Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal Conductivity Measurements of Thermoelectric Films  

Science Conference Proceedings (OSTI)

... which allow solid-state conversion of thermal to electrical energy, have a ... and exhaust system, which can run either an electric motor or accessories ...

2013-03-15T23:59:59.000Z

2

Ab-Initio Thermal Conductivity for Thermoelectric Nanostructured ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Energy Nanomaterials. Presentation Title, Ab-Initio Thermal Conductivity for ...

3

Anomalously low thermal conductivity and thermoelectric properties of new cationic clathrates in the Sn-In-As-I system  

Science Conference Proceedings (OSTI)

Single-crystal samples of cationic clathrates in the Sn-In-As-I system with different indium contents have been synthesized. Their crystal structure has been analyzed and their thermoelectric properties have been measured. These compounds are found to be n-type semiconductors with high absolute values of the Seebeck coefficient (S = 400-600 {mu}V/K) and anomalously low thermal conductivity ({kappa} {materials. The reasons for the anomalously low thermal conductivity of these semiconductors are discussed and ways for optimizing their thermoelectric properties are shown.

Shevelkov, A. V.; Kelm, E. A.; Olenev, A. V. [Moscow State University, Faculty of Chemistry (Russian Federation); Kulbachinskii, V. A., E-mail: kulb@mig.phys.msu.ru; Kytin, V. G. [Moscow State University, Faculty of Physics (Russian Federation)

2011-11-15T23:59:59.000Z

4

Thermoelectrics and Thermal Transport - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Energy Nanomaterials: Thermoelectrics and Thermal Transport Sponsored by: The Minerals, Metals and Materials Society, TMS Materials ...

5

Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity  

DOE Green Energy (OSTI)

Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal paths can be orthogonal due to off-diagonal thermoelectricity (ODTE). The authors discuss the benefits of this form of thermoelectricity for device applications and describe a search for suitable thermoelectric properties in the air-stable conducting polymers polyaniline and polypyrrole. They find, at 300K for diagonal (ordinary) thermoelectricity (DTE), the general correlation that the logarithm of the electrical conductivity varies linearly with the Seebeck coefficient on doping, but with a proportionality in excess of a prediction from theory. The correlation is unexpected in its universality and unfavorable in its consequences for applications in DTE and ODTE. A standard model suggests that conduction by carriers of both signs occurs in these polymers, which thus leads to reduced thermoelectric efficiency. They also discuss polyacetylene (which is not air-stable), where this ambipolar conduction does not occur, and where properties seem more favorable for thermoelectricity.

Mateeva, N.; Testardi, L. [TecOne, Inc., Tallahassee, FL (United States); Niculescu, H. [TecOne, Inc., Tallahassee, FL (United States)]|[Florida A and M Univ./Florida State Univ., Tallahassee, FL (United States) Coll. of Engineering; Schlenoff, J. [TecOne, Inc., Tallahassee, FL (United States)]|[Florida State Univ., Tallahassee, FL (United States). Chemistry Dept.

1998-12-01T23:59:59.000Z

6

Thermoelectric Ocean Thermal Energy Conversion  

DOE Green Energy (OSTI)

A novel thermoelectric OTEC concept is proposed and compared with the ammonia closed-cycle designs. The thermoelectric OTEC is a much simpler system which uses no working fluid and therefore requires no pressure vessel, working fluid pumps, or turbogenerator. These components are replaced by power modules which are heat exchangers integrated with thermoelectric generators. The thermoelectric OTEC offers several potential advantages including: simpler and more easily mass-produced components; higher reliability system performance through the use of a high level of redundancy and long-lived, solid-state thermoelectric generators; greater safety for crew and environment by elimination of the pressurized working fluid; and the possibility of lower system costs. These comparisons are discussed and plans for future work are presented.

Jayadev, T.S.; Benson, D.K.; Bohn, M.S.

1979-06-01T23:59:59.000Z

7

Thermoelectric I  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Breaking the Thermal Conductivity Glass Limit: Qiang Li1; 1Brookhaven National Laboratory In the development of thermoelectric materials, ...

8

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network (OSTI)

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe… (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

9

Synthetic thermoelectric materials comprising phononic crystals  

DOE Patents (OSTI)

Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

2013-08-13T23:59:59.000Z

10

Thermally Conductive Graphite Foam  

oriented graphite planes, similar to high performance carbon fibers, which have been estimated to exhibit a thermal conductivity greater than 1700 ...

11

Thermal conductivity from first-principles in bulk, disordered, and nanostructured materials  

E-Print Network (OSTI)

Thermal conductivity is an important transport property that plays a vital role in applications such as high efficiency thermoelectric devices as well as in thermal management of electronics. We present a first-principles ...

Garg, Jivtesh

2011-01-01T23:59:59.000Z

12

Thermoelectric Study of InGaN-Based Materials for Thermal Energy ...  

Science Conference Proceedings (OSTI)

Presentation Title, Thermoelectric Study of InGaN-Based Materials for Thermal ... Structural and Thermal Stability Properties of Cellulose Nanocomposites with ...

13

Cylindrical thermal contact conductance  

E-Print Network (OSTI)

Thermal contact conductance is highly important in a wide variety of applications, from the cooling of electronic chips to the thermal management of spacecraft. The demand for increased efficiency means that components need to withstand higher temperatures and heat transfer rates. Many situations call for contact heat transfer through nominally cylindrical interfaces, yet relatively few studies of contact conductance through cylindrical interfaces have been undertaken. This study presents a review of the experimental and theoretical investigations of the heat transfer characteristics of composite cylinders, presenting data available in open literature in comparison with relevant correlations. The present investigation presents a study of the thermal contact conductance of cylindrical interfaces. The experimental investigation of sixteen different material combinations offers an opportunity to develop predictive correlations of the contact conductance, in conjunction with an analysis of the interface pressure as a function of the thermal state of the individual cylindrical shells. Experimental results of the present study are compared with previously published conductance data and conductance models.

Ayers, George Harold

2003-08-01T23:59:59.000Z

14

BSA 09-27: Synthesis of High-Efficiency Thermoelectric Materials  

Thermoelectric materials must exhibit both high electrical conductivity and low thermal conductivity in order to usefully convert heat to electricity ...

15

Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Thermoelectric materials can generate electricity or provide cooling by converting thermal gradients to electricity or electricity to thermal gradients. More efficient thermoelectric materials would make feasible the widespread use of thermoelectric converters in mundane applications. This report summarizes the state-of-the-art of thermoelectric materials including currently available materials and applications, new developments, and future prospects.

2000-01-14T23:59:59.000Z

16

Cluster expansion and optimization of thermal conductivity in SiGe nanowires  

E-Print Network (OSTI)

We investigate the parametrization and optimization of thermal conductivity in silicon-germanium alloy nanowires by the cluster-expansion technique. Si1?xGex nanowires are of interest for thermoelectric applications and ...

Chan, Maria K.

17

Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites with High Packing Density  

E-Print Network (OSTI)

Nanostructured composites containing aligned carbon nanotubes (CNTs) are very promising as interface materials for electronic systems and thermoelectric power generators. We report the first data for the thermal conductivity ...

Marconnet, Amy M.

18

Molecular Level Assessment of Thermal Transport and Thermoelectricity in Materials: From Bulk Alloys to Nanostructures  

E-Print Network (OSTI)

The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest reduction in thermal conductivity is observed at 50% chemical mixture in dot superlattices. The dot radius appears to have little effect on the magnitude of reduction around large concentrations while smaller dots are more influential at dilute systems.

Kinaci, Alper

2013-05-01T23:59:59.000Z

19

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

20

Thermal Cycling Effects on the Thermoelectric Properties of n-Type In, Ce based Skutterudite Compounds  

SciTech Connect

N-type In-filled CoSb3 are known skutterudite compounds that have shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Their use in various waste heat recovery applications will require that they survive and operate after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on thermoelectric properties of n-type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson's ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while electrical resistivity increased significantly after thermal cycling. Results also show that thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In, Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nano inclusions. High temperature structural property measurements (i.e., Young's modulus and shear modulus) are also reported and the results show that these structural properties decrease slowly as temperature increases and the compounds are structurally stable after numerous thermal cycles.

Biswas, Krishnendu; Subramanian, Mas A.; Good, Morris S.; Roberts, Kamandi C.; Hendricks, Terry J.

2012-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

22

Modeling of solar thermal selective surfaces and thermoelectric generators  

E-Print Network (OSTI)

A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

McEnaney, Kenneth

2010-01-01T23:59:59.000Z

23

Thermal conductivity of aqueous foam  

Science Conference Proceedings (OSTI)

Thermal conductivity plays an important part in the response of aqueous foams used as geothermal drilling fluids. The thermal conductivity of these foams was measured at ambient conditions using the thermal conductivity probe technique. Foam densities studied were from 0.03 to 0.2 g/cm/sup 3/, corresponding to liquid volume fractions of the same magnitude. Microscopy of the foams indicated bubble sizes in the range 50 to 300 ..mu..m for nitrogen foams, and 30 to 150 ..mu..m for helium foams. Bubble shapes were observed to be polyhedral at low foam densities and spherical at the higher densities. The measured conductivity values ranged from 0.05 to 0.12 W/m-K for the foams studied. The predicted behavior in foam conductivity caused by a change in the conductivity of the discontinuous gas phase was observed using nitrogen or helium gas in the foams. Analysis of the probe response data required an interpretation using the full intergral solution to the heat conduction equation, since the thermal capacity of the foam was small relative to the thermal mass of the probe. The measurements of the thermal conductivity of the foams were influenced by experimental effects such as the probe input power, foam drainage, and the orientation of the probe and test cell. For nitrogen foams, the thermal conductivity vs liquid volume fraction was observed to fall between predictions based on the parallel ordering and Russell models for thermal conduction in heterogeneous materials.

Drotning, W.D.; Ortega, A.; Havey, P.E.

1982-05-01T23:59:59.000Z

24

Thermal conductivity Measurements of Kaolite  

Science Conference Proceedings (OSTI)

Testing was performed to determine the thermal conductivity of Kaolite 1600, which primarily consists of Portland cement and vermiculite. The material was made by Thermal Ceramics for refractory applications. Its combination of light weight, low density, low cost, and noncombustibility made it an attractive alternative to the materials currently used in ES-2 container for radioactive materials. Mechanical properties and energy absorption tests of the Kaolite have been conducted at the Y-12 complex. Heat transfer is also an important factor for the application of the material. The Kaolite samples are porous and trap moisture after extended storage. Thermal conductivity changes as a function of moisture content below 100 C. Thermal conductivity of the Kaolite at high temperatures (up to 700 C) are not available in the literature. There are no standard thermal conductivity values for Kaolite because each sample is somewhat different. Therefore, it is necessary to measure thermal conductivity of each type of Kaolite. Thermal conductivity measurements will help the modeling and calculation of temperatures of the ES-2 containers. This report focuses on the thermal conductivity testing effort at ORNL.

Wang, H

2003-02-21T23:59:59.000Z

25

Thermal Conduction in Graphene and Graphene Multilayers  

E-Print Network (OSTI)

1 1.2 Thermal transport atxv Introduction xii 1.1 Thermal conductivity and65 4.13 Thermal conductivity of graphene as a function of

Ghosh, Suchismita

2009-01-01T23:59:59.000Z

26

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA SANTA CRUZ THERMOELECTRICS COMBINEDsystem in Burbank, California. Figure 2.6: Front panel andthermal system in Burbank, California. previously discussed.

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

27

High performance thermoelectric nanocomposite device  

DOE Patents (OSTI)

A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

Yang, Jihui (Lakeshore, CA); Snyder, Dexter D. (Birmingham, MI)

2011-10-25T23:59:59.000Z

28

Design of Bulk Nanocomposites as High Efficiency Thermoelectric...  

Office of Science (SC) Website

structure as the host material breaks thermoelectric efficiency records by blocking thermal, but not electrical, conductivity. Significance and Impact A new strategy to design...

29

The Role of Spark Plasma Sintering in Thermoelectric ...  

Science Conference Proceedings (OSTI)

Presentation Title, The Role of Spark Plasma Sintering in Thermoelectric Nanocomposites: Effect of Nanostructures on Lattice Thermal Conductivity. Author(s) ...

30

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network (OSTI)

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

31

Invert Effective Thermal Conductivity Calculation  

SciTech Connect

The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m {center_dot} K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations.

M.J. Anderson; H.M. Wade; T.L. Mitchell

2000-03-17T23:59:59.000Z

32

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

33

THERMAL CONDUCTIVITY ANALYSIS OF GASES  

DOE Patents (OSTI)

This patent describes apparatus for the quantitative analysis of a gaseous mixture at subatmospheric pressure by measurement of its thermal conductivity. A heated wire forms one leg of a bridge circuit, while the gas under test is passed about the wire at a constant rate. The bridge unbalance will be a measure of the change in composition of the gas, if compensation is made for the effect due to gas pressure change. The apparatus provides a voltage varying with fluctuations of pressure in series with the indicating device placed across the bridge, to counterbalance the voltage change caused by fluctuations in the pressure of the gaseous mixture.

Clark, W.J.

1949-06-01T23:59:59.000Z

34

Semiclassical model for thermoelectric transport in nanocomposites  

E-Print Network (OSTI)

Nanocomposites (NCs) has recently been proposed and experimentally demonstrated to be potentially high-efficiency thermoelectric materials by reducing the thermal conductivity through phonon-interface scattering and possibly ...

Zhou, Jun

35

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

and Electrical Cogeneration ……………………. …………… 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

36

Numerical study of the thermoelectric power factor in ultra-thin Si nanowires  

Science Conference Proceedings (OSTI)

Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, ¿ l . This has been observed for a variety of materials, even for traditionally ... Keywords: Atomistic, Boltzmann transport, Nanowire, Seebeck coefficient, Silicon, Thermoelectric power factor, Thermoelectrics, Tight-binding, ZT, sp3d5s*

Neophytos Neophytou; Hans Kosina

2012-03-01T23:59:59.000Z

37

Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics  

E-Print Network (OSTI)

Polymers are intrinsically poor thermal conductors, which are ideal for thermoelectrics, but low electrical conductivity and thermopower have excluded them as feasible candidates as thermoelectric materials in the past. However, recent progress in polymer technology, particularly nanomaterial-polymer composites, can bring them into degenerate semiconductor or metallic regimes by incorporating a small amount of conductive filler. I demonstrate that such polymer nanocomposites can be viable for light-weight and economical thermoelectrics by using a segregated network approach for the nanocomposite synthesis. The thermoelectric properties were further improved by a change of stabilizer and drying conditions. The thermoelectric properties of the segregated network nanocomposites were measured for carbon nanotubes and the thermoelectric figure of merit, ZT, was calculated at room temperature. The influence on thermoelectric properties from filler concentration, stabilizer materials and drying condition are also discussed.

Kim, Dasaroyong

2009-08-01T23:59:59.000Z

38

Correlation Between Thermal Conductivity and Microstructural ...  

Science Conference Proceedings (OSTI)

Characterization of MOX fuel pellets by Photothermal microscopy · Correlation Between Thermal Conductivity and Microstructural Evolutions in CeO2 Upon ...

39

Thermal vacuum life test facility for radioisotope thermoelectric generators  

DOE Green Energy (OSTI)

In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

Deaton, R.L.; Goebel, C.J.; Amos, W.R.

1990-01-01T23:59:59.000Z

40

Progress report No. 23 for a program of thermoelectric generator testing and RTG degradation mechanisms evaluation  

DOE Green Energy (OSTI)

Research is reported on selenide technology evaluation, silicon germanium technology, and thermoelectric generator testing and evaluation. Results of thermal conductivity tests, in-gradient tests, thermophysical properties and compatibility tests, and accelerated resistance module tests for selenium are presented and discussed. Thermoelectric property characteristics of silicon germanium alloys are presented, and performance characteristics of silicon germanium thermoelectric generators are discussed. Thermoelectric generators assembled with lead telluride, TAG-85, and silicon-germanium materials being tested at JPL are described. (WHK)

Stapfer, G.; Rouklove, P.; Garvey, L.

1977-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Superconducting thermoelectric generator  

DOE Patents (OSTI)

Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

Metzger, J.D.; El-Genk, M.S.

1994-01-01T23:59:59.000Z

42

Electron thermal conduction in LASNEX  

SciTech Connect

This report is a transcription of hand-written notes by DM dated 29 January 1986, transcribed by SW, with some clarifying comments added and details specific to running the LASNEX code deleted. Reference to the esoteric measurement units employed in LASNEX has also been deleted by SW (hopefully, without introducing errors in the numerical constants). The report describes the physics equations only, and only of electron conduction. That is, it does not describe the numerical method, which may be finite difference or finite element treatment in space, and (usually) implicit treatment in time. It does not touch on other electron transport packages which are available, and which include suprathermal electrons, nonlocal conduction, Krook model conduction, and modifications to electron conduction by magnetic fields. Nevertheless, this model is employed for the preponderance of LASNEX simulations.

Munro, D.; Weber, S.

1994-12-16T23:59:59.000Z

43

An Innovative High Thermal Conductivity Fuel Design  

SciTech Connect

Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

Jamil A. Khan

2009-11-21T23:59:59.000Z

44

Increased thermal conductivity monolithic zeolite structures  

SciTech Connect

A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

2008-11-25T23:59:59.000Z

45

High Thermal Conductivity AlN Materials  

Science Conference Proceedings (OSTI)

AlN has replaced BeO as the high thermal conductivity ceramic of choice due to the adverse health effects associated with BeO. The development of high ...

46

Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS  

E-Print Network (OSTI)

Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

Kuryak, Chris A. (Chris Adam)

2013-01-01T23:59:59.000Z

47

Life testing of conductively coupled thermoelectric cells. Final report for task 11  

DOE Green Energy (OSTI)

Four conductively coupled thermoelectric cells, developed under the SP100 program, have been life tested. These cells, referred to as TOC (Task Order Contract) cells, were fourth generation cells, and incorporated design improvements to extend operating life. GS526 glass had been added to suppress the loss of Ge from the MoGe bond between the SiGe and the barrier graphite. The previous generation was life limited by the degradation of this electrical bond at the SiGe to graphite hot side interface due to the Ge loss. This led to abnormal internal resistance trends. The TOC cell test data and post test diagnostic have confirmed the effectiveness of the perimeter glass. Three of the four cells demonstrated normal electrical performance trends. The fourth cell (No. 139) tested at JPL showed an abnormal increase in internal resistance and a shift in temperature levels at 12,400 hours following a facility shutdown and restart. When the cell was removed from the test fixture, separation occurred between the hot side compliant pad facesheet and the niobium filament bundles. No degradation of the bond between the SiGe and the barrier graphite was found and the change in slope of the internal resistance was attributed to changes in the rate of dopant precipitation caused by the shift in temperature levels.

Kelley, E.; Klee, P.; Hanson, J.; Nakahara, J.

1997-09-26T23:59:59.000Z

48

Thermal conductivity modeling of building façade materials  

Science Conference Proceedings (OSTI)

An experimental research has been conducted to assess the thermo-physical properties of three building materials in both dry and moist state: beech wood, autoclaved aerated concrete and brick. The objectives of the paper envisage the measurement of the ... Keywords: building materials, contact temperature, determining method, finite element, numerical modeling, thermal conductivity

Monica Chereches; Nelu-Cristian Chereches; Catalin Popovici

2010-04-01T23:59:59.000Z

49

Superlattices in thermoelectric applications  

DOE Green Energy (OSTI)

The electrical conductivity, thermopower and the electronic contribution to the thermal conductivity of a superlattice, are calculated with the electric field and the thermal gradient applied parallel to the interfaces. Tunneling between quantum wells is included. The broadening of the lowest subband when the period of the superlattice is decreased produces a reduction of the thermoelectric figure of merit. However, we found that a moderate increase of the figure of merit may be expected for intermediate values of the period, due to the enhancement of the density of states produced by the superlattice structure.

Sofo, J.O.; Mahan, G.D. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States). Dept. of Physics and Astronomy

1994-08-01T23:59:59.000Z

50

Nanoscale thermal transport and the thermal conductance of interfaces  

E-Print Network (OSTI)

absorption depends on temperature of the nanotube · Assume heat capacity is comparable to graphite · Cooling conductance · Pump probe apparatus · Transient absorption ­ Carbon nanotubes and thermal transport at hard optical absorption of nanoparticles and nanotubes in liquid suspensions. ­ Measure the thermal relaxation

Braun, Paul

51

Experimental studies of the thermoelectric properties of microstructured and nanostructured lead salts  

E-Print Network (OSTI)

Thermoelectric devices allow for direct conversion between thermal and electrical energy. There applications, however, are severely limited by their inefficiency. A reduction in thermal conductivity of a material potentially ...

Barron, Kathleen C., 1982-

2005-01-01T23:59:59.000Z

52

Gas storage carbon with enhanced thermal conductivity  

DOE Patents (OSTI)

A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

2000-01-01T23:59:59.000Z

53

Thermionic energy conversion (TEC) topping thermoelectrics  

DOE Green Energy (OSTI)

Long-respected international experts on thermoelectrics (Dixon, Ertl and Goldsmid supported by Ure) determine the probable maximum figure of merit (ZT) for fully matured thermoelectric generators as about unity from ordiary temperatures to 2000 K. Thus the maximum efficiency for fully matured thermoelectrics would be approximately 0.414 (l - r/sub T/)/(1.414 + r/sub T/) where r/sub T/ is the ratio of cold and hot junction temperatures. This limitation contrasts with the recent burst of enthusiasm for high-temperature thermoelectrics - based on calculated figures of merit and efficiencies that increase more and more rapidly with rising temperatures. Unfortunately these calculations neglect internal radiation effects which diminish thermoelectric figures of merit significantly at 1000 K and substantially at 2000 K: The effective thermal-conductivity contribution of intrathermoelectric radiative dissipation increases with the third power of temperature. Therefore the quotation from Thermoelectricy: Science and Engineering by Heikes and Ure apparently still prevails: ...thermoelectric devices appear difficult to extend in the direction of high temperature, while thermionic devices become inefficient at low temperature. Accordingly consideration of thermoelectric power generation with high-temperature heat sources should include utilization of TEC topping thermoelectrics. However TEC alone or TEC topping more-efficient conversion systems like steam or gas turbines, combined cycles or Stirling engines would be more desirable generally.

Morris, J.F.

1981-01-01T23:59:59.000Z

54

Thermal Conductivity of Cubic and Hexagonal Mesoporous Silica Thin Films  

E-Print Network (OSTI)

K.L. Fang, “Anisotropic thermal conductivity of nanoporousmesoporous silica as a thermal isolation layer”, Ceramicsand V. Wittwer, “Some thermal and optical properties of a

Coquil, Thomas; Richman, Eric K.; Hutchinson, Neal J.; Tolbert, S H; Pilon, Laurent

2009-01-01T23:59:59.000Z

55

Thermal conduction in cosmological SPH simulations  

E-Print Network (OSTI)

Thermal conduction in the intracluster medium has been proposed as a possible heating mechanism for offsetting central cooling losses in rich clusters of galaxies. In this study, we introduce a new formalism to model conduction in a diffuse ionised plasma using smoothed particle hydrodynamics (SPH), and we implement it in the parallel TreePM/SPH-code GADGET-2. We consider only isotropic conduction and assume that magnetic suppression can be described in terms of an effective conductivity, taken as a fixed fraction of the temperature-dependent Spitzer rate. We also account for saturation effects in low-density gas. Our formulation manifestly conserves thermal energy even for individual and adaptive timesteps, and is stable in the presence of small-scale temperature noise. This allows us to evolve the thermal diffusion equation with an explicit time integration scheme along with the ordinary hydrodynamics. We use a series of simple test problems to demonstrate the robustness and accuracy of our method. We then ...

Jubelgas, M; Dolag, K

2004-01-01T23:59:59.000Z

56

Enhancing Thermal Conductivity and Reducing Friction  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory currently has several projects underway to develop advanced fluids, films, coatings, and Laboratory currently has several projects underway to develop advanced fluids, films, coatings, and processes to improve thermal conductivity and reduce friction. These measures are helping to increase energy efficiency for next-generation transportation applications. Superhard and Slick Coating (SSC) Opportunity: Friction, wear, and lubrication strongly affect the energy efficiency, durability, and environmental compatibility of

57

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, John D. (Eaton' s Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

58

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

Metzger, J.D.; El-Genk, M.S.

1998-05-05T23:59:59.000Z

59

Superconducting thermoelectric generator  

DOE Patents (OSTI)

This invention is comprised of an apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a higher thermal conductivity than that of the superconducting material. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials, establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, J.D.; El-Genk, M.

1992-12-31T23:59:59.000Z

60

Superconducting thermoelectric generator  

DOE Patents (OSTI)

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, J.D.; El-Genk, M.S.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermal conductivity of mass-graded graphene flakes  

E-Print Network (OSTI)

In this letter we investigate thermal conductions in mass-graded graphene flakes by nonequilibrium molecular dynamics simulations. It shows mass-graded graphene flakes reveal no thermal rectification effect in thermal conduction process. Dependences of thermal conductivity upon the heat fluxes and the mass gradients are studied. It is found that thermal conductivity would be dramatically decreased by increasing the mass gradients. We also discuss the influence of thermal curvatures and thermal expansions upon the thermal conduction process in mass-graded graphene flakes.

Cheh, Jigger

2011-01-01T23:59:59.000Z

62

Effects of air infiltration on the effective thermal conductivity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of air infiltration on the effective thermal conductivity of internal fiberglass insulation and on the delivery of thermal capacity via ducts Title Effects of air...

63

Thermoelectric figure of merit for bulk nanostructured composites with distributed parameters  

Science Conference Proceedings (OSTI)

The effective properties of composites whose structure includes nanocontacts between bulk-phase macrocrystallites are considered. A model for such a nanostructured composite is constructed. Effective values of the thermoelectric power, thermal and electrical conductivities, and thermoelectric figure of merit are calculated in the mean-field approximation.

Snarskii, A. A. [National Technical University 'Kyiv Polytechnic Institute' (Ukraine); Sarychev, A. K. [Russian Academy of Sciences, Institute for Theoretical and Applied Electromagnetics (Russian Federation); Bezsudnov, I. V., E-mail: biv@akuan.ru ['Nauka-Service' Scientific and Production Company (Russian Federation); Lagarkov, A. N. [Russian Academy of Sciences, Institute for Theoretical and Applied Electromagnetics (Russian Federation)

2012-05-15T23:59:59.000Z

64

Thermoelectric generator  

DOE Patents (OSTI)

A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

Pryslak, N.E.

1974-02-26T23:59:59.000Z

65

High-temperature Thermoelectric Properties of Ag2Se.5Te.5  

Science Conference Proceedings (OSTI)

Symposium, Alloys and Compounds for Thermoelectric and Solar Cell Applications II ... This particular alloy displays very low thermal conductivity and competitive ... of Cu2ZnSn(S,Se)4 Thin-films with Conversion Efficiency Higher Than 8%.

66

Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |  

Office of Science (SC) Website

Design of Bulk Nanocomposites as High Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals with the same orientation and structure as the host material breaks thermoelectric efficiency records by blocking thermal, but not electrical, conductivity. Significance and Impact A new strategy to design inexpensive materials that more efficiently convert heat to electricity. Research Details Thermoelectric materials directly generate electrical power from heat, but

67

SHI induced enhancement in conductivity of PbTe thin film for thermoelectric applications  

SciTech Connect

PbTe thin film were synthesized using thermal evaporation and irradiated by 100 MeV Ag ions at different fluences ranging from 3x10{sup 13} and 1x10{sup 14} ions/cm{sup 2}. Pristine films annealed under Ar atm at 250 deg. C for 1 hr. X-ray Diffraction (XRD) of pristine and irradiated films reveals the improvement of PbTe phase with increasing fluence. The thickness of the film is decreased from 195 nm to 150 nm after ion irradiation as indicated by Rutherford backscattering spectrometry (RBS) analysis due to the sputtering. Resistivity measurement using four probe techniques of these films shows the conductivity enhancement with ion fluence. The conductivity is found to be {approx} 6 fold at fluence 3x10{sup 13} ions/cm{sup 2} whereas it decreases to 3 fold after annealing in comparison to pristine sample. On further increasing the fluence from 3x10{sup 13} ions/cm{sup 2}, the properties of the film begin to deteriorate. SHI induced modification may be explained on the basis of oxygen desorption and change in stochiometry of film during irradiation.

Gupta, Srashti; Agarwal, D. C.; Singh, J. P.; Tripathi, S. K.; Neeleshwar, S.; Asokan, K.; Panigrahi, B. K.; Avasthi, D. K. [University School of Basic and Applied Sciences, GGS Indraprastha University, Dwarka, Delhi 110075 (India); Inter University Accelerator Centre, New Delhi-110067 (India); Department of Physics, Panjab University, Chandigarh-160 014 (India); University School of Basic and Applied Sciences, GGS Indraprastha University, Dwarka, Delhi 110075 (India); Inter University Accelerator Centre, New Delhi-110067 (India); Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Inter University Accelerator Centre, New Delhi-110067 (India)

2012-06-05T23:59:59.000Z

68

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network (OSTI)

alpha1=k1/(density1*cp1); %Thermal diffusivity of PMMA B1=Simon R. Phillpot, “Nanoscale Thermal Transport”, Journal of9] E.T. Swartz, R.O. Pohl, “Thermal Boundary Resistance”,

Yuen, Taylor S.

69

Effect of heat treatment temperature on binder thermal conductivities  

SciTech Connect

The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature. (auth)

Wagner, P.

1975-12-01T23:59:59.000Z

70

Conductive Thermal Interaction in Evaporative Cooling Process  

E-Print Network (OSTI)

It has long been recognized that evaporative cooling is an effective and logical substitute for mechanical cooling in hot-arid climates. This paper explores the application of evaporative coolers to the hot-humid climates using a controlled temperature of the incoming water. With exploitation of the effect of the thermal conduction between cool underground water and entering air, the performance of an evaporative cooler can be enhanced and its use in hot and moderately humid climates should also be considered. Usually the dry-bulb depression performed by an evaporative cooler depends solely on the ambient wet-bulb temperature. The cool underground water in an evaporative cooler can cause not only adiabatic evaporation but also sensible heat transfer between water and entering air for thermal comfort. This hybrid system outperforms the two-stage evaporative cooler without employing a complicated heat exchanger (indirect system), if the temperature of underground water is lower than the ambient wet-bulb temperature. Several areas in the southern hot-humid parts of the U.S. meet this condition.

Kim, B. S.; Degelman, L. O.

1990-01-01T23:59:59.000Z

71

Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules  

SciTech Connect

The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

Salvador, James R. [GM R& D and Planning, Warren, Michigan; Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Ye, Zuxin [GM Research and Development Center; Moczygemba, Joshua E. [Marlow Industries, Inc; Thompson, Alan [Marlow Industries, Inc; Sharp, Jeff W. [Marlow Industries, Inc; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Maloney, Ryan [Michigan State University; Thompson, Travis [Michigan State University; Sakamoto, Jeff [Michigan State University; Wang, Hsin [ORNL; Wereszczak, Andrew A [ORNL; Meisner, G P [General Motors Corporation-R& D

2013-01-01T23:59:59.000Z

72

Thermal Conduction in Graphene and Graphene Multilayers  

E-Print Network (OSTI)

E. , and Ju, Y. S. , “ Heat conduction in novel electronicBalandin, A. A. , “Heat conduction in graphene: experimentalD. , “Simulation of heat conduction in suspended graphene

Ghosh, Suchismita

2009-01-01T23:59:59.000Z

73

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network (OSTI)

Chen, “Coherent Phonon Heat Conduction in Superlattices,”1 Chapter 1: Heat Conduction in Nanostructured Materialsfindings. Chapter 1: Heat Conduction in Nanostructured

Yuen, Taylor S.

74

Holey Silicon as an Efficient Thermoelectric Material  

SciTech Connect

This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

2010-09-30T23:59:59.000Z

75

thermoelectric materials  

E-Print Network (OSTI)

It has been proven that the maximum cooling temperature of a thermoelectric material can be increased by using either pulsed operation or graded Seebeck profiles. In this paper, we show that the maximum cooling temperature can be further increased by the pulsed operation of optimal inhomogeneous thermoelectric materials. A random sampling method is used to obtain the optimal electrical conductivity profile of inhomogeneous materials, which can achieve a much higher cooling temperature than the best uniform materials under the steady-state condition. Numerical simulations of pulsed operation are then carried out in the time domain. In the limit of low thermoelectric figure-of-merit ZT, the finite-difference time-domain simulations are verified by an analytical solution for homogeneous material. This numerical method is applied to high ZT BiTe materials and simulations show that the effective figure-of-merit can be improved by 153 % when both optimal graded electrical conductivity profiles and pulsed operation are used. 1.

Q Zhou; Z Bian; A Shakouri

2007-01-01T23:59:59.000Z

76

Breaking the Thermal Conductivity Glass Limit  

Science Conference Proceedings (OSTI)

High Thermal Energy Storage Density LiNO3-KNO3-NaNO2-KNO2 Quaternary Molten Salt System for Parabolic Trough Concentrating Solar Power Generation.

77

Effects of Composition and Granulometry on Thermal Conductivity of ...  

Science Conference Proceedings (OSTI)

It has been observed that thermal conductivity of cover material is strongly ... Experimental Investigation of Single Bubble Characteristics in a Cold Model of a ... Creep on Potroom Busbars and Electrical Insulation: Thermal-Electrical Aspects.

78

Thermoelectric materials development. Final report  

DOE Green Energy (OSTI)

A systematic search for advanced thermoelectric materials was initiated at JPL several years ago to evaluate candidate materials which includes consideration of the following property attributes: (1) semiconducting properties; (2) large Seebeck coefficient; (3) high carrier mobility and high electrical conductivity; (4) low lattice thermal conductivity; and (5) chemical stability and low vapor pressure. Through this candidate screening process, JPL identified several families of materials as promising candidates for improved thermoelectric materials including the skutterudite family. There are several programs supporting various phases of the effort on these materials. As part of an ongoing effort to develop skutterudite materials with lower thermal conductivity values, several solid solutions and filled skutterudite materials were investigated under the effort sponsored by DOE. The efforts have primarily focused on: (1) study of existence and properties of solid solutions between the binary compounds CoSb{sub 3} and IrSb{sub 3}, and RuSb{sub 2}Te, and (2) CeFe{sub 4{minus}x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} filled compositions, the reduction would be caused by the rattling of Ce atoms located in the empty voids of the skutterudite structure and the substitution of Fe for Ru. The details of the sample preparation and characterization of their thermoelectric properties are reported in this report.

Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

1998-09-01T23:59:59.000Z

79

Thermoelectric converter  

DOE Patents (OSTI)

This invention relates in general to thermoelectric units and more particularly to a tubular thermoelectric unit which includes an array of tandemly arranged radially tapered annular thermoelectric pellets having insulation material of a lower density than the thermoelectric pellets positioned between each pellet. (Official Gazette)

Kim, C.K.

1974-02-26T23:59:59.000Z

80

Thermal Conductivity Prediction of Nano Fluid Using ANN/GA  

Science Conference Proceedings (OSTI)

Abstract Scope, Thermal conductivities of nano fluid in a two-phase having different compositions of both base fluid as well as nano particles in a closed ...

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Measuring Thermal Conductivity of Powder Insulation at Cryogenic Temperatures.  

E-Print Network (OSTI)

?? A device to measure bulk effective thermal conductivity of powder insulation at cryogenic temperatures has been designed and tested. The design consists of two… (more)

Barrios, Matthew Nicklas

2006-01-01T23:59:59.000Z

82

Law for Thermal Conductivity of Crystalline Nanoporous Silicon Using Molecular Dynamic Simulations  

E-Print Network (OSTI)

G. A. , 2007. “Lattice thermal conductivity of nanoporousPore-size dependence of the thermal conductivity of porousand Chen, G. , 2004. “Thermal conductivity of nanoporous

Fang, Jin; Pilon, Laurent

2011-01-01T23:59:59.000Z

83

The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating  

Science Conference Proceedings (OSTI)

The coefficient of thermal expansion (CTE) is a key design parameter for thermoelectric (TE) materials, especially in energy harvesting applications since stresses generated by CTE mismatch, thermal gradients, and thermal transients scale with the CTE of the TE material. For the PbTe PbS-based TE material (Pb 0.95 Sn 0.05 Te) 0.92(PbS) 0.08 0.055 % PbI 2 over the temperature ranges of 293 543 and 293 773 K, a CTE, alpha avg , of 21.4 0.3 x 10-6 K-1 was measured using (1) dilatometry and (2) high-temperature X-ray diffraction (HT-XRD) for powder and bulk specimens. The CTE values measured via dilatometry and HT-XRD are similar to the literature values for other Pb-based chalcogenides. However, the processing technique was found to impact the thermal expansion such that bloating (which leads to a hysteresis in thermal expansion) occurred for hot pressed billets heated to temperatures [603 K while specimens fabricated by pulsed electric current sintering and as-cast specimens did not show a bloating-modified thermal expansion even for temperatures up to 663 K. The relationship of bloating to the processing techniques is discussed, along with a pos- sible mechanism for inhibiting bloating in powder processed specimens.

Ni, Jennifer E. [Michigan State University, East Lansing; Case, Eldon D [Michigan State University, East Lansing; Schmidt, Robert [Michigan State University, East Lansing; Wu, Chun-I [Michigan State University, East Lansing; Hogan, Timothy [Michigan State University, East Lansing; Trejo, Rosa M [ORNL; Kirkham, Melanie J [ORNL; Lara-Curzio, Edgar [ORNL; Kanatzidis, Mercouri G. [Northwestern University, Evanston

2013-01-01T23:59:59.000Z

84

Thermal conductivity and other properties of cementitious grouts  

DOE Green Energy (OSTI)

The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

Allan, M.

1998-08-01T23:59:59.000Z

85

THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS  

DOE Green Energy (OSTI)

The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

ALLAN,M.

1998-05-01T23:59:59.000Z

86

3 omega method for specific heat and thermal conductivity measurements  

E-Print Network (OSTI)

We present a 3 omega method for simultaneously measuring the specific heat and thermal conductivity of a rod- or filament-like specimen using a way similar to a four-probe resistance measurement. The specimen in this method needs to be electrically conductive and with a temperature-dependent resistance, for acting both as a heater to create a temperature fluctuation and as a sensor to measure its thermal response. With this method we have successfully measured the specific heat and thermal conductivity of platinum wire specimens at cryogenic temperatures, and measured those thermal quantities of tiny carbon nanotube bundles some of which are only 10^-9 g in mass.

L. Lu; W. Yi; D. L. Zhang

2002-02-06T23:59:59.000Z

87

Thermal Conduction and Multiphase Gas in Cluster Cores  

E-Print Network (OSTI)

We examine the role of thermal conduction and magnetic fields in cores of galaxy clusters through global simulations of the intracluster medium (ICM). In particular, we study the influence of thermal conduction, both isotropic and anisotropic, on the condensation of multiphase gas in cluster cores. Previous hydrodynamic simulations have shown that cold gas condenses out of the hot ICM in thermal balance only when the ratio of the cooling time ($t_{\\rm cool}$) and the free-fall time ($t_{\\rm ff}$) is less than $\\approx 10$. Since thermal conduction is significant in the ICM and it suppresses local cooling at small scales, it is imperative to include thermal conduction in such studies. We find that anisotropic (along local magnetic field lines) thermal conduction does not influence the condensation criterion for a general magnetic geometry, even if thermal conductivity is large. However, with isotropic thermal conduction cold gas condenses only if conduction is suppressed (by a factor $\\lesssim 0.3$) with respe...

Wagh, Baban; McCourt, Michael

2013-01-01T23:59:59.000Z

88

Thermally Conductive Graphite Foam - Oak Ridge National Laboratory  

• Thermoelectric devices • Radiators • EMI shielding Patent ... Materials Science UT-Battelle, LLC Oak Ridge National Laboratory Office Phone: 865.576.9682

89

Three Modes of Heat Transferâ??Thermal Conduction, Thermal Convection,  

Science Conference Proceedings (OSTI)

...).46, 44, 43, 42, 41, 40, 39, 38, 37, Ref 1In induction heating, all three modes of heat transferâ??conduction,

90

Thermoelectric I  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Many unconventional electronic structures that increase effective mass are being studied or proposed for high efficiency thermoelectric ...

91

Fiber/Matrix Interfacial Thermal Conductance Effect on the Thermal Conductivity of SiC/SiC Composites  

SciTech Connect

SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby-Mori-Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al.

Nguyen, Ba Nghiep; Henager, Charles H.

2013-04-20T23:59:59.000Z

92

Nanowire silicon as a material for thermoelectric energy conversion  

Science Conference Proceedings (OSTI)

In order to use silicon as an efficient thermoelectric (TE) material for TE energy conversion, it is necessary to reduce its relatively high thermal conductivity, while maintaining the high power factor. This can be done by structuring silicon into 1-D ...

A. Stranz; J. Kähler; S. Merzsch; A. Waag; E. Peiner

2012-08-01T23:59:59.000Z

93

Thermal Conductivity Database of Various Structural Carbon-Carbon  

Science Conference Proceedings (OSTI)

Advanced thermal protection materials envisioned for use on future hypersonic vehicles will likely be subjected to temperatures in excess of 1811 K (2800F) and, therefore, will require the rapid conduction of heat away from the stagnation regions of ...

Ohlhorst Craig W.; Vaughn Wallace L.; Ransone Philip O.; Tsou Hwa-Tsu

1997-11-01T23:59:59.000Z

94

Investigation on thermal conductivity and AC impedance of graphite suspension  

E-Print Network (OSTI)

Over the past decade, some groups have reported that nanofluids, which are liquids containing suspensions of nanoparticles, have substantially higher thermal conductivity than that of the base fluids. However, the reported ...

Wang, Jianjian, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

95

Experimental investigations of solid-solid thermal interface conductance  

E-Print Network (OSTI)

Understanding thermal interface conductance is important for nanoscale systems where interfaces can play a critical role in heat transport. In this thesis, pump and probe transient thermoreflectance methods are used to ...

Collins, Kimberlee C. (Kimberlee Chiyoko)

2010-01-01T23:59:59.000Z

96

Raman Spectroscopy of High Thermal Conductivity AlN Ceramics ...  

Science Conference Proceedings (OSTI)

Thermal conductivity of AlN ceramics was measured by laser flash method. Raman spectroscopy was used to characterize oxygen related defects of AlN ... Transport in Co-Based Materials for Fuel Cells and Oxygen Separation Membranes.

97

A benchmark study on the thermal conductivity of nanofluids  

E-Print Network (OSTI)

This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was ...

Buongiorno, Jacopo

98

The Effect of Stoichiometry on the Thermoelectric Properties of ...  

Science Conference Proceedings (OSTI)

Opacified, Reinforced Aerogel for Thermal Insulation of Thermoelectric Generators and Other Advanced Energy Systems · Oxide Ceramic Materials for ...

99

Solid state transport-based thermoelectric converter - Energy ...  

A solid state thermoelectric converter includes a thermally insulating separator layer, ... Advanced Materials; Biomass and Biofuels; Building Energy Efficiency;

100

Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10.2011]: Thermoelectrics' Great Power, Key Ingredient in 10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's Nanostructure Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's Nanostructure June 10, 2011 - 5:07pm Addthis Data image on lead telluride thermal conductivity | Photo Courtesy of Oak Ridge National Laboratory Data image on lead telluride thermal conductivity | Photo Courtesy of Oak Ridge National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Identifying a key ingredient in bone's nanostructure may help treat and prevent bone diseases such as osteoporosis and develop new light-weight, high-strength materials for innovative technologies. Advanced thermoelectric materials could be used to develop vehicle

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An Empirical Model of UO2 Thermal Conductivity Based on Laser Flash Measurements of Thermal Diffusivity  

Science Conference Proceedings (OSTI)

Thermal conductivity of irradiated fuel materials, which can be derived from measured thermal diffusivity (TD), is a key consideration in thermal performance and design of a fuel rod. However, without interpretation, the measured TD data cannot be used directly to calculate fuel temperatures during irradiation. This report provides such interpretation and presents an empirical model for the degradation of UO2 thermal conductivity with burn-up.

1998-10-07T23:59:59.000Z

102

Thermoelectric Ambient Energy Harvester - Energy Innovation Portal  

A novel thermoelectric generator (TEG) design by PNNL allows the conversion of ambient thermal energy into electric power for a variety of low-power uses. These ...

103

Energy harvesting using a thermoelectric material - Energy ...  

A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase ...

104

High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shaped-controlled nanostructures.  

SciTech Connect

Thermoelectric heat-to-power generation is an attractive option for robust and environmentally friendly renewable energy production. Historically, the performance of thermoelectric materials has been limited by low efficiencies, related to the thermoelectric figure-of-merit ZT. Nanostructuring thermoelectric materials have shown to enhance ZT primarily via increasing phonon scattering, beneficially reducing lattice thermal conductivity. Conversely, density-of-states (DOS) engineering has also enhanced electronic transport properties. However, successfully joining the two approaches has proved elusive. Herein, we report a thermoelectric materials system whereby we can control both nanostructure formations to effectively reduce thermal conductivity, while concurrently modifying the electronic structure to significantly enhance thermoelectric power factor. We report that the thermoelectric system PbTe-PbS 12% doped with 2% Na produces shape-controlled cubic PbS nanostructures, which help reduce lattice thermal conductivity, while altering the solubility of PbS within the PbTe matrix beneficially modifies the DOS that allow for enhancements in thermoelectric power factor. These concomitant and synergistic effects result in a maximum ZT for 2% Na-doped PbTe-PbS 12% of 1.8 at 800 K.

Girard, S. N.; He, J.; Zhou, X.; Shoemaker, D.; Jaworski, C. M.; Uher, C.; Dravid, V. P.; Heremans, J. P.; Kanatzidis, M. G. (Materials Science Division); (Northwestern Univ.); (Univ. Michigan-Ann Arbor); (Ohio State Univ.)

2011-01-01T23:59:59.000Z

105

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents (OSTI)

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

106

Thermoelectric III  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Thermoelectric materials in energy conversion are more and more ... The main scheme is to enhance the ZT in these materials systems by ...

107

Thermal conductivity of dense quark matter and cooling of stars  

E-Print Network (OSTI)

The thermal conductivity of the color-flavor locked phase of dense quark matter is calculated. The dominant contribution to the conductivity comes from photons and Nambu-Goldstone bosons associated with breaking of baryon number which are trapped in the quark core. Because of their very large mean free path the conductivity is also very large. The cooling of the quark core arises mostly from the heat flux across the surface of direct contact with the nuclear matter. As the thermal conductivity of the neighboring layer is also high, the whole interior of the star should be nearly isothermal. Our results imply that the cooling time of compact stars with color-flavor locked quark cores is similar to that of ordinary neutron stars.

Igor A. Shovkovy; Paul J. Ellis

2002-04-11T23:59:59.000Z

108

Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests  

Science Conference Proceedings (OSTI)

A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

N.S. Brodsky

2002-07-17T23:59:59.000Z

109

Thermal Conductivity and Shear Strength of K Basin Sludge  

DOE Green Energy (OSTI)

Hanford K Basin sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and, consequently, generate heat and hydrogen gas during storage. Heat is generated within the K Basin sludge by radiolytic decay and the reaction of uranium metal with water. To maintain thermal stability, the sludge must be retrieved, staged, transported, and stored in systems designed to provide a rate of heat removal that prevents the temperature in the sludge from increasing beyond acceptable limits. To support the dispositioning of the sludge to T Plant, modeling and testing and analyses are being performed to predict the behavior of sludge when placed into the storage containers. Two physical properties of the sludge that are critical to the modeling and analyses efforts are thermal conductivity and the sludge shear strength (yield stress). This report provides the results of thermal conductivity and shear strength measurements performed on representative sludge samples from the K East Basin.

Poloski, Adam P. (BATTELLE (PACIFIC NW LAB)); Bredt, Paul R. (BATTELLE (PACIFIC NW LAB)); Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Swoboda, Robert G. (BATTELLE (PACIFIC NW LAB)); Chenault, Jeffrey W. (BATTELLE (PACIFIC NW LAB)); Gano, Sue (BATTELLE (PACIFIC NW LAB))

2002-05-17T23:59:59.000Z

110

The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings  

DOE Green Energy (OSTI)

Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D. [Oak Ridge National Lab., TN (United States); Nagaraj, B.A. [General Electric Co., Cincinnati, OH (United States). Aircraft Engine Group

1996-05-01T23:59:59.000Z

111

Thermal Crosslinking of Organic Semiconducting Polythiophene Improves Transverse Hole Conductivity  

Science Conference Proceedings (OSTI)

Thermal crosslinking using a suitable radical initiator simultaneously improves electrical conductivity in the semiconducting polymer poly(3-hexylthiophene) and makes the material insoluble. Crosslinked polythiophene shows as much as a fivefold increase in hole conductivity across the film thickness without any shift in spectral light absorption. Grazing incidence x-ray diffraction reveals more in-plane polymer lamellae stacking with only a small decrease in film crystallinity. Improved transverse conductivity increases the performance of model planar solar cells by threefold, from 0.07% to 0.2%. The ability to render polythiophene insoluble without disrupting film structural order enables fabrication pathways to more complex device architectures.

Gearba, I.R.; Nam, C.-Y.; Pindak, R.; Black, C.T.

2009-10-26T23:59:59.000Z

112

Microsoft PowerPoint - High Temperature Thermoelectric_Ohuchi  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Oxides Engineered Thermoelectric Oxides Engineered at Multiple Length Scales for Energy Harvesting Program Manager: Patricia Rawls Fumio S. Ohuchi (PI) and Rajendra K. Bordia(Co-PI) Department of Materials Science and Engineering University of Washington Box 352120 Seattle, WA 98195 Grant No. DE-FE0007272 (June 1, 2012-May 31, 2013) Graduate Students: Christopher Dandeneau and YiHsun Yang June 10, 2013 The UCR Contractors Review Conference Introduction/Motivation for Research * Thermoelectric (TE) oxides for waste heat recovery  Good high-temperature stability  Stable in hostile environments  Low cost/toxicity * Oxides with complex structure:  Low thermal conductivity,   Tailor stoichiometry to maximize S

113

VALIDATION OF A THERMAL CONDUCTIVITY MEASUREMENT SYSTEM FOR FUEL COMPACTS  

SciTech Connect

A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.

Jeff Phillips; Colby Jensen; Changhu Xing; Heng Ban

2011-03-01T23:59:59.000Z

114

Simultaneous measurement of the thermal conductivity and thermal diffusivity of unconsolidated materials by the transient hot wire method  

Science Conference Proceedings (OSTI)

This paper describes a new design for the transient hot wire method that can obtain the thermal conductivity and thermal diffusivity of unconsolidated materials. In this method

Greg C. Glatzmaier; W. Fred Ramirez

1985-01-01T23:59:59.000Z

115

Thermoelectric system  

DOE Patents (OSTI)

In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

Reiners, Eric A. (Washington, IL); Taher, Mahmoud A. (Peoria, IL); Fei, Dong (Peoria, IL); McGilvray, Andrew N. (East Peoria, IL)

2007-10-30T23:59:59.000Z

116

COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CLUSTER FORMATION WITH ANISOTROPIC THERMAL CONDUCTION  

SciTech Connect

The intracluster medium (ICM) has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling, and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially whenever the temperature gradient points in the direction opposite to gravitational acceleration. Using cosmological simulations of cluster formation we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearrangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and the Square Kilometer Array and future X-ray spectroscopic studies with the International X-ray Observatory. We demonstrate that radiative cooling boosts the amplification of the magnetic field by about two orders of magnitude beyond what is expected in the non-radiative cases. This effect is caused by the compression of the gas and frozen-in magnetic field as it accumulates in the cluster center. At z = 0 the field is amplified by a factor of about 10{sup 6} compared to the uniform magnetic field that evolved due to the universal expansion alone. Interestingly, the runs that include both radiative cooling and thermal conduction exhibit stronger magnetic field amplification than purely radiative runs. In these cases, buoyant restoring forces depend on the temperature gradients rather than the steeper entropy gradients. Thus, the ICM is more easily mixed and the winding up of the frozen-in magnetic field is more efficient, resulting in stronger magnetic field amplification. We also demonstrate that thermal conduction partially reduces the gas accretion driven by overcooling despite the fact that the effective conductivity is suppressed below the Spitzer-Braginskii value.

Ruszkowski, M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Lee, D. [Department of Astronomy, ASC/Flash Center, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Brueggen, M. [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen 05233 (Germany); Parrish, I. [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States); Oh, S. Peng, E-mail: mateuszr@umich.edu, E-mail: dongwook@flash.uchicago.edu, E-mail: m.brueggen@jacobs-university.de, E-mail: iparrish@astro.berkeley.edu, E-mail: peng@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

2011-10-20T23:59:59.000Z

117

Temperature dependence of thermoelectric properties of SiC/B{sub 4}C  

SciTech Connect

We report on the temperature dependence of thermoelectric properties of {ital p}-type SiC/B{sub 4}C system for thermoelectric devices. Measurements of electrical resistivity, thermoelectric power and thermal conductivity were made on SiC as a function of both B{sub 4}C doping concentration over the range 0.2%{similar_to}60 wt. % and temperature over the range from room temperature up to 600 {degree}C. The figure of merit increases from 2 to 5 decades with temperature increase from room temperature to 600 {degree}C. We conclude that the SiC/B{sub 4}C system with around 10% of B{sub 4}C is a promising candidate for thermoelectric applications in the temperature range 400{similar_to}600 {degree}C. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Okamoto, Y.; Aruga, A.; Kasai, H.; Morimoto, J.; Miyakawa, T.; Fujimoto, S. [Natl. Def. Acad., Dept. MSE (Japan)

1994-08-10T23:59:59.000Z

118

THERMAL CONDUCTIVITY AND VISCOSITY OF GAS MIXTURES (thesis)  

SciTech Connect

Correlations based upon empirical modified equations derived from kinetic theory were developed for the thermal conductivity and viscosity of gas mixtures. The conductivity equation was compared to 226 binary mixture conductivities in temperatures from 0 to 774 deg C from the literature and this work. The average deviation is 2.1%. In correlating conductivity data of mixtures of polyatomic molecules, the energy transport is considered in two parts, i.e., one protion transferred by collision and the other by diffusion. The proposed viscosity equation reproduces 103 binary data points with an average deviation of 1.3%. These equations are more consistent with experiment than existing correlations in the literature. the relation of the conductivity or viscosity to composition and temperature are discussed in the light of the proposed equations. It has been demonstrated that, at a given composition, the ratio of the measured conductivity to that calculated on the molar average basis for mixtures of most simple molecules and the ratio of the measured viscosity to that calculated on the molar average basis for mixtures of most gases should be nearly constant over a temperature range of 200 to 300 deg C. The thermal conductivity of ten gases and selected binary and ternary mixtures of them were measured in a concentric silver cylinder cell in the temperature range of 100 to 540 deg C The gases are He, A, N/sub 2/, O/sub 2/, CO/sub 2/, CH/sub 4/, C/sub 2/ H/sub 4/, C/sub 3/H/sub 8/, methyl ether , and methyl formats. (auth)

Cheung, H.

1958-04-01T23:59:59.000Z

119

Experimental and numerical study of the effective thermal conductivity of silica nanocomposites with thermal boundary resistance  

SciTech Connect

The thermal interface resistance at the macro scale is mainly described by the physical gap between two interfaces and constriction resistance due to this gap. The small gaps between the two material faces makes up the majority of thermal interface resistance at the macro scale. So, most of the studies have been focused on characterizing effect of surface geometry and material properties to thermal interface resistance. This resistance is more widely known as thermal contact resistance, represented with Rc. There are various models to predict thermal contact resistance at macro scale. These models predict thermal resistance Rc for given two materials by utilizing their bulk thermomechanical properties. Although, Rc represents thermal resistance accurately for macro size contacts between two metals, it is not suitable to describe interface resistance of particles in modern TIMs, aka particulate composites. The particles inside recently available TIMs are micron size and with effort to further increase surface area this particle size is approaching nano scale. At this small scale, Rc does not accurately predict thermal interface, as it is very difficult to characterize the surface topography. The thermal discontinuity at perfectly bonded interface of two dissimilar materials is termed as thermal boundary resistance (Rb) or Kapitza resistance. The macroscopic assumptions that thermal discontinuity only exists due to gaps and surface geometry leads to substantial error in determining interface thermal properties at micron and nano scale. The phenomenon of thermal boundary resistance is an inherent material property and arises due to fundamental mechanism of thermal transport. For metal-matrix particulate composites, Rb plays more important role than Rc. The free flowing nature of the polymer would eliminate most of the gaps between the two materials at their interface. This means almost all of the thermal resistance at particle/matrix interface would occur due to Rb. The current study presents experimental study of thermal boundary resistance for silica nano particles embedded inside epoxy resin. The bulk conductivity of the sample is measured and Rc is back calculated using Hasselman-Johnson s (H-J) equation. The numerical validation of the equation is also presented, including extrapolation study to predict effective conductivity of the nanocomposite TIM.

Kothari, Rushabh M [ORNL; Dinwiddie, Ralph Barton [ORNL; Wang, Hsin [ORNL

2013-01-01T23:59:59.000Z

120

Recovering Industrial Waste Heat by the Means of Thermoelectricity  

E-Print Network (OSTI)

]. When waste heat, geothermal heat and solar is the heat source, the cost of thermal input canRecovering Industrial Waste Heat by the Means of Thermoelectricity Spring 2010 Department available thermoelectric modules and to build a thermoelectric power generator demonstration unit

Kjelstrup, Signe

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electrical conductivity and thermal dilepton rate from quenched lattice QCD  

E-Print Network (OSTI)

We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at $T\\simeq 1.45 T_c$ using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 $T_c$ will be presented.

Olaf Kaczmarek; Anthony Francis

2011-09-19T23:59:59.000Z

122

Electrical conductivity and thermal dilepton rate from quenched lattice QCD  

E-Print Network (OSTI)

We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at $T\\simeq 1.45 T_c$ using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 $T_c$ will be presented.

Kaczmarek, Olaf

2011-01-01T23:59:59.000Z

123

Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity  

Science Conference Proceedings (OSTI)

We use a simple kinetic theory based analysis of heat flow in fluid suspensions of solid nanoparticles (nanofluids) to demonstrate that the hydrodynamics effects associated with Brownian motion have a minor effect on the thermal conductivity of the nanofluid. Our conjecture is supported by the results of molecular dynamics simulations of heat flow in a model nanofluid with well-dispersed particles. Our findings are consistent with the predictions of the effective medium theory as well as with recent experimental results on well dispersed metal nanoparticle suspensions.

W Evans, J Fish, P Keblinski

2005-11-14T23:59:59.000Z

124

Vehicle Technologies Office: 2009 Thermoelectrics Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Overview of Worldwide Activities in Thermoelectrics Thermoelectric Applications I Thermoelectric Materials I Thermoelectric Manufacturing Thursday, October 1, 2009...

125

Thermoelectric material development. Final report  

DOE Green Energy (OSTI)

A search was made for improved TE materials that could have higher efficiency than state-of-the-art SiGe alloys used in Radioisotope Thermoelectric Generators. A new family of materials having the skutterudite structure was identified (cubic space group Im3, formula (Fe, Co, Ni)As{sub 3}). Properties of n-type IrSb{sub 3}, CoSb{sub 3}, and their solid solutions were investigated. Pt, Te, Tl, and In were used as dopants. The thermal conductivity was reduced by about 70% for the solid solutions vs the binary compounds. A maximum ZT of about 0.36 was measured on Co-rich solid solutions which is 160% improved over that of the binary compounds.

Vandersande, J.W.; Allevato, C.; Caillat, T.

1994-10-01T23:59:59.000Z

126

Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.  

SciTech Connect

Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

2009-09-01T23:59:59.000Z

127

Conversion system overview assessment. Volume 1: solar thermoelectrics  

DOE Green Energy (OSTI)

An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)

Jayadev, T. S.; Henderson, J.; Finegold, J.; Benson, D.

1979-08-01T23:59:59.000Z

128

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

129

Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs  

SciTech Connect

We report room temperature electronic and thermoelectric properties of Si-doped In{sub 0.52}Ga{sub 0.48}Bi{sub y}As{sub 1-y} with varying Bi concentrations. These films were grown epitaxially on a semi-insulating InP substrate by molecular beam epitaxy. We show that low Bi concentrations are optimal in improving the conductivity, Seebeck coefficient, and thermoelectric power factor, possibly due to the surfactant effects of bismuth. We observed a reduction in thermal conductivity with increasing Bi concentration, which is expected because of alloy scattering. We report a peak ZT of 0.23 at 300 K.

Dongmo, Pernell; Zhong Yujun; Bomberger, Cory; Zide, Joshua [Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716 (United States); Attia, Peter [Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716 (United States); Cheaito, Ramez; Hopkins, Patrick E. [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 2294 (United States); Ihlefeld, Jon F. [Sandia National Laboratories, P.O. Box 5800, M.S. 1069, Albuquerque, New Mexico 87185 (United States)

2012-11-01T23:59:59.000Z

130

Synthesis of Ca3Co4O9 Thermoelectric Oxide by Self-Propagating ...  

Science Conference Proceedings (OSTI)

Opacified, Reinforced Aerogel for Thermal Insulation of Thermoelectric Generators and Other Advanced Energy Systems · Oxide Ceramic Materials for ...

131

The Effect of Mg/Co Ratio on the Thermoelectric Properties of ...  

Science Conference Proceedings (OSTI)

Opacified, Reinforced Aerogel for Thermal Insulation of Thermoelectric Generators and Other Advanced Energy Systems · Oxide Ceramic Materials for ...

132

Finding New Thermoelectric Compounds Using Crystallographic Data: Atomic Displacement Parameters  

DOE Green Energy (OSTI)

A new structure-property relationship is discussed which links atomic displacement parameters (ADPs) and the lattice thermal conductivity of clathrate-like compounds. For many clathrate-like compounds, in which one of the atom types is weakly bound and ''rattles'' within its atomic cage, room temperature ADP information can be used to estimate the room temperature lattice thermal conductivity, the vibration frequency of the ''rattler'', and the temperature dependence of the heat capacity. Neutron data and X-ray crystallography data, reported in the literature, are used to apply this analysis to several promising classes of thermoelectric materials.

Chakoumakos, B.C.; Mandrus, D.G.; Sales, B.C.; Sharp, J.W.

1999-08-29T23:59:59.000Z

133

Light beam dynamics in materials with radially-inhomogeneous thermal conductivity  

E-Print Network (OSTI)

We study the properties of bright and vortex solitons in thermal media with nonuniform thermal conductivity and homogeneous refractive index, whereby the local modulation of the thermal conductivity strongly affects the entire refractive index distribution. While regions where the thermal conductivity is increased effectively expel light, self-trapping may occur in the regions with reduced thermal conductivity, even if such regions are located close to the material boundary. As a result, strongly asymmetric self-trapped beams may form inside a ring with reduced thermal conductivity and perform persistent rotary motion. Also, such rings are shown to support stable vortex solitons, which may feature strongly non-canonical shapes.

Kartashov, Yaroslav V; Torner, Lluis

2013-01-01T23:59:59.000Z

134

Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films  

E-Print Network (OSTI)

We experimentally investigate the role of size effects and boundary scattering on the thermal conductivity of silicon-germanium alloys. The thermal conductivities of a series of epitaxially grown Si[subscript 1-x] Ge[subscript ...

Cheaito, Ramez

135

Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics  

E-Print Network (OSTI)

We provide a derivation allowing the calculation of thermal conductance at interfaces by equilibrium molecular dynamics simulations and illustrate our approach by studying thermal conduction mechanisms in Si/Ge superlattices. ...

Esfarjani, Keivan

136

Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ  

DOE Patents (OSTI)

A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.

Poppendiek, Heinz F. (LaJolla, CA)

1982-01-01T23:59:59.000Z

137

Role of thermal conduction in an advective accretion with bipolar outflows  

E-Print Network (OSTI)

Steady-state advective accretion flows in the presence of thermal conduction are studied. All three components of velocity in a spherical coordinates are considered and the flow displays both inflowing and outflowing regions according to our similarity solutions. Thermal conductivity provides latitudinal energy transport and so, the flow rotates more slowly and becomes hotter with increasing thermal conductivity coefficient. We also show that opening angle of the outflow region decreases as thermal conduction becomes stronger.

Khajenabi, Fazeleh

2013-01-01T23:59:59.000Z

138

T I ENHANCING THERMAL CONDUCTIVITY OF FLUIDS WITH NANOPARTICLES*  

Office of Scientific and Technical Information (OSTI)

JAM 1 1 1935 JAM 1 1 1935 b T I ENHANCING THERMAL CONDUCTIVITY OF FLUIDS WITH NANOPARTICLES* Stephen U. S. Choi 1 and J. A. Eastman 2 1 Energy Technology Division and ^Materials Science Division Argonne National Laboratory, Argonne, IL 60439 October 1995 The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

139

SunShot Initiative: Concentrated Solar Thermoelectric Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrated Solar Thermoelectric Concentrated Solar Thermoelectric Power to someone by E-mail Share SunShot Initiative: Concentrated Solar Thermoelectric Power on Facebook Tweet about SunShot Initiative: Concentrated Solar Thermoelectric Power on Twitter Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Google Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Delicious Rank SunShot Initiative: Concentrated Solar Thermoelectric Power on Digg Find More places to share SunShot Initiative: Concentrated Solar Thermoelectric Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

140

Nanostructures boost the thermoelectric performance of PbS.  

Science Conference Proceedings (OSTI)

In situ nanostructuring in bulk thermoelectric materials through thermo-dynamic phase segregation has established itself as an effective paradigm for optimizing the performance of thermoelectric materials. In bulk PbTe small compositional variations create coherent and semicoherent nanometer sized precipitates embedded in a PbTe matrix, where they can impede phonon propagation at little or no expense to the electronic properties. In this paper the nanostructuring paradigm is for the first time extended to a bulk PbS based system, which despite obvious advantages of price and abundancy, so far has been largely disregarded in thermoelectric research due to inferior room temperature thermoelectric properties relative to the pristine fellow chalcogenides, PbSe and PbTe. Herein we report on the synthesis, microstructural morphology and thermoelectric properties of two phase (PbS){sub 1-x}(PbTe){sub x}x = 0-0.16 samples. We have found that the addition of only a few percent PbTe to PbS results in a highly nanostructured material, where PbTe precipitates are coherently and semicoherently embedded in a PbS matrix. The present (PbS){sub 1-x}(PbTe){sub x} nanostructured samples show substantial decreases in lattice thermal conductivity relative to pristine PbS, while the electronic properties are left largely unaltered. This in turn leads to a marked increase in the thermoelectric figure of merit. This study underlines the efficiency of the nanostructuring approach and strongly supports its generality and applicability to other material systems. We demonstrate that these PbS-based materials, which are made primarily from abundant Pb and S, outperform optimally n-type doped pristine PbTe above 770 K.

Johnsen, S.; Androulakis, J.; He, J. Q.; Dravid, V. P.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G. (Materials Science Division); (Northwestern Univ.)

2011-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Interfacial structure in Telluride-based thermoelectric materials.  

Science Conference Proceedings (OSTI)

Chalcogenide compounds based on the rocksalt and tetradymite structures possess good thermoelectric properties and are widely used in a variety of thermoelectric devices. Examples include PbTe and AgSbTe2, which have the rocksalt structure, and Bi2Te3, Bi2Se3, and Sb2Te3, which fall within the broad tetradymite-class of structures. These materials are also of interest for thermoelectric nanocomposites, where the aim is to improve thermoelectric energy conversion efficiency by harnessing interfacial scattering processes (e.g., reducing the thermal conductivity by phonon scattering or enhancing the Seebeck coefficient by energy filtering). Understanding the phase stability and microstructural evolution within such materials is key to designing processing approaches for optimal thermoelectric performance and to predicting the long-term nanostructural stability of the materials. In this presentation, we discuss our work investigating relationships between interfacial structure and formation mechanisms in several telluride-based thermoelectric materials. We begin with a discussion of interfacial coherency and its special aspects at interfaces in telluride compounds based on the rocksalt and tetradymite structures. We compare perfectly coherent interfaces, such as the Bi2Te3 (0001) twin, with semi-coherent, misfitting interfaces. We next discuss the formal crystallographic analysis of interfacial defects in these systems and then apply this methodology to high resolution transmission electron microscopy (HRTEM) observations of interfaces in the AgSbTe2/Sb2Te3 and PbTe/Sb2Te3 systems, focusing on interfaces vicinal to {l_brace}111{r_brace}/{l_brace}0001{r_brace}. Through this analysis, we identify a defect that can accomplish the rocksalt-to-tetradymite phase transformation through diffusive-glide motion along the interface.

Medlin, Douglas L.

2010-06-01T23:59:59.000Z

142

Thermoelectric battery, protected against shocks and accelerations  

SciTech Connect

In a thermoelectric battery the heat source is suspended on the end of a thermoelectric unit, the other end of which is attached via a heat conducting mass to the casing. A resilient mounting permits resilient rocking of the thermoelectric unit to reduce stress on the unit in the event of shock or acceleration applied to the casing and spring fingers not normally in contact with the heat source or the thermoelectric unit are positioned to arrest the heat source if the assembly rocks more than a predetermined amount.

Brown, M.H.; Myatt, J.

1979-07-24T23:59:59.000Z

143

Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography  

E-Print Network (OSTI)

We show that for CFT's admitting gravity duals, thermal conductivity is fixed by central charges in a universal manner. We also discuss possible bound on thermal conductivity. Using this universality relation exhibited by thermal conductivity, we show how to express electrical conductivity in terms of thermodynamical quantities even in the presence of chemical potential i.e. electrical conductivity can be calculated without writing down perturbation equations and solving them even at nonvanishing chemical potential.

Jain, Sachin

2009-01-01T23:59:59.000Z

144

Theoretical efficiency of solar thermoelectric energy generators  

E-Print Network (OSTI)

This paper investigates the theoretical efficiency of solar thermoelectric generators (STEGs). A model is established including thermal concentration in addition to optical concentration. Based on the model, the maximum ...

Chen, Gang

145

Spatially localized measurement of thermal conductivity using a hybrid photothermal technique  

SciTech Connect

A photothermal technique capable of measuring thermal conductivity with micrometer lateral resolution is presented. This technique involves measuring separately the thermal diffusivity, D, and thermal effusivity, e, to extract the thermal conductivity, k=(e2/D)1/2. To generalize this approach, sensitivity analysis was conducted for materials having a range of thermal conductivities. Experimental validation was sought using two substrate materials, SiO2 and CaF2, both coated with thin titanium films. The measured conductivities compare favorably with literature values.

David H Hurley; Marat Khafizov; Zilong Hua; Rory Kennedy; Heng Ban

2012-05-01T23:59:59.000Z

146

Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects  

SciTech Connect

We have synthesized off-stoichiometric Ti-Ni-Sn half-Heusler thermoelectrics in order to investigate the relation between randomly distributed defects and thermoelectric properties. A small change in the composition of Ti-Ni-Sn causes a remarkable change in the thermal conductivity. An excess content of Ni realizes a low thermal conductivity of 2.93 W/mK at room temperature while keeping a high power factor. The low thermal conductivity originates in the defects generated by an excess content of Ni. To investigate the detailed defect structure, we have performed first-principles calculations and compared with x ray photoemission spectroscopy measurement. Based on these analyses, we conclude that the excess Ni atoms randomly occupy the vacant sites in the half-Heusler structure, which play as phonon scattering centers, resulting in significant improvement of the figure of merit without any substitutions of expensive heavy elements, such as Zr and Hf.

Hazama, Hirofumi; Matsubara, Masato; Asahi, Ryoji [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Takeuchi, Tsunehiro [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

2011-09-15T23:59:59.000Z

147

Thermal conductivity of $sup 238$PuO$sub 2$ powder, intermediates, and dense fuel forms  

SciTech Connect

The thermal conductivities of porous $sup 238$PuO$sub 2$ powder (calcined oxalate), milled powder, and high-density granules were calculated from direct measurements of steady-state temperature profiles resulting from self- heating. Thermal conductivities varied with density, temperature, and gas content of the pores. Errors caused by thermocouple heat conduction were less than 5 percent when the dimensions of the thermal conductivity cell and the thermocouple were properly selected. (auth)

Bickford, D.F.; Crain, B. Jr.

1975-10-01T23:59:59.000Z

148

Thermal conductance and rectification of asymmetric tilt grain boundary in graphene  

E-Print Network (OSTI)

We have investigated the lattice thermal transport across the asymmetry tilt grain boundary between armchair and zigzag grains by using nonequilibrium molecular dynamics (NEMD). We have observed significant temperature drop and ultralow temperature-dependent thermal boundary resistance. Importantly, we find an unexpected thermal rectification phenomenon, i.e, the thermal conductivity and Kapitza conductance is asymmetric with respect to the thermal transport direction. And the effect of thermal rectification could be amplified by increasing the difference of temperature imposed on two sides. Our results propose a new promising kind of thermal rectifier and phonon diodes from polycrystalline graphene without delicate manupulation of the atomic structures.

Cao, Hai-Yuan; Gong, Xin-Gao

2011-01-01T23:59:59.000Z

149

Bio-inspired methods for fast and robust arrangement of thermoelectric modulus  

Science Conference Proceedings (OSTI)

This paper aims to evaluate the ability of some well-known bio-inspired metaheuristics for optimal arrangement of thermoelectric cells mounted in a thermal component. In real life applications, proper arrangement of thermoelectric modules plays a pivotal ...

Ahmad Mozaffari; Ali M. Goudarzi; Alireza Fathi; Pendar Samadian

2013-04-01T23:59:59.000Z

150

Thermoelectric generator apparatus and operation method  

SciTech Connect

A method of operating a thermoelectric generator includes: cyclically producing increasing then decreasing temperature differences in the thermoelectric material of the generator; and generating a cyclically increasing then decreasing electrical generator output signal, in response to such temperature differences, to transmit electrical power generated by the generator from the generator. Part of the thermoelectric material reaches temperatures substantially above the melting temperature of the material. The thermoelectric material of the generator forms a part of a closed electrical loop about a transformer core so that the inductor voltage for the loop serves as the output signal of the generator. A thermoelectric generator, which can be driven by the described method of operation, incorporates fins into a thermopile to conduct heat toward or away from the alternating spaces between adjacent layers of different types of thermoelectric material. The fins extend from between adjacent layers, so that they can also conduct electrical current between such layers, perpendicularly to the direction of stacking of the layers. The exhaust from an internal combustion engine can be employed to drive the thermoelectric generator, and, also, to act as a driver for a thermoelectric generator in accordance with the method of operation initially described.

Lowther, F.E.

1984-07-31T23:59:59.000Z

151

Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions  

E-Print Network (OSTI)

Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce ...

Zheng, Ruiting

152

High thermal conductivity connector having high electrical isolation  

DOE Patents (OSTI)

A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

Nieman, Ralph C. (Downers Grove, IL); Gonczy, John D. (Oak Lawn, IL); Nicol, Thomas H. (St. Charles, IL)

1995-01-01T23:59:59.000Z

153

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network (OSTI)

6! 1.4. Thermoelectric Energy Harvesting for BiomedicalBiomechanical Energy Harvesting: Generating ElectricityP. K. Wright, “Energy Harvesting - A Systems Perspective,”

Chen, Alic

2011-01-01T23:59:59.000Z

154

Thermal conduction and particle transport in strong MHD turbulence, with application to galaxy-cluster plasmas  

E-Print Network (OSTI)

We investigate field-line separation in strong MHD turbulence analytically and with direct numerical simulations. We find that in the static-magnetic-field approximation the thermal conductivity in galaxy clusters is reduced by a factor of about 5-10 relative to the Spitzer thermal conductivity of a non-magnetized plasma. We also estimate how the thermal conductivity would be affected by efficient turbulent resistivity.

Benjamin D. G. Chandran; Jason L. Maron

2003-03-11T23:59:59.000Z

155

Mismatched Alloys are a Good Match for Thermoelectrics - NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

without much reduction of electric conductivity, which is not the case for conventional thermoelectric materials," he says. Collaborating with Wu on this work were Joo-Hyoung Lee...

156

Temperature, thermal-conductivity, and heat-flux data,Raft River...  

Open Energy Info (EERE)

Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report:...

157

Optimal Bandwidth for High Efficiency Thermoelectrics  

E-Print Network (OSTI)

The thermoelectric figure of merit (ZT) in narrow conduction bands of different material dimensionalities is investigated for different carrier scattering models. When the bandwidth is zero, the transport distribution ...

Zhou, Jun

158

Experimental measurements of the thermal conductivity of ash deposits: Part 1. Measurement technique  

Science Conference Proceedings (OSTI)

This paper describes a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. Since ash deposit thermal conductivity is thought to be strongly dependent on deposit microstructure, the technique is designed to minimize the disturbance of the natural deposit microstructure. Traditional techniques for measuring deposit thermal conductivity generally do not preserve the sample microstructure. Experiments are described that demonstrate the technique, quantify experimental uncertainty, and determine the thermal conductivity of highly porous, unsintered deposits. The average measured conductivity of loose, unsintered deposits is 0.14 {+-} 0.03 W/(m K), approximately midway between rational theoretical limits for deposit thermal conductivity.

A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

2000-04-01T23:59:59.000Z

159

Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity  

Science Conference Proceedings (OSTI)

In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

Chen, Lin; Li, Zhen; Guo, Zeng-Yuan [Department of Engineering Mechanics, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

2009-07-15T23:59:59.000Z

160

Vehicle Technologies Office: 2nd Thermoelectrics Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2011 Overview of Worldwide Activities in Thermoelectrics Thermoelectric Applications I Thermoelectric Materials I NSFDOE Thermoelectrics Partnership Wednesday, January 5, 2012...

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermoelectric properties and impedance spectroscopy of polycrystalline samples of the beta-gallia rutile intergrowth, (Ga,In){sub 4}(Sn,Ti){sub 5}O{sub 16}  

Science Conference Proceedings (OSTI)

Polycrystalline samples of Ga{sub 3}In(Sn{sub 1-y}Ti{sub y}){sub 5}O{sub 16}, y{thermoelectric properties and electrical impedance. Using diffuse reflectance data and assuming a direct band gap, the band gap of the material ranges from 3.58 eV for y=0 to 3.74 eV for y=0.2. The dc conductivity decreased with increasing Ti content and was thermally activated, ranging from {thermoelectric materials. A comparison of dc conductivity and impedance data indicated a substantial ionic contribution for samples containing titanium. - Graphical abstract: The thermoelectric properties of polycrystalline Ga{sub 3}In(Sn{sub 1-y}Ti{sub y}){sub 5}O{sub 16}, y{materials are broad-band n-type semiconductors with non-negligible ionic conduction for samples prepared with y>0. The thermoelectric figure of merit is much lower than desired for practical thermoelectric devices. Highlights: Black-Right-Pointing-Pointer Ga{sub 3}In(Sn{sub 1-y}Ti{sub y}){sub 5}O{sub 16}, y{thermoelectric figure of merit for Ga{sub 3}In(Sn{sub 1-y}Ti{sub y}){sub 5}O{sub 16} is lower than desired for practical thermoelectric devices.

Grover, Jeffrey; Arrasmith, Steven [Alfred University, Kazuo Inamori School of Engineering, 2 Pine Street, Alfred, NY 14802 (United States); Edwards, Doreen D., E-mail: dedwards@alfred.edu [Alfred University, Kazuo Inamori School of Engineering, 2 Pine Street, Alfred, NY 14802 (United States)

2012-07-15T23:59:59.000Z

162

Ion thermal conductivity for a pure tokamak plasma  

DOE Green Energy (OSTI)

The neoclassical and Pfirsch-Schlueter component of the ion heat conduction for a pure hydrogen Tokamak plasma are recalculated without assuming large aspect ratio and without neglecting energy scattering collisions. Using a model collision operator the conductivity is determined numerically for various collision frequencies and aspect ratios. An approximate algebraic expression is fitted to the results. Even for comparatively large aspect ratios(approx. 10) energy scattering increases the conductivity in the banana regime by about 50% and for small aspect ratios(approx. 3.3) the Pfirsch-Schlueter contribution causes a further increase of approximately 60%.

Bolton, C.; Ware, A.

1981-10-01T23:59:59.000Z

163

Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths  

E-Print Network (OSTI)

Size effects in heat conduction, which occur when phonon mean free paths (MFPs) are comparable to characteristic lengths, are being extensively explored in many nanoscale systems for energy applications. Knowledge of MFPs ...

Schmidt, A. J.

164

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

165

Technical Project Plan for The Enhanced Thermal Conductivity of Oxide Fuels Through the Addition of High Thermal Conductivity Fibers and Microstructural Engineering  

SciTech Connect

The commercial nuclear power industry is investing heavily in advanced fuels that can produce higher power levels with a higher safety margin and be produced at low cost. Although chemically stable and inexpensive to manufacture, the in-core performance of UO{sub 2} fuel is limited by its low thermal conductivity. There will be enormous financial benefits to any utility that can exploit a new type of fuel that is chemically stable, has a high thermal conductivity, and is inexpensive to manufacture. At reactor operating temperatures, UO{sub 2} has a very low thermal conductivity (<5 W/m {center_dot}K), which decreases with temperature and fuel burnup. This low thermal conductivity limits the rate at which energy can be removed from the fuel, thus limiting the total integrated reactor power. If the fuel thermal conductivity could be increased, nuclear reactors would be able to operate at higher powers and larger safety margins thus decreasing the overall cost of electricity by increasing the power output from existing reactors and decreasing the number of new electrical generating plants needed to meet base load demand. The objective of the work defined herein is to produce an advanced nuclear fuel based on the current UO{sub 2} fuel with superior thermal conductivity and structural integrity that is suitable for current and future nuclear reactors, using the existing fuel fabrication infrastructure with minimal modifications. There are two separate components to the research: (1) Enhanced Thermal Conductivity (ETC) - adding high conductivity fibers to the UO{sub 2} prior to sintering, which act as conduits for moving the heat energy generated within the pellet to the outer surface, (2) Microstructural Engineering (ME) - adding second phase particulates to UO{sub 2} bodies to retard grain growth and to increase thermal conductivity, as well as improve fracture and creep resistance. Different groups will perform the laboratory work for each of these research components with some overlap in personnel. The overlapping areas primarily involve computer simulations and final testing of the fuel in a reactor. The estimated cost and duration of this project is $5,000,000 over three years.

Hollenbach, Daniel F [ORNL; Ott, Larry J [ORNL; Besmann, Theodore M [ORNL; Armstrong, Beth L [ORNL; Wereszczak, Andrew A [ORNL; Lin, Hua-Tay [ORNL; Ellis, Ronald James [ORNL; Becher, Paul F [ORNL; Jubin, Robert Thomas [ORNL; Voit, Stewart L [ORNL

2010-09-01T23:59:59.000Z

166

Component for thermoelectric generator  

DOE Patents (OSTI)

In a thermoelectric generator, a component comprises a ceramic insulator, having over limited areas thereof, each area corresponding to a terminal end of thermoelectric wires, a coating of a first metal which adheres to the insulator, and an electrical thermoelectric junction including a second metal which wets said first metal and adheres to said terminal ends but does not wet said insulator, and a cloth composed of electrically insulating threads interlaced with thermoelectric wires.

Purdy, David L. (Indiana, PA)

1977-01-01T23:59:59.000Z

167

Combustion Synthesis of Doped Thermoelectric Oxides  

Science Conference Proceedings (OSTI)

Self-propagating high-temperature synthesis (SHS) was used to prepare silver doped calcium cobaltates (Ca1.24- xAgxCo1.62O3.86, x = 0.03 - 0.12) powders. SHS is a simple and economic process to synthesize ceramic materials with minimum energy requirements. The heat generated by the SHS reaction can sustain the propagation of the reaction front and convert reactants to desired products. The effect of doping level on thermoelectric properties was investigated in this study. Results show the substitution of calcium by silver decreases the thermal conductivity significantly. XRD and surface area measurements show synthesized powders are phase pure and have large specific surface areas.

Selig, Jiri [Lamar University; Lin, Sidney [Lamar University; Lin, Hua-Tay [ORNL; Johnson, D Ray [ORNL

2012-01-01T23:59:59.000Z

168

Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms  

SciTech Connect

This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

2011-09-28T23:59:59.000Z

169

The thermal conductivity of rock under hydrothermal conditions: measurements and applications  

SciTech Connect

The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

Williams, Colin F.; Sass, John H.

1996-01-24T23:59:59.000Z

170

Serpentine Thermal Coupling Between a Stream and a Conducting Body  

Science Conference Proceedings (OSTI)

Here we document the effect of flow configuration on the heat transfer performance of a serpentine shaped stream embedded in a conducting solid. Several configurations with fixed volume of fluid are considered: U-shaped with varying spacing between the parallel portions of the U, serpentine shapes with three elbows, and conducting soil with several parallelepipedal shapes. We show that the spacing must be greater than a critical value in order for the heat transfer density of the stream-solid configuration to be the highest that it can be. Spacings larger than this critical value do not yield improvements in heat transfer density. We also show that even though the heat transfer is time dependent, the stream-solid configuration has an effective number of heat transfer units Ntu that is nearly constant in time. The larger Ntu values correspond to the configurations with greater heat transfer density.

Kobayashi, H.; Lorente, S.; Anderson, R.; Bejan, A.

2012-02-15T23:59:59.000Z

171

Preliminary study on improvement of cementitious grout thermal conductivity for geothermal heat pump applications  

DOE Green Energy (OSTI)

Preliminary studies were preformed to determine whether thermal conductivity of cementitious grouts used to backfill heat exchanger loops for geothermal heat pumps could be improved, thus improving efficiency. Grouts containing selected additives were compares with conventional bentonite and cement grouts. Significant enhancement of grout alumina grit, steel fibers, and silicon carbide increased the thermal conductivity when compared to unfilled, high solids bentonite grouts and conventional cement grouts. Furthermore, the developed grouts retained high thermal conductivity in the dry state, where as conventional bentonite and cement grouts tend to act as insulators if moisture is lost. The cementitious grouts studied can be mixed and placed using conventional grouting equipment.

Allan, M.L.

1996-06-01T23:59:59.000Z

172

EVALUATION OF THERMAL CONDUCTIVITY OF INSTALLED-IN-PLACE POLYURETHANE FOAM INSULATION BY EXPERIMENT AND ANALYSIS  

SciTech Connect

In the thermal analysis of the 9977 package, it was found that calculated temperatures, determined using a typical thermal analysis code, did not match those measured in the experimental apparatus. The analysis indicated that the thermal resistance of the overpack in the experimental apparatus was less than that expected, based on manufacturer's reported value of thermal conductivity. To resolve this question, the thermal conductivity of the installed foam was evaluated from the experimental results, using a simplified analysis. This study confirmed that the thermal resistance of the experimental apparatus was lower than that which would result from the manufacturer's published values for thermal conductivity of the foam insulation. The test package was sectioned to obtain samples for measurement of material properties. In the course of the destructive examination a large uninsulated region was found at the bottom of the package, which accounted for the anomalous results. Subsequent measurement of thermal conductivity confirmed the manufacturer's published values. The study provides useful insight into the use of simplified, scoping calculations for evaluation of thermal performance of packages.

Smith, A; Bruce Hardy, B; Kurt Eberl, K; Nick Gupta, N

2007-12-05T23:59:59.000Z

173

Estimation of in-situ thermal conductivities from temperature gradient measurements  

Science Conference Proceedings (OSTI)

A mathematical model has been developed to study the effect of variable thermal conductivity of the formations, and the wellbore characteristics, on the fluid temperature behavior inside the wellbore during injection or production and after shut-in. During the injection or production period the wellbore fluid temperature is controlled mainly by the fluid flow rate and the heat lost from the fluid to the formation. During the shut-in period, the fluid temperature is strongly affected by differences in the formation thermal conductivities. Based on the results of the present analysis, two methods for estimating in-situ thermal conductivity were derived. First, the line source concept is extended to estimate values of the formation thermal conductivities utilizing the fluid temperature record during the transient period of injection or production and shut-in. The second method is applied when a well is under thermal equilibrium conditions. Values of the formation thermal conductivities can also be estimated by using a continuous temperature gradient log and by measuring the thermal conductivity of the formation at a few selected wellbore locations.

Hoang, V.T.

1980-12-01T23:59:59.000Z

174

Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity  

SciTech Connect

Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

Du, Shiyu [Los Alamos National Laboratory; Andersson, Anders D. [Los Alamos National Laboratory; Germann, Timothy C. [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

175

The microstructure network and thermoelectric properties of bulk (Bi,Sb){sub 2}Te{sub 3}  

Science Conference Proceedings (OSTI)

We report small-angle neutron scattering studies on the microstructure network in bulk (Bi,Sb){sub 2}Te{sub 3} synthesized by the melt-spinning (MS) and the spark-plasma-sintering (SPS) process. We find that rough interfaces of multiscale microstructures generated by the MS are responsible for the large reduction of both lattice thermal conductivity and electrical conductivity. Our study also finds that subsequent SPS forms a microstructure network of {approx}10 nm thick lamellae and smooth interfaces between them. This nanoscale microstructure network with smooth interfaces increases electrical conductivity while keeping a low thermal conductivity, making it an ideal microstructure for high thermoelectric efficiency.

Xie Wenjie [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Hitchcock, Dale A.; Kang, Hye J.; He Jian [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Tang Xinfeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Laver, Mark [Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Nano-Science Center, Niels Bohr Institute, University of Copenhagen, DK-2100 Kobenhavn (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Hammouda, Boualem [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

2012-09-10T23:59:59.000Z

176

Thermoelectric materials: ternary penta telluride and selenide compounds  

DOE Patents (OSTI)

Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

Sharp, Jeffrey W. (Richardson, TX)

2002-06-04T23:59:59.000Z

177

Thermoelectric materials ternary penta telluride and selenide compounds  

DOE Patents (OSTI)

Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

Sharp, Jeffrey W. (Richardson, TX)

2001-01-01T23:59:59.000Z

178

Thermal desorption treatability test conducted with VAC*TRAX Unit  

SciTech Connect

In 1992, Congress passed the Federal Facilities Compliance Act, requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) treatment standards. In response to the need for mixed-waste treatment capacity, where off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed waste with treatment options and develop a strategy for treatment of mixed waste. DOE-AL manages nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment units (MTUs) to treat waste at the sites where the wastes are generated. Treatment processes used for mixed wastes must remove the hazardous component (i.e., meet RCRA treatment standards) and contain the radioactive component in a form that will protect the worker, public, and environment. On the basis of the recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (DOE-GJPO) include thermal desorption (TD), evaporative oxidation, and waste water evaporation.

1996-01-01T23:59:59.000Z

179

Silicon-germanium/gallium phosphide material in high power density thermoelectric modules. Final report, February 1980--September 1981  

DOE Green Energy (OSTI)

This is the final report of work on the characterization of an improved Si-Ge alloy and the fabrication of thermoelectric devices. The improved Si-Ge alloy uses a small addition of GaP in n- and p- type 80 at.% Si-20 at.% Ge; this addition reduces the thermal conductivity, thereby increasing its figure of merit and conversion efficiency. The thermoelectric devices fabricated include multicouples intended for use in Radioisotope Thermoelectric Generators (RTGs) and ring-type modules intended for use with nuclear reactor heat sources. This report summarizes the effort in the material as well as the device areas and discusses individual phases of each area. Results should form basis for further effort.

Not Available

1981-12-31T23:59:59.000Z

180

Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae=Ca,Sr,Ba, as thermoelectric materials  

SciTech Connect

We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2 Sn, Sr2 Sn and Ba2 Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli - roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

Parker, David S [ORNL; Singh, David J [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Temperature, thermal-conductivity, and heat-flux data,Raft River area,  

Open Energy Info (EERE)

Temperature, thermal-conductivity, and heat-flux data,Raft River area, Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Details Activities (1) Areas (1) Regions (0) Abstract: Basin and Range Province; Cassia County Idaho; economic geology; exploration; geophysical surveys; geothermal energy; heat flow; heat flux; Idaho; North America; Raft River basin; south-central Idaho; surveys; temperature; thermal conductivity; United States; USGS Author(s): Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer, M.H. Published: Open-File Report - U. S. Geological Survey, 1/1/1986 Document Number: Unavailable

182

Anisotropic Thermal Conduction and the Cooling Flow Problem in Galaxy Clusters  

E-Print Network (OSTI)

We examine the long-standing cooling flow problem in galaxy clusters with 3D MHD simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of ~200 Myr or shorter--in order to prevent a cooling catastrophe the ICM must be heated by some mechanism such as AGN feedback or thermal conduction from the thermal reservoir at large radii. The cores of galaxy clusters are linearly unstable to the heat-flux-driven buoyancy instability (HBI), which significantly changes the thermodynamics of the cluster core. The HBI is a convective, buoyancy-driven instability that rearranges the magnetic field to be preferentially perpendicular to the temperature gradient. For a wide range of parameters, our simulations demonstrate that in the presence of the HBI, the effective radial thermal conductivity is reduced to less than 10% of the full Spitzer conductivity. With this suppression of ...

Parrish, Ian J; Sharma, Prateek

2009-01-01T23:59:59.000Z

183

Thermal conductivity of self-assembled nano-structured ZnO bulk ceramics  

Science Conference Proceedings (OSTI)

In this study, we describe the changes in thermal conductivity behavior of ZnO-Al micro- and nano-two-phase self-assembled composites with varying grain sizes. The reduction in thermal conductivity values of micro-composites was limited to {approx}15% for ZnO-4% Al. However, nano-composites exhibited large reduction, by a factor of about three, due to uniform distribution of nano-precipitates (ZnAl2O4) and large grain boundary area. Interestingly, the micro-composites revealed continuous decrease in thermal conductivity with increase in Al substitution while the nano-composites exhibited the lowest magnitudes for 2% Al concentration. Raman spectra indicated that phonon confinement in ZnO-Al nano-composites causes drastic decrease in the value of thermal conductivity.

Zhao, Yu [Bio-Inspired Materials and Devices Laboraory (BMDL); Yan, Yongke [Bio-Inspired Materials and Devices Laboraory (BMDL); Kumar, Ashok [Bio-Inspired Materials and Devices Laboraory (BMDL); Wang, Hsin [ORNL; Porter, Wallace D [ORNL

2012-01-01T23:59:59.000Z

184

Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal  

E-Print Network (OSTI)

The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep ...

Shaikh, Samina

2007-01-01T23:59:59.000Z

185

Thermal conductivity of fluids containing suspension of nanometer-sized particles  

E-Print Network (OSTI)

Nanofluids, which are fluids containing suspension of nanometer-sized particles, have been reported to possess substantially higher thermal conductivity than their respective base fluids. This thesis reports on an experimental ...

Ma, Jack Jeinhao

2006-01-01T23:59:59.000Z

186

The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures  

Science Conference Proceedings (OSTI)

The sensitivity of sensible and latent heat fluxes and surface temperatures to the parameterization of the soil thermal conductivity is demonstrated using a soil vegetation atmosphere transfer scheme (SVATS) applied to intensive field campaigns (...

C. D. Peters-Lidard; E. Blackburn; X. Liang; E. F. Wood

1998-04-01T23:59:59.000Z

187

Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube  

DOE Patents (OSTI)

A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

Zhang, Zhiqiang (Lexington, KY); Lockwood, Frances E. (Georgetown, KY)

2008-03-25T23:59:59.000Z

188

LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST  

E-Print Network (OSTI)

No.2 LARGE SCALE PERMEABILITY TEST OF THE GRANITE' IN THEMINE AND, THERMAL CONDUCTIVITY TEST Lars Lundstrom and HakanSUMMARY REPORT Background TEST SITE Layout of test places

Lundstrom, L.

2011-01-01T23:59:59.000Z

189

Thermal Conductivity of Wood-Derived Graphite and Copper-Graphite  

SciTech Connect

The thermal conductivity of wood-derived graphite and graphite/copper composites was studied both experimentally and using finite element analysis. The unique, naturally-derived, anisotropic porosity inherent to wood-derived carbon makes standard porosity-based approximations for thermal conductivity poor estimators. For this reason, a finite element technique which uses sample microstructure as model input was utilized to determine the conductivity of the carbon phase independent of porosity. Similar modeling techniques were also applied to carbon/copper composite microstructures and predicted conductivities were compared to those determined via experiment.

Johnson, M. T. [Northwestern University, Evanston; Childers, Amanda [Northwestern University, Evanston; Ramírez-Rico, J. [Universidad de Sevilla-CSIC, Spain; Wang, Hsin [ORNL; Faber, K. T. [Northwestern University, Evanston

2013-01-01T23:59:59.000Z

190

Influence of the temperature dependence of thermal parameters of heat conduction models on the reconstruction of thermal history of igneous-intrusion-bearing basins  

Science Conference Proceedings (OSTI)

Heat conduction models are important tools for reconstructing the thermal history of sedimentary basins affected by magmatic intrusions. Accurate thermal properties of the intrusion and its wall rocks are crucial for accurate predictions of thermal history. ... Keywords: Igneous intrusion, Peak temperature, Specific heat, Thermal conductivity, Vitrinite reflectance

Dayong Wang; Xiancai Lu; Yongchen Song; Rong Shao; Tian Qi

2010-10-01T23:59:59.000Z

191

Electronic and thermoelectric properties of CoSbS and FeSbS  

SciTech Connect

We present a combined theoretical and experimental study of the potential thermoelectric performance of three transition metal antimonide sulfides, CoSbS, FeSbS and NiSbS. From theory we find that NiSbS is metallic and hence of little interest regarding thermoelectric performance. CoSbS and FeSbS are both semiconductors with rather heavy valence and conduction bands, whose thermopower can exceed 200 $\\mu$V/K at temperatures of 900 K and carrier concentrations of 10$^{21}$cm$^{-3}$, which is similar to the $n$-type high performance thermoelectric filled skutterudites. The experimental results on several non-optimized $n$-type CoSbS samples confirm its semiconducting nature and indicate a potential for good high temperature thermoelectric performance, finding a ZT for two of the samples of 0.35 at 773 K. Substantially higher ZT values may be possible if the lattice thermal conductivity can be reduced by alloying and the effects of extrinsic scattering, which appear to be substantial in the experimental results, are reduced.

Parker, David S [ORNL; Singh, David J [ORNL; Sales, Brian C [ORNL; McGuire, Michael A [ORNL; May, Andrew F [ORNL; Wang, Hsin [ORNL

2013-01-01T23:59:59.000Z

192

Thermoelectric material development. Quarterly technical progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

We have found that there is a limited range of solid solutions between the skutterudite compounds CoSb{sub 3} and RuSb{sub 2}Te (about 5% on each side). For the system (RuSb{sub 2}Te){sub x}(CoSb{sub 3}){sub 1-x}, preliminary results obtained on one n-type sample on the CoSb{sub 3}-rich side show that these alloys have good thermoelectric properties and a maximum ZT of about 0.89 was obtained at about 600 C. More experiments will be started to investigate the possibility of a broader range of miscibility in this system which would allow an even further decrease in the lattice thermal conductivity, resulting in better thermoelectric properties. IrSb{sub 3} and RuSb{sub 2}Te form a complete range of solid solutions. Hot-pressed samples in this system have shown p-type conductivity. The thermoelectric properties of these p-type alloys have been measured and results have shown that their potential for thermoelectric applications is limited mainly because of the relatively low Seebeck coefficient values for p-type materials. Efforts will be directed on preparing n-type samples of the same alloys by doping with various dopants such as Ni and Pd.

Vandersande, J.W.; Caillat, T.

1995-07-01T23:59:59.000Z

193

ANISOTROPIC THERMAL CONDUCTION AND THE COOLING FLOW PROBLEM IN GALAXY CLUSTERS  

SciTech Connect

We examine the long-standing cooling flow problem in galaxy clusters with three-dimensional magnetohydrodynamics simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of {approx}200 Myr or shorter-in order to prevent a cooling catastrophe the ICM must be heated by some mechanism such as active galactic nucleus feedback or thermal conduction from the thermal reservoir at large radii. The cores of galaxy clusters are linearly unstable to the heat-flux-driven buoyancy instability (HBI), which significantly changes the thermodynamics of the cluster core. The HBI is a convective, buoyancy-driven instability that rearranges the magnetic field to be preferentially perpendicular to the temperature gradient. For a wide range of parameters, our simulations demonstrate that in the presence of the HBI, the effective radial thermal conductivity is reduced to {approx}<10% of the full Spitzer conductivity. With this suppression of conductive heating, the cooling catastrophe occurs on a timescale comparable to the central cooling time of the cluster. Thermal conduction alone is thus unlikely to stabilize clusters with low central entropies and short central cooling timescales. High central entropy clusters have sufficiently long cooling times that conduction can help stave off the cooling catastrophe for cosmologically interesting timescales.

Parrish, Ian J.; Sharma, Prateek; Quataert, Eliot, E-mail: iparrish@astro.berkeley.ed [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States)

2009-09-20T23:59:59.000Z

194

Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence  

E-Print Network (OSTI)

The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population.

Steven A. Balbus; Christopher S. Reynolds

2008-06-05T23:59:59.000Z

195

FAST STATIC AND DYNAMIC GRID LEVEL THERMAL SIMULATION CONSIDERING TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY OF SILICON  

E-Print Network (OSTI)

heat diffusion equation has been conventionally handled by grid-grids and an approximate delta function simulating a point heatgrid size of 64×64. To obtain transient thermal mask an impulse heat

Ziabari, Amirkoushyar

2012-01-01T23:59:59.000Z

196

Novel Charging Station and Computational Modeling for High Thermal Conductivity Heat Pipe Thermal Ground Planes.  

E-Print Network (OSTI)

??Thermal ground planes (TGPs) are planar, thin (thickness of 3 mm or less) heat pipes which use two-phase heat transfer. TGPs are innovative high-performance, integrated… (more)

Ababneh, Mohammed

2012-01-01T23:59:59.000Z

197

Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography  

E-Print Network (OSTI)

We propose that for conformal field theories admitting gravity duals, the thermal conductivity is fixed by the central charges in a universal manner. Though we do not have a proof as yet, we have checked our proposal against several examples. This proposal, if correct, allows us to express electrical conductivity in terms of thermodynamical quantities even in the presence of chemical potential.

Sachin Jain

2009-12-14T23:59:59.000Z

198

Synthesis and characterization of Bi-doped Mg{sub 2}Si thermoelectric materials  

Science Conference Proceedings (OSTI)

The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion for the middle high range of temperature. They are very attractive as they could replace lead-based compounds due to their low cost and non toxicity. They could also result in thermoelectric generator weight reduction (a key feature for the automotive application field). The high value of thermal conductivity of the silicide-based materials could be reduced by increasing the phonon scattering in the presence of nanosized crystalline grains without heavily interfering with the electrical conductivity of the thermoelectric material. Nanostructured materials were obtained under inert atmosphere through ball milling, thermal treatment and spark plasma sintering processes. In particular, the role of several bismuth doping amounts in Mg{sub 2}Si were investigated (Mg{sub 2}Si:Bi=1:x for x=0.01, 0.02 and 0.04 M ratio). The morphology, the composition and the structure of the samples were characterized by FE-SEM, EDS and XRD analyses after each process step. Moreover, the Seebeck coefficient analyses at high temperature and the electrical and thermal conductivity of the samples are presented in this work. The nanostructuring processes were affect by the MgO amount increase which influenced the thermoelectric properties of the samples mainly by reducing the electrical conductivity. With the aim of further increasing the scattering phenomena by interface or boundary effect, carbon nanostructures named Single Wall Carbon Nanohorns were added to the Mg{sub 2}Si in order to produce a nanocomposite material. The influence of the nanostructured filler on the thermoelectric material properties is also discussed. - Graphical abstract: Figure of merit (ZT) of Bi-doped samples and undoped Mg{sub 2}Si. A maximum ZT value of 0.39 at 600 Degree-Sign C was obtained for the nanocomposite material obtained adding Single Wall Carbon Nanohorns to the Bi 0.02 at% doped silicide. Highlights: Black-Right-Pointing-Pointer Role of Bi doping amounts in Mg{sub 2}Si and thermoelectric characterization up to 600 Degree-Sign C Black-Right-Pointing-Pointer Nanocomposite materials synthesized by ball milling and Spark Plasma Sintering Black-Right-Pointing-Pointer Effect on scattering phenomena of Single Wall Carbon Nanohorns added to Mg{sub 2}Si Black-Right-Pointing-Pointer Importance of oxidation phenomena in nanostructured materials.

Fiameni, S., E-mail: s.fiameni@ieni.cnr.it [CNR - IENI, Corso Stati Uniti 4, 35127 Padova (Italy); Battiston, S.; Boldrini, S.; Famengo, A.; Agresti, F.; Barison, S.; Fabrizio, M. [CNR - IENI, Corso Stati Uniti 4, 35127 Padova (Italy)] [CNR - IENI, Corso Stati Uniti 4, 35127 Padova (Italy)

2012-09-15T23:59:59.000Z

199

Determination of Thermal Contact Conductance of Metal Tabs for Battery Ultrasonic Welding Process  

SciTech Connect

A new experimental apparatus and data analysis algorithm were used to determine the thermal contact conductance between 0.2-mm-thick pure aluminum battery tabs as a function of contact pressure from 3.6 to 14.4 MPa. Specimens were sandwiched between one optically transparent and one infrared (IR) transparent glass windows, and heated up from one side by an intense short pulse of flash light. The temperature transient on the other side was measured by an IR camera. In order to determine the thermal contact conductance, two experiment configurations having different number of Al specimen layers were used. Numerical heat conduction simulations showed that the thermal contact conductance strongly depended on the ratio of the maximum temperature rise between the two configurations. Moreover, this ratio was not sensitive to the uncertainties of other thermal properties. Through the simulation results, a simple correlation between the gap conductance and the ratio was established. Therefore, once the ratio of the temperature rise between two configurations was experimentally measured, the thermal contact conductance could be readily determined from the correlation. The new method was fast and robust. Most importantly, the data analysis algorithm improved the measurement accuracy by considerably reducing the uncertainties associated with the thermophysical properties of materials and measurement system.

Chen, Jian [ORNL; Zhang, Wei [ORNL; Yu, Zhenzhen [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

200

Holographic electrical and thermal conductivity in strongly coupled gauge theory with multiple chemical potentials  

E-Print Network (OSTI)

We study transport coefficients of strongly coupled gauge theory in the presence of multiple chemical potential which are dual to rotating D3, M2 and M5 brane. Using the general form of the perturbation equations, we compute DC-electrical conductivity at finite temperature as well as at zero temperature. We also study thermal conductivity for the same class of black holes and show that thermal conductivity and viscosity obeys Wiedemann-Franz like law even in the presence of multiple chemical potential.

Sachin Jain

2009-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An Analytical Study Of A 2-Layer Transient Thermal Conduction Problem As  

Open Energy Info (EERE)

Analytical Study Of A 2-Layer Transient Thermal Conduction Problem As Analytical Study Of A 2-Layer Transient Thermal Conduction Problem As Applied To Soil-Temperature Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Analytical Study Of A 2-Layer Transient Thermal Conduction Problem As Applied To Soil-Temperature Surveys Details Activities (0) Areas (0) Regions (0) Abstract: The soil temperature survey is an inexpensive exploration method in groundwater and geothermal resource investigations. In its simplest form, temperatures measured in shallow holes are analyzed to deduce variations in material properties. Typical interpretation schemes are based on simple, one-layer solutions to the Fourier conduction equation using the annual solar cycle as a surface heat source. We present a solution to the

202

Thermal Transport Measurement of Silicon-Germanium Nanowires  

E-Print Network (OSTI)

Thermal properties of one dimensional nanostructures are of interest for thermoelectric energy conversion. Thermoelectric efficiency is related to non dimensional thermoelectric figure of merit, ZT=S^2 o T/k, where S ,o , k and T are Seebeck coefficient, electrical conductivity, thermal conductivity and the absolute temperature respectively. These physical properties are interdependent. Therefore, making materials with high ZT is a very challenging task. However, nanoscale materials can overcome some of these limitations. When the size of nanomaterials is comparable to wavelength and mean free path of energy carriers, especially phonons, size effect contributes to the thermal conductivity reduction without bringing about major changes in the electrical conductivity and the Seebeck coefficient. Therefore, the figure of merit ZT can be manipulated. For example, the thermal conductivities of several silicon nanowires were more than two orders of magnitude lower than that of bulk silicon values due to the enhanced boundary scattering. Among the nanoscale semiconductor materials, Silicon-Germanium(SiGe) alloy nanowire is a promising candidate for thermoelectric materials The thermal conductivities of SiGe core-shell nanowires with core diameters of 96nm, 129nm and 177nm were measured using a batch fabricated micro device in a temperature range of 40K-450K. SiGe nanowires used in the experiment were synthesized via the Vapour-Liquid-Solid (VLS) growth method. The thermal conductivity data was compared with thermal conductivity of Si and Ge nanowires. The data was compared with SiGe alloy thin film, bulk SiGe, Si/SixGe1-x superlattice nanowire, Si/Si0.7Ge0.3 superlattice thin film and also with the thermal conductivity of Si0.5Ge0.5 calculated using the Einstein model. The thermal conductivities of these SiGe alloy nanowires observed in this work are ~20 times lower than Si nanowires, ~10 times lower than Ge nanowires, ~3-4 times lower than Si/SixGe1-x superlattice thin film, Si/SixGe1-x superlattice nanowire and about 3 time lower than bulk SiGe alloy. The low values of thermal conductivity are majorly due to the effect of alloy scattering, due to increased boundary scattering as a result of nanoscale diameters, and the interface diffuse scattering by core-shell effect. The influence of core-shell effect, alloy scattering and boundary scattering effect in reducing the thermal conductivity of these nanowires opens up opportunities for tuning thermoelectric properties which can pave way to thermoelectric materials with high figures of merit in the future.

Gwak, Yunki

2009-08-01T23:59:59.000Z

203

High Temperature Integrated Thermoelectric Ststem and Materials  

DOE Green Energy (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

204

SELF-SIMILAR STRUCTURE OF A HOT MAGNETIZED FLOW WITH THERMAL CONDUCTION  

Science Conference Proceedings (OSTI)

We have explored the structure of a hot magnetized accretion flow with thermal conduction. The importance of thermal conduction in hot accretion flows has been confirmed by observations of the hot gas surrounding Sgr A* and a few other nearby galactic nuclei. For a steady state structure of such accretion flows, a set of self-similar solutions is presented. In this paper, we have actually tried to re-check the solution presented by Abbassi et al. using a physical constraint. In this study, we find that Equation (29) places a new constraint that limits answers presented by Abbassi et al. In that paper, the parameter space, which is established in the new constraint, was plotted. However, the new requirement makes up only a small parameter space with physically acceptable solutions. And now in this paper, we have followed the idea with more effort and tried to find out how thermal conduction influences the structure of the disks in a physical parameter space. We have found that the existence of thermal conduction will lead to the reduction of accretion and radial and azimuthal velocities as well as the vertical thickness of the disk, which is slightly reduced. Moreover, the surface density of the disk will increase when thermal conduction becomes important in hot magnetized flow.

Ghasemnezhad, M.; Khajavi, M. [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of); Abbassi, S., E-mail: abbassi@ipm.ir [School of Physics, Damghan University, P.O. Box 36715-364, Damghan (Iran, Islamic Republic of)

2012-05-01T23:59:59.000Z

205

Thermal conductivity of cementitious grouts for geothermal heat pumps. Progress report FY 1997  

DOE Green Energy (OSTI)

Grout is used to seal the annulus between the borehole and heat exchanger loops in vertical geothermal (ground coupled, ground source, GeoExchange) heat pump systems. The grout provides a heat transfer medium between the heat exchanger and surrounding formation, controls groundwater movement and prevents contamination of water supply. Enhanced heat pump coefficient of performance (COP) and reduced up-front loop installation costs can be achieved through optimization of the grout thermal conductivity. The objective of the work reported was to characterize thermal conductivity and other pertinent properties of conventional and filled cementitious grouts. Cost analysis and calculations of the reduction in heat exchanger length that could be achieved with such grouts were performed by the University of Alabama. Two strategies to enhance the thermal conductivity of cementitious grouts were used simultaneously. The first of these was to incorporate high thermal conductivity filler in the grout formulations. Based on previous tests (Allan and Kavanaugh, in preparation), silica sand was selected as a suitable filler. The second strategy was to reduce the water content of the grout mix. By lowering the water/cement ratio, the porosity of the hardened grout is decreased. This results in higher thermal conductivity. Lowering the water/cement ratio also improves such properties as permeability, strength, and durability. The addition of a liquid superplasticizer (high range water reducer) to the grout mixes enabled reduction of water/cement ratio while retaining pumpability. Superplasticizers are commonly used in the concrete and grouting industry to improve rheological properties.

Allan, M.L.

1997-11-01T23:59:59.000Z

206

Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump  

E-Print Network (OSTI)

In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground-source heat pump is developed. The impact of soil thermal conductivity and pipe thermal conductivity on the soil temperature field around the buried pipe, and the thermal performance of the heat exchanger are simulated. The simulation results show that with the increase of soil thermal conductivity, heat transfer quantity obviously increases, and the temperature of soil around pipe decrease under winter conditions. The temperature field varies relatively faster with thermal conductivity in the site nearer to the buried pipe. With the increase of pipe thermal conductivity, heat transfer quantity and the mean temperature of the buried pipe's outside surface all increase.

Song, Y.; Yao, Y.; Na, W.

2006-01-01T23:59:59.000Z

207

Low-Conductivity Thermal Barrier Coating for Gas Turbines: Material Testing Status  

Science Conference Proceedings (OSTI)

Advanced gas turbines rely on air-cooled components protected by ceramic thermal barrier coatings to survive increasingly high operating temperatures. A new generation of coatings offers lower thermal conductivity, potentially further reducing component heat loading, which can improve durability, lower life cycle cost, and enable longer range efficiency gains. Testing improved coatings is a necessary step towards field demonstration.BackgroundAs gas turbine ...

2012-12-31T23:59:59.000Z

208

Thermal conductivity of rocks associated with energy extraction from hot dry rock geothermal systems  

DOE Green Energy (OSTI)

Results of thermal conductivity measurements are given for 14 drill core rock samples taken from two exploratory HDR geothermal wellbores (maximum depth of 2929 m (9608 ft) drilled into Precambrian granitic rock in the Jemez Mountains of northern New Mexico. These samples have been petrographically characterized and in general represent fresh competent Precambrian material of deep origin. Thermal conductivities, modal analyses, and densities are given for all core samples studied under dry and water-saturated conditions. Additional measurements are reported for several sedimentary rocks encountered in the upper 760 m (2500 ft) of that same region. A cut-bar thermal conductivity comparator and a transient needle probe were used for the determinations with fused quartz and Pyroceram 9606 as the standards. The maximum temperature range of the measurements was from the ice point to 250/sup 0/C. The measurements on wet, water-saturated rock were limited to the temperature range below room temperature. Conductivity values of the dense core rock samples were generally within the range from 2 to 2.9 W/mK at 200/sup 0/C. Excellent agreement was achieved between these laboratory measurements of thermal conductivity and those obtained by in situ measurements used in the HDR wellbores. By using samples of sufficient thickness to provide a statistically representative heat flow path, no difference between conductivity values and their temperature coefficients for orthogonal directions (heat flow parallel or perpendicular to core axis) was observed. This isotropic behavior was even found for highly foliated gneissic specimens. Estimates of thermal conductivity based on a composite dispersion analysis utilizing pure minerallic phase conductivities and detailed modal analyses usually agreed to within 9 percent of the experimental values.

Sibbitt, W.L.; Dodson, J.G.; Tester, J.W.

1978-01-01T23:59:59.000Z

209

Thermal management of batteries using a Variable-Conductance Insulation (VCI) enclosure  

DOE Green Energy (OSTI)

Proper thermal management is important for optimum performance and durability of most electric-vehicle batteries. For high-temperature cells such as sodium/sulphur, a very efficient and responsive thermal control system is essential. Heat must be removed during exothermic periods and retained when the batteries are not in use. Current thermal management approaches rely on passive insulation enclosures with active cooling loops that penetrate the enclosure. This paper presents the design, analysis, and testing of an enclosure with variable conductance insulation (VCI). VCI uses a hydride with an integral electric resistance heater to expel and retrieve a small amount of hydrogen gas into a vacuum space. By controlling the amount of hydrogen gas, the thermal conductance can be varied by more than 100:1, enabling the cooling loop (cold plate) to be mounted on the enclosure exterior. By not penetrating the battery enclosure, the cooling system is simpler and more reliable. Also, heat can be retained more effectively when desired. For high temperatures, radiation shields within the vacuum space are required. Ceramic spacers are used to maintain separation of the steel enclosure materials against atmospheric loading. Ceramic-to-ceramic thermal contact resistance within the spacer assembly minimizes thermal conductance. Two full-scale (0.8-m {times} 0.9-m {times} 0.3-m) prototypes were designed, built, and tested under high-temperature 200{degrees}-350{degrees}C battery conditions. With an internal temperature of 330{degrees}C (and 20{degrees}C ambient), the measured total-enclosure minimum heat loss was 80 watts (excluding wire pass-through losses). The maximum heat rejection was 4100 watts. The insulation can be switched from minimum to maximum conductance (hydrogen pressure from 2.0 {times} 10{sup -3} to 8 torr) in 3 minutes. Switching from maximum to minimum conductance was longer (16 minutes), but still satisfactory because of the large thermal mass of the battery.

Burch, S.D.; Parish, R.C.; Keyser, M.A.

1995-05-01T23:59:59.000Z

210

Thermal Conductivity of Thermally-Isolating Polymeric and Composite Structural Support Materials Between 0.3 and 4 K  

E-Print Network (OSTI)

We present measurements of the low-temperature thermal conductivity of a number of polymeric and composite materials from 0.3 to 4 K. The materials measured are Vespel SP-1, Vespel SP-22, unfilled PEEK, 30% carbon fiber-filled PEEK, 30% glass-filled PEEK, carbon fiber Graphlite composite rod, Torlon 4301, G-10/FR-4 fiberglass, pultruded fiberglass composite, Macor ceramic, and graphite rod. These materials have moderate to high elastic moduli making them useful for thermally-isolating structural supports.

Runyan, M C

2008-01-01T23:59:59.000Z

211

Thermal Conductivity of Thermally-Isolating Polymeric and Composite Structural Support Materials Between 0.3 and 4 K  

E-Print Network (OSTI)

We present measurements of the low-temperature thermal conductivity of a number of polymeric and composite materials from 0.3 to 4 K. The materials measured are Vespel SP-1, Vespel SP-22, unfilled PEEK, 30% carbon fiber-filled PEEK, 30% glass-filled PEEK, carbon fiber Graphlite composite rod, Torlon 4301, G-10/FR-4 fiberglass, pultruded fiberglass composite, Macor ceramic, and graphite rod. These materials have moderate to high elastic moduli making them useful for thermally-isolating structural supports.

M. C. Runyan; W. C. Jones

2008-06-11T23:59:59.000Z

212

Thermoelectric properties of epitaxial TbAs:InGaAs nanocomposites  

SciTech Connect

InGaAs lattice-matched to InP was grown by molecular beam epitaxy with randomly distributed TbAs nanoparticles for thermoelectric power generation applications. TbAs:InGaAs is expected to have a large thermoelectric figure of merit, ZT, particularly at high temperatures, owing to energy band alignment between the nanoparticles and their surrounding matrix. Here, the room temperature thermoelectric properties were measured as a function of TbAs concentration, revealing a maximum thermoelectric power factor of 2.38 W/mK{sup 2} and ZT of 0.19 with 0.2% TbAs. Trends in the thermoelectric properties closely resemble those found in comparable ErAs:InGaAs nanocomposite materials. However, nanoparticles were not observed by scanning transmission electron microscopy in the highest ZT TbAs:InGaAs sample, unlike the highest ZT ErAs:InGaAs sample (0.2% ErAs) and two higher concentration TbAs:InGaAs samples examined. Consistent with expectations concerning the positioning of the Fermi level in these materials, ZT was enhanced by TbAs incorporation largely due to a high Seebeck coefficient, whereas ErAs provided InGaAs with higher conductivity but a lower Seebeck coefficient than that of TbAs:InGaAs. Thermal conductivity was reduced significantly from that of intrinsic thin-film InGaAs only with TbAs concentrations greater than {approx}1.7%.

Clinger, Laura E.; Zide, Joshua M. O. [Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716 (United States); Pernot, Gilles; Shakouri, Ali [Electrical Engineering Department, University of California, Santa Cruz, California 95064 (United States); Buehl, Trevor E.; Burke, Peter G.; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Palmstroem, Christopher J. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

2012-05-01T23:59:59.000Z

213

Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach  

SciTech Connect

A multiscale methodology was developed to predict the evolution of thermal conductivity of polycrystalline fuel under irradiation. In the mesoscale level, phase field model was used to predict the evolution of gas bubble microstructure. Generation of gas atoms and vacancies were taken into consideration. In the macroscopic scale, a statistical continuum mechanics model was applied to predict the anisotropic thermal conductivity evolution during irradiation. Microstructure predicted by phase field model was fed into statistical continuum mechanics model to predict properties and behavior. Influence of irradiation intensity, exposition time and morphology were investigated. This approach provides a deep understanding on microstructure evolution and property prediction from a basic scientific viewpoint.

Li, Dongsheng; Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

2012-03-01T23:59:59.000Z

214

Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction  

SciTech Connect

Pore migration in a temperature gradient (Soret effect) is investigated by a phase-field model coupled with a heat transfer calculation. Pore migration is observed towards the high temperature domain with velocities that agree with analytical solution. Due to the low thermal conductivity of the pores, the temperature gradient across individual pores is increased, which in turn, accelerates the pore migration. In particular, for pores filled with xenon and helium, the pore velocities are increased by a factor of 2.2 and 2.1, respectively. A quantitative equation is then derived to predict the influence of the low thermal conductivity of pores.

Liangzhe Zhang; Michael R Tonks; Paul C Millett; Yongfeng Zhang; Karthikeyan Chockalingam; Bulent Biner

2012-04-01T23:59:59.000Z

215

Large Thermoelectric Power Factor in TiS2 Crystal with Nearly Stoichiometric Composition  

E-Print Network (OSTI)

A TiS2 crystal with a layered structure was found to have a large thermoelectric power factor. The in-plane power factor S2 /? at 300 K is 37.1 µW/K2cm with resistivity (?) of 1.7 m?cm and thermopower (S) of-251 µV/K, and this value is comparable to that of the best thermoelectric material, Bi2Te3 alloy. The electrical resistivity shows both metallic and highly anisotropic behaviors, suggesting that the electronic structure of this TiS2 crystal has a quasi-twodimensional nature. The large thermoelectric response can be ascribed to the large density of state just above the Fermi energy and inter-valley scattering. In spite of the large power factor, the figure of merit, ZT of TiS2 is 0.16 at 300 K, because of relatively large thermal conductivity, 68 mW/Kcm. However, most of this value comes from reducible lattice contribution. Thus, ZT can be improved by reducing lattice thermal conductivity, e.g., by introducing a rattling unit into the inter-layer sites.

H. Imai; Y. Shimakawa; Y. Kubo

2008-01-01T23:59:59.000Z

216

Chandra constraints on the thermal conduction in the intracluster plasma of A2142  

E-Print Network (OSTI)

In this Letter, we use the recent Chandra observation of A2142 reported by Markevitch et al. to put constraints on thermal conduction in the intracluster plasma. We show that the observed sharp temperature gradient requires that classical conductivity has to be reduced at least by a factor of between 250 and 2500. The result provides a direct constraint on an important physical process relevant to the gas in the cores of clusters of galaxies.

S. Ettori; A. C. Fabian

2000-07-26T23:59:59.000Z

217

THE EFFECT OF ANISOTROPIC CONDUCTION ON THE THERMAL INSTABILITY IN THE INTERSTELLAR MEDIUM  

SciTech Connect

Thermal instability (TI) can strongly affect the structure and dynamics of the interstellar medium (ISM) in the Milky Way and other disk galaxies. Thermal conduction plays an important role in the TI by stabilizing small scales and limiting the size of the smallest condensates. In the magnetized ISM, however, heat is conducted anisotropically (primarily along magnetic field lines). We investigate the effects of anisotropic thermal conduction on the nonlinear regime of the TI by performing two-dimensional magnetohydrodynamic simulations. We present models with magnetic fields of different initial geometries and strengths, and compare them to hydrodynamic models with isotropic conduction. We find that anisotropic conduction does not significantly alter the overall density and temperature statistics in the saturated state of the TI. However, it can strongly affect the shapes and sizes of cold clouds formed by the TI. For example, for uniform initial fields long filaments of cold gas are produced that are reminiscent of some observed H I clouds. For initially tangled fields, such filaments are not produced. We also show that anisotropic conduction suppresses turbulence generated by evaporative flows from the surfaces of cold blobs, which may have implications for mechanisms for driving turbulence in the ISM.

Choi, Ena; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

2012-03-10T23:59:59.000Z

218

The Dynamics of Rayleigh-Taylor Stable and Unstable Contact Discontinuities with Anisotropic Thermal Conduction  

E-Print Network (OSTI)

We study the effects of anisotropic thermal conduction along magnetic field lines on an accelerated contact discontinuity in a weakly collisional plasma. We first perform a linear stability analysis similar to that used to derive the Rayleigh-Taylor instability (RTI) dispersion relation. We find that anisotropic conduction is only important for compressible modes, as incompressible modes are isothermal. Modes grow faster in the presence of anisotropic conduction, but growth rates do not change by more than a factor of order unity. We next run fully non-linear numerical simulations of a contact discontinuity with anisotropic conduction. The non-linear evolution can be thought of as a superposition of three physical effects: temperature diffusion due to vertical conduction, the RTI, and the heat flux driven buoyancy instability (HBI). In simulations with RTI-stable contact discontinuities, the temperature discontinuity spreads due to vertical heat conduction. This occurs even for initially horizontal magnetic f...

Lecoanet, Daniel; Quataert, Eliot

2012-01-01T23:59:59.000Z

219

Thermal conductivity of silicic tuffs: predictive formalism and comparison with preliminary experimental results  

Science Conference Proceedings (OSTI)

Performance of both near- and far-field thermomechanical calculations to assess the feasibility of waste disposal in silicic tuffs requires a formalism for predicting thermal conductivity of a broad range of tuffs. This report summarizes the available thermal conductivity data for silicate phases that occur in tuffs and describes several grain-density and conductivity trends which may be expected to result from post-emplacement alteration. A bounding curve is drawn that predicts the minimum theoretical matrix (zero-porosity) conductivity for most tuffs as a function of grain density. Comparison of experimental results with this curve shows that experimental conductivities are consistently lower at any given grain density. Use of the lowered bounding curve and an effective gas conductivity of 0.12 W/m{sup 0}C allows conservative prediction of conductivity for a broad range of tuff types. For the samples measured here, use of the predictive curve allows estimation of conductivity to within 15% or better, with one exception. Application and possible improvement of the formalism are also discussed.

Lappin, A. R.

1980-07-01T23:59:59.000Z

220

Atomistic calculation of the thermal conductance of large scale bulk-nanowire junctions  

SciTech Connect

We have developed a stable and efficient kernel method to compute thermal transport in open systems, based on the scattering-matrix approach. This method is applied to compute the thermal conductance of a junction between bulk silicon and silicon nanowires with diameter up to 10 nm. We have found that beyond a threshold diameter of 7 nm, transmission spectra and contact conductances scale with the cross section of the contact surface, whereas deviations from this general trend are observed in thinner wires. This result allows us to predict the thermal resistance of bulk-nanowire interfaces with larger cross sections than those tractable with atomistic simulations, and indicate the characteristic size beyond which atomistic systems can in principle be treated accurately by mean-field theories. Our calculations also elucidate how dimensionality reduction and shape affect interfacial heat transport.

Duchemin, Ivan; Donadio, Davide [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions  

E-Print Network (OSTI)

with the Hamilton-Crosser model, the Lu-Lin model, Nan`s effective medium theory and the Hashin-Strikman model to rest of the models. Networking of nanotubes to form a tri-dimensional structure was considered #12;models. Therefore, more studies need to be performed to measure the effective thermal conductivity

Maruyama, Shigeo

222

Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusions  

E-Print Network (OSTI)

the thermal conductivity at higher temperatures up to 6%. Computational modeling of SWCNTs in water using of water seeded with single-walled carbon nanotubes (SWCNT) synthesized using the alcohol catalytic this fluid for practical applications. We compare experimental results with existing analytical models

Maruyama, Shigeo

223

Thermal Inertia of Conductivity Cells: Observations with a Sea-Bird Cell  

Science Conference Proceedings (OSTI)

We have examined the magnitude and relaxation time of the thermal anomaly of the fluid flowing through the conductivity cell manufactured by Sea-Bird Electronics (SBE) that is induced by the heat stored in the wall of this cell using oceanic data ...

Rolf G. Lueck; James J. Picklo

1990-10-01T23:59:59.000Z

224

Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition  

DOE Patents (OSTI)

The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

Carlsten, R.W.; Nissen, D.A.

1973-03-06T23:59:59.000Z

225

Prescription to Improve Thermoelectric Efficiency  

E-Print Network (OSTI)

In this work, patterns in the behavior of different classes and types of thermoelectric materials are observed, and an alchemy that could help engineer a highly efficient thermoelectric is proposed. A method based on cross-correlation of Seebeck waveforms is also presented in order to capture physics of magnetic transition. The method is used to compute Curie temperature of LaCoO3 with an accuracy of 10K. In total, over 26 systems are analyzed, and 19 presented: Chalcogenides (PbSe, PbTe, Sb2Te3, Ag2Se), Skutterudites and Clathrates (CoSb3, SrFe4Sb12, Cd (CN)2, CdC, Ba8Ga16Si30*), Perovskites (SrTiO3, BaTiO3, LaCoO3, CaSiO3, Ce3InN*, YCoO3*), Half-Heuslers (ZrNiSn, NbFeSb, LiAlSi, CoSbTi, ScPtSb*, CaMgSi*), and an assorted class of thermoelectric materials (FeSi, FeSi2, ZnO, Ag QDSL*). Relaxation time is estimated from experimental conductance curve fits. A maximum upper bound of zT is evaluated for systems that have no experimental backing. In general, thermoelectric parameters (power factor, Seebeck coefficient and zT) are estimated for the aforementioned crystal structures. Strongly correlated systems are treated using LDAU and GGAU approximations. LDA/GGA/L(S)DA+U/GGA+U approach specific errors have also been highlighted. Densities of experimental results are estimated.

Meka, Shiv Akarsh

2010-05-01T23:59:59.000Z

226

Thermoelectric figure of merit of Ag{sub 2}Se with Ag and Se excess  

Science Conference Proceedings (OSTI)

In the temperature range of 100-300 K, the electric ({sigma}) and thermoelectric ({alpha}{sub 0}) properties of Ag{sub 2}Se with an excess of Ag as high as {approx}0.1 at. % and Se as high as {approx}1.0 at. %, respectively, are investigated. From the data on {sigma}, {alpha}{sub 0}, and {chi}{sub tot} (thermal conductivities), the thermoelectric power {alpha}{sub 0}{sup 2}{sigma} and the figure of merit Z are calculated. It is found that {alpha}{sub 0}{sup 2}{sigma} and Z attain the peak values at room temperature and the electron concentration n {approx} 6.5 x 10{sup 18} cm{sup -3}.

Aliev, F. F., E-mail: farzali@physics.ab.az; Jafarov, M. B.; Eminova, V. I. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

2009-08-15T23:59:59.000Z

227

Thermoelectric properties of AgGaTe$_2$ and related chalcopyrite structure materials  

Science Conference Proceedings (OSTI)

We present an analysis of the potential thermoelectric performance of p-type AgGaTe$_{2}$, which has already shown a $ZT$ of 0.8 with partial optimization, and observe that the same band structure features, such as a mixture of light and heavy bands and isotropic transport, that lead to this good performance are present in certain other ternary chalcopyrite structure semiconductors. We find that optimal performance of AgGaTe$_2$ will be found for hole concentrations between 4 $\\times 10^{19}$ and 2 $\\times 10^{20}$cm$^{-3}$ at 900 K, and 2 $\\times 10^{19}$ and 10$^{20}$ cm$^{-3}$ at 700 K, and that certain other chalcopyrite semiconductors might show good thermoelectric performance at similar doping ranges and temperatures if not for higher lattice thermal conductivity.

Parker, David S [ORNL; Singh, David J [ORNL

2012-01-01T23:59:59.000Z

228

SIMULATIONS OF MAGNETOHYDRODYNAMICS INSTABILITIES IN INTRACLUSTER MEDIUM INCLUDING ANISOTROPIC THERMAL CONDUCTION  

SciTech Connect

We perform a suite of simulations of cooling cores in clusters of galaxies in order to investigate the effect of the recently discovered heat flux buoyancy instability (HBI) on the evolution of cores. Our models follow the three-dimensional magnetohydrodynamics of cooling cluster cores and capture the effects of anisotropic heat conduction along the lines of magnetic field, but do not account for the cosmological setting of clusters or the presence of active galactic nuclei (AGNs). Our model clusters can be divided into three groups according to their final thermodynamical state: catastrophically collapsing cores, isothermal cores, and an intermediate group whose final state is determined by the initial configuration of magnetic field. Modeled cores that are reminiscent of real cluster cores show evolution toward thermal collapse on a timescale which is prolonged by a factor of approx2-10 compared with the zero-conduction cases. The principal effect of the HBI is to re-orient field lines to be perpendicular to the temperature gradient. Once the field has been wrapped up onto spherical surfaces surrounding the core, the core is insulated from further conductive heating (with the effective thermal conduction suppressed to less than 10{sup -2} of the Spitzer value) and proceeds to collapse. We speculate that, in real clusters, the central AGN and possibly mergers play the role of 'stirrers', periodically disrupting the azimuthal field structure and allowing thermal conduction to sporadically heat the core.

Bogdanovic, Tamara; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Balbus, Steven A. [Ecole Normale Superieure, Laboratoire de Radioastronomie, 24 rue Lhomond, 75231 Paris CEDEX 05 (France); Parrish, Ian J., E-mail: tamarab@astro.umd.ed, E-mail: chris@astro.umd.ed, E-mail: steven.balbus@lra.ens.f, E-mail: iparrish@astro.berkeley.ed [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States)

2009-10-10T23:59:59.000Z

229

Complex oxides useful for thermoelectric energy conversion  

SciTech Connect

The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

2012-07-17T23:59:59.000Z

230

Vehicle Technologies Office: 3rd Thermoelectrics Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Materials Rama Venkatasubramanian RTI International, Research Triangle Park, NC Thermoelectric Applications III Tom Avedisian, Cornell University, Chair High...

231

Low Thermal Conductivity of RE4Si2O7N2 (RE=Y, Lu): A Systematic ...  

Science Conference Proceedings (OSTI)

The present work shows that identifying new low thermal conductivity ceramics can be realized by a combination approach of first-principles calculation and ...

232

Composites of Bi{sub 2-x}Sb{sub x}Te{sub 3} nanocrystals and fullerene molecules for thermoelectricity  

SciTech Connect

New nanocomposite thermoelectric material composed from nanocrystallites of Bi-Sb-Te alloys covered by C{sub 60} molecules has been synthesized and studied. An increase of fullerene content leads to the growth of hole concentration in p-type materials and reduction of electron concentration in n-type materials. The fullerene molecules provide additional scattering of phonons reducing lattice heat conductivity. Reduction of heat conductivity exceeds the reduction of electrical conductivity for fullerene content less than 0.5 volume % and essential enhances the thermoelectric figure of merit. The maximum value of thermoelectric figure of merit equals to 1.17 at 450 K was observed in Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} composite containing 0.5 volume % C{sub 60} molecules. The experimental results were analyzed in a frame of the model based on the Boltzmann equation. The analysis considers light and heavy electrons and holes and accounts the intervalley scattering of charge carriers. The calculations of the kinetic coefficients shows that the improvement of the thermoelectric figure of merit originates from the reduction of the lattice heat conductivity caused by fullerene molecules. The dependencies of the thermoelectric figure of merit on the acceptor concentration were calculated. - Graphical abstract: New nanocomposite thermoelectric material composed from nanocrystallites of Bi-Sb-Te alloys covered by C{sub 60} molecules has been synthesized and studied. An increase of fullerene content leads to the growth of hole concentration in p-type materials and reduction of electron concentration in n-type materials. The fullerene molecules provide additional scattering of phonons reducing lattice heat conductivity and enhances the thermoelectric figure of merit. The maximum value of thermoelectric figure of merit equal to 1.17 at 450 K was observed in Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} composite containing 0.5 volume % fullerene molecules. Simulations of thermoelectric properties were made in frame of four bands, 12 valleys Boltzmann equation approach. Simulated and measured temperature dependencies of thermoelectric properties were compared to get unknown model parameters. These parameters were used to calculate dependencies of thermoelectric properties on acceptor concentration. Calculated dependencies of thermoelectric figure of merit on acceptor concentration are presented in the figure for p-type composites with 0 vol.% C{sub 60} (solid lines) and 0.5 vol.% C{sub 60} (dashed lines). Highlights: Black-Right-Pointing-Pointer C{sub 60} doping of Bi-Sb-Te has acceptor effect. Black-Right-Pointing-Pointer Fullerene molecules prevent recrystallization in Bi-Sb-Te nanocomposites. Black-Right-Pointing-Pointer C{sub 60} in Bi-Sb-Te nanocomposites essentially reduces lattice thermal conductivity. Black-Right-Pointing-Pointer Thermoelectric figure of merit in nanocomposite C{sub 60}-Bi-Sb-Te enhanced.

Kulbachinskii, V.A., E-mail: kulb@mig.phys.msu.ru [M.V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-3, Moscow 119991 GSP-1 (Russian Federation); Kytin, V.G. [M.V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-3, Moscow 119991 GSP-1 (Russian Federation)] [M.V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-3, Moscow 119991 GSP-1 (Russian Federation); Popov, M.Yu.; Buga, S.G.; Stepanov, P.B.; Blank, V.D. [Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Moscow Region 142190 (Russian Federation)] [Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Moscow Region 142190 (Russian Federation)

2012-09-15T23:59:59.000Z

233

Structure, thermal expansion and electrical conductivity of Nb-substituted LaCoO{sub 3}  

Science Conference Proceedings (OSTI)

The effect of Nb-substitution in LaCoO{sub 3} has been examined by evaluating the electrical conductivity, thermal expansion and crystal structure of the solid solutions LaCo{sub 1-x}Nb{sub x}O{sub 3} (x=0 to 1/3). It was demonstrated that Nb-substitution in LaCoO{sub 3} was mainly compensated by reduction of Co{sup 3+} to Co{sup 2+}, and that oxidation of Co{sup 2+} could destabilise the solid solution. The ambient crystal structure was shown to transform from rhombohedral R3{sup Macron }c perovskite (x=0) to orthorhombic Pbnm (x=0.15, 0.20) and finally to B-site ordered perovskite P2{sub 1}/n (x=0.25, 1/3) perovskite with increasing Nb-substitution. The thermal expansion of LaCo{sub 1-x}Nb{sub x}O{sub 3} was shown to be strongly depressed with increasing Nb-content, and significantly lower thermal expansion was observed for LaCo{sub 2/3}Nb{sub 1/3}O{sub 3} relative to LaCoO{sub 3}. The electrical conductivity was reduced with increasing Nb-content, and semi-conducting properties was demonstrated for LaCo{sub 1-x}Nb{sub x}O{sub 3} in contrast to the metallic behaviour of pure LaCoO{sub 3} at elevated temperature. The thermal expansion, electrical conductivity and the stability of the materials were discussed with emphasis on Co/Nb ordering, the oxidation state and spin transitions of Co. - Graphical abstract: Substitution of Nb in LaCoO{sub 3} increases the unit cell volume, reduces the symmetry of the unit cell and introduces cation ordering. The chemical substitution leads to suppression of the electronic conductivity and reduces the thermal expansion of the lattice. Highlights: Black-Right-Pointing-Pointer Cation ordering and crystal structure is reported for LaCo{sub x}Nb{sub 1-x}O{sub 3}. Black-Right-Pointing-Pointer Substitution of Nb in LaCoO{sub 3} is compensated by reduction of Co{sup 3+} to Co{sup 2+}. Black-Right-Pointing-Pointer Thermal expansion of LaCoO{sub 3} is reduced by Nb-substitution. Black-Right-Pointing-Pointer Electrical conductivity of LaCoO{sub 3} is reduced by Nb-substitution.

Oygarden, Vegar; Lein, Hilde L. [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Grande, Tor, E-mail: grande@ntnu.no [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

2012-08-15T23:59:59.000Z

234

Alloys and Compounds for Thermoelectric and Solar Cell Applications  

Science Conference Proceedings (OSTI)

Alloys and Compounds for Thermoelectric and Solar Cell Applications II: Alloys and Compounds for Thermoelectric and Solar Cell Applications: Thermoelectric ...

235

Thermoelectric energy converter for generation of electricity from low-grade heat  

DOE Patents (OSTI)

A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

Jayadev, T.S.; Benson, D.K.

1980-05-27T23:59:59.000Z

236

Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens  

SciTech Connect

A method has been developed to utilize the High Intensity Infrared lamp located at Oak Ridge National Laboratory for the measurement of thermal conductivity of bulk refractory materials at elevated temperatures. The applicability of standardized test methods to determine the thermal conductivity of refractory materials at elevated temperatures is limited to small sample sizes (laser flash) or older test methods (hot wire, guarded hot plate), which have their own inherent problems. A new method, based on the principle of the laser flash method, but capable of evaluating test specimens on the order of 200 x 250 x 50 mm has been developed. Tests have been performed to validate the method and preliminary results are presented in this paper.

Hemrick, James Gordon [ORNL; Dinwiddie, Ralph Barton [ORNL; Loveland, Erick R [ORNL; Prigmore, Andre L [ORNL

2012-01-01T23:59:59.000Z

237

Dissipative instability of MHD tangential discontinuity in magnetized plasmas with anisotropic viscosity and thermal conductivity.  

E-Print Network (OSTI)

The stability of the MHD tangential discontinuity is studied in compressible plasmas in the presence of anisotropic viscosity and thermal conductivity. The general dispersion equation is derived and solutions to this dispersion equation and stability criteria are obtained for the limiting cases of incompressible and cold plasmas. In these two limiting cases the effect of thermal conductivity vanishes and the solutions are only influenced by viscosity. The stability criteria for viscous plasmas are compared with those for ideal plasmas where stability is determined by the Kelvin-Helmholtz velocity VKH as a threshold for the difference in the equilibrium velocities. Viscosity turns out to have a destabilizing influence when the viscosity coefficient takes different values at the two sides of the discontinuity. Viscosity lowers the threshold velocity V c below the ideal KelvinHelmholtz velocity VKH , so that there is a range of velocities between V c and VKH where the overstability is of ...

Michael Ruderman; Erwin Verwichte; Robertus Erdelyi; Marcel Goossens; Elyiyy

1996-01-01T23:59:59.000Z

238

Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles  

E-Print Network (OSTI)

An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle reentry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800°F. The environmental pressure was varied from 1 x 10 -4 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of the following insulation samples were measured: Saffilä at 1.5, 3, 6 lb/ft 3 , Q-Fiberä felt at 3, 6 lb/ft 3 , Cerachromeä at 6, 12 lb/ft 3 , and three multi-layer insulation configurations at 1.5 and 3 lb/ft 3 .. Introduction Metallic and refractory-composite thermal protection systems are being considered for a new generation of reusable launch vehicles (RLV). The main function of the thermal protection system (TPS) is to...

Kamran Daryabeigi

1999-01-01T23:59:59.000Z

239

Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles  

E-Print Network (OSTI)

An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle reentry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800F. The environmental pressure was varied from 1 x 10 -4 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of the following insulation samples were measured: Saffil at 1.5, 3, 6 lb/ft 3 , Q-Fiber felt at 3, 6 lb/ft 3 , Cerachrome at 6, 12 lb/ft 3 , and three multi-layer insulation configurations at 1.5 and 3 lb/ft 3 .. Introduction Metallic and refractory-composite thermal protection systems are being considered for a new generation of reusable launch vehicles (RLV). The main function of the thermal protection system (TPS) is to mai...

Kamran Daryabeigi Langley

1999-01-01T23:59:59.000Z

240

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents (OSTI)

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

1997-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents (OSTI)

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

Christensen, Craig B. (Boulder, CO); Kutscher, Charles F. (Golden, CO); Gawlik, Keith M. (Boulder, CO)

1997-01-01T23:59:59.000Z

242

Measurement of effective thermal conductivity of wheat as a function of moisture content  

Science Conference Proceedings (OSTI)

Grain drying and storage are one of the main activities of agricultural industry. Increasing energy costs have stressed the importance of calculation of heat and mass transfer in a grain bulk in order to be able to optimize drying facilities. Another limitation during drying is the preservation of grain structure and its nutritional values, Muehlbauer and Christ have shown that damage to the grain structure and grain nutritional value is dependent upon grain temperature and drying time. Therefore, proper conditions during drying and storage of cereal grains require the knowledge of the thermophysical properties of the grains. The effective thermal conductivity of two varieties of Triticum durum wheat and a wheat product, bulgur, is determined at different moisture contents and at ambient temperature by the transient lime heat source method. The moisture contents of the samples ranged from 9.17 to 38.65% wet basis and the bulk densities ranged from 675 to 827 kg/m{sup 3}. Under those conditions, the measured effective thermal conductivities ranged from 0.159 to 0.201 W/m.K. The effective thermal conductivity is found to be linearly increasing with moisture content. The results are also in good agreement with literature values.

Tavman, S. [Ege Univ., Izmir (Turkey). Food Engineering Dept.] [Ege Univ., Izmir (Turkey). Food Engineering Dept.; Tavman, I.H. [Dokuz Eyluel Univ., Izmir (Turkey). Mechanical Engineering Dept.] [Dokuz Eyluel Univ., Izmir (Turkey). Mechanical Engineering Dept.

1998-07-01T23:59:59.000Z

243

Thermal conductivity of diamond-loaded glues for the ATLAS particle physics detector  

E-Print Network (OSTI)

The ATLAS experiment is one of two large general-purpose particle detectors at the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. ATLAS has been collecting data from the collisions of protons since December 2009, in order to investigate the conditions that existed during the early Universe and the origins of mass, and other topics in fundamental particle physics. The innermost layers of the ATLAS detector will be exposed to the most radiation over the first few years of operation at the LHC. In particular, the layer closest to the beam pipe, the B-layer, will degrade over time due to the added radiation. To compensate for its degradation, it will be replaced with an Insertable B-Layer (IBL) around 2016. The design of and R&D for the IBL is ongoing, as the hope is to use the most current technologies in the building of this new sub-detector layer. One topic of interest is the use of more thermally conductive glues in the construction of the IBL, in order to facilitate in the dissipation of heat from the detector. In this paper the measurement and use of highly thermally conductive glues, in particular those that are diamond-loaded, will be discussed. The modified transient plane source technique for thermal conductivity is applied in characterizing the glues across a wide temperature range.

E. A. Ouellette; A. Harris

2010-08-04T23:59:59.000Z

244

Thermal diffusivity and thermal conductivity of sintered UO2 and UO2-Gd2O3. Technical report  

SciTech Connect

The thermal diffusivity was measured using the laser flash method on sintered uranium dioxide (O/U=2.003, density=10.48X10 kg/m, from 300 to 2773 K), and urania and gadolinia mixed fuel (2,4 and 6 Wt% Gd2O3 content, from 600 to 1850 K). An equation was suggested for near-stoichiometric uranium dioxide over the temperature range 500-3100 K: K=(1-aP)(1/(A+BT)+DTxexp(-E/kT)x(1+H(E/kT+2)(sup 2))), where K in W/(m)(K), P is the fraction of porosity, a=2.74-5.8X10(sup 4-)T, A=3.68X10(sup 2-)(m)(K)/W, B=2.25X10(sup 4-)m/W, D=5.31X10(sup 3-)W/mXK2, H=0.264, E=1.15 ev, k is the Boltzmann constant. The thermal conductivity of UO2-Gd2O3 samples as a function of temperature and Gd2O3 content, X, could be expressed by phonon conduction; K=1/(A+BT) in the temperature range from 600 to 1700 K, where A=2.50 X+0.044(m)(K)/W.

Ying, S.; Ji, Z.

1988-01-01T23:59:59.000Z

245

Influence of samarium on the thermoelectric figure of merit of Sm{sub x}Pb{sub 1-x}Te alloys  

Science Conference Proceedings (OSTI)

The temperature and concentration dependences of the electrical (conductivity {sigma}, the Hall coefficient R), thermoelectric (thermovoltage {alpha}), and thermal (thermal conductivity K{sub tot}) characteristics of Sm{sub x}Pb{sub 1-x}Te alloys (x = 0, 0.02, 0.04, 0.08) are studied in the temperature range 100-500 K. Using the data for {sigma}, {alpha}, and K{sub tot}, the thermoelectric power {alpha}{sup 2}{sigma}, figure of merit Z, and efficiency {delta} are calculated. It is established that at room-temperature {alpha}{sup 2}{sigma} and Z peak at the hole concentration p Almost-Equal-To 1.2 Multiplication-Sign 10{sup 18} cm{sup -3}.

Aliev, F. F., E-mail: farzali@physics.ab.az; Hasanov, H. A., E-mail: hummat.hasanov@gmail.com [Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2012-03-15T23:59:59.000Z

246

Energy harvesting using a thermoelectric material  

DOE Patents (OSTI)

A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

Nersessian, Nersesse (Van Nuys, CA); Carman, Gregory P. (Los Angeles, CA); Radousky, Harry B. (San Leandro, CA)

2008-07-08T23:59:59.000Z

247

In-Line Thermoelectric Module  

DOE Patents (OSTI)

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an-in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions maybe perpendicular to the direction-of current flow through the module.

Pento, Robert; Marks, James E.; Staffanson, Clifford D.

1998-07-28T23:59:59.000Z

248

In-line thermoelectric module  

DOE Patents (OSTI)

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

2000-01-01T23:59:59.000Z

249

Umklapp Scattering and Heat Conductivity of Superlattices  

E-Print Network (OSTI)

The mean free path of phonons in superlattices is estimated. It is shown to be strongly dependent on the superlattice period due to the Umklapp scattering in subbands. It first falls with increasing the superlattice period until it becomes comparable with the latter after what it rises back to the bulk value. Similar behavior is expected of heat conductivity, which is proportional to the mean free path. Superlattices offer an opportunity to control physical properties in unprecedented ways. Their thermal conductivity is of interest both for a fundamental understanding of these systems as well as in applications. Recently there has been a resurgence of interest in finding materials with improved thermoelectric transport properties for cooling and power generation. The quality of a material for such applications is given by the thermoelectric figure of merit, which is inversely proportional to the thermal conductivity ?. In materials of interest, such as semiconductors, the lattice contribution to ? dominates. Experimental and theoretical work suggests that the thermal conductivity of superlattices is quite low, both for transport along the planes [1, 2, 10], or perpendicular to the planes [3, 4, 5, 6, 7, 8, 11]. The lattice heat conductivity ? is given approximately by an equation [12]:

M. V. Simkin; G. D. Mahan

2000-01-01T23:59:59.000Z

250

System and method to improve the power output and longetivity of a radioisotope thermoelectric generator  

DOE Patents (OSTI)

By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

Mowery, Jr., Alfred L. (Potomac, MD)

1993-01-01T23:59:59.000Z

251

Thermoelectric performance of disordered and nanostructured graphene ribbons using Green's function method  

Science Conference Proceedings (OSTI)

The thermoelectric properties of defected graphene nanoribbons (GNRs) and multi-junction (MJ) GNRs coupling periodic armchair sections of different width are analyzed by means of Green's function techniques to simulate electron and phonon transport. ... Keywords: Graphene, Green's function, Phonon transport, Thermal effects, Thermoelectrics

Fulvio Mazzamuto; Jérôme Saint-Martin; Viet Hung Nguyen; Christophe Chassat; Philippe Dollfus

2012-03-01T23:59:59.000Z

252

System and method to improve the power output and longetivity of a radioisotope thermoelectric generator  

DOE Patents (OSTI)

By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

Mowery, A.L. Jr.

1992-12-31T23:59:59.000Z

253

Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites  

DOE Patents (OSTI)

Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

Geohegan, David B. (Knoxville, TN); Ivanov, Ilya N. (Knoxville, TN); Puretzky,; Alexander A. (Knoxville, TN)

2010-07-27T23:59:59.000Z

254

Experimental investigation of size effect on thermal conductivity for ultra-thin amorphous poly(methyl methacrylate) (PMMA) films  

E-Print Network (OSTI)

An investigation was conducted to determine whether a “size effect” phenomenon for one particular thermophysical property, thermal conductivity, actually exists for amorphous poly(methyl methacrylate) (PMMA) films with thicknesses ranging from 40 nm to 2 ?m. This was done by using a non-contact, non-invasive, in-situ Transient Thermo-Reflectance (TTR) laser based technique. The results demonstrated that the intrinsic thermal conductivity of a 40 nm PMMA film deposited on native oxide of silicon increases by a factor of three over bulk PMMA values, and a distinct increase in the thermal conductivity of PMMA film was observed in ultra-thin (sub 100 nm) films. This confirmed the importance of film thickness for the through-plane thermal conductivity value of PMMA film on native oxide of silicon.

Kim, Ick Chan

2007-05-01T23:59:59.000Z

255

Synthesis and Characterization of Magnesium-Silicon and Magnesium-Tin Solid Solutions for Thermoelectric Applications  

E-Print Network (OSTI)

The environmentally friendly n-type Mg2(Si, Sn) thermoelectric solid solutions have a strong potential of commercial utilization in thermoelectric (TE) energy conversion due to their availability, low density (~3.02 g/cm3), and high stability at middle temperature range (400-600 ?C) that are typically observed from waste heat dissipating systems. The bulk materials were prepared from element powders via slow cooking under vacuum condition and current-assisted hot-press sintering. Temperature vs time curves have been researched in this thesis for fully reacted magnesium-silicide & magnesium-stannide green ingots with doping materials i.e. antimony, bismuth by different doping ratios. These ingots were ground by a high energy ball miller, uniaxial cold pressed into half inch pallets and then sintered by Direct Current-assisted hot pressing. Different synthesis conditions such as ball milling, sintering time, pressure, have been compared by SEM images and XRD tests analysis to figure out optimized process parameters. Several samples’ thermal conductivities (?) were plotted as a function of temperature to study different synthesis strategies and doping materials’ effects on phonon scattering inside bulk thermoelectric materials.

Hu, Fang

2012-05-01T23:59:59.000Z

256

Preparation of silica aerogels with improved mechanical properties and extremely low thermal conductivities through modified sol-gel process  

E-Print Network (OSTI)

Reported silica aerogels have a thermal conductivity as low as 15 mW/mK. The fragility of silica aerogels, however, makes them impractical for structural applications. The purpose of the study is to improve the ductility ...

Zuo, Yanjia

2010-01-01T23:59:59.000Z

257

PROBLEM 13.94 KNOWN: Diameter, temperature and emissivity of boiler tube. Thermal conductivity and emissivity of  

E-Print Network (OSTI)

PROBLEM 13.94 KNOWN: Diameter, temperature and emissivity of boiler tube. Thermal conductivity of 0.5 mm), Td = 773 K nd the ash provides a significant resistance to heat transfer.a COMMENTS: Boiler

Rothstein, Jonathan

258

Experimental Determination of the Effect of Reactor Radiation on the Thermal Conductivity of Uranium-Impregnated Graphite  

SciTech Connect

Experiments are described in which the change in thermal conductivity of U-impregnated graphite under neutron irradiation was measured. Thermal resistivities relative to the thermal resistivity of undamaged impregnated graphite are reorted as functions of exposure. From applications of the expermental results to the North American Aviation low-power research reactor the peak tem. of the core is determined for a given reactor power and time of operation.

Hetrick, D.L.; McCarty, W.K.; Steele, G.N.; Brown, M.S.; Clark, E.V.; Holmes, F.R.; Howard, D.F.; McElroy, W.N.; Shields, B.L.

1953-01-06T23:59:59.000Z

259

Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion  

Science Conference Proceedings (OSTI)

This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

Sayre, Edwin D. [Engineering Consultant, 218 Brooke Acres Drive, Los Gatos, CA 95032 (United States); Ring, Peter J. [Advanced Methods and Materials, 1190 Mountain View-Alviso Rd. Suite P, Sunnyvale, CA 94089 (United States); Brown, Neil [Engineering Consultant, 5134 Cordoy Lane, San Jose, CA 95124 (United States); Elsner, Norbert B.; Bass, John C. [Hi-Z Technology, Inc., 7606 Miramar Rd. Suite 7400, San Diego, CA 92126 (United States)

2008-01-21T23:59:59.000Z

260

Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor  

Science Conference Proceedings (OSTI)

We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DESIGN STUDY OF PORTABLE THERMOELECTRIC NUCLEAR SYSTEMS  

SciTech Connect

Design studies were performed and costs were estimated for an air transportable, 10 Mw(t), pressurized light water thermal circulation reactor, combined with a direct conversion thermoelectric generator and static electrical inversion equipment. This TCR-TE'' concept appears to have potential for ultimate use as a remote unmanned power station. Based on an extrapolation of present reactor technology and on assumed thermoelectric materials properties forecasted to January 1, 1963, a net a-c electrical output of 315 Kw is estimated, assuming the use of 80 deg F local water for cooling purposes. An alternate concept using 80 deg F air for cooling produces 271 Kw, net. These electrical output figures can be improved significantly through a recommended research and development effort. The design and construction of a prototype plant is also recommended. (auth)

Chajson, L.; DelCampo, A.R.; Kellogg, H.B. et al

1961-07-01T23:59:59.000Z

262

Cross-plane lattice and electronic thermal conductivities of ErAs : InGaAs/InGaAlAs superlattices  

E-Print Network (OSTI)

should be noted that the lattice thermal conductivity should88, 242107 ?2006? Cross-plane lattice and electronic thermalWe studied the cross-plane lattice and electronic thermal

2006-01-01T23:59:59.000Z

263

Automated Weld Characterization Using The Thermoelectric Method  

E-Print Network (OSTI)

this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis[1-6]. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research. INTRODUCTION TO THERMOELECTRICITY The thermoelectric technique is based on an effect first discovered by Seebeck in 1822. Seebeck found that when two dissimilar conductors A and B make a circuit a current will flow when the junctions of the two conductors are at different temperatures (Fig. 1). The Seebeck effect occurs because at the hot end, electrons are excited ...

J. P. Fulton; B. Wincheski; M. Namkung

1993-01-01T23:59:59.000Z

264

Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998  

DOE Green Energy (OSTI)

Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

Allan, M.L.; Philippacopoulos, A.J.

1998-11-01T23:59:59.000Z

265

Modeling and characterization of thermoelectric properties of SiGe nanocomposites  

E-Print Network (OSTI)

Direct energy conversion between thermal and electrical energy based on thermoelectric effects is attractive for potential applications in waste heat recovery and environmentally-friendly refrigeration. The energy conversion ...

Lee, Hohyun, 1978-

2009-01-01T23:59:59.000Z

266

Method of making improved gas storage carbon with enhanced thermal conductivity  

DOE Patents (OSTI)

A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

2002-11-05T23:59:59.000Z

267

Method of making improved gas storage carbon with enhanced thermal conductivity  

SciTech Connect

A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael R. (Knoxville, TN)

2002-01-01T23:59:59.000Z

268

Mechanical Properties of Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Edgar Lara-Curzio, Oak Ridge National Laboratory. Scope, Thermoelectric materials can directly convert waste heat into electricity without moving parts or fluids.

269

Mechanical Properties of Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Room Temperature Mechanical Properties of Natural Mineral Based Thermoelectrics: Xiaofeng Fan1; Eldon Case1; Xu Lu1; Donald Morelli1; 1 Michigan State ...

270

Evaluation of the Thermal Performance for a Wire Mesh/Hollow Glass Microsphere Composite Structure as a Conduction Barrier  

E-Print Network (OSTI)

An experimental investigation exploring the use of wire mesh/hollow glass microsphere combination for use as thermal insulation was conducted with the aim to conclude whether or not it represents a superior insulation technology to those on the market. Three primary variables, including number of wire mesh layers, filler material, and temperature dependence were studied using an apparatus that was part of L.I.C.H.E.N (LabVIEW Integrated Conduction Heat Experiment Network), a setup whose basic components allow three vertically stacked samples to be thermally and mechanically controlled. Knowing the temperature profile in the upper and lower samples allows for determination of thermal conductivity of the middle material through the use of Fourier?s law. The numbers of layers investigated were two, four, six, and eight, with each separated by a metallic liner. The filler materials included air, s15, s35 and s60HS 3MTM hollow glass microspheres. The experiments were conducted at four temperatures of 300, 330, 366, and 400K with an interface pressure of 20 Psi. The experimental results indicated the ?number of layers? used was the primary factor in determining the effective thermal conductivity value. The addition of hollow glass microspheres as filler material resulted in statistically insignificant changes in effective thermal conductivity. Increasing the number of wire mesh layers resulted in a corresponding increase in effective thermal conductivity of the insulation. Changes in temperature had little to no effect on thermal conductivity. The effective thermal conductivity values for the proposed insulation structure ranged from 0.22 to 0.65 W/m-K, the lowest of which came from the two layer case having air as filler material. The uncertainties associated with the experimental results fell between 10 to 20 percent in all but a few cases. In the best performing cases, when compared with existing insulation technologies, thermal conductivity was approximately 3 to 10 times higher than these methods of insulation. Thus, the proposed insulation scheme with hollow glass-sphere filler material does not represent superior technology, and would be deemed uncompetitive with those readily available in the insulation market.

Mckenna, Sean

2008-12-01T23:59:59.000Z

271

Effect of sintering in ball-milled K{sub 2}Bi{sub 8}Se{sub 13} thermoelectric nano-composites  

Science Conference Proceedings (OSTI)

K{sub 2}Bi{sub 8}Se{sub 13} has many attractive features for thermoelectric applications. Recently, K{sub 2}Bi{sub 8}Se{sub 13}-based nanocomposite materials, consisting of nano-crystalline, micro-crystalline and amorphous phases, have been fabricated based on powder technology techniques. The Seebeck coefficient has been enhanced while the thermal conductivity has been decreased presenting, thus, interesting behavior. The behavior of the materials under heat treatment conditions is now of interest, as the application of sintering process is necessary for the development of thermoelectric modules. In this work, the crystallization of the K{sub 2}Bi{sub 8}Se{sub 13}-based nano-composites is studied using Differential Scanning Calorimetry. The results show that crystallization follows a multiple-step process with different activation energies. The thermoelectric properties are also discussed in the range that crystallization occurs. - Graphical Abstract: {beta}-K{sub 2}Bi{sub 8}Se{sub 13}-based nanocomposites follow a multiple-step crystallization process. Highlights: Black-Right-Pointing-Pointer K{sub 2}Bi{sub 8}Se{sub 13}-based composites consisting of nanocrystalline and amorphous phases. Black-Right-Pointing-Pointer Sintering results multiple-step crystallization with variable activation energies. Black-Right-Pointing-Pointer Thermoelectric properties follow a step-like behavior during sintering. Black-Right-Pointing-Pointer Properties are attributed to the strain relaxation, nucleation and grain growth.

Hatzikraniotis, E. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)] [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Ioannou, M. [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)] [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Chrissafis, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)] [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chung, D.Y. [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States)] [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paraskevopoulos, K.M. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)] [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kyratsi, Th., E-mail: kyratsi@ucy.ac.cy [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)

2012-09-15T23:59:59.000Z

272

Rare earth thermoelectrics  

DOE Green Energy (OSTI)

The author reviews the thermoelectric properties of metallic compounds which contain rare-earth atoms. They are the group of metals with the largest value ever reported of the Seebeck coefficient. An increase by 50% of the Seebeck would make these compounds useful for thermoelectric devices. The largest Seebeck coefficient is found for compounds of cerium (e.g., CePd{sub 3}) and ytterbium (e.g., YbAl{sub 3}). Theoretical predictions are in agreement with the maximum observed Seebeck. The author discusses the theoretical model which has been used to calculate the Seebeck coefficient. He is solving this model for other configurations (4f){sup n} of rare-earth ground states.

Mahan, G.D.

1997-09-01T23:59:59.000Z

273

Comparison of Different Upscaling Methods for Predicting Thermal Conductivity of Complex Heterogeneous Materials System: Application on Nuclear Waste Forms  

SciTech Connect

To develop a strategy in thermal conductivity prediction of a complex heterogeneous materials system, loaded nuclear waste forms, the computational efficiency and accuracy of different upscaling methods have been evaluated. The effective thermal conductivity, obtained from microstructure information and local thermal conductivity of different components, is critical in predicting the life and performance of waste form during storage. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling method, were developed and implemented. Microstructure based finite element method (FEM) prediction results were used to as benchmark to determine the accuracy of the different upscaling methods. Micrographs from waste forms with varying waste loadings were used in the prediction of thermal conductivity in FEM and homogenization methods. Prediction results demonstrated that in term of efficiency, boundary models (e.g., Taylor model and Sachs model) are stronger than the self-consistent model, statistical upscaling method, and finite element method. However, when balancing computational efficiency and accuracy, statistical upscaling is a useful method in predicting effective thermal conductivity for nuclear waste forms.

Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

2013-01-01T23:59:59.000Z

274

Design of a steady state thermal conductivity measurement device for CNT RET polymer composites  

E-Print Network (OSTI)

fall within ~ 10%. Heat conduction through the TCs coulda 6% difference. To eliminate heat conduction effects, otherlaw formulation of heat conduction in materials. BASIC

Louie, Brian Ming

2011-01-01T23:59:59.000Z

275

Analysis of a heat exchanger-thermoelectric generator system  

DOE Green Energy (OSTI)

Analysis of a thermoelectric generator (TEG) in an ocean thermal energy conversion (OTEC) application is presented. An analytic model is developed for describing the heat exchanger-TEG interactions. This model is used to illustrate limitations of applying conventional fixed junction temperature assumptions to systems experiencing significant temperature drops across the heat exchanger surfaces. Design methods are developed for determining the thermoelectric element geometry that produces maximum output power. Results show that a heat exchanger-TEG system may deliver about 100 W/m/sup 2/ of heat exchanger surface. This compares favorably with conventional OTEC schemes.

Henderson, J.

1979-01-01T23:59:59.000Z

276

Conduction Effect of Thermal Radiation in a Metal Shield Pipe in a Cryostat for a Cryogenic Interferometric Gravitational Wave Detector  

E-Print Network (OSTI)

A large heat load caused by thermal radiation through a metal shield pipe was observed in a cooling test of a cryostat for a prototype of a cryogenic interferometric gravitational wave detector. The heat load was approximately 1000 times larger than the value calculated by the Stefan-Boltzmann law. We studied this phenomenon by simulation and experiment and found that it was caused by the conduction of thermal radiation in a metal shield pipe.

Takayuki Tomaru; Masao Tokunari; Kazuaki Kuroda; Takashi Uchiyama; Akira Okutomi; Masatake Ohashi; Hiroyuki Kirihara; Nobuhiro Kimura; Yoshio Saito; Nobuaki Sato; Takakazu Shintomi; Toshikazu Suzuki; Tomiyoshi Haruyama; Shinji Miyoki; Kazuhiro Yamamoto; Akira Yamamoto

2007-11-06T23:59:59.000Z

277

Alloys and Compounds for Thermoelectric and Solar Cell Applications  

Science Conference Proceedings (OSTI)

Alloys and Compounds for Thermoelectric and Solar Cell Applications II: Alloys and Compounds for Thermoelectric and Solar Cell Applications: Thermoelectric I

278

A method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures  

DOE Patents (OSTI)

This invention is useful in thermal imaging of conducting materials, and is particularly useful in measuring thermal conductivity and thermal boundary conditions in composite anisotropic materials, in materials of irregular shape, and in materials for high-temperature applications. It also has utility in visualizing the integrity of complex structures such as a machine, power plant, or chemical plant. The method is for modeling a conducting material sample or structure (system) as an electrical network of resistances, for measuring electric resistance between selected leads attached to the surface of the system, and, using basic circuit theory, for translating measured resistances into temperatures or indications of integrity in corresponding regions of the system. 10 figs.

Ortiz, M.G.

1991-12-31T23:59:59.000Z

279

The Stability of Dilute Plasmas with Thermal and Composition Gradients. I. The Slow Conduction Limit: Overstable Gravity Modes  

E-Print Network (OSTI)

We analyze the stability of a dilute plasma with thermal and composition gradients in the limit where conduction is slow compared to the dynamical timescale. We find necessary and sufficient conditions for stability when the background magnetic field is either parallel or perpendicular to the thermal and composition gradients that are parallel to the gravitational field. We provide approximate solutions for all the relevant modes involved, which are driven by gravity, conduction, and diffusion. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented.

Pessah, Martin E

2011-01-01T23:59:59.000Z

280

Specification for strontium-90 500-watt(e) radioisotopic thermoelectric generator. Final report  

DOE Green Energy (OSTI)

A conceptual design for a demonstration 500-watt(e) radioisotopic thermoelectric generator has been created for the Department of Energy. The design effort was divided into two tasks, viz., create a design specification for a capsule strength member that utilizes a standard Strontium-90 fluoride-filled WESF inner liner, and create a conceptual design for a 500-watt(e) RTG. Both tasks have been accomplished. The strength-member specification was designed to survive an external pressure of 24,500 psi and meet the requirements of special-form radioisotope heat sources. Therefore the capsule can, if desired, be licensed for domestic and international transport. The design for the RTG features a radioisotopic heat source, an array of nine capsules in a tungsten biological shield, four current-technology series-connected thermoelectric-conversion modules, low-conductivity thermal insulation, and a passive finned-housing radiator for waste-heat dissipation. The preliminary RTG specification formulated previous to contract award has been met or exceeded. The power source will generate the required power for the required service period at 28 volts dc with a conversion efficiency of 8%, provided the existing in-pool capsules at WESF meet the assumed thermal-inventory requirements.

Hammel, T.; Himes, J.; Lieberman, A.; McGrew, J.; Owings, D.; Schumann, F.

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fabrication and testing of thermoelectric thin film devices  

DOE Green Energy (OSTI)

Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

1996-03-01T23:59:59.000Z

282

Thermal conductivity depth-profile reconstruction of multilayered cylindrical solids using the thermal-wave Green function method  

Science Conference Proceedings (OSTI)

In this paper, a theoretical model for characterizing solid multi-layered cylindrical samples illuminated by a modulated uniform incident beam is developed by means of the Green function method. The specific Green function for the multi-layered cylindrical structure is derived and an analytical expression for the thermal-wave field in such a cylindrical sample is presented. The thermal-wave field of an inhomogeneous cylindrical sample irradiated with incident light of arbitrary angular and/or radial intensity distribution was obtained using this theoretical model. Furthermore, experimental validation is also presented in the form of experimental results with steel cylinders of various diameters.

Xie Guangxi [Key Lab of Modern Optical Technologies of Jiangsu Province, Institute of Modern Optical Technologies, Soochow University, Suzhou, Jiangsu, 215006 (China); Department of Physics, Jiangnan University, Wuxi, Jiangsu, 214122 (China); Zhang Jie; Liu Liwang; Wang Chinhua [Key Lab of Modern Optical Technologies of Jiangsu Province, Institute of Modern Optical Technologies, Soochow University, Suzhou, Jiangsu, 215006 (China); Mandelis, Andreas [Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto M5S 3G8, Ontario (Canada)

2011-06-01T23:59:59.000Z

283

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

284

Energy Payback Optimization of Thermoelectric Power Generator Systems  

E-Print Network (OSTI)

An analytic model for optimizing thermoelectric power generation system is developed and utilized for parametric studies. This model takes into account the external thermal resistances with hot and cold reservoirs. In addition, the spreading thermal resistance in the module substrates is considered to find the impact of designing small fraction of thermo elements per unit area. Previous studies are expanded by a full optimization of the electrical and thermal circuits. The optimum condition satisfies both electrical load resistance match with the internal resistance and the thermal resistance match with the heat source and the heat sink. Thermoelectric element aspect ratio and fill factor are found to be key parameters to optimize. The optimum leg length and the maximum output power are determined by a simple formula. The output power density per mass of the thermoelectric material has a peak when thermo elements cover a fractional area of ~1%. The role of the substrate heat spreading for thermoelectric power generation is equally significant as thermoelement. For a given heat source, the co-optimization of the heat sink and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to find the energy payback for the power generation system. The model includes both the air cooled heat sinks and the water cooled micro channels. We find that one can reduce the mass of thermoelement to around 3~10 % of that in commercial modules for the same output power, as long as the module and elements are designed properly. Also one notes that higher heat flux sources have significantly larger energy payback and reduced cost per output power.

Kazuaki Yazawa; Ali Shakouri

2010-01-01T23:59:59.000Z

285

High-temperature thermoelectric properties of nanostructured Ca{sub 3}Co{sub 4}O{sub 9} thin films  

Science Conference Proceedings (OSTI)

We prepared nanostructured Ca{sub 3}Co{sub 4}O{sub 9} (CCO) thin films by promoting localized epitaxial growth on polycrystalline Al{sub 2}O{sub 3} substrates. The thermoelectric properties of the CCO films were studied in the temperature range 300 to 1023 K. We confirmed that localized epitaxial growth occurred on the seed grains that dominate the (006) plane. The nanostructured CCO thin films were found to have a maximum Seebeck coefficient of 206 {mu}V/K and a power factor (at 920 K) of 0.514 mW/mK{sup 2}. Moreover, the presence of nanostructure was found to reduce the thermal conductivity, and thus, should enhance the overall performance of CCO films in thermoelectric devices.

Kang, Min-Gyu [Electronic Materials Center, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Sungbuk-Ku, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Sungbuk-Ku, Seoul 136-701 (Korea, Republic of); Cho, Kwang-Hwan; Oh, Seung-Min; Kim, Jin-Sang; Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Sungbuk-Ku, Seoul 136-791 (Korea, Republic of); Nahm, Sahn [Department of Materials Science and Engineering, Korea University, Sungbuk-Ku, Seoul 136-701 (Korea, Republic of)

2011-04-04T23:59:59.000Z

286

The Effect of Silicon on the Thermal Conductivity of Al-Si Alloys  

Science Conference Proceedings (OSTI)

In order to develop new die-cast aluminum alloys with adequate thermal ... Frequency Modulation Effect on the Solidification of Alloy 718 Fusion Zone.

287

Fabrication of nano-hole array patterns on transparent conducting oxide layer using thermally curable nanoimprint lithography  

Science Conference Proceedings (OSTI)

A two-dimensional, periodic array of nano-sized holes was fabricated in an indium tin oxide (ITO) layer, deposited onto a glass substrate with nanoimprint lithography. As a result of a thermally curing imprint process, hole array patterns with a diameter ... Keywords: Indium tin oxide (ITO), Nanoimprint lithography (NIL), Patterned transparent electrode, Photonic crystals, Transparent conducting oxide (TCO) layer

Kyeong-Jae Byeon; Seon-Yong Hwang; Heon Lee

2008-05-01T23:59:59.000Z

288

Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria  

Science Conference Proceedings (OSTI)

In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

Weening, R. H. [Department of Radiologic Sciences, Thomas Jefferson University, 901 Walnut Street, Philadelphia, Pennsylvania 19107-5233 (United States)

2012-06-15T23:59:59.000Z

289

Thermoelectric performance of electron and hole doped PtSb2  

Science Conference Proceedings (OSTI)

We investigate the thermoelectric properties of electron and hole doped PtSb2. Our results show that for doping of 0.04 holes per unit cell (1:5 1020 cm 3) PtSb2 shows a high Seebeck coefficient at room temperature, which can also be achieved at other temperatures by controlling the carrier concentration (both electron and hole). The electrical conductivity becomes temperature independent when the doping exceeds some 0.2 electrons/holes per unit cell. The figure of merit at 800 K in electron and hole doped PtSb2 is comparatively low at 0.13 and 0.21, respectively, but may increase significantly with As alloying due to the likely opening of a band gap and reduction of the lattice thermal conductivity

Saeed, Yasir [King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia; Singh, Nirprenda [King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia; Schwingenschlogl, Udo [King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia; Parker, David S [ORNL

2013-01-01T23:59:59.000Z

290

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

291

Modeling the thermoelectric properties of bulk and nanocomposite thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials are materials which are capable of converting heat directly into electricity. They have long been used in specialized fields where high reliability is needed, such as space power generation. Recently, ...

Minnich, Austin (Austin Jerome)

2008-01-01T23:59:59.000Z

292

Thermoelectric device characterization and solar thermoelectric system modeling  

E-Print Network (OSTI)

Recent years have witnessed a trend of rising electricity costs and an emphasis on energy efficiency. Thermoelectric (TE) devices can be used either as heat pumps for localized environmental control or heat engines to ...

Muto, Andrew (Andrew Jerome)

2011-01-01T23:59:59.000Z

293

Enhancing the Thermoelectric Power Factor by Using Invisible Dopants  

SciTech Connect

Nanoparticle dopants that are invisible to conduction electrons and have sharp dips in their electron scattering rate versus electron energy close to the Fermi level. Replacement of such dopants with traditional impurities results in simultaneous enhancement of the Seebeck coefficient and the electron mobility and therefore a large enhancement in the thermoelectric power factor can be achieved.

Zebarjadi, Mona; Liao, B L; Esfarjani, Keivan; Dresselhaus, M S; Chen, Gang

2013-01-01T23:59:59.000Z

294

IMPACT OF TEMPERATURE-DEPENDENT RESISTIVITY AND THERMAL CONDUCTION ON PLASMOID INSTABILITIES IN CURRENT SHEETS IN THE SOLAR CORONA  

SciTech Connect

In this paper, we investigate, by means of two-dimensional magnetohydrodynamic simulations, the impact of temperature-dependent resistivity and thermal conduction on the development of plasmoid instabilities in reconnecting current sheets in the solar corona. We find that the plasma temperature in the current-sheet region increases with time and it becomes greater than that in the inflow region. As secondary magnetic islands appear, the highest temperature is not always found at the reconnection X-points, but also inside the secondary islands. One of the effects of anisotropic thermal conduction is to decrease the temperature of the reconnecting X-points and transfer the heat into the O-points, the plasmoids, where it gets trapped. In the cases with temperature-dependent magnetic diffusivity, {eta} {approx} T {sup -3/2}, the decrease in plasma temperature at the X-points leads to (1) an increase in the magnetic diffusivity until the characteristic time for magnetic diffusion becomes comparable to that of thermal conduction, (2) an increase in the reconnection rate, and (3) more efficient conversion of magnetic energy into thermal energy and kinetic energy of bulk motions. These results provide further explanation of the rapid release of magnetic energy into heat and kinetic energy seen during flares and coronal mass ejections. In this work, we demonstrate that the consideration of anisotropic thermal conduction and Spitzer-type, temperature-dependent magnetic diffusivity, as in the real solar corona, are crucially important for explaining the occurrence of fast reconnection during solar eruptions.

Ni Lei; Roussev, Ilia I.; Lin Jun [Yunnan Astronomical Observatory, CAS, P.O. Box 110, Kunming 650011, Yunnan (China); Ziegler, Udo, E-mail: leini@ynao.ac.cn, E-mail: iroussev@ifa.hawaii.edu, E-mail: uziegler@aip.de [Leibniz-Institut fuer Astrophysik Potsdam, D-14482 Potsdam (Germany)

2012-10-10T23:59:59.000Z

295

Modeling Simulation Of Pyrolysis Of Biomass: Effect Of Thermal Conductivity, Reactor Temperature And Particle Size On Product Concentrations  

E-Print Network (OSTI)

The simultaneous chemical kinetics and heat transfer model is used to predict the effects of the most important physical and thermal properties (thermal conductivity, reactor temperature and particle size) of the feedstock on the convective-radiant pyrolysis of biomass fuels. The effects of these parameters have been analyzed for different geometries such as slab, cylinder and sphere. Finite difference method is employed for solving heat transfer model equation while Runge-Kutta 4 th order method is used for solving chemical kinetics model equations. Simulations are carried out for equivalent radius ranging from 0.0000125 m to 0.02 m, and temperature ranging from 303 K to 2100 K.

Chaurasia And Babu; A. S. Chaurasia; B. V. Babu

2003-01-01T23:59:59.000Z

296

Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials  

E-Print Network (OSTI)

J. , M. Wang, and Z. Li, A lattice Boltzmann algorithm forA novel thermal model for the lattice Boltzmann method inS. and Doolen G.D. , Lattice Boltzmann method for fluid

Wang, Moran; He, Jihuan; Yu, Jianyong; Pan, Ning

2007-01-01T23:59:59.000Z

297

EE5, Growth and Thermal Conductivity of Polycrystalline GaAs ...  

Science Conference Proceedings (OSTI)

A simple yet extensively used configuration for thermal management in high .... Microstructure and Properties of Colloidal ITO Films and Cold-Sputtered ITO Films .... Hybrid Inorganic-Organic Molecular Magnets on an Ultrathin Insulating Film.

298

Thermoelectric properties of nanoporous Ge  

E-Print Network (OSTI)

We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant ...

Lee, Joo-Hyoung

299

Thermally-induced voltage alteration for analysis of ...  

... an image can be generated directly from a thermoelectric potential produced by localized laser heating at the ... Building Energy ... Solar Thermal;

300

Three-dimensional effect on the effective thermal conductivity of porous media  

E-Print Network (OSTI)

conductivity of multiphase random porous media. The energymorphology of multiphase random porous media. Wang’sfor multiphase conjugate heat transfer through a porous

Wang, Moran R Dr.; Wang, J K; Pan, N; Chen, S Y; He, J H

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermoelectric and thermodynamic properties of half-Heulser alloy YPdSb from first principles calculations  

SciTech Connect

The structural, electronic, thermoelectric and thermodynamic properties of ternary half-Heusler compound YPdSb are investigated using the first principle calculations. It is found that YPdSb is an indirect semiconductor. The calculated band gap is 0.161 eV with spin-orbital coupling including and 0.235 eV without spin-orbital coupling including, respectively. The electronic transport properties are obtained via Boltzman transport theory. The predicted Seebeck coefficient is 240 {mu}V/K and the thermoelectric performance can be optimized by n-type doping at room temperature. Moreover, the lattice dynamical results regarding the phonon dispersion curves, phonon density of states and thermodynamic properties are reported. Thermodynamics (heat capacity and Debye temperature) as well as mean phonon free path and the thermal conductivity in a temperature range of 0-300 K are determined. - Graphical Abstract: (a) The dependence of the Seebeck coefficient on chemical potential at 300 K. (b) The dependence of the thermopower factor on chemical potential at 300 K. Highlights: Black-Right-Pointing-Pointer The Seebeck coefficient and the thermopower factor are calculated. Black-Right-Pointing-Pointer The lattice dynamics and thermodynamic properties are obtained.

Kong, Fanjie, E-mail: fanjiekong@gmail.com [Department of Physics, Yancheng Institute of Technology, Jiangsu 224051 (China)] [Department of Physics, Yancheng Institute of Technology, Jiangsu 224051 (China); Hu, Yanfei [School of Science, Sichuan University of Science and Engineering, Zigong 643000 (China)] [School of Science, Sichuan University of Science and Engineering, Zigong 643000 (China); Hou, Haijun [School of Materials Science and Engineering, Yancheng Institute of Technology, Jiangsu 224051 (China)] [School of Materials Science and Engineering, Yancheng Institute of Technology, Jiangsu 224051 (China); Liu, Yanhua [School of information engineering, Yancheng Institute of Technology, Jiangsu 224051 (China)] [School of information engineering, Yancheng Institute of Technology, Jiangsu 224051 (China); Wang, Baolin [Department of Physics, Yancheng Institute of Technology, Jiangsu 224051 (China)] [Department of Physics, Yancheng Institute of Technology, Jiangsu 224051 (China); Wang, Lili [Computer Application Institute of CAEP, Academy of Engineering Physics of China, Mianyang 621900 (China)] [Computer Application Institute of CAEP, Academy of Engineering Physics of China, Mianyang 621900 (China)

2012-12-15T23:59:59.000Z

302

Thermoelectric energy conversion using nanostructured materials  

E-Print Network (OSTI)

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

Chen, Gang

303

Thermoelectric Applications to Truck Essential Power  

DOE Green Energy (OSTI)

The subjects covered in this report are: thermoelectrics, 1-kW generator for diesel engine; self-powered heater; power for wireless data transmission; and quantum-well thermoelectrics.

John C. Bass; Norbert B. Elsner

2001-12-12T23:59:59.000Z

304

A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices  

E-Print Network (OSTI)

Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.

Ouerdane, H; Apertet, Y; Michot, A; Abbout, A

2013-01-01T23:59:59.000Z

305

Some Examples in Hydrogen Storage, Thermoelectrics and  

Science Conference Proceedings (OSTI)

Presentation Title, Computational Phase-stability Research and Education in Energy Materials: Some Examples in Hydrogen Storage, Thermoelectrics and ...

306

Measurements and Standards for Thermoelectric Materials  

Science Conference Proceedings (OSTI)

... of data, thereby accelerating the selection and optimization of thermoelectric ... products industries, the military, NASA, and the energy sector. ...

2012-12-12T23:59:59.000Z

307

METHOD OF CONTROLLING TEMPERATURE OF A THERMOELECTRIC ...  

A method of controlling the temperature of a thermoelectric generator ... Advanced Materials; Biomass and Biofuels; Building Energy Efficiency; Electricity Transmission;

308

Thin Film Nanocomposites for Thermoelectric Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Thin Film Nanocomposites for Thermoelectric Applications ... Abstract Scope, Thin film nanocomposites comprised of refractory metals and ...

309

Influence of processing conditions on the thermoelectric properties of La{sub 1-x}Sr{sub x}CoO{sub 3} (x=0, 0.05)  

SciTech Connect

La{sub 1-x}Sr{sub x}CoO{sub 3} (x=0, 0.05) powders were prepared using the citrate-gel (Pechini) process. Pellets formed from these powders were sintered at various temperatures. All samples were characterized by means of X-Ray Diffraction and Scanning Electron Microscopy in order to investigate their structural and morphological properties. The electrical resistivity, thermal conductivity and thermopower were measured in a wide range of temperatures (2-350K) in order to understand the influence of the different processing conditions on the thermoelectric properties of the compounds.

Papageorgiou, Ch.; Athanasopoulos, G. I.; Kyratsi, Th.; Giapintzakis, J. [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Avenue, PO Box 20537, 1678 Nicosia (Cyprus)

2012-06-26T23:59:59.000Z

310

Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments  

Science Conference Proceedings (OSTI)

Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.

Samms, S.R.; Wasmus, S.; Savinell, R.F. [Case Western Reserve Univ., Cleveland, OH (United States)

1996-04-01T23:59:59.000Z

311

Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices  

SciTech Connect

Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

None

2009-12-11T23:59:59.000Z

312

Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor  

E-Print Network (OSTI)

with homogeneous thermal properties, to invert cooling data.thermal simulations of DTPS testing showing modeled coolingand cooling. The match between measured and modeled thermal

Freifeld, B.M.

2009-01-01T23:59:59.000Z

313

Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model  

SciTech Connect

Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

Huang, Hai; Plummer, Mitchell; Podgorney, Robert

2013-02-01T23:59:59.000Z

314

Effects of axial heat conduction and material properties on the performance characteristics of a thermal transient anemometer probe  

Science Conference Proceedings (OSTI)

This paper describes an investigation of the axial heat transfer within a thermal transient anemometer probe. A previous study, evaluated the performance characteristics of a thermal transient anemometer system. The study revealed discrepancies between a simplified theory and test results in the development of a universal calibration curve for probes of varying diameters. Although the cause of these discrepancies were left uncertain due to an inadequate theoretical model, the study suggested that axial conduction within the probe could account for the deviations. In this paper, computer simulations are used to further investigate axial heat conduction within the probes. The effect on calibration of axial variations of material properties along the probes is also discussed. Results from the computer simulation are used in lieu of the theoretical model used in the previous study to develop a satisfactory universal calibration curve. The computer simulations provide evidence that there is significant axial heat conduction within the probes, and that this was the cause of the discrepancies noted in the previous study.

Bailey, J.L.; Page, R.J. [Argonne National Lab., IL (United States); Acharya, M. [Illinois Inst. of Technology, Chicago, IL (United States). Fluid Dynamics Research Center

1995-07-01T23:59:59.000Z

315

Thermal conductance of solid-liquid interfaces Scott Huxtable, Zhenbin Ge, David G. Cahill  

E-Print Network (OSTI)

-liquid interfaces: Two approaches · Transient optical absorption of nanoparticles and nanotubes in liquid substrate. #12;Nanotubes in surfactant in water: Transient absorption · Optical absorption depends · Cooling rate (RC time constant) gives interface conductance G = 12 MW m-2 K-1G = 12 MW m K #12;Application

Braun, Paul

316

Thermoelectric refrigerator having improved temperature stabilization means  

DOE Patents (OSTI)

A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

Falco, Charles M. (Woodridge, IL)

1982-01-01T23:59:59.000Z

317

Heating Up Interest in Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Jul 5, 2011 ... Neutron analysis of the atomic dynamics behind thermal conductivity is helping scientists at the Oak Ridge National Laboratory (ORNL) gain a ...

318

Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery  

Science Conference Proceedings (OSTI)

This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

Love, Norman [University of Texas, El Paso; Szybist, James P [ORNL; Sluder, Scott [ORNL

2011-01-01T23:59:59.000Z

319

Reactive and internal contributions to the thermal conductivity of local thermodynamic equilibrium nitrogen plasma: The effect of electronically excited states  

Science Conference Proceedings (OSTI)

Internal and reactive contributions to the thermal conductivity of a local thermodynamic equilibrium nitrogen plasma have been calculated using the Chapman-Enskog method. Low-lying (LL) electronically excited states (i.e., states with the same principal quantum number of the ground state) and high-lying (HL) ones (i.e., states with principal quantum number n> 2) have been considered. Several models have been developed, the most accurate being a model that treats the LL states as separate species while disregarding the presence of HL states, on account of their enormous transport cross sections.

Bruno, D.; Colonna, G.; Laricchiuta, A. [CNR IMIP Bari, Bari (Italy); Capitelli, M. [CNR IMIP Bari, Bari (Italy); Department of Chemistry, University of Bari, Bari, Italy and CNR IMIP Bari, Bari (Italy)

2012-12-15T23:59:59.000Z

320

Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods  

E-Print Network (OSTI)

conductivity Streambed seepage Heat as a tracer Surface water­ground water interaction Pajaro River s u m m a r was 62 m3 s�1 , with most of the loss occurring along the lower part of the experimental reach. Point and with time, with greater seepage occurring along the lower part of the reach and during the summer and fall

Fisher, Andrew

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures  

DOE Patents (OSTI)

Disclosed is a method for modeling a conducting material sample or structure (herein called a system) as at least two regions which comprise an electrical network of resistances, for measuring electric resistance between at least two selected pairs of external leads attached to the surface of the system, wherein at least one external lead is attached to the surface of each of the regions, and, using basic circuit theory, for translating measured resistances into temperatures or thermophysical properties in corresponding regions of the system. 16 figs.

Ortiz, M.G.

1992-11-24T23:59:59.000Z

322

Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD  

E-Print Network (OSTI)

We calculate the vector current correlation function for light valence quarks in the deconfined phase of QCD. The calculations have been performed in quenched lattice QCD at T=1.45 Tc for four values of the lattice cut-off on lattices up to size 128^3x48. This allows to perform a continuum extrapolation of the correlation function in the Euclidean time interval tau*T -in [0.2, 0.5], which extends to the largest temporal separations possible at finite temperature, to better than 1% accuracy. In this interval, at the value of the temperature investigated, we find that the vector correlation function never deviates from the free correlator for massless quarks by more than 9%. We also determine the first two non-vanishing thermal moments of the vector meson spectral function. The second thermal moment deviates by less than 7% from the free value. With these constraints, we then proceed to extract information on the spectral representation of the vector correlator and discuss resulting consequences for the electrical conductivity and the thermal dilepton rate in the plasma phase.

H. -T. Ding; A. Francis; O. Kaczmarek; F. Karsch; E. Laermann; W. Soeldner

2010-12-22T23:59:59.000Z

323

A comparison of thermoelectric phenomena in diverse alloy systems  

DOE Green Energy (OSTI)

The study of thermoelectric phenomena in solids provides a wealth of opportunity for exploration of the complex interrelationships between structure, processing, and properties of materials. As thermoelectricity implies some type of coupled thermal and electrical behavior, it is expected that a basic understanding of transport behavior in materials is the goal of such a study. However, transport properties such as electrical resistivity and thermal diffusivity cannot be fully understood and interpreted without first developing an understanding of the material's preparation and its underlying structure. It is the objective of this dissertation to critically examine a number of diverse systems in order to develop a broad perspective on how structure-processing-property relationships differ from system to system, and to discover the common parameters upon which any good thermoelectric material is based. The alloy systems examined in this work include silicon-germanium, zinc oxide, complex intermetallic compounds such as the half-Heusler MNiSn, where M = Ti, Zr, or Hf, and rare earth chalcogenides.

Cook, Bruce

1999-01-01T23:59:59.000Z

324

Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis  

SciTech Connect

The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-08-30T23:59:59.000Z

325

High temperature thermal conductivity measurements of UO/sub 2/ by Direct Electrical Heating. Final report. [MANTRA-III  

SciTech Connect

High temperature properties of reactor type UO/sub 2/ pellets were measured using a Direct Electrical Heating (DEH) Facility. Modifications to the experimental apparatus have been made so that successful and reproducible DEH runs may be carried out while protecting the pellets from oxidation at high temperature. X-ray diffraction measurements on the UO/sub 2/ pellets have been made before and after runs to assure that sample oxidation has not occurred. A computer code has been developed that will model the experiment using equations that describe physical properties of the material. This code allows these equations to be checked by comparing the model results to collected data. The thermal conductivity equation for UO/sub 2/ proposed by Weilbacher has been used for this analysis. By adjusting the empirical parameters in Weilbacher's equation, experimental data can be matched by the code. From the several runs analyzed, the resulting thermal conductivity equation is lambda = 1/4.79 + 0.0247T/ + 1.06 x 10/sup -3/ exp(-1.62/kT/) - 4410. exp(-3.71/kT/) where lambda is in w/cm K, k is the Boltzman constant, and T is the temperature in Kelvin.

Bassett, B

1980-10-01T23:59:59.000Z

326

The Effect of Structural Vacancies on the Thermoelectric Properties of (Cu2Te)1-x(Ga2Te3)x  

SciTech Connect

We have studied the effects of structural vacancies on the thermoelectric properties of the ternary compounds (Cu2Te)1-x(Ga2Te3)x (x = 0.5, 0.55, 0.571, 0.6, 0.625, 0.667 and 0.75), which are solid solutions found in the pseudo-binary phase diagram for Cu2Te and Ga2Te3. This system possesses tunable structural vacancy concentrations. The x= 0.5 phase, CuGaTe2, is nominally devoid of structural vacancies, while the rest of the compounds contain varying amounts of these features, and the volume density of vacancies increases with Ga2Te3 content. The sample with x = 0.5, 0.55, 0.571, 0.6, 0.625 crystallize in the chalcopyrite structure while the x = 0.667 and 0.75 adopt the Ga2Te3 defect zinc blende structure. Strong scattering of heat carrying phonons by structural defects, leads to the reduction of thermal conductivity, which is beneficial to the thermoelectric performance of materials. On the other hand, these defects also scatter charge carriers and reduce the electrical conductivity. All the samples investigated are p-type semiconductors as inferred by the signs of their respective Hall (RH) and Seebeck (S) coefficients. The structural vacancies were found to scatter phonons strongly, while a combination of increased carrier concentration, and vacancies decreases the Hall mobility ( H), degrading the overall thermoelectric performance. The room temperature H drops from 90 cm2/V s for CuGaTe2 to 13 cm2/V s in Cu9Ga11Te21 and 4.6 cm2/V s in CuGa3Te5. The low temperature thermal conductivity decreases significantly with higher Ga2Te3 concentrations (higher vacancy concentration) due to increased point defect scattering which dominate thermal resistance terms. At high temperatures, the dependence of thermal conductivity on the Ga2Te3 content is less significant. The presence of strong Umklapp scattering leads to low thermal conductivity at high temperatures for all samples investigated. The highest ZT among the samples in this study was found for the defect-free CuGaTe2 with ZT ~ 1.0 at 840K.

Ye, Zuxin [GM Research and Development Center; Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Tessema, Misle [GM Research and Development Center; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Waldo, Richard [GM R& D and Planning, Warren, Michigan; Wang, Hsin [ORNL; Cai, Wei [ORNL

2013-01-01T23:59:59.000Z

327

Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

3rd Thermoelectrics 3rd Thermoelectrics Applications Workshop 2012 to someone by E-mail Share Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Facebook Tweet about Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Twitter Bookmark Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Google Bookmark Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Delicious Rank Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on Digg Find More places to share Vehicle Technologies Office: 3rd Thermoelectrics Applications Workshop 2012 on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories

328

Modeling study of thermoelectric SiGe nanocomposites  

E-Print Network (OSTI)

Nanocomposite thermoelectric materials have attracted much attention recently due to experimental demonstrations of improved thermoelectric properties over those of the corresponding bulk material. In order to better ...

Minnich, Austin Jerome

329

High Temperature Modules and Materials for Thermoelectric Power ...  

Science Conference Proceedings (OSTI)

We fabricated oxide-based thermoelectric modules for high temperature electrical-power generation. Potentials for a development of a thermoelectric generation ...

330

Study of the Use of Saline Formations for Combined Thermoelectric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional-Scale Background Thermoelectric power plants are...

331

Effect of Nanoparticles on Electron and Thermoelectric Transport  

E-Print Network (OSTI)

on Electron and Thermoelectric Transport MONA ZEBARJADI, 1,5quantitatively predict transport properties of a bulk matrixscattering, thermoelectric, transport INTRODUCTION In recent

2009-01-01T23:59:59.000Z

332

Enhancement of thermopower of TAGS-85 high-performance thermoelectric materials by doping with the rare earth Dy  

SciTech Connect

Enhancement of thermopower is achieved by doping the narrow-band semiconductor Ag{sub 6.52}Sb{sub 6.52}Ge{sub 36.96}Te{sub 50} (acronym TAGS-85), one of the best p-type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X-ray diffraction and increased orientation-dependent local fields detected by {sup 125}Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f-electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by {sup 125}Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS-85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.3 in TAGS-85 to PF = 35 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.5 in TAGS-85 doped with 1 or 2% Dy for Ge. This makes TAGS-85 doped with Dy a promising material for thermoelectric power generation.

Levin, Evgenii; Budko, Serfuei; Schmidt-Rohr, Klaus

2012-04-10T23:59:59.000Z

333

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets  

E-Print Network (OSTI)

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

Chester, David A.

334

Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity  

Science Conference Proceedings (OSTI)

Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.

Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

2013-01-01T23:59:59.000Z

335

Enhancing Open Circuit Voltage by Combining Thermoelectric ...  

Science Conference Proceedings (OSTI)

Enhancing Open Circuit Voltage by Combining Thermoelectric Materials and Dye -Sensitized Solar Cell in Series · Estimation of Compressive Strength of High ...

336

QUANTUM WELLS THERMOELECTRIC DEVICES FOR DIESEL ENGINES  

DOE Green Energy (OSTI)

Thermoelectric materials are utilized for power generation in remote locations, on spacecraft used for interplanetary exploration, and in places where waste heat can be recovered.

Ghamaty, Saeid

2000-08-20T23:59:59.000Z

337

CNT Based Thermoelectric Devices for Energy Harvesting  

Science Conference Proceedings (OSTI)

Presentation Title, CNT Based Thermoelectric Devices for Energy Harvesting. Author(s), David S. Lashmore, Tom VanVechten, Jennifer Mann, Cory Timoney, ...

338

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network (OSTI)

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

339

Fabrication and thermoelectric properties of fine-grained TiNiSn compounds  

Science Conference Proceedings (OSTI)

Nearly single-phased TiNiSn half-Heusler compound thermoelectric materials were synthesized by combining mechanical alloying (MA) and spark plasma sintering (SPS) in order to reduce its thermal conductivity by refining the grain sizes. Although TiNiSn compound powders were not synthesized directly via MA, dense bulk samples of TiNiSn compound were obtained by the subsequent SPS treatment. It was found that an excessive Ti addition relative to the TiNiSn stoichiometry is effective in increasing the phase purity of TiNiSn half-Heusler phase in the bulk samples, by compensating for the Ti loss caused by the oxidation of Ti powders and MA processing. The maximum power factor value obtained in the Ti-compensated sample is 1720 muW m{sup -1} K{sup -2} at 685 K. A relatively high ZT value of 0.32 is achieved at 785 K for the present undoped TiNiSn compound polycrystals. - Graphical abstract: Nearly single-phased TiNiSn-based half-Heusler compound polycrystalline materials with fine grains were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS). A high ZT value for undoped TiNiSn was obtained because of the reduced thermal conductivity.

Zou Minmin [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Li Jingfeng, E-mail: jingfeng@mail.tsinghua.edu.c [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Du Bing; Liu Dawei [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kita, Takuji [Advanced Material Engineering Division, Vehicle Engineering Group, Higashifuji Technical Center, Toyota Motor Corporation, 1200, Mishuku, Susono, Shizuoka 410-1193 (Japan)

2009-11-15T23:59:59.000Z

340

Nanocrystallization of amorphous M-Si thin film composites (M=Cr, Mn) and their thermoelectric properties  

SciTech Connect

We report on electrical resistivity and thermoelectric power of Cr-Si and Mn-Si composite films at temperatures from 300 K to 1000 K. The films were deposited on unheated Si/SiO{sub 2} substrates by magnetron sputtering from composite targets. The as-deposited films have amorphous structure. We use annealing with in-situ transport properties measurements to transform the films into nanocrystalline state with continuous monitoring their state. Nanocrystallization is considered as a promising way to improve thermoelectric efficiency, primarily due to reduction of lattice thermal conductivity {kappa}. Among variety of methods for fabrication of NC materials, crystallization from amorphous state has features which are crucially important with respect to their electronic transport properties: since the crystallites and their interfaces are formed in this method via solid state reaction, the NC samples are dense and the interfaces are clean. This removes additional factors affecting properties of a nanocrystalline composite, such as contamination of nanocrystal interfaces by elements from environment or nanocrystal lattice distortion during nanocrystallization. Depending on the initial film composition, the films are transformed during annealing into single phase or multi-phase nanocrystalline composites with average grain size of 10 nm to 20 nm. We study the crystallization kinetics, stability of amorphous and nanocrystalline state and relation between electronic transport properties and structural state of the composites.

Burkov, A. T.; Novikov, S. V.; Schumann, J. [A.F. Ioffe Physical-Technical Institute, Sankt-Petersburg, 194021 (Russian Federation); Leibniz Institute for Solid State and Materials Research, Dresden (Germany)

2012-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DoubleDip: leveraging thermoelectric harvesting for low power monitoring of sporadic water use  

Science Conference Proceedings (OSTI)

We present DoubleDip, a low power monitoring system for enabling non-intrusive water flow detection. DoubleDip taps into minute thermal gradients in pipes for both replenishing energy reserves and performing low power wakeup. One of the remaining issues ... Keywords: energy harvesting, low power, sustainability, thermoelectric, water monitoring

Paul Martin; Zainul Charbiwala; Mani Srivastava

2012-11-01T23:59:59.000Z

342

FINAL SAFETY ANALYSIS REPORT. SNAP III THERMOELECTRIC GENERATOR  

SciTech Connect

The SNAP-III thermoelectric generator procedures power from the decay heat of 2100 curies of Po/sup 210/. This generator is to be used as a source of auxiliary power in a terrestrial satellite. For purposes of analysis, the satellite system postulated is launched from the Pacific Missile Bange into a 275- statute mile polar orbit with an orbital lifetime of about 1 year. Po/sup 210/ is an alpha emitter having a half life of 138 days and alpha and gamma decay energies of 5.3 and 0.8 mev, respectively. It is a natural component of the earth's crust, as a member of the uranium disintegration series. Sampling of polonium in the biosphere was conducted specifically for this program to determine background radiation levels. Since the fuel is primarily an alpha emitter, there is no direct radiation problem. An analysis was performed to determine the ability of the fuel container to withstand the various thermal, mechanical, and chemical forces imposed upon the generator by vehicle failures. Where theoretical analysis was impossible and experimental evidence was desired, capsules and generators were tested under simulated missile-failure conditions, Thus, the safety limits of SNAP-III in a satellite application were defined. SNAP-III is designed to be aerothermodynamically consumed on reentry into the earth's atmosphere so that the polonium will be dispersed as aerosols in the upper stratosphere. Since heating rates will be lower for aborts occurring prior to orbiting, 65 abort cases have been considered to define the general consequences of vehicle failures. The spatial and temporal relations of vehicle aborts are summarized in cartographic and tabular form. (auth)

Hagis, W.; Dix, G.P.

1960-06-01T23:59:59.000Z

343

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Science Conference Proceedings (OSTI)

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

344

Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting  

DOE Patents (OSTI)

A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

DeSteese, John G

2010-11-16T23:59:59.000Z

345

Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques  

Science Conference Proceedings (OSTI)

Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

2012-01-01T23:59:59.000Z

346

Thermoelectric Development at Hi-Z Technology  

DOE Green Energy (OSTI)

An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.

Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David; Melvin, Mike

2002-08-25T23:59:59.000Z

347

Heat reflecting tape for thermoelectric converter  

DOE Patents (OSTI)

Threads are interlaced with thermoelectric wires to provide a woven cloth in tape form, there being an intermediate layer of heat radiation reflecting material (e.g., aluminum foil) insulated electrically from said wires, which are of opposite thermoelectric polarity and connected as a plurality of thermocouples.

Purdy, David L. (Indiana, PA)

1977-01-01T23:59:59.000Z

348

Anisotropy analysis of thermoelectric properties of Bi{sub 2}Te{sub 2.9}Se{sub 0.1} prepared by SPS method  

Science Conference Proceedings (OSTI)

The n-type Bi{sub 2}Te{sub 2.9}Se{sub 0.1} materials were synthesized by the direct fusion technique. The polycrystalline samples were fabricated by the uniaxial pressing of powders in spark plasma sintering (SPS) apparatus. The materials were subjected to the heat treatment in H{sub 2}-Ar atmosphere at 470 K for 24 h. The influence of preparation conditions on the anisotropy of electrical and thermal properties was thoroughly studied for the direction perpendicular and parallel to the pressing force. The microstructure and the chemical composition of both types of samples were examined using a scanning microscope (SEM) equipped with an X-ray energy dispersion detector (EDX). The XRD method was applied for the phase analysis of materials, as well as, for determination of preferred orientation of Bi{sub 2}Te{sub 2.9}Se{sub 0.1} grains. The Seebeck coefficient distribution was studied by the scanning thermoelectric microprobe (STM). Temperature dependences of thermoelectric properties (thermal and electrical conductivities, Seebeck coefficient) were measured in the temperature from 300 K to 550 K. The statistical analysis of results has shown strong influence of pressing force direction both on structural and transport properties. The applied heat treatment of materials significantly improves their thermoelectric figure of merit. Particularly, it was found that annealing in H2-Ar atmosphere leads to enhancement of the ZT three times up to {approx}0.7 at 370 K in perpendicular direction to the pressing force.

Zybala, Rafal; Wojciechowski, Krzysztof T. [Thermoelectric Research Laboratory, Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Av. Mickiewicza 30, 30-059, Cracow (Poland)

2012-06-26T23:59:59.000Z

349

Making the Right Substitution for Better Thermoelectrics | U.S. DOE Office  

Office of Science (SC) Website

Making the Right Substitution for Better Thermoelectrics Making the Right Substitution for Better Thermoelectrics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » February 2013 Making the Right Substitution for Better Thermoelectrics Exploiting the self-organizing nature of atoms to block heat transfer and improve thermal-to-electrical energy conversion. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Ctirad Uher

350

Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber  

Science Conference Proceedings (OSTI)

A novel 3?thermal conductivitymeasurement technique called metal-coated 3? is introduced for use with liquids

Scott N. Schiffres; Jonathan A. Malen

2011-01-01T23:59:59.000Z

351

Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) clathrates prepared by combining arc melting and spark plasma sintering methods  

SciTech Connect

The gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) compounds with the type-I clathrate structure is presented. Samples were prepared by combining arc melting and spark plasma sintering methods. Powder x-ray diffraction, Rietveld analysis, scanning electron microscopy, and energy-dispersive x-ray spectroscopy show that the solubility limit of gallium in the type-I clathrate phase is close to x=15, which is slightly higher than that for a single crystal. The carrier concentration at room temperature decreases from 2 Multiplication-Sign 10{sup 21} cm{sup -3} to 4 Multiplication-Sign 10{sup 20} cm{sup -3} as the Ga content x increases. The Seebeck coefficient, the electrical conductivity, and the thermal conductivity vary systematically with the carrier concentration when the Ga content x varies. The effective mass (2.0m{sub 0}), the carrier mobility (10 cm{sup 2} V{sup -1} s{sup -1}), and the lattice thermal conductivity (1.1 W m{sup -1} K{sup -1}) are determined for the Ga content x=14.51. The dimensionless thermoelectric figure of merit ZT is about 0.55 at 900 K for the Ga content x=14.51. The calculation of ZT using the experimentally determined material parameters predicts ZT=0.8 (900 K) at the optimum carrier concentration of about 2 Multiplication-Sign 10{sup 20} cm{sup -3}. - Graphical abstract: The gallium composition dependence of crystallographic and thermoelectric properties is presented on polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} with the type-I clathrate structure prepared by combining arc melting and spark plasma sintering methods. The thermoelectric figure of merit ZT reaches 0.55 at 900 K due to the increase in the Ga content (close to x=15), and a calculation predicts further improvement of ZT at the optimized carrier concentration. Highlights: Black-Right-Pointing-Pointer Crystallographic properties of Ba{sub 8}Ga{sub x}Si{sub 46-x} clathrates are characterized. Black-Right-Pointing-Pointer Arc melting and spark plasma sintering process enables increase of Ga content. Black-Right-Pointing-Pointer We elucidate the Ga composition dependence of thermoelectric properties. Black-Right-Pointing-Pointer Thermoelectric figure of merit ZT is improved due to the increased Ga content. Black-Right-Pointing-Pointer Calculation predicts a potential ZT=0.8 at 900 K at optimized carrier concentration.

Anno, Hiroaki, E-mail: anno@rs.tus.ac.jp [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Yamaguchi, 1-1-1 Daigaku-Dori, Sanyoonoda 756-0884 (Japan) [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Yamaguchi, 1-1-1 Daigaku-Dori, Sanyoonoda 756-0884 (Japan); JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Yamada, Hiroki; Nakabayashi, Takahiro; Hokazono, Masahiro [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Yamaguchi, 1-1-1 Daigaku-Dori, Sanyoonoda 756-0884 (Japan)] [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Yamaguchi, 1-1-1 Daigaku-Dori, Sanyoonoda 756-0884 (Japan); Shirataki, Ritsuko [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Yamaguchi, 1-1-1 Daigaku-Dori, Sanyoonoda 756-0884 (Japan) [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Yamaguchi, 1-1-1 Daigaku-Dori, Sanyoonoda 756-0884 (Japan); JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan)

2012-09-15T23:59:59.000Z

352

THERMO-ELECTRIC GENERATOR  

DOE Patents (OSTI)

The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

Jordan, K.C.

1958-07-22T23:59:59.000Z

353

Manipulation of Thermal Phonons  

E-Print Network (OSTI)

Developing materials that can conduct electricity easily, but block the motion of phonons is necessary in the applications of thermoelectric devices, which can generate electricity from temperature differences. In converse, a key requirement as chips get faster is to obtain better ways to dissipate heat. Controlling heat transfer in these crystalline materials devices — such as silicon — is important. The heat is actually the motion or vibration of atoms known as phonons. Finding ways to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many fields of physical sciences and engineering, acoustic wave propagation in solids attracts many researchers. Wave propagation phenomena can be analyzed by mathematically solving the acoustic wave equation. However, wave propagation in inhomogeneous media with various geometric structures is too complex to find an exact solution. Hence, the Finite Difference Time Domain method is developed to investigate these complicated problems. In this work, the Finite-Difference Time-Domain formula is derived from acoustic wave equations based on the Taylor’s expansion. The numerical dispersion and stability problems are analyzed. In addition, the convergence conditions of numerical acoustic wave are stated. Based on the periodicity of phononic crystal, the Bloch’s theorem is applied to fulfill the periodic boundary condition of the FDTD method. Then a wide-band input signal is used to excite various acoustic waves with different frequencies. In the beginning of the calculation process, the wave vector is chosen and fixed. By means of recording the displacement field and taking the Fourier transformation, we can obtain the eigenmodes from the resonance peaks of the spectrum and draw the dispersion relation curve of acoustic waves. With the large investment in silicon nanofabrication techniques, this makes tungsten/silicon phononic crystal a particularly attractive platform for manipulating thermal phonons. Phononic crystal makes use of the fundamental properties of waves to create band gap over which there can be no propagation of acoustic waves in the crystal. This crystal can be applied to deterministically manipulate the phonon dispersion curve affected by different crystal structures and to modify the phonon thermal conductivity accordingly. We can expect this unique metamaterial is a promising route to creating unprecedented thermal properties for highly-efficient energy harvesting and thermoelectric cooling.

Hsu, Chung-Hao

2013-05-01T23:59:59.000Z

354

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-07-01T23:59:59.000Z

355

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2004-01-01T23:59:59.000Z

356

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-05-01T23:59:59.000Z

357

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2006-02-01T23:59:59.000Z

358

Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric devices—which convert heat into energy—that can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

None

2010-03-01T23:59:59.000Z

359

New type of thermoelectric conversion of energy by semiconducting liquid anisotropic media  

E-Print Network (OSTI)

The paper describes preliminary investigations of a new effect in conducting anisotropic liquids, which leads to thermoelectric conversion of energy. Nematic liquid crystals with semiconducting dopes are used. A thermoelectric figure of merit ZT = 0.2 is obtained in experiments. The effect can be explained by assuming that the thermocurrent in semiconducting nematics, in contrast to the Seebeck effect, is a nonlinear function of the temperature gradient and of the temperature itself. Though the discovered effect has to be further investigated, the data obtained suggest that it can be effectively used in alternative energy engineering.

Sergey I. Trashkeev; Alexey N. Kudryavtsev

2012-11-02T23:59:59.000Z

360

Thermoelectric generator cooling system and method of control  

DOE Patents (OSTI)

An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

2012-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices  

SciTech Connect

BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetak’s new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetak’s use of semiconductor manufacturing methods leads to less material use—facilitating cheaper production.

2010-09-01T23:59:59.000Z

362

The Braginskii model of the Rayleigh-Taylor instability. I. Effects of self-generated magnetic fields and thermal conduction in two dimensions  

E-Print Network (OSTI)

(abridged) There exists a substantial disagreement between computer simulation results and high-energy density laboratory experiments of the Rayleigh-Taylor instability Kuranz et al. (2010). We adopt the Braginskii formulation for transport in hot, dense plasma, implement and verify the additional physics modules, and conduct a computational study of a single-mode RTI in two dimensions with various combinations of the newly implemented modules. We find that magnetic fields reach levels on the order of 11 MG in the absence of thermal conduction. We observe denting of the RT spike tip and generation of additional higher order modes as a result of these fields. Contrary to interpretation presented in earlier work Nishiguchi (2002), the additional mode is not generated due to modified anisotropic heat transport effects but due to dynamical effect of self-generated magnetic fields. The main effects of thermal conduction are a reduction of the RT instability growth rate (by about 20% for conditions considered here)...

Modica, Frank; Zhiglo, Andrey

2013-01-01T23:59:59.000Z

363

Thermoelectrics : material advancements and market applications  

E-Print Network (OSTI)

Thermoelectric properties have been known since the initial discovery in 1821 by Thomas Seebeck, who found that a current flowed at the junction of two dissimilar metals when placed under a temperature differential. This ...

Monreal, Jorge

2007-01-01T23:59:59.000Z

364

Thermoelectric Nanocomposites: Effect of Nanostructures on Lattice ...  

Science Conference Proceedings (OSTI)

Abstract Scope, This talk will give a brief introduction to thermoelectric phenomena and challenges that these materials ... Colloidal Ag-Pt/TiO2 Nanocomposites for Photocatalysis ... Positron Lifetime Analysis of Polyurea- Nanoclay Composites.

365

Generalized drift-diffusion for microscopic thermoelectricity  

E-Print Network (OSTI)

Although thermoelectric elements increasingly incorporate nano-scale features in similar material systems as other micro-electronic devices, the former are described in the language of irreversible thermodynamics while ...

Santhanam, Parthiban

2009-01-01T23:59:59.000Z

366

Modeling water use at thermoelectric power plants  

E-Print Network (OSTI)

The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

Rutberg, Michael J. (Michael Jacob)

2012-01-01T23:59:59.000Z

367

Solar thermoelectrics for small scale power generation  

E-Print Network (OSTI)

In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

Amatya, Reja

2012-01-01T23:59:59.000Z

368

SP-100 thermoelectric-electromagnetic pump review  

DOE Green Energy (OSTI)

This report contains vugraphs of a presentation on thermoelectric-electromagnetic pumps. It contains: engineering drawings; summary of rectangular TEMP results and comparison with GE predictions; and results of optimization study.

NONE

1988-12-31T23:59:59.000Z

369

Device testing and characterization of thermoelectric nanocomposites  

E-Print Network (OSTI)

It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution ...

Muto, Andrew (Andrew Jerome)

2008-01-01T23:59:59.000Z

370

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network (OSTI)

of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

371

Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium  

SciTech Connect

Fine-grained Ti-doped FeVSb half-Heusler alloys were synthesized by combining mechanical alloying and spark plasma sintering and their thermoelectric properties were investigated with an emphasis on the influences of Ti doping and phase purity. It was found that substituting V with Ti can change the electrical transport behavior from n-type to p-type due to one less valence electron of Ti than V, and the sample with nominal composition FeV{sub 0.8}Ti{sub 0.4}Sb exhibits the largest Seebeck coefficient and the maximum power factor. By optimizing the sintering temperature and applying annealing treatment, the power factor is significantly improved and the thermal conductivity is reduced simultaneously, resulting in a ZT value of 0.43 at 500 Degree-Sign C, which is relatively high as for p-type half-Heusler alloys containing earth-abundant elements. - Graphical abstract: Fine-grained Ti-doped FeVSb alloys were prepared by the MA-SPS method. The maximum ZT value reaches 0.43 at 500 Degree-Sign C, which is relatively high for p-type half-Heusler alloys. Highlights: Black-Right-Pointing-Pointer Ti-doped FeVSb half-Heusler alloys were synthesized by combining MA and SPS. Black-Right-Pointing-Pointer Substituting V with Ti changes the electrical behavior from n-type to p-type. Black-Right-Pointing-Pointer Thermoelectric properties are improved by optimizing sintering temperature. Black-Right-Pointing-Pointer Thermoelectric properties are further improved by applying annealing treatment. Black-Right-Pointing-Pointer A high ZT value of 0.43 is obtained at 500 Degree-Sign C for p-type Ti-doped FeVSb alloys.

Zou, Minmin [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)] [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Li, Jing-Feng, E-mail: jingfeng@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)] [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kita, Takuji [Advanced Material Engineering Division, Vehicle Engineering Group, Higashifuji Technical Center, Toyota Motor Corporation, 1200, Mishuku, Susono, Shizuoka 410-1193 (Japan)] [Advanced Material Engineering Division, Vehicle Engineering Group, Higashifuji Technical Center, Toyota Motor Corporation, 1200, Mishuku, Susono, Shizuoka 410-1193 (Japan)

2013-02-15T23:59:59.000Z

372

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

DOE Green Energy (OSTI)

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

373

Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation  

SciTech Connect

Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

None

2010-03-01T23:59:59.000Z

374

Electronically and ionically conducting electrodes for thermoelectric generators  

DOE Patents (OSTI)

A composite article comprising a porous cermet electrode on a dense solid electrolyte and method of making same. The cerment electrode comprises beta-type-alumina and refractory metal.

Novak, Robert F. (Farmington Hills, MI); Weber, Neill (Murray, UT)

1987-01-01T23:59:59.000Z

375

Nanoscale heat conduction with applications in nanoelectronics and thermoelectrics  

E-Print Network (OSTI)

When the device or structure characteristic length scales are comparable to the mean free path and wavelength of energy carriers (electrons, photons, phonons, and molecules) or the time of interest is on the same order as ...

Yang, Ronggui, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

376

Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping  

E-Print Network (OSTI)

We investigate the effect of O impurities on the thermoelectric properties of ZnSe from a combination

Grossman, Jeffrey C.

377

Alloys and Compounds for Thermoelectric and Solar Cell ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium, Alloys and Compounds for Thermoelectric and Solar Cell Applications II.

378

High three dimensional thermoelectric performance from low dimensional bands  

SciTech Connect

Reduced dimensionality has long been regarded as an important strategy for increasing thermoelectric performance, for example in superlattices and other engineered structures. Here we point out and illustrate by examples that three dimensional bulk materials can be made to behave as if they were two dimensional from the point of view of thermoelectric performance. Implications for the discovery of new practical thermoelectrics are discussed.

Singh, David J [ORNL; Chen, Xin [ORNL; Parker, David S [ORNL

2013-01-01T23:59:59.000Z

379

Thermal properties of nanowires and nanotubes : modeling and experiments  

E-Print Network (OSTI)

Nanowires and nanotubes have drawn a great deal of recent attention for such potential applications as lasers, transistors, biosensors, and thermoelectric energy converters. Although the thermal properties of nanowires can ...

Dames, Christopher Eric

2006-01-01T23:59:59.000Z

380

Improved Thermoelectric Performance of p-type Skutterudite YbxFe4-yPtySb12 (0.8 x 1, y = 1 and 0.5)  

Science Conference Proceedings (OSTI)

Thermoelectric performance of p-type skutterudites currently lags that of the corresponding n-type materials and improvement of this important class of materials have become the focus of considerable research effort world-wide. Recent calculations find promising band structural features in p-type skutterudite materials of the type AeFe3NiSb12 ( Ae = Ca, Sr, or Ba) which could potentially lead to excellent thermoelectric properties. Recent work on the Yb- filled analog of the these formulations (YbFe3NiSb12) however finds that the onset of intrinsic conduction at lower than expected temperatures deteriorates the performance above 500 K leading to poor performance in the temperature range of interest for automotive waste heat recovery applications. We therefore seek a way to increase the band gap in order to find a way to minimize the deleterious effects of intrinsic conduction. Here we present ab initio band structure calculations and the synthesis and thermoelectric properties of YbxFe4-yPtySb12 (0.8 x 1, y = 1 and 0.5). Ab initio calculations find that the band gap increases for YbFe3PtSb12 as compared to the Ni-containing analog, though no such increase in the band gap energy was found for as compared to YbFe3.5Ni0.5Sb12. The y = 1 samples shows a characteristic transition to intrinsic conduction with a decrease in the Seebeck coefficient at temperatures above 700 K. The increased carrier concentration in y = 0.5 virtually eliminates any evidence of intrinsic conduction and the Seebeck coefficients for these samples increase monotonically up to 750 K, resulting in power factors approaching 27 W/cm K2 at 750 K. These power factors combined with low thermal conductivity result in a ZT = 0.9 at 750 K for Yb0.95Fe3.5Pt0.5Sb12.

Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Ye, Zuxin [GM Research and Development Center; Tessema, Misle [GM Research and Development Center; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Waldo, Richard [GM R& D and Planning, Warren, Michigan; Yang, Jiong [Chinese Academy of Sciences; Zhang, Weiqing [Chinese Academy of Sciences; Yang, Jihui [University of Washington; Cai, Wei [ORNL; Wang, Hsin [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Effects of Irradiation and Post-Irradiation Annealing on the Thermal Conductivity/ Diffusivity of Monolithic SIC and SIC/SIC Composites  

Science Conference Proceedings (OSTI)

Laser flash thermal diffusivity measurements were made on high-purity monolithic CVD-SiC (impurity concentration layup made by the isothermal chemical vapor infiltration process and with either a “thick” 1.0 µm or a “thin” 0.11 µm PyC fiber coating) before and after irradiation in the HFIR reactor (250 to 800°C, 4-8 dpa-SiC) and after post-irradiation annealing composite samples to 1200°C. Thermal conductivity in SiC is controlled by phonon transport. Point defects introduced into SiC during neutron irradiation are effective scattering centers for phonons, and as a consequence the thermal conductivity is sharply reduced. For irradiation temperatures below ~800°C, the accumulation of point defects (in SiC mostly single or small clusters of interstitials and isolated vacancies) saturates when the interstitial-vacancy recombination rate equals the defect production rate. For saturation conditions, the relative reduction in the SiC thermal conductivity decreases in a manner similar to its swelling reduction with increasing irradiation temperature. Examination of SiC swelling data at various irradiation temperatures and doses indicates that saturation occurs for ~2 dpa-SiC at 200°C and decreases continuously to ~0.4 dpa-SiC at 800°C. Based on a model that assumes a uniform distribution of the phonon scattering defects, the calculated defect concentration for unirradiated CVD-SiC was less than 1 appm, which is consistent with the manufacturer’s value of <5 wppm impurities. The defect concentrations estimated for the irradiated CVD-SiC samples decreased continuously from ~25,000 to 940 appm as the irradiation temperature increased from 252 to 800°C. The small intrinsic defect concentration in comparison to the rather large extrinsic irradiation-induced defect concentrations illustrates why CVD-SiC makes an ideal irradiation damage monitor.

Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

2004-08-01T23:59:59.000Z

382

Research on Short-term Load Forecasting of the Thermoelectric Boiler Based on a Dynamic RBF Neural Network  

E-Print Network (OSTI)

As thermal inertia is the key factor for the lag of thermoelectric utility regulation, it becomes very important to forecast its short-term load according to running parameters. In this paper, dynamic radial basis function (RBF) neural network is proposed based on the RBF neural network with the associated parameters of sample deviation and partial sample deviation, which are defined for the purpose of effective judgment of new samples. Also, in order to forecast the load of sample with large deviation, sensitivity coefficients of input layer is given in this paper. To validate this model, an experiment is performed on a thermoelectric plant, and the experimental result indicates that the network can be put into extensive use for short-term load forecasting of thermoelectric utility.

Dai, W.; Zou, P.; Yan, C.

2006-01-01T23:59:59.000Z

383

Preliminary measurements of the thermal conductivity of rocks from LASL geothermal test holes GT-1 and GT-2  

DOE Green Energy (OSTI)

The conductivities on a number of dry rocks have been measured in an air environment. These experimental values are probably about 10 percent lower than the in situ values. Initial attempts to prepare ''wet'' rock samples (rocks saturated with water) have so far resulted in only ''damp'' rocks. Considerable effort will be required to characterize the crack system in ''solid'' rocks and to predict the probable conductivity values for in situ conditions.

Sibbitt, W.L.

1975-12-01T23:59:59.000Z

384

Anneng Thermoelectricity Group | Open Energy Information  

Open Energy Info (EERE)

Anneng Thermoelectricity Group Anneng Thermoelectricity Group Jump to: navigation, search Name Anneng Thermoelectricity Group Place Wuhan, Hubei Province, China Zip 430071 Sector Biomass Product China-based biomass project developer. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co Ltd | Open Energy  

Open Energy Info (EERE)

Mudanjiang Nongken Xinneng Thermoelectric Co Ltd Mudanjiang Nongken Xinneng Thermoelectric Co Ltd Jump to: navigation, search Name Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd. Place Mishan, Heilongjiang Province, China Zip 158308 Sector Biomass Product Heilongjiang-based developer of a CDM biomass plant. References Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd. is a company located in Mishan, Heilongjiang Province, China . References ↑ "[ Heilongjiang Mudanjiang Nongken Xinneng Thermoelectric Co., Ltd.]" Retrieved from "http://en.openei.org/w/index.php?title=Heilongjiang_Mudanjiang_Nongken_Xinneng_Thermoelectric_Co_Ltd&oldid=346439"

386

Thermoelectric refrigerator having improved temperature-stabilization means  

DOE Patents (OSTI)

A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

Falco, C.M.

1981-07-29T23:59:59.000Z

387

Alkaline earth filled nickel skutterudite antimonide thermoelectrics  

DOE Patents (OSTI)

A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

Singh, David Joseph

2013-07-16T23:59:59.000Z

388

Thermal Management of Solar Cells  

E-Print Network (OSTI)

phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

389

Titanium nitride electrodes for thermoelectric generators  

DOE Patents (OSTI)

The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

1987-12-22T23:59:59.000Z

390

Thermoelectric devices and applications for the same  

SciTech Connect

High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

DeSteese, John G [Kennewick, WA; Olsen, Larry C [Richland, WA; Martin, Peter M [Kennewick, WA

2010-12-14T23:59:59.000Z

391

Commercial oxide paints as coatings for SiGe thermoelectric materials  

DOE Green Energy (OSTI)

Silicon-germanium alloys are used as thermoelectric materials for radioisotope thermoelectric generators. One problem is the loss of the alloy by sublimation. In the Unicouple, sublimation was minimized by a Si/sub 3/N/sub 4/ coating. In the Multicouple design the application of Si/sub 3/N/sub 4/ coatings which is done at high temperature is not practical. Suppression of sublimation in the Multicouple design is presently accomplished by applying glass coatings. The difficulties encountered with the glass coatings are associated with the poor adherence of the coatings. In the present study, commercial oxide points (mainly ZrO/sub 2/) which have low thermal expansion coefficients are used as coating materials. No spalling from the surface of the coated sample occurred in 1506 hours at 1080/sup 0/C in vacuum, and sublimation was reduced significantly. Zirconium silicate was observed on the surface by x-ray diffraction.

Amano, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

1986-08-25T23:59:59.000Z

392

Transient cooling and heating via a bismuth-telluride thermoelectric device  

E-Print Network (OSTI)

Thermoelectric cooling or heating can be used to drive materials to specified temperatures. By way of the Peltier effect, heat is liberated or absorbed when a current flows across a 'unction of two dissimilar conductors. A time history of the temperature cycle can be used to correlate a thermal response as a function of electrical current and initial temperature. In this thesis, the thermoelectric cooling and heating of copper and mercury, in conjunction with bismuth-telluride (Bl2Te3) semiconductors, are measured and compared against a I-D approximation developed by Bhattacharyya, Lagoudas, Waiig, and Kinra.' Based on results published in the aforementioned article and unpublished work of the author, refinements in the experimental setup are meant to further insure that the I-D assumptions are followed as accurately as possible. The improvements however are dwarfed by possible misconceptions assumed in the physics of the setup.

Clancy, Terry L

1998-01-01T23:59:59.000Z

393

Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance  

SciTech Connect

A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

Delmas, A.A.; Wilkes, K.E.

1992-04-01T23:59:59.000Z

394

Hamilton-Jacobi and quantum theory formulations of thermal-wave propagation under the dual-phase lagging model of heat conduction  

SciTech Connect

Dual-phase lagging model is one of the most promising approaches to generalize the Fourier heat conduction equation, and it can be reduced in the appropriate limits to the hyperbolic Cattaneo-Vernotte and to the parabolic equations. In this paper it is shown that the Hamilton-Jacobi and quantum theory formulations that have been developed to study the thermal-wave propagation in the Fourier framework can be extended to include the more general approach based on dual-phase lagging. It is shown that the problem of solving the heat conduction equation can be treated as a thermal harmonic oscillator. In the classical approach a formulation in canonical variables is presented. This formalism is used to introduce a quantum mechanical approach from which the expectation values of observables such as the temperature and heat flux are obtained. These formalisms permit to use a methodology that could provide a deeper insight into the phenomena of heat transport at different time scales in media with inhomogeneous thermophysical properties.

Ordonez-Miranda, J.; Alvarado-Gil, J. J. [Department of Applied Physics, Cinvestav-Unidad Merida, Carretera Antigua a Progreso km. 6, A.P. Postal 73 'Cordemex', Merida, Yucatan 97310 (Mexico); Zambrano-Arjona, Miguel A. [Facultad de Ingenieria, Universidad Autonoma de Yucatan, A.P. 150 Cordemex, Merida, Yucatan 97310 (Mexico)

2010-02-15T23:59:59.000Z

395

Electrical conductivity of cellular Si ? Si C ceramic composites prepared from plant precursors  

Science Conference Proceedings (OSTI)

Electrical conductivity ( ? dc ) of the cellular Si ? Si C ceramic composites has been measured over a temperature range of 25 – 1073 K while the thermoelectric power ( S ) has been measured over 25 – 300 K . Remarkably

Debopriyo Mallick; Omprakash Chakrabarti; Dipten Bhattacharya; Manabendra Mukherjee; Himadri S. Maiti; Rabindranath Majumdar

2007-01-01T23:59:59.000Z

396

Development of Heusler-type Fe 2 VAl alloys for thermoelectric ...  

Science Conference Proceedings (OSTI)

Abstract Scope, A Heusler alloy, Fe2VAl, is a promising candidate for thermoelectric power generation because of its high thermoelectric power ...

397

Performance Enhanced Nanostructured Thermoelectric Materials ...  

Science Conference Proceedings (OSTI)

... for applications in solar energy conversion and waste heat conversion. ... Bond Networks, Conduction Channels, and More: Diamond-like Compounds as a ...

398

Recent Metrology Research of Thermoelectric Materials at NIST  

Science Conference Proceedings (OSTI)

On-Site Speaker (Planned), Winnie Wong-Ng. Abstract Scope, The increased interest in research and development on thermoelectric materials in recent years is ...

399

Solution)BasedHybridThermoelectric!Materials! ! ! April!4 !2013!  

thermoelectric! technologies! and! offer! a potentially! clean! source! of! energy! to! reduce! fuel! ... how!future!public!policy!will!mandate!LED!us ...

400

The Feasibility of Thermoelectric Power Generation: Linking Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Department Contacts Media Contacts The Feasibility of Thermoelectric Power Generation: Linking Materials, Systems, and Cost Speaker(s): Saniya LeBlanc Date:...

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermoelectricity in Molecular Junctions Science 315, 1568 (2007);  

DOI: 10.1126/science.1137149 Science 315, 1568 (2007); Pramod Reddy, et al. Thermoelectricity in Molecular Junctions www.sciencemag.org (this ...

402

Studies of Nanostructured Thermoelectric Materials and Devices for ...  

Science Conference Proceedings (OSTI)

... into thermoelectric devices to show excellent power generation and cooling ... Property in Grain Boundary Character Distribution-Optimized Ni-based Alloy.

403

Influence of Milling Time on Microstructure and Thermoelectric ...  

Science Conference Proceedings (OSTI)

Presentation Title, Influence of Milling Time on Microstructure and Thermoelectric Properties of p-Type Bi2Te3 Alloys. Author(s), Madavali Babu, Hyo Seob Kim, ...

404

Liquidus Projection of Thermoelectric Ag-Sn-Te Ternary System  

Science Conference Proceedings (OSTI)

Presentation Title, Liquidus Projection of Thermoelectric Ag-Sn-Te Ternary ... Ag Decorated Al Nanoparticles as Novel Ink Materials for Printed Electronics ...

405

FORMATION OF THERMOELECTRIC ELEMENTS BY NET SHAPE SINTERING ...  

The net shape powder processing is adapted for the ready incorporation of the net shape thermoelectric elements into a ... Advanced Materials; Biomass and Biofuels;

406

Thermoelectric effect in very thin film Pt/Au thermocouples  

E-Print Network (OSTI)

thin films, the electrical resistivity ratio ? F /? B is BStudies of the electrical resistivity of metallic films [23,calculate the electrical resistivity and the thermoelectric

Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

2006-01-01T23:59:59.000Z

407

Alloys and Compounds for Thermoelectric and Solar Cell Applications  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... TMS: Energy Conversion and Storage Committee ... of the alloys and compounds used in the thermoelectric and solar cell devices. Materials of ...

408

Measuring the Impact of Experimental Parameters upon the Estimated Thermal Conductivity of Closed-Cell Foam Insulation Subjected to an Accelerated Aging Protocol ? Two Year Results  

SciTech Connect

The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C 1303 standard test method have led to a broad ruggedness test. This test includes the aging of full size insulation specimens for time periods up to five years for later comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. This paper will compare the results after two years of full-thickness aging.

Stovall, Therese K [ORNL

2009-01-01T23:59:59.000Z

409

Synthesis and evaluation of thermoelectric multilayer films  

DOE Green Energy (OSTI)

The deposition of compositionally modulated (Bi{sub 1-x}Sb{sub x}){sub 2}(Te{sub 1-y}Se{sub y}){sub 3} thermoelectric multilayer films by magnetron sputtering has been demonstrated. Structures with a period of 140{Angstrom} are shown to be stable to interdiffusion at the high deposition temperatures necessary for growth of single layer crystalline films with ZT {gt} 0.5. These multilayers are of the correct dimension to exhibit the electronic properties of quantum well structures. Furthermore it is shown that the Seebeck coefficient of the films is not degraded by the presence of this multilayer structure. It may be possible to synthesize a multilayer thermoelectric material with enhanced ZT by maximizing the barrier height through optimization of the composition of the barrier.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

1996-03-21T23:59:59.000Z

410

Importance of non-parabolic band effects in the thermoelectric properties of semiconductors  

SciTech Connect

We present an analysis of the thermoelectric properties of of n-type GeTe and SnTe in relation to the lead chalcogenides PbTe and PbSe. We find that the singly degenerate conduction bands of semiconducting GeTe and SnTe are highly non-parabolic, even very close to the band edges. This leads to isoenergy surfaces with a strongly corrugated shape that is clearly evident at carrier concentrations well below 0.005 e per formula unit. Analysis within Boltzmann theory shows that this corrugation is favorable for the thermoelectric transport. As a result these materials may exhibit n-type performance exceeding that of the lead chalcogenides.

Singh, David J [ORNL] [ORNL; Parker, David S [ORNL] [ORNL; Chen, Xin [ORNL] [ORNL

2013-01-01T23:59:59.000Z

411

Glass-like thermal transport in AgSbTe2 | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass-like thermal transport in AgSbTe2: nano-scale insights to improve thermoelectric efficiency May 16, 2013 Inelastic neutron scattering data showing the phonon dispersions...

412

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

DOE Green Energy (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

413

Thermoelectric figure of merit of LSCoO-Mn perovskites  

Science Conference Proceedings (OSTI)

Oxide ceramics with nominal composition of La"0"."8Sr"0"."2Co"1"-"xMn"xO"3(0= Keywords: 72.20.Pa, 84.60.Bk, 84.60.Rb, 85.80.Fi, LSCoO compounds, Thermoelectric figure of merit, Thermoelectric materials

J. E. Rodríguez; D. Cadavid; L. C. Moreno

2008-11-01T23:59:59.000Z

414

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. What are the key facts? Over the last four decades, the United States has launched 26

415

Ab-Initio Determination of Novel Crystal Structures of the Thermoelectric Material MgAgSb  

Science Conference Proceedings (OSTI)

Materials with the half-Heusler structure possess interesting electrical and magnetic properties, including potential for thermoelectric applications. MgAgSb is compositionally and structurally related to many half-Heusler materials, but has not been extensively studied. This work presents the high-temperature X-ray diffraction analysis of MgAgSb between 27 and 420 C, complemented with thermoelectric property measurements. MgAgSb is found to exist in three different structures in this temperature region, taking the half-Heusler structure at high temperatures, a Cu2Sb-related structure at intermediate temperatures, and a previously unreported tetragonal structure at room temperature. All three structures are related by a distorted Mg-Sb rocksalt-type sublattice, differing primarily in the Ag location among the available tetrahedral sites. Transition temperatures between the three phases correlate well with discontinuities in the Seebeck coefficient and electrical conductivity; the best performance occurs with the novel room temperature phase. For application of MgAgSb as a thermoelectric material, it may be desirable to develop methods to stabilize the room temperature phase at higher temperatures.

Kirkham, Melanie J [ORNL; Moreira Dos Santos, Antonio F [ORNL; Rawn, Claudia J [ORNL; Lara-Curzio, Edgar [ORNL; Sharp, Jeff W. [Marlow Industries, Inc; Thompson, Alan [Marlow Industries, Inc

2012-01-01T23:59:59.000Z

416

Thermal transport of the single-crystal rare-earth nickel borocarbides RNi2B2C  

E-Print Network (OSTI)

The quaternary intermetallic rare-earth nickel borocarbides RNi2B2C are a family of compounds that show magnetic behavior, superconducting behavior, and/or both. Thermal transport measurements reveal both electron and phonon scattering mechanisms, and can provide information on the interplay of these two long-range phenomena. In general the thermal conductivity kappa is dominated by electrons, and the high temperature thermal conductivity is approximately linear in temperature and anomalous. For R=Tm, Ho, and Dy the low-temperature thermal conductivity exhibits a marked loss of scattering at the antiferromagnetic ordering temperature T-N. Magnon heat conduction is suggested for R=Tm. The kappa data for R=Ho lends evidence for gapless superconductivity in this material above T-N. Unlike the case for the non-magnetic superconductors in the family, R=Y and Lu, a phonon peak in the thermal conductivity below T-c is not observed down to T=1.4 K for the magnetic superconductors. Single-crystal quality seems to have a strong effect on kappa. The electron-phonon interaction appears to weaken as one progresses from R=Lu to R=Gd. The resistivity data shows the loss of scattering at T-N for R=Dy, Tb, and Gd; and the thermoelectric power for all three of these materials exhibits an enhancement below T-N.

Hennings, BD; Naugle, Donald G.; Canfield, PC.

2002-01-01T23:59:59.000Z

417

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

a heat engine, such as a steam turbine or sterling enginethese concentrations, a steam turbine achieves roughly 25%ratio can run a steam turbine at 35-50% efficiency, with

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

418

Analysis of Thermal and Mechanical Stress in a Thermoelectric ...  

Science Conference Proceedings (OSTI)

This leads to the possibility of forecasting a potential breaking point which is of tremendous interest for both TEG producer and user. Proceedings Inclusion?

419

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

is pumped by a Zalman cooling tower, which is designed forZalman water pump and cooling tower. A closed loop coolingthe heat sink and the cooling tower. This water pump is very

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

420

Thermoelectric materials evaluation program. Technical summary report  

DOE Green Energy (OSTI)

Research progress on the thermoelectric materials evaluation program is reported covering the period January 1, 1976 to September 30, 1978. Topical reports are presented on (1) hot and cold end ..delta..T's, (2) hardware mobility, (3) p-leg sublimation suppression, (4) thermodynamic stability of p-legs, (5) n-leg material process improvements to reduce extraneous resistance, (6) n-leg cracking, (7) dynamic evaluation of converter, and (8) data base and degradation modes. Twenty attachments are included which present supporting drawings, specifications, procedures, and data. (WHK)

Hinderman, J.D.

1979-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Interpretation of Self-Potential Anomalies Using Constitutive Relationships for Electrochemical and Thermoelectric Coupling Coefficients  

DOE Green Energy (OSTI)

Constitutive relationships for electrochemical and thermoelectric cross-coupling coefficients are derived using ionic mobilities, applying a general derivative of chemical potential and employing the zero net current condition. The general derivative of chemical potential permits thermal variations which give rise to the thermoelectric effect. It also accounts for nonideal solution behavior. An equation describing electric field strength is similarly derived with the additional assumption of electrical neutrality in the fluid Planck approximation. The Planck approximation implies that self-potential (SP) is caused only by local sources and also that the electric field strength has only first order spatial variations. The derived relationships are applied to the NaCl-KCl concentration cell with predicted and measured voltages agreeing within 0.4 mV. The relationships are also applied to the Long Valley and Yellowstone geothermal systems. There is a high degree of correlation between predicted and measured SP response for both systems, giving supporting evidence for the validity of the approach. Predicted SP amplitude exceeds measured in both cases; this is a possible consequence of the Planck approximation. Electrochemical sources account for more than 90% of the predicted response in both cases while thermoelectric mechanisms account for the remaining 10%; electrokinetic effects are not considered. Predicted electrochemical and thermoelectric voltage coupling coefficients are comparable to values measured in the laboratory. The derived relationships are also applied to arbitrary distributions of temperature and fluid composition to investigate the geometric diversity of observed SP anomalies. Amplitudes predicted for hypothetical saline spring and hot spring environments are less than 40 mV. In contrast, hypothetical near surface steam zones generate very large amplitudes, over 2 V in one case. These results should be viewed with some caution due to the uncertain validity of the Planck approximation for these conditions. All amplitudes are controlled by electrochemical mechanisms. Polarities are controlled by the curvature of the concentration or thermal profile. Concave upward thermal profiles produce positive anomalies, for constant fluid concentrations, whereas concave upward concentration profiles produce negative anomalies. Concave downward concentration profiles are characterized by small negative closures bounding a larger, positive SP anomaly.

Knapp, R. B.; Kasameyer, P. W.

1988-01-01T23:59:59.000Z

422

Thermal Transport in Graphene Multilayers and Nanoribbons  

E-Print Network (OSTI)

1 CHAPTER 2 Thermal transport atvalues of graphene’s thermal conductivity and different1 Thermal conductivity : metals and non - metallic

Subrina, Samia

2011-01-01T23:59:59.000Z

423

Aerogel Derived Nanostructured Thermoelectric Materials  

Science Conference Proceedings (OSTI)

America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

2010-10-08T23:59:59.000Z

424

Microscreen radiation shield for thermoelectric generator  

DOE Patents (OSTI)

The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

1990-01-01T23:59:59.000Z

425

100-WATT CURIUM-242 FUELED THERMOELECTRIC GENERATOR--CONCEPTUAL DESIGN. SNAP Subtask 5.7 Final Report  

SciTech Connect

A thermoelectric generator which produces 100 watts of electrical power continuously over a six-month operational life in a space environment was designed. It employs the heat produced by the decay of Cm/sup 24/ as the source of power. Uniform output over the operational life of the generator is accomplished by means of a thermally actuated shutter which maintains the hot junction temperature of the thermoelectric conventer at a constunt figure by varying the amount of surplus heat which is radiated directly to space from the heat source. The isotopic heat source is designed to safely contain the Cm/sup 242/ under conditions of launch pad abont and rocket failure, but to burn up upon re-entry to the earth's atmosphere from orbital velocity. (W.L.H.)

Weddell, J.B.; Bloom, J.

1960-05-01T23:59:59.000Z

426

Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Testing  

DOE Green Energy (OSTI)

The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (1) 233 K ({minus}40 {degrees}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degrees}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties.

Adkins, H.E.; Ferrell, P.C.; Knight, R.C.

1994-09-30T23:59:59.000Z

427

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

428

Materials by computational design -- High performance thermoelectric materials  

DOE Green Energy (OSTI)

The objective of the project was to utilize advanced computing techniques to guide the development of new material systems that significantly improve the performance of thermoelectric devices for solid state refrigeration. Lockheed Martin Energy Systems, Inc. (LMES) was to develop computational approaches to refine the theory of the thermoelectric effect, establish physical limits, and motivate new materials development. Prior to the project, no major activity in thermoelectric research was visible as an observed limit in experimental data was commonly accepted as a practical limit by the majority of informed opinion in the physics and thermoelectric community. Due to the efforts of the project, new compounds have been isolated which indicates that there is a physical reason to search through the remaining uncharacterized compounds from a top down theoretical approach.

Sales, B. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Lyon, H. [Marlow Industries, Inc., Dallas, TX (United States)

1997-04-15T23:59:59.000Z

429

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

430

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, M.M.

1993-01-01T23:59:59.000Z

431

Oxide based thermoelectric materials for large scale power generation  

E-Print Network (OSTI)

The thermoelectric (TE) devices are based on the Seebeck and Peltier effects, which describe the conversion between temperature gradient and electricity. The effectiveness of the material performance can be described by ...

Song, Yang, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

432

Thermoelectric generator and method for the fabrication thereof  

DOE Patents (OSTI)

A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

Benson, D.K.; Tracy, C.E.

1984-08-01T23:59:59.000Z

433

Enhancement of automotive exhaust heat recovery by thermoelectric devices  

SciTech Connect

In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

Ibrahim, Essam [Alabama A& M University, Normal; Szybist, James P [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

434

Determination of thermal parameters of one-dimensional nanostructures through a thermal transient method  

E-Print Network (OSTI)

of heat capacity and thermal conductivity measurements bythe heat pulse method for thermal transport measurements ofG. Speci?c heat and thermal conductivity measurements on

Arriagada, A.; Yu, E. T.; Bandaru, P. R.

2009-01-01T23:59:59.000Z

435

ECONOMIC FACTORS OF MFP THERMOELECTRIC GENERATORS. Interim Report  

SciTech Connect

Mixed Fission Products (MFP) for use as a heat source for thermoelectric generators will become increasingly available in the coming years. The Atomic Energy Conamission sponsored program on solidification of nuclear wastes is now entering the hot-bench scale test phase. During this phase approximately 5000 thermal watts of two year old MFP could be produced monthly. Two different types of hot calcination pilot plants are planned for installation at the Hanford National Laboratories in the 1964 to 1966 time period. Each of these plants should be able to produce 160,000 thermal watts of two year MFP and 16,000 thermal watts of ten year MFP on a monthly basis. During this phase, MFP costs should be less than 15 per ihermal watt for two year MFP and 50 for ten year MFP. This cost includes operation of the plant solely to obtain heat sources and sealing the MFP into fuel containers. A full scale plant for a 15,000 Mw(e) nuclear economy is estimated to produce four to five times as much MFP as either of the pilot plants. Costs will be dependent upon AEC policy in effect at the time the plant is operating. lf the policy indicates that the full cost be paid by the user, the prices will approximate that obtained from the pilot plant operation. A conceptual design has been made for MFP fueled generators at several output power levels up to 1000 watts. These are for use at great underwater depths and contain an integral biological shield. A low cost biological shield of high density concrete or cast iron is considered. Economic studies indicate that, in production quantities, a 10 watt generator will cost one tenth an equivalent Strontium90 generator. Because of the low cost for MFP heat sources, radionuclide generators at the hundred and thousand watt level can be reasonably postulated for the first time. At the kilowatt level costs of per watt year are achievable while to 0 are estimated at the ten watt level. Currently available ocean-going craft can handle the placement of MFP generators up to the hundreds of watts level. Investigation of other available vessels is continuing. (auth)

Barmat, M.

1962-06-01T23:59:59.000Z

436

Synthesis and Characterization of Chromium, Nitrogen Co-Doped ...  

Science Conference Proceedings (OSTI)

... requirements for high efficiency solar energy utilization, guided by theoretical ... Minimization of Thermal Conductivity in Oxide Thin Film Thermoelectrics.

437

Technology Commercialization and Partnerships | BSA 09-27 ...  

Nanocrystalline inclusions in the thermoelectric matrix may limit thermal conductivity while not interfering with ... as well as in energy ...

438

Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds  

E-Print Network (OSTI)

The objective of this research was to determine the effect of thermal cycling combined with mechanical loading on the development of microcracks in M40J/PMR-II- 50, the second generation aerospace application material. The objective was pursued by finding the critical controlling parameters for microcrack formation from mechanical stress-thermal cycling test. Three different in-plane strains (0%, 0.175~0.350%, and 0.325~0.650%) were applied to the composites by clamping composite specimens (M40J/PMR-II-50, [0,90]s, a unitape cross-ply) on the radial sides of half cylinders having two different radii (78.74mm and 37.96mm). Three different thermal loading experiments, 1) 23oC to �196oC to 250oC, 2) 23oC to 250oC, and 3) 23oC to -196oC, were performed as a function of mechanical inplane strain levels, heating rates, and number of thermal cycles. The apparatus generated cracks related to the in-plane stresses (or strains) on plies. The design and analysis concept of the synergistic stress-thermal cycling experiment was simplified to obtain main and interaction factors by applying 2k factorial design from the various factors affecting microcrack density of M40J/PMR-II-50. Observations indicate that the higher temperature portion of the cycle under load causes fiber/matrix interface failure. Subsequent exposure to higher stresses in the cryogenic temperature region results in composite matrix microcracking due to the additional stresses associated with the fiber-matrix thermal expansion mismatch.

Ju, Jaehyung

2005-08-01T23:59:59.000Z

439

Preparation and properties of electrically conducting ceramics based on indium oxide-rare earth oxides-hafnium oxides  

DOE Green Energy (OSTI)

Electrically conducting refractory oxides based on adding indium oxide to rare earth-stabilized hafnium oxide are being studied for use in magnetohydrodynamic (MHD) generators, fuel cells, and thermoelectric generators. The use of indium oxide generally increases the electrical conductivity. The results of measurements of the electrical conductivity and data on corrosion resistance in molten salts are presented.

Marchant, D.D.; Bates, J.L.

1983-09-01T23:59:59.000Z

440

A high-efficiency thermoelectric converter for space applications  

DOE Green Energy (OSTI)

This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reduce or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.

Metzger, J.D. [Westinghouse Savannah River Co., Aiken, SC (United States); El-Genk, M.S. [New Mexico Univ., Albuquerque, NM (United States). Inst. for Space Nuclear Power Studies

1990-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "thermal conductivity thermoelectric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Skutterudite Thermoelectric Materials Jihui Yang, Xun Shi, General Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

the Microstructure of Doped Clathrate and the Microstructure of Doped Clathrate and Skutterudite Thermoelectric Materials Jihui Yang, Xun Shi, General Motors Hsin Wang and Miaofang Chi, Oak Ridge National Laboratory Scientific challenge/problem: Clathrate and Skutterudite are known to be promising thermoelectric materials. The R&D groups at GM and ORNL have found that doping Clathrate (Ba 0.25 Co 4 Sb 12 ) with Yb and La and doping Skutterudite (Ba 8 Ga 16 Ge 30 ) with Ni improve the thermoelectrical properties significantly. The goal of the microscopy characterization is to fundamentally understand how the dopants control the materials properties. Two questions need to be answered at the current stage of our experimental work: how the microstructures are tailored by the dopants and how the dopants distribute

442

A high-efficiency thermoelectric converter for space applications  

DOE Green Energy (OSTI)

This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reduce or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.

Metzger, J.D. (Westinghouse Savannah River Co., Aiken, SC (United States)); El-Genk, M.S. (New Mexico Univ., Albuquerque, NM (United States). Inst. for Space Nuclear Power Studies)

1990-01-01T23:59:59.000Z

443

Thermoelectric properties of n-type PbSe revisited  

Science Conference Proceedings (OSTI)

It was recently predicted \\cite{parker} and experimentally confirmed \\cite{sny_PbSe} that $p$-type PbSe would be a good thermoelectric material. Recent experimental work \\cite{pers2} now suggests that $n$-type PbSe can also be a good thermoelectric material. We now re-examine the thermoelectric performance of PbSe with a revised approximation which improves band gap accuracy. We now find that $n$-type PbSe {\\it can} be a high performance material, with thermopowers as high in magnitude as 250 $\\mu$V/K at 1000 K and 300 $\\mu$V/K at 800 K. Optimal 1000 K $n$-type doping ranges are between 2 $\\times 10^{19}$cm$^{-3}$ and 8 $\\times 10^{19}$cm$^{-3}$, while at 800 K the corresponding range is from 7 $\\times$10$^{18}$ to 4 $\\times $10$^{19}$ cm$^{-3}$.

Parker, David S [ORNL; Singh, David J [ORNL; Ren, Zhifeng [Boston College, Chestnut Hill; Zhang, Qinyong [Xihua University

2012-01-01T23:59:59.000Z

444

Device for use in a furnace exhaust stream for thermoelectric generation  

SciTech Connect

A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

Polcyn, Adam D.

2013-06-11T23:59:59.000Z

445

A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades.  

DOE Green Energy (OSTI)

We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.

Aselage, Terrence Lee; Siegal, Michael P.; Whalen, Scott; Frederick, Scott K.; Apblett, Christopher Alan; Moorman, Matthew Wallace

2006-10-01T23:59:59.000Z

446

Thermal Characterization of Nanostructures and Advanced Engineered Materials  

E-Print Network (OSTI)

A. and McEuen, P. L. , “Thermal Transport Measurements ofTomanek, D. , “Unusually High Thermal Conductivity of Carbonand Lau, C. N. , “Superior thermal conductivity of single-

Goyal, Vivek Kumar

2011-01-01T23:59:59.000Z

447

Thermal Transport in Graphene Multilayers and Nanoribbons  

E-Print Network (OSTI)

80 CHAPTER 5 Heat Conduction in Few Layerto Fourier's Law of heat conduction, thermal conductivity isnext experiments on heat conduction in graphene structures

Subrina, Samia

2011-01-01T23:59:59.000Z

448

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

449

Nanostructured thermoelectrics : big efficiency gains from small features.  

SciTech Connect

The field of thermoelectrics has progressed enormously and is now growing steadily because of recently demonstrated advances and strong global demand for cost-effective, pollution-free forms of energy conversion. Rapid growth and exciting innovative breakthroughs in the field over the last 10-15 years have occurred in large part due to a new fundamental focus on nanostructured materials. As a result of the greatly increased research activity in this field, a substantial amount of new data - especially related to materials - have been generated. Although this has led to stronger insight and understanding of thermoelectric principles, it has also resulted in misconceptions and misunderstanding about some fundamental issues. This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics. We believe recent achievements in the field augur great possibilities for thermoelectric power generation and cooling, and discuss future paths forward that build on these exciting nanostructuring concepts.

Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.; Univ.of California at Santa Cruz; Univ. of California at Berkeley

2010-01-01T23:59:59.000Z

450

New approaches to thermoelectric cooling effects in magnetic fields  

DOE Green Energy (OSTI)

The authors review thermoelectric effects in a magnetic field at a phenomenological level. Discussions of the limiting performance and problems with its computation for both Peltier and Ettingshausen coolers are presented. New principles are discussed to guide the materials scientist in the search for better Ettingshausen materials, and a brief review of the subtle measurement problems is presented.

Migliori, A.; Darling, T.W.; Freibert, F.; Trugman, S.A.; Moshopoulou, E. [Los Alamos National Lab., NM (United States); Sarrao, J.L. [Florida State Univ., Tallahassee, FL (United States)

1997-08-01T23:59:59.000Z

451

New approaches to thermoelectric cooling effects in magnetic fields  

DOE Green Energy (OSTI)

The authors review thermoelectric effects in a magnetic field at a phenomenological level. Discussions of the limiting performance and problems with its computation for both Peltier and Ettingshausen coolers are presented. New principles to guide the materials scientists are discussed for magnetic effects, and a brief review of the subtle measurement problems is presented.

Migliori, A.; Darling, T.W.; Freibert, F. [and others

1997-05-01T23:59:59.000Z

452