter Green MSEChemE pfgreen@umich.edu Principal Investigators Name Department Email Akram Boukai MSE boukai@umich.edu Roy Clarke...

303

Chapter 7 - Geothermal and ocean-thermal energy conversion  

Science Journals Connector (OSTI)

Publisher Summary Geothermal heat sources are utilized by means of thermodynamic engines such as Brayton cycles, in cases where the geothermal heat is in the form of steam. In some regions, geothermal sources exist that provide a mixture of water and steam, including suspended soil and rock particles, such that conventional turbines cannot be used. In most regions the geothermal resources are in the form of heat-containing rock or sediments, with little possibility of direct use. If an aquifer passes through the region, it may collect heat from the surrounding layers and allow a substantial rate of heat extraction such as by drilling two holes from the surface to the aquifer, separated from each other. If no aquifer is present to establish a heat exchange surface in the heat-containing rock, it may be feasible to create suitable fractures artificially. Downward gradients of temperature exist in most oceans, and they are particularly stable in the tropical oceans. The utilization of such temperature gradients for electricity generation such as by use of a Rankine cycle, are considered several times. The temperature differences available over the first 500-1000 m of water depth are only about 25?C. Considering a closed Rankine cycle, with a working fluid such as ammonia, which evaporates and condenses at convenient temperatures, placed near the ocean surface, it will be required to pump colder water through a pipe from the depth to a heat exchanger for condensation of the working fluid. A warm water heat exchanger is required for evaporating the working fluid. The converters must be placed in strong currents such as the Gulf Stream in order to save energy to pump the hot water through the heat exchanger.

Bent Sørensen

2007-01-01T23:59:59.000Z

304

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

fossil-fuel intake canals for withdrawing marine waters;Some marine supplies and water are available. Bunker fuels.marine ecosystem effects caused by Pilot Plant operation are associated with the seawater discharge and approximately fossil-fuel

Sullivan, S.M.

2014-01-01T23:59:59.000Z

305

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

fuel or nuclear-powered plants use intake canals for withdrawing marineSome marine supplies and water are available. Uunker fuels.marine supplies are available at Key West. Gasoline and diesel fuel

Sullivan, S.M.

2014-01-01T23:59:59.000Z

306

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

seawater. produce can be generated electrolytically Producing chlorine on an OTEC plant eliminates storage

Sands, M. D.

2011-01-01T23:59:59.000Z

307

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Electricity - Hawaii is almost totally dependent upon imported petroleum A natural energy source of geothermal

Sands, M. D.

2011-01-01T23:59:59.000Z

308

Welcome - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

To Bridge LEDs' Green Gap, Scientists Think Small ... Really Small Read about CSTEC's latest Research Energy Transport in Organic and Hybrid Systems Absorption and Carrier...

309

Management Council - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization  MANAGEMENT COUNCIL Peter Green, Dir. MSE Rachel Goldman MSE Ctirad Uher Physics Jamie Phillips EECS Max Shtein MSE Roy Clarke Physics Ted Goodson III Chemistry...

310

Contact - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Prof. Peter Green, CSTEC Director Research Group Leader for Thrust 3 - Energy transport in organic and hybrid systems Materials Science & Engineering Dept. H H Dow...

311

Directors - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

He is a Fellow of the American Physical Society and of the American Ceramics Society. Green was a member of the decadal study on Condensed Matter and Materials Physics...

312

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

W of Fort Taylor. the flood (NNE) and the ebb (SSW) currentswas available in the Largo; it floods S and ebbs NW. Islacurrents u: ~1aunalua Bav flood W and ebb E: slack watci'

Sullivan, S.M.

2014-01-01T23:59:59.000Z

313

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

reported that a tidal current floods W and ebbs E along thethe authority for navigation, flood control, and productionW of Fort Taylor, the flood (NNE) and the ebb (SSW) currents

Sullivan, S.M.

2014-01-01T23:59:59.000Z

314

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

ECONOMIC ISSUES Baseload Electricity Baseload electricity production in the Gulf Coast States relies primarily on oil, natural gas, and coal.

Sands, M. D.

2011-01-01T23:59:59.000Z

315

Chemical Conversions of Natural Precursors  

Science Journals Connector (OSTI)

Many products from the flavour industry are primary products from renewable resources or secondary products obtained by chemical conversions of the primary products. In general these secondary products are key...

Peter H. van der Schaft

2007-01-01T23:59:59.000Z

316

Solar Energy Conversion Efficiency Project  

Science Journals Connector (OSTI)

Report of a discussion on possible collaborative experimentation to test and refine biomass production models based on the conversion of solar energy by plant stands, and to evaluate alternative models.

J. S. Pereira; J. J. Landsberg

1989-01-01T23:59:59.000Z

317

Plasmonic conversion of solar energy  

E-Print Network (OSTI)

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

318

Energy Conversion Devices | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Energy Conversion Devices Place: Rochester Hills, MI Website: http:www.energyconversiondev References: Energy Conversion Devices1...

319

Solar thermal power generation: a bibliography with abstracts. Quarterly update, October-December 1979  

SciTech Connect

This annotated bibliography contains the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, biomass and photochemical energy, and large-scale photovoltaics. (MHR)

Not Available

1980-04-01T23:59:59.000Z

320

Outdoor and Indoor Testing to Increase the Efficiency and Durability of Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

This paper presents the test performed on the solar thermal flat plate collector and the effect of saline aerosol on the solar thermal conversion; an assembly of testing rigs developed ... presented; the rigs all...

Daniela Ciobanu; Ion Visa; Anca Duta…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

322

Assessment of Combinations between Pretreatment and Conversion Configurations for Bioethanol Production  

Science Journals Connector (OSTI)

Therefore, useful alternatives can be generated, although additional factors need to be considered. ... Therefore, the most appropriate conversions to combine with SE are SHCF and SSCF. ... The black color bar represents the energy cost for pretreatment and conversion steps, and the gray color bar represents the energy cost for the distillation step. ...

Carolina Conde-Mejía; Arturo Jiménez-Gutiérrez; Mahmoud M. El-Halwagi

2013-05-14T23:59:59.000Z

323

The Activation Energy of the para-Hydrogen Conversion on Tungsten  

Science Journals Connector (OSTI)

...research-article The Activation Energy of the para-Hydrogen Conversion on Tungsten A. Couper D. D. Eley...has been made of the activation energy, E, and frequency factor, B , for the conversion of para-hydrogen on tungsten...

1952-01-01T23:59:59.000Z

324

Conversion Electrons of Radium D  

Science Journals Connector (OSTI)

The conversion electrons of radium D have been studied with thin sources on thin backings in a beta-ray spectrograph using calibrated photographic emulsions. The number of conversion electrons due to the 47-kev gamma-ray has been measured to be 74±5 per hundred disintegrations. The L:M:N ratio is 1:0.26:0.077. This implies a complex decay scheme for radium D, since earlier results give 3.5 unconverted 47-kev gamma-rays per hundred disintegrations.

Lawrence Cranberg

1950-01-15T23:59:59.000Z

325

Recirculation in multiple wave conversions  

SciTech Connect

A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

2008-07-30T23:59:59.000Z

326

Search for Spontaneous Conversion of Muonium to Antimuonium  

Science Journals Connector (OSTI)

The results of an experimental search with a new method for the spontaneous conversion of muonium to antimuonium are reported. The upper limit for GMM¯, the coupling constant characterizing the strength of the interaction leading to the conversion, is measured to be GMM¯<7.5GF (90% confidence level), where GF is the Fermi coupling constant. This result is about a factor of 3 lower than the previous limit and begins to probe predictions of the left-right-symmetric theory with a doubly charged Higgs triplet.

B. Ni; K. -P. Arnold; F. Chmely; V. W. Hughes; S. H. Kettell; Y. Kuang; J. Markey; B. E. Matthias; H. Orth; H. R. Schaefer; K. Woodle; M. D. Cooper; C. M. Hoffman; G. E. Hogan; R. E. Mischke; L. E. Piilonen; R. A. Williams; M. Eckhause; P. Guss; J. Kane; J. Reidy; G. zu Putlitz

1987-12-14T23:59:59.000Z

327

Jet-dilepton conversion in spherical expanding quark-gluon plasma  

E-Print Network (OSTI)

We calculate the production of large mass dileptons from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. The jet-dilepton conversion exceeds the thermal dilepton production and Drell-Yan process in the large mass region of 4.5 GeV$energies. The energy loss of jets in the hot and dense medium is also included.

Fu, Yong-Ping

2014-01-01T23:59:59.000Z

328

Jet-dilepton conversion in spherical expanding quark-gluon plasma  

E-Print Network (OSTI)

We calculate the production of large mass dileptons from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. The jet-dilepton conversion exceeds the thermal dilepton production and Drell-Yan process in the large mass region of 4.5 GeV$energies. The energy loss of jets in the hot and dense medium is also included.

Yong-Ping Fu; Qin Xi

2014-10-19T23:59:59.000Z

329

Meeting the Clean Energy Demand:? Nanostructure Architectures for Solar Energy Conversion  

Science Journals Connector (OSTI)

Meeting the Clean Energy Demand:? Nanostructure Architectures for Solar Energy Conversion ... This account further highlights some of the recent developments in these areas and points out the factors that limit the efficiency optimization. ...

Prashant V. Kamat

2007-02-01T23:59:59.000Z

330

Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural  

Science Journals Connector (OSTI)

This study employed a statistical methodology to investigate the optimization of conversion conditions and evaluate the reciprocal interaction of reaction factors related to the process of red-algae Gracilaria v...

Gwi-Taek Jeong; Chae Hun Ra; Yong-Ki Hong…

2014-07-01T23:59:59.000Z

331

MUTUAL CONVERSION SOLAR AND SIDEREAL  

E-Print Network (OSTI)

TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

Roegel, Denis

332

HELIOPHYSICS II. ENERGY CONVERSION PROCESSES  

E-Print Network (OSTI)

of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other forms approaches to the problems involved in phys- ically characterizing the solar atmosphere; see also the lecture

Hudson, Hugh

333

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

334

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity & Solar Thermal HW Module Electricity Solar thermal space heating Baseline Solar Thermal Inverte r To Grid 2012 GMZ Energy, Proprietary and Confidential Bosch -...

335

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

336

UPDATE AND ENHANCEMENT OF ODOT'S CRASH REDUCTION FACTORS  

E-Print Network (OSTI)

A Printed on recycled paper #12;ii SI* (MODERN METRIC) CONVERSION FACTORS APPROXIMATE CONVERSIONS TO SIUPDATE AND ENHANCEMENT OF ODOT'S CRASH REDUCTION FACTORS Final Report SPR 612 by Christopher M and Enhancement of ODOT's Crash Reduction Factors 6. Performing Organization Code 7. Author(s) Christopher M

Bertini, Robert L.

337

Jet conversions in a quark-gluon plasma  

E-Print Network (OSTI)

Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic $q(\\bar q)g\\to gq(\\bar q)$ and the inelastic $q\\bar q\\leftrightarrow gg$ scatterings are evaluated in the lowest order in QCD. Including both jet energy loss and conversions in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we have found a net conversion of quark to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the $p/\\pi^+$ and ${\\bar p}/\\pi^-$ ratios at high transverse momentum. However, a much larger net quark to gluon jet conversion rate than the one given by the lowest-order QCD is needed to account for the observed similar ratios in central Au+Au and p+p collisions at same energy. Implications of our results are discussed.

W. Liu; C. M. Ko; B. W. Zhang

2006-07-21T23:59:59.000Z

338

ihLSEVIFR Optical Materials 3 (1994) 115--121 Absolute non-radiative energy conversion efficiency scanning  

E-Print Network (OSTI)

, in optical materials. 1. Introduction reported optical absorptions and optical-to-thermal energy conversion of transparent, high-qual- which PPES 11NR studies have been reported have itylaser materials, ~NR (A) the absence of irre- radiativecenters during the quadrature scan, as corn- producible thermal resistances

Mandelis, Andreas

339

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...photoelectrochemical conversion of solar energy Michael Gratzel * * ( michael...industry, have dominated photovoltaic solar energy converters. These systems have...promising perspectives. renewable energy|solar energy conversion|photovoltaic...

2007-01-01T23:59:59.000Z

340

Grounded Situation Models for Situated Conversational Assistants  

E-Print Network (OSTI)

A Situated Conversational Assistant (SCA) is a system with sensing, acting and speech synthesis/recognition abilities, which engages in physically situated natural language conversation with human partners and assists them ...

Mavridis, Nikolaos

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

342

Photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Photochemical conversion and storage of solar energy ... In this article, the author considers the use of inorganic photochemical reactions for the conversion and storage of solar energy. ... HOMO?LUMO energy difference values compared ... ...

Charles Kutal

1983-01-01T23:59:59.000Z

343

The National Conversion Pilot Project  

SciTech Connect

The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

Roberts, A.V. [BNFL, Inc., Golden, CO (United States)

1995-12-31T23:59:59.000Z

344

Solar?energy conversion at high solar intensities  

Science Journals Connector (OSTI)

The concentration of sunlight offers distinct advantages for solar–electrical generation either by thermal conversion or by photovoltaics. A large variety of concentration techniques are available with concentration ratios of 1–1000. Concentration is required for thermal conversion systems to attain the high temperatures needed for efficiencies in the desired range of about 25%–35%. The projected costs for some of the solar thermal systems (especially the central receiver and the fixed mirror) indicate that they could be economically competitive in the southwestern states. The southwest may be required for these high?concentration systems to overcome the main disadvantage of concentration which is the use of the direct component of sunlight only. Other concerns of high?intensity systems are in tracking requirements reflective surface accuracy and material lifetimes of both the reflecting and absorbing components. Selective surface absorbers will be required for systems with concentration ratios below a few hundred. The present high cost of solar?cell?generated electricity can be reduced considerably by using concentrators. Cells can be used with any of the concentrator designs and the major concern is keeping them at acceptable operating temperatures. Planar silicon cells vertical multijunction and gallium–aluminum–arsenide cells all look attractive for concentrating systems.

Charles E. Backus

1975-01-01T23:59:59.000Z

345

Methanol conversion to higher hydrocarbons  

SciTech Connect

Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

Tabak, S.A. [Mobil Research and Development Corp., Princeton, NJ (United States). Central Research Lab.

1994-12-31T23:59:59.000Z

346

3. Energy conversion, balances, efficiency, equilibrium  

E-Print Network (OSTI)

1/124 3. Energy conversion, balances, efficiency, equilibrium (Introduction to Thermodynamics) Ron h�dm, h = u + p/ Picture: SEHB06 56/124 3.5: Energy balances; Conversion work work, work heat 96/124 Energy conversion heat work /1 "the essential rules" Picture:IO06 #12;97/124 Energy

Zevenhoven, Ron

347

Energy Conversion Technologies 1.0 Introduction  

E-Print Network (OSTI)

1 Energy Conversion Technologies 1.0 Introduction In these notes, we describe the infrastructure. By "energy conversion," we mean the conversion of energy into some form of electric energy. By "available now that is available to be considered in the generation and planning functions. We classify this information by Energy

McCalley, James D.

348

Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs  

SciTech Connect

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

1994-04-01T23:59:59.000Z

349

Thermal tolerant avicelase from Acidothermus cellulolyticus  

DOE Patents (OSTI)

The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

Ding, Shi-You (Golden, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

2008-04-29T23:59:59.000Z

350

Ionic Liquids as Solvents for Catalytic Conversion of Lignocellulosic Feedstocks  

E-Print Network (OSTI)

to the development of biomass conversion technologies, it isefficient and selective biomass conversion technologies is athe conversion of both carbohydrate components of biomass.

Dee, Sean Joseph

2012-01-01T23:59:59.000Z

351

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network (OSTI)

cost and improve the energy conversion efficiency, to enableefficiency solar energy conversion devices. AcknowledgementsPhotoelectrochemical Energy Conversion Neil P. Dasgupta and

Dasgupta, Neil

2014-01-01T23:59:59.000Z

352

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Steady-State Energy Conversion. Applied ScientificElectrokinetic energy conversion efficiency in nanofluidicElectrokinetic energy conversion efficiency in nanofluidic

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

353

Exceeding the Limit in Solar Energy Conversion with Multiple Excitons  

Science Journals Connector (OSTI)

The former comes from the transparence of the semiconductor material to solar radiation with photon energies below the bandgap (Eg), while the latter results from the cooling of hot carriers, initially generated by photon energies above Eg, to the band edges before they are extracted to do work. ... Carrier multiplication or singlet fission can be used to decrease the thermalization loss by converting part of the excess photon energy to multiple electron–hole pairs, thus increasing photocurrent. ... (9) However, such enhancement has little effect on the power conversion efficiency because significant carrier multiplication only occurs at photon energies as high as 4Eg. ...

Xiaoyang Zhu

2013-06-18T23:59:59.000Z

354

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

355

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

Science Journals Connector (OSTI)

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques ... (80-86) These energetic electrons that are not in thermal equilibrium with the metal atoms are called “hot electrons”. ... The activation energies are 22-33 kcal/mol, close to the desorption energy of CO from these surfaces. ...

Gabor A. Somorjai; Heinz Frei; Jeong Y. Park

2009-11-04T23:59:59.000Z

356

Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors  

Science Journals Connector (OSTI)

...University of Florida, Gainesville...processes and solar energy harvesting. Plants...energy by fossil fuels, solar thermal...convert light energy directly into...the conversion rate decreases a little...processes and solar energy harvesting...University of Florida, Gainesville...

Quan Yuan; Yunfei Zhang; Yan Chen; Ruowen Wang; Chaoling Du; Emir Yasun; Weihong Tan

2011-01-01T23:59:59.000Z

357

Conversion of raw carbonaceous fuels  

DOE Patents (OSTI)

Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

Cooper, John F. (Oakland, CA)

2007-08-07T23:59:59.000Z

358

A new cascade-type heat conversion system  

SciTech Connect

Various heat conversion systems have different operating temperatures. This paper shows how, in a solar energy system some of the waste heat from a thermophotovoltaic arrangement can be made to operate a thermionic power generator. The waste heat of the thermionic power generator can then be made to operate an alkali-metal thermal electric converter, and the waste heat from the alkali-metal thermal electric converter as well as the rest of the waste heat of the thermophotovoltaic system can be made to operate a methane reformation system. Stored heat from the methane reformation system can be made to operate the system at night. The overall system efficiency of the example shown is 42.6%. As a prime source of heat a nuclear pile or burning hydrogen may be used.

Newman, E. [Twenty-First Century Power Co., Northridge, CA (United States)

1996-12-31T23:59:59.000Z

359

Thermal treatment  

Science Journals Connector (OSTI)

Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

Dr. P. White; Dr. M. Franke; P. Hindle

1995-01-01T23:59:59.000Z

360

Thermal Processes  

Energy.gov (U.S. Department of Energy (DOE))

Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Dose factor entry and display tool for BNCT radiotherapy  

DOE Patents (OSTI)

A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

Wessol, Daniel E. (Bozeman, MT); Wheeler, Floyd J. (Idaho Falls, ID); Cook, Jeremy L. (Greeley, CO)

1999-01-01T23:59:59.000Z

362

Phosphoric chemical conversion coating with excellent wax-repellent performance  

Science Journals Connector (OSTI)

Wax deposition on pipelines is a serious problem for the production of crude oil. In this paper, phosphoric chemical conversion coatings were exploited to solve the problem. The chemical conversion coatings were fabricated on carbon substrate by surface modification technology at different temperature. A self-designed wax deposition apparatus based on cold-finger was used to study the wax-repellent properties of coatings, which indicated that all chemical conversion coatings showed superior wax-repellent performance to bare carbon substrate and the wax deposition reduction value of 80–95% was achieved by the chemical conversion coating obtained at room temperature. The microstructure and composition of coatings were evaluated by SEM and XRD, revealing that there existed much difference in the content of Zn3(PO4)2(H2O)4 phase and the microstructure among different coatings. The contact angle results measured on a contact angle meter showed that all coatings belonged to hydrophilic surface. And the study on the wetting behavior of Zn3(PO4)2(H2O)4 phase suggested that the water wetting property of coating was a key factor for suppressing wax deposition and the weak affinity between coating and wax also played an important role.

Yuzhen Guo; Weiping Li; Liqun Zhu; Zhiwei Wang; Huicong Liu

2012-01-01T23:59:59.000Z

363

Jet conversions in a quark-gluon plasma  

SciTech Connect

Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic q(q)g{yields}gq(q) and the inelastic qq{r_reversible}gg scatterings are evaluated in the lowest order in QCD. Including both jet energy loss and conversions in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we have found a net of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/{pi}{sup +} and p/{pi}{sup -} ratios at high transverse momentum. However, a much larger net quark-to-gluon jet conversion rate than the one given by the lowest order QCD is needed to account for the observed similar ratios in central Au+Au and p+p collisions at the same energy. Implications of our results are discussed.

Liu, W.; Ko, C. M.; Zhang, B. W. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, Texas 77843-3366 (United States)

2007-05-15T23:59:59.000Z

364

Photopyroelectric deconvolution of bulk and surface optical-absorption and nonradiative energy conversion efficiency spectra in Ti:A1203 crystals  

E-Print Network (OSTI)

- mental scheme to obtain high-resolution spectra of the optical-to-thermal energy conversion efficiency for quantitatively. When dealing with relatively highly absorbing condensed phases, bulk absorptions usually dominate conversion efficiency spectra in Ti:A1203 crystals J. Vanniasinkam, A. Mandelis, and S. Buddhudu Photothermal

Mandelis, Andreas

365

2011 Biomass Program Platform Peer Review: Thermochemical Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

366

ARTICLE doi:10.1038/nature09591 Direct conversion of human fibroblasts to  

E-Print Network (OSTI)

ARTICLE doi:10.1038/nature09591 Direct conversion of human fibroblasts to multilineage blood of OCT4 (also called POU5F1)-activated haematopoietic transcription factors, together with specific context of reprogramming factors to com- plete pluripotency induction2­5 . These intermediates co

367

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same m...

Saint-Hilaire, P; Saint-Hilaire, Pascal; Benz, Arnold O.

2005-01-01T23:59:59.000Z

368

Waste Gasification by Thermal Plasma: A Review Frdric Fabry*, Christophe Rehmet, Vandad Rohani, Laurent Fulcheri  

E-Print Network (OSTI)

12 Waste Gasification by Thermal Plasma: A Review Frédéric Fabry*, Christophe Rehmet, Vandad Rohani proposes an overview of waste-to-energy conversion by gasification processes based on thermal plasma, of various waste gasification processes based on thermal plasma (DC or AC plasma torches) at lab scale versus

Paris-Sud XI, Université de

369

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels  

Science Journals Connector (OSTI)

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels ... Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. ... Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. ...

Alexie M. Kolpak; Jeffrey C. Grossman

2011-06-20T23:59:59.000Z

370

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

371

Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system  

SciTech Connect

Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

1996-10-01T23:59:59.000Z

372

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

373

Documents: DUF6 Conversion EIS Supporting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion EIS DUF6 Conversion EIS Search Documents: Search PDF Documents View a list of all documents NEPA Compliance: DUF6 Conversion EIS Supporting Documents PDF Icon Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project 38 KB details PDF Icon Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluoride Environmental Impact Statement 90 KB details PDF Icon Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 52 KB details PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program

374

DUF6 Conversion Facility EIS Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

375

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

376

Power conversion apparatus and method  

DOE Patents (OSTI)

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

377

Measurement of thermal conductivity P t BPart B  

E-Print Network (OSTI)

wave Take the Fourier transform of this frequency domain solution #12;For a low thermal conductivity thin filmFor a low thermal conductivity thin film on a high thermal conductivity substrate (Factor of 2Measurement of thermal conductivity Part A: P t BPart B: · Time domain thermoreflectance #12

Braun, Paul

378

Nanoscale thermal transport. II. 2003–2012  

SciTech Connect

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

379

Next-Generation Thermionic Solar Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number: CPS 25659 | April 15, 2013 | Melosh * Fabricate heterostructure semiconductor cathodes based...

380

Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will enable energy-efficient biochemical conversion of lignocellulosic biomass into biofuels that are compatible with today's vehicles and infrastructure. Photos (clockwise from...

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar Energy, Its Conversion and Utilization  

Science Journals Connector (OSTI)

The basis of the discussions is the University of Florida Solar Energy and Energy Conversion Laboratory with its Solar House and its Solar-Electric Car.

Erich A. Farber

1974-01-01T23:59:59.000Z

382

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

383

LED Street Lighting Conversion Workshop Presentations  

Energy.gov (U.S. Department of Energy (DOE))

This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

384

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

385

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

386

Automotive Waste Heat Conversion to Power Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

387

Automotive Waste Heat Conversion to Power Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

388

Developing Functionalized Graphene Materials for Biomass Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

389

Surreptitious interception of conversations with lasers  

Science Journals Connector (OSTI)

Methods are described for surreptitiously intercepting conversations by reflecting a low-power laser beam from a window pane. The essential components and optical configurations of...

Mims III, Forrest M

1985-01-01T23:59:59.000Z

390

Energy Conversion, an Energy Frontier Research  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity, will become increasingly important. Indeed enhancements in efficiencies of energy conversion technologies that are readily adaptable in any environment will con-...

391

Energy Conversion, an Energy Frontier Research  

NLE Websites -- All DOE Office Websites (Extended Search)

most pressing problems. Indeed, our success at discovering new paradigms for efficient energy conversion, with minimal environmental impact, will largely determine humankind's...

392

Solid-State Energy Conversion Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eere.energy.gov 1 Solid-State Energy Conversion Overview John W. Fairbanks Department of Energy Vehicle Technologies Annual Merit Review June 11, 2010 Vehicle Technologies Program...

393

Conversion Technologies for Advanced Biofuels ? Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

balance measurements Biological Conversion of Sugars to Hydrocarbons - R&D Activities Energy Efficiency & Renewable Energy eere.energy.gov 5 Feedstocks Organism design for...

394

Next-Generation Thermionic Solar Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microscale-enhanced thermionic emitters will enable high-efficiency, solar-to-electrical conversion by taking advantage of both heat and light. Image from Stanford University...

395

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

396

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

397

Thermochemical Conversion Related Links | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

website's Information Resources section. Some key publications are: Using Heat and Chemistry to Make Fuel and Power: Thermochemical Conversion (January 2011) Thermochemical...

398

Conversion of Solar to Electrical Energy  

Science Journals Connector (OSTI)

A photovoltaic device has been developed which converts solar radiation directly into electrical energy with an over-all efficiency of 11%. This consists of a p-n junction formed by gaseous diffusion near the front surface of a silicon plate. In full sunlight a single cell furnishes approximately 30 ma of short circuit current per square centimeter of surface 0.6 v of open circuit voltage and 12 mw of power into a matched load per square centimeter of surface. Like other electric batteries individual cells may be connected in series or parallel to obtain an increase in terminal voltage or current. The spectral response is a maximum near 0.7 µ and the long wavelength cutoff is at approximately 1.1 µ. The efficiency of this new siliconp-n junctionphotovoltaic cell is greater by a factor of 20 than that previously reported for other types of photocells and makes the conversion of the sun's energy directly into electricity possible for a number of interesting applications. A Bell System field trial at Americus Georgia in which solar batteries are used to power a rural carrier telephone communication system is described. A number of other possible applications for this new solar energy converter are discussed.

G. L. Pearson

1957-01-01T23:59:59.000Z

399

The efficiency of conversion of energy in an electric-discharge light-gas accelerator of bodies  

Science Journals Connector (OSTI)

The results are given of investigation of the processes of energy transfer in a power supply-projectile system, ... the working gas and a number of other factors on the efficiency of energy conversion. It is foun...

A. V. Budin; V. A. Kolikov; F. G. Rutberg

2008-06-01T23:59:59.000Z

400

Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage  

Science Journals Connector (OSTI)

Abstract Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MWe capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWht and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant.

K. Nithyanandam; R. Pitchumani

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program  

E-Print Network (OSTI)

for several groups of electrocatalysts ECD PEMFC Catalyst Development Evaluation programs exist for severalEnergy Conversion Devices PEMFC Electrocatalyst Development Program Contact information: Dr. Peter Faguy pfaguyEnergy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program

402

Gene conversion in the rice genome  

E-Print Network (OSTI)

. Over 60% of the conversions we detected were between chromosomes. We found that the inter-chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P < 0.05). The frequencies...

Xu, Shuqing; Clark, Terry; Zheng, Hongkun; Vang, SÃ ¸ ren; Li, Ruiqiang; Wong, Gane Ka-Shu; Wang, Jun; Zheng, Xiaoguang

2008-02-25T23:59:59.000Z

403

Approaches for biological and biomimetic energy conversion  

Science Journals Connector (OSTI)

...biological and biomimetic energy conversion 10.1073...that are related to energy conversion: specifically...synthetic and/or hybrid devices is still...systems that produce energy in an efficient...costs are related to infrastructure, such as supporting...inverters, and grid connections. For...

David A. LaVan; Jennifer N. Cha

2006-01-01T23:59:59.000Z

404

Parameterizing energy conversion on rough topography  

E-Print Network (OSTI)

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form and mixing U0 Form drag pressure Tidal energy conversion Form drag causes: - internal wave generation - eddy Sound, WA Point Three Tree Previous work McCabe et al., 2006 > Measured the internal form drag

Warner, Sally

405

factors | OpenEI  

Open Energy Info (EERE)

36 36 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253836 Varnish cache server factors Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago)

406

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

407

Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors  

E-Print Network (OSTI)

, 63.22.+m, 65.80.+n, 66.60.+a The performance of thermoelectric energy conversion devices depends to achieve high carrier mobility. The lowest thermal conduc- tivity in crystalline solids is generally

408

Thermal shock resistance of solids associated with hyperbolic heat conduction theory  

Science Journals Connector (OSTI)

...damage. Examples are as varied as energy conversion systems, electronic devices and...that was coupled with the local energy balance-[21,22]. Since then...frequency of the molecules within the energy carrier. The thermal relaxation time...

2013-01-01T23:59:59.000Z

409

Relation of the second law of thermodynamics to the power conversion of energy fluctuations  

Science Journals Connector (OSTI)

The relation of the second law of thermodynamics to the power conversion of fluctuation energy is analyzed using the master equation of the model for the conversion circuit. The performance equation for independent particles shows that the power-conversion performance is given by the second law both for classical and quantum-effect diodes. The relation of the second law to power-conversion models based on the theoretical and experimental results for diode performance for interacting particles exhibiting manybody, multiparticle, or other anomalous and excess-current effects is examined. The performance equations are derived from the master equation for models for interacting particles to determine the conditions required by the second law for power conversion. These conditions are given in terms of the distribution throughout the power-conversion circuit for all the parameters that determine the particle and multiparticle barrier-crossing probability such as the effective mass and spectral density functions. Circuits for spectroscopic measurements for power-conversion circuits with interacting particles are noted. Using selected experimental values for the diode nonlinearity factors in these circuits, open circuit voltages are computed that are not predicted by the second law of thermodynamics.

Joseph C. Yater

1979-10-01T23:59:59.000Z

410

Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove  

E-Print Network (OSTI)

.lovegrove@anu.edu.au Hydrogen from Biomass as an energy carrier has generated increasing interest in recent years in connection with the use of solar heat as energy source for the conversion reaction. Biomass gasification effective as high energy density transport fuels. Gas derived from solar thermal conversion of biomass

411

FUTURE DIRECTIONS FOR THERMAL DISTRIBUTION STANDARDS  

SciTech Connect

This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

412

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

413

Thermal design through space and time  

E-Print Network (OSTI)

One of the primary roles of architecture is to control the environment at the service of a building's inhabitants. Thermal qualities are a significant factor in the overall experience one has inside and outside a building. ...

Feldgoise, Jeffrey

1997-01-01T23:59:59.000Z

414

Paducah DUF6 Conversion Final EIS - Appendix G: Consultation Letters  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX G: CONSULTATION LETTERS Consultation Letters G-2 Paducah DUF 6 Conversion Final EIS Consultation Letters G-3 Paducah DUF 6 Conversion Final EIS U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND RECOGNIZED NATIVE AMERICAN GROUPS Consultation Letters G-4 Paducah DUF 6 Conversion Final EIS Consultation Letters G-5 Paducah DUF 6 Conversion Final EIS Consultation Letters G-6 Paducah DUF 6 Conversion Final EIS Consultation Letters G-7 Paducah DUF 6 Conversion Final EIS Consultation Letters G-8 Paducah DUF 6 Conversion Final EIS Consultation Letters G-9 Paducah DUF 6 Conversion Final EIS Consultation Letters G-10 Paducah DUF 6 Conversion Final EIS Consultation Letters G-11 Paducah DUF 6 Conversion Final EIS Consultation Letters G-12 Paducah DUF 6 Conversion Final EIS

415

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit  

E-Print Network (OSTI)

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit Yuji Suzuki1 using a low-power-consumption impedance conversion circuit. Key words: Energy harvesting, Electret, CYTOP, Parylene spring, Impedance conversion 1. INTRODUCTION Energy harvesting from environmental

Kasagi, Nobuhide

416

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

417

NREL: Biomass Research - Thermochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

418

NREL: Biomass Research - Biochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

419

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

420

Overview of Capabilities Conversion System Technology  

E-Print Network (OSTI)

cycles Heat exchanger design and optimization TES Material Integration & Optimization: Solar power plantOverview of Capabilities Conversion System Technology - Power System Demonstrations - Systems Conceptual Design/Trade Space Exploration - Simulation Modeling for Manufacturing - Hybrid Energy Systems

Lee, Dongwon

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Summer Series 2012 - Conversation with Omar Yaghi  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

Omar Yaghi

2013-06-24T23:59:59.000Z

422

Ris Energy Report 2 Bioenergy conversion  

E-Print Network (OSTI)

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

423

Analyzing Biomass Conversion into Liquid Hydrocarbons  

Science Journals Connector (OSTI)

Variants of the Fischer–Tropsch producer-gas conversion into liquid hydrocarbons are analyzed under the ... is attained in the reactions occurring in the biomass gasification. When the raw material is wood ... th...

V. D. Meshcheryakov; V. A. Kirillov

2002-09-01T23:59:59.000Z

424

Chapter 13 - Heterogeneous Catalysts and Biomass Conversion  

Science Journals Connector (OSTI)

Abstract The application of heterogeneous catalysts to conversion processes based on biomasses is described and discussed. The role of heterogeneous catalysts in the development of renewable industrial chemistry is emphasized.

Guido Busca

2014-01-01T23:59:59.000Z

425

CO2 Conversion to CH4  

Science Journals Connector (OSTI)

A power-to-gas technology that converts renewable energy to methane...16]. Conversion of renewable energy, that is, solar or wind, into fuel is an easy way to store solar energy, characterized by low energy densi...

V. Barbarossa; C. Bassano; P. Deiana; G. Vanga

2013-01-01T23:59:59.000Z

426

Energy Balances for Biomass Conversion Systems  

Science Journals Connector (OSTI)

Biomass conversion systems of any type, irrespective of ... measured on a consistent scale which identifies the energy efficiency of the process and of the overall system. Accurate energy balances, as well as mat...

Raphael Katzen

1983-01-01T23:59:59.000Z

427

Energy conversions of a desert depression  

Science Journals Connector (OSTI)

This work is concerned with the energy conversions of a developing atmospheric system in subtropical ... and temporal variations of various components of the energy budget are presented in a detailed analysis. T...

H. Abdel Basset

2001-04-01T23:59:59.000Z

428

The Conversion of Waste to Energy  

E-Print Network (OSTI)

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

429

Energy Conversion, an Energy Frontier Research  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Awards ... 12 S p r I N g 2 0 1 1 Intermediate Band Solar Energy Conversion in ZnTe:O and ZnTeZnSe Affordable photovoltaic solar cells are highly...

430

Principles of photoelectrochemical, solar energy conversion  

Science Journals Connector (OSTI)

Photoelectrochemical devices for conversion of solar energy into both electrical energy and chemical energy are discussed with emphasis on how the ... parameters as band gap, doping level, minority carrier lifeti...

M. A. Butler; D. S. Ginley

1980-01-01T23:59:59.000Z

431

Network Analysis of Photovoltaic Energy Conversion  

Science Journals Connector (OSTI)

Photovoltaic energy conversion in photovoltaic cells has been analyzed by the detailed balance approach or by thermodynamic arguments. Here we introduce a network representation to analyze the performance of such systems once a suitable kinetic model (...

Mario Einax; Abraham Nitzan

2014-11-03T23:59:59.000Z

432

Summer Series 2012 - Conversation with Kathy Yelick  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

Kathy Yelick

2013-06-24T23:59:59.000Z

433

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

E-Print Network 3.0 - advanced conversion technologies Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

establish efficient clean energy systems, we offer education Summary: * Advanced Energy Conversion * Highly Qualified Energy Conversion * Functional Energy Conversion...

435

Lattice effect in solid state internal conversion  

SciTech Connect

The effect of the crystal lattice on nuclear fusion reactions p+d{yields}{sup 3}He taking place in internal conversion channels is studied. Fusionable particles solved in the investigated crystalline material form a sublattice. Fusion reaction is generated by a flux of incoming fusionable particles. The calculated cross sections are compared with those of an ordinary fusion reaction. The internal conversion coefficients are also calculated.

Kalman, Peter; Keszthelyi, Tamas [Budapest University of Technology and Economics, Department of Experimental Physics, Budafoki ut 8. F. I.I.10, H-1521 Budapest (Hungary)

2009-03-15T23:59:59.000Z

436

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

437

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

438

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

439

First-of-its-Kind Carbon Capture and Conversion Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

440

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

442

WEC up! Energy Department Announces Wave Energy Conversion Prize...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEC up Energy Department Announces Wave Energy Conversion Prize Administrator WEC up Energy Department Announces Wave Energy Conversion Prize Administrator September 24, 2014 -...

443

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

444

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

445

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The...

446

Process Design and Economics for the Conversion of Lignocellulosic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion...

447

2011 Biomass Program Platform Peer Review: Biochemical Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

448

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

449

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

450

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

451

Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle...

452

Conversation/Culture Partner Program Would you like to help  

E-Print Network (OSTI)

Conversation/Culture Partner Program Would you like to help another student improve their English different cultures; *Help another student improve their conversation English; and *Assist another student

Thomas, Andrew

453

Left Coast Electric Formerly Left Coast Conversions | Open Energy...  

Open Energy Info (EERE)

Left Coast Electric Formerly Left Coast Conversions Jump to: navigation, search Name: Left Coast Electric (Formerly Left Coast Conversions) Place: California Sector: Services...

454

Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy...  

Open Energy Info (EERE)

Golden Fuel Systems formerly Greasel Conversions Inc Jump to: navigation, search Name: Golden Fuel Systems (formerly Greasel Conversions Inc) Place: Drury, Montana Zip: 65638...

455

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

456

Single-step conversion of cellulose to 5-hydroxymethylfurfural...  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatileplatform chemical. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a...

457

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

458

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

459

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

460

Light-Material Interactions in Energy Conversion - Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

conversion efficiency for non-tracking converters must be reasonably independent of light incidence angle. To improve energy conversion efficiency with photonic design and...

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. domestic reactor conversion program  

SciTech Connect

The RERTR U.S. Domestic Conversion program continues in its support of the Global Treat Reduction Initiative (GTRI) to convert seven U.S reactors to low enriched uranium (LEU) by 2010. These reactors are located at the University of Florida, Texas A and M University, Purdue University, Washington State University, Oregon State University, the University of Wisconsin, and the Idaho National Laboratory. The reactors located at the University of Florida and Texas A and M Nuclear Science Center were successfully converted to LEU in September of 2006 through an integrated and collaborative effort involving INL, Argonne National Laboratory (ANL), DOE (headquarters and the field office), the Nuclear Regulatory Commission (NRC), the universities, and the contractors involved in analyses, fuel design and fabrication, and spent nuclear fuel (SNF) shipping and disposition. With this work completed and in anticipation of other impending conversion projects, a meeting was established to engage the project participants in a structured discussion to capture the lessons learned. The objectives of this meeting were to document the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts could be conducted with greater effectiveness, efficiency, and with fewer challenges. The lessons learned from completing the University of Florida and Texas A and M conversions, the Purdue reactor conversion status, and an overview of the upcoming reactor conversions will be presented at the meeting. (author)

Meyer, Dana M.; Woolstenhulme, Eric C. [Idaho National Laboratory, Idaho Falls, Idaho 83415 (United States)

2008-07-15T23:59:59.000Z

462

Generating random thermal momenta  

E-Print Network (OSTI)

Generation of random thermal particle momenta is a basic task in many problems, such as microscopic studies of equilibrium and transport properties of systems, or the conversion of a fluid to particles. In heavy-ion physics, the (in)efficiency of the algorithm matters particularly in hybrid hydrodynamics + hadronic transport calculations. With popular software packages, such as UrQMD 3.3p1 or THERMINATOR, it can still take ten hours to generate particles for a single Pb+Pb "event" at the LHC from fluid dynamics output. Below I describe reasonably efficient simple algorithms using the MPC package, which should help speed momentum generation up by at least one order of magnitude. It is likely that this wheel has been reinvented many times instead of reuse, so there may very well exist older and/or better algorithms that I am not aware of (MPC has been around only since 2000). The main goal here is to encourage practitioners to use available efficient routines, and offer a few practical solutions.

Denes Molnar

2012-12-09T23:59:59.000Z

463

Cosmological constraints on axionic dark radiation from axion-photon conversion in the early Universe  

SciTech Connect

Axions seem ubiquitous in string theories and some of them may be produced non-thermally by heavy scalar decays, contributing to dark radiation. We study various cosmological effects of photons produced from the axionic dark radiation through axion-photon conversion in the presence of primordial magnetic fields, and derive tight constraints on the combination of the axion-photon coupling and the primordial magnetic field.

Higaki, Tetsutaro [Theory Center, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakayama, Kazunori [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Takahashi, Fuminobu, E-mail: thigaki@post.kek.jp, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

2013-09-01T23:59:59.000Z

464

How colors influence numbers: Photon statistics of parametric down-conversion  

Science Journals Connector (OSTI)

Parametric down-conversion (PDC) is a technique of ubiquitous experimental significance in the production of nonclassical, photon-number-correlated twin beams. Standard theory of PDC as a two-mode squeezing process predicts and homodyne measurements observe a thermal photon number distribution per beam. Recent experiments have obtained conflicting distributions. In this article, we explain the observation by an a priori theoretical model solely based on directly accessible physical quantities. We compare our predictions with experimental data and find excellent agreement.

Wolfgang Mauerer; Malte Avenhaus; Wolfram Helwig; Christine Silberhorn

2009-11-10T23:59:59.000Z

465

PSO-2002 FU-2207 final report Fundamental mechanisms for conversion of  

E-Print Network (OSTI)

11 2. Gas-phase conversion of Cl, S, and K/Na in biomass combustion (I) 13 2.1. Mechanism Biomass Combustion 33 2.3. The Effect of NO and SO2 on the Oxidation of CO-H2 mixtures 65 2.4. Thermal-phase mechanisms for NOx formation in biomass combustion (II) 119 3.1. Ammonia Chemistry under Fuel-Rich Conditions

466

Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

467

Alternative Fuels Data Center: Natural Gas Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Conversions Related Information Conversion Basics

468

Photochemical Conversion of Solar Energy into Electrical Energy in an Eosin–Mannose System  

Science Journals Connector (OSTI)

Solar energy has been converted into electrical energy using an eosin–mannose system in a ... and 67.20 ?W, respectively. The observed conversion efficiency was 0.6461% and the fill factor was 0.3739 against an a...

Mukesh Kumar Bhimwal; K. M. Gangotri

2012-01-01T23:59:59.000Z

469

GT-MHR power conversion system: Design status and technical issues  

SciTech Connect

The Modular Helium Reactor (MHR) builds on 30 years of international gas-cooled reactor experience utilizing the unique properties of helium gas coolant, graphite moderator and coated particle fuel. To efficiently utilize the high temperature potential of the MHR, an innovative power conversion system has been developed featuring an intercooled and recuperated gas turbine. The gas turbine replaces a conventional steam turbine and its many auxiliary components. The Power Conversion System converts the thermal energy of the helium directly into electrical energy utilizing a closed Brayton cycle. The Power Conversion System draws on even more years of experience than the MHR: the world`s first closed-cycle plant, fossil fired and utilizing air as working fluid, started operation in Switzerland in 1939. Shortly thereafter, in 1945, the coupling of a closed-cycle plant to a nuclear heat generation system was conceived. Directly coupling the closed-cycle gas turbine concept to a modern, passively safe nuclear reactor opens a new chapter in power generation technology and brings with it various design challenges. Some of these challenges are associated with the direct coupling of the Power Conversion System to a nuclear reactor. Since the primary coolant is also the working fluid, the Power Conversion System has to be designed for reactor radionuclide plateout. As a result, issues like component maintainability and replaceability, and fission product effects on materials must be addressed. Other issues concern the integration of the Power Conversion System components into a single vessel. These issues include the selection of key technologies for the power conversion components such as submerged generator, magnetic bearings, seals, compact heat exchangers, and the overall system layout.

Etzel, K.; Baccaglini, G.; Schwartz, A. [General Atomics, San Diego, CA (United States); Hillman, S.; Mathis, D. [AlliedSignal Aerospace, Tempe, AZ (United States)

1994-12-01T23:59:59.000Z

470

Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels  

SciTech Connect

This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance and destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.

Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

2014-03-31T23:59:59.000Z

471

Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature  

Science Journals Connector (OSTI)

This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The water factors presented may be useful in modeling and policy analyses where reliable power plant level data are not available. Major findings of the report include: water withdrawal and consumption factors vary greatly across and within fuel technologies, and water factors show greater agreement when organized according to cooling technologies as opposed to fuel technologies; a transition to a less carbon-intensive electricity sector could result in either an increase or a decrease in water use, depending on the choice of technologies and cooling systems employed; concentrating solar power technologies and coal facilities with carbon capture and sequestration capabilities have the highest water consumption values when using a recirculating cooling system; and non-thermal renewables, such as photovoltaics and wind, have the lowest water consumption factors. Improved power plant data and further studies into the water requirements of energy technologies in different climatic regions would facilitate greater resolution in analyses of water impacts of future energy and economic scenarios. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

J Macknick; R Newmark; G Heath; K C Hallett

2012-01-01T23:59:59.000Z

472

PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR  

E-Print Network (OSTI)

increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612

473

Charging-free electrochemical system for harvesting low-grade thermal energy  

Science Journals Connector (OSTI)

...Mechanical Engineering, Massachusetts Institute of Technology...Mechanical Engineering, Massachusetts Institute of Technology...processes, environment, solar-thermal, and geothermal energy (1...Commun 2 : 550 Work at Massachusetts Institute of Technology...by the Solid State Solar-Thermal Energy Conversion...

Yuan Yang; Seok Woo Lee; Hadi Ghasemi; James Loomis; Xiaobo Li; Daniel Kraemer; Guangyuan Zheng; Yi Cui; Gang Chen

2014-01-01T23:59:59.000Z

474

Solar thermal power generation: a bibliography with abstracts. Quarterly update, July-September 1979  

SciTech Connect

This annotated bibliography covers the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, and large scale photovoltaics. An author index and a keyword index are included. (MHR)

Not Available

1980-02-01T23:59:59.000Z

475

Solar thermal power generation: a bibliography with abstracts. Quarterly update, April-June 1980  

SciTech Connect

This annotated bibliography covers the following subjects: energy overviews; solar overviews; energy conservation; environment, law, and policy; total energy systems; solar thermal power and energy storage; thermoelectric, thermionic, and thermolysis; Ocean Thermal Energy Conversion; wind energy; biomass; bioconversion, and photochemical; satellite power systems; and photovoltaic applications. (MHR)

Sparkman, T.; Bozman, W.R. (eds.)

1980-08-01T23:59:59.000Z

476

Solar thermal power generation: a bibliography with abstracts. Quarterly update, January-March 1980  

SciTech Connect

This annotated bibliography contains the following: energy overviews, solar overviews, energy conservation, economics and law, total energy systems, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, satellite power stations, and large-scale photovoltaics. (MHR)

Not Available

1980-06-01T23:59:59.000Z

477

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

478

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

479

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on AddThis.com... More in this section... Federal State

480

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

Note: This page contains sample records for the topic "thermal conversion factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Paducah DUF6 Conversion Final EIS - Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in

482

Overview of coal conversion process instrumentation  

SciTech Connect

A review of standard instrumentation used in the processing industries is given, and the applicability of this instrumentation to measurements in mixed phase media and hostile environments such as those encountered in coal conversion processes is considered. The major projects in coal conversion sponsored by the US Department of Energy are briefly reviewed with schematics to pinpoint areas where the standard instrumentation is inadequate or altogether lacking. The next report in this series will provide detailed requirements on the instruments needed for these processes, will review new instruments which have recently become commercially available but are not yet considered standard instrumentation, and report on the status of new instruments which are being developed and, in some cases, undergoing tests in coal conversion plants.

Liptak, B. G.; Leiter, C. P.

1980-05-01T23:59:59.000Z

483

NETL: Gasification Systems - Conversion and Fouling  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion and Fouling Conversion and Fouling NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 3 Project Description The objective for this NETL in-house conversion and fouling project is to improve the reliability, availability and maintainability (RAM) of gasification plants by providing tools that can be used to evaluate the impact that fuel properties have on slag and refractory interaction, and to reduce plugging and fouling throughout the syngas cooling system. Utilizing these tools will aid in minimizing plugging and fouling-increasing overall plant efficiency due to improved heat transfer in heat exchangers. Particle deposition experimental schematic Particle deposition experimental schematic (click to enlarge) Project Details Program Background and Project Benefits

484

Energy Conversion | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

485

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...thermal-to-electric conversion efficiency for...in IFE, the energy multiplication factor is typically...thermal-to-electric conversion efficiency ranges...is 7%, the energy multiplication factor is 1.1, and the power conversion efficiency is...

1999-01-01T23:59:59.000Z

486

Lower Hybrid to Whistler Wave Conversion  

SciTech Connect

In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

487

Laser spectroscopy of primary energy conversion in  

Science Journals Connector (OSTI)

A review is given of the current status of research on primary processes of energy conversion in photosynthesis. The structural and functional organization of photosynthetic apparatus of higher plants is considered. A description is given of laser probing methods, applications of high-speed optical shutters, and picosecond spectrofluorometry involving the use of image converters. A functional scheme of primary energy conversion by Rhodopseudomonas sphaeroides bacteria is given for the 10?12–10?4 sec range of time intervals. Some nonlinear processes resulting from intense excitation of the pigment apparatus of photosynthesizing organisms are considered.

V Z Pashchenko; L B Rubin

1978-01-01T23:59:59.000Z

488

Seasonal thermal energy storage  

SciTech Connect

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

489

Exergy analysis of a rock bed thermal storage system  

Science Journals Connector (OSTI)

In this paper, a thermodynamic procedure is presented to analyse energy and exergy balances of a rock bed thermal storage system. The thermal behaviour is described by means of a control volume that includes three subsystems: the solar collectors, the fluid distribution system and the storage chamber. Solar-to-thermal energy conversion was obtained by means of a solar collector at a fixed airflow rate. The final purpose of the method is to determine how well the thermodynamic modelling fits the real data obtained experimentally from the prototype under normal operating conditions.

J.J. Navarrete-Gonzalez; J.G. Cervantes-de Gortari; E. Torres-Reyes

2008-01-01T23:59:59.000Z

490

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network (OSTI)

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

491

Thermal Control & System Integration  

Energy.gov (U.S. Department of Energy (DOE))

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

492

A Study of the Coupled Gravitational and Electromagnetic Perturbations to the Reissner--Nordstrom Black Hole: The Scattering Matrix, Energy Conversion, and Quasi-Normal Modes  

Science Journals Connector (OSTI)

...charge of the black hole, the energy in an incident wave, which...transformation of incident gravitational energy into electromagnetic energy (and vice versa) is expressed in terms of a conversion factor [Note: See the image of page...

1980-01-01T23:59:59.000Z

493

Regulation of fat and muscle development by transforming growth factor alpha in transgenic mice and in cultured cells  

Science Journals Connector (OSTI)

...transforming growth factor alpha (TGF-alpha...similar levels of energy expenditure per...morphological conversion and diminished...concentrations of growth factor. Despite its...similar levels of energy expenditure per...morphological conversion and diminished...concentrations of growth factor. Despite its...

NC Luetteke; DC Lee; RD Palmiter; RL Brinster; and EP Sandgren

1993-03-01T23:59:59.000Z

494

Disruption, VDE and Runaway Electron Conversion  

E-Print Network (OSTI)

redistribute in-divertor energy Magnetic energy 35 (?) MJ For 6.5 MA, total out to VV Current quench duration 6 burn also have enough thermal and magnetic energy to put in-vessel (PFC) and torus vessel systems -- Global vertical and lateral force on VV, etc. · Thermal loading on PFCs, etc. -- Divertor targets

495

Empirical Screening Correction for M-Subshell Internal Conversion Coefficients  

Science Journals Connector (OSTI)

The only theoretical values which are available for coefficients of internal conversion in the M shell have been calculated without the inclusion of screening, and they are in disagreement with experimental values by factors as large as 3. From the comparison of these theoretical values with new accurate measurements on the M-subshell electron lines of the M4 transitions occuring in the decay of Te121m and of Te123m, it was possible to effect a tentative semiempirical screening correction. Essentially, this is the replacement of the nuclear charge Z for the evaluation of the coefficient by ZeffM=Z-?i, where ?i=7.0, 7.9, and 10.0 for MI(3s), MII,III(3p), and MIV,V(3d) electrons, respectively. This correction to the theoretical values is found to produce agreement with other experimental M conversion results, both measured in this work and taken from the literature, over a wide range of multipolarities and of Z and energy values. The nonspecific characteristic of the correction is interpreted to mean that the screening is chiefly an effect on the electron wave functions of the initial bound states of the atom.

Y. Y. Chu and M. L. Perlman

1964-07-27T23:59:59.000Z

496

Power Conversion APEX Interim Report November, 1999  

E-Print Network (OSTI)

, the combined efficiency of the topping cycle and bottoming cycle will be less than the single cycle along. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

California at Los Angeles, University of

497

Solar energy conversion by chloroplast photoelectrochemical cells  

Science Journals Connector (OSTI)

... the photochemical cell has proved advantageous because of their ease of preparation and their power conversion efficiency of close to 1 %. Fig. l Time course of potential development. ... h even after the light was turned off, illustrated the system's ability to store energy. The ability of the cell to generate a voltage is equivalent to a generator ...

Ravindra Bhardwaj; Rong L. Pan; Elizabeth L. Gross

1981-01-29T23:59:59.000Z

498

On the Energy Conversion during Geostrophic Adjustment  

Science Journals Connector (OSTI)

It is found that for a continuously stratified fluid which remains so during the geostrophic adjustment, the energy conversion ratio ? (??KE/?PE) is ½, in contrast to the value of ? for a two-layer fluid. Since the two-layer fluid is an ...

Hsien Wang Ou

1986-12-01T23:59:59.000Z

499

Soft materials for linear electromechanical energy conversion  

E-Print Network (OSTI)

We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

Antal Jakli; Nandor Eber

2014-07-29T23:59:59.000Z

500

Defect Tolerant Semiconductors for Solar Energy Conversion  

Science Journals Connector (OSTI)

Defect Tolerant Semiconductors for Solar Energy Conversion ... He obtained his Ph.D. in Physics at Paris-Sud University where he modeled Hot Carrier Solar Cells by means of Ensemble Monte Carlo methods. ... These surface energies are significantly lower compared to 96 and 102 meV/Å2 for (1010) and (1120) low energy nonpolar GaN surfaces respectively. ...

Andriy Zakutayev; Christopher M. Caskey; Angela N. Fioretti; David S. Ginley; Julien Vidal; Vladan Stevanovic; Eric Tea; Stephan Lany

2014-03-13T23:59:59.000Z