National Library of Energy BETA

Sample records for thermal conductivity heat

  1. Specific heat and thermal conductivity of explosives, mixtures...

    Office of Scientific and Technical Information (OSTI)

    Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally Baytos, J.F. 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL...

  2. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  3. Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity

    SciTech Connect (OSTI)

    Chen, Lin; Li, Zhen; Guo, Zeng-Yuan

    2009-07-15

    In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

  4. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect (OSTI)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  5. High Thermal Conductivity Polymer Composites for Low-Cost Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    future heat exchanger development. (1 year project - ... available state of the art) Enable replacement of ... transfer UTRC Innovation Process CURRENT ...

  6. Thermal conductivity of cementitious grouts for geothermal heat pumps. Progress report FY 1997

    SciTech Connect (OSTI)

    Allan, M.L.

    1997-11-01

    Grout is used to seal the annulus between the borehole and heat exchanger loops in vertical geothermal (ground coupled, ground source, GeoExchange) heat pump systems. The grout provides a heat transfer medium between the heat exchanger and surrounding formation, controls groundwater movement and prevents contamination of water supply. Enhanced heat pump coefficient of performance (COP) and reduced up-front loop installation costs can be achieved through optimization of the grout thermal conductivity. The objective of the work reported was to characterize thermal conductivity and other pertinent properties of conventional and filled cementitious grouts. Cost analysis and calculations of the reduction in heat exchanger length that could be achieved with such grouts were performed by the University of Alabama. Two strategies to enhance the thermal conductivity of cementitious grouts were used simultaneously. The first of these was to incorporate high thermal conductivity filler in the grout formulations. Based on previous tests (Allan and Kavanaugh, in preparation), silica sand was selected as a suitable filler. The second strategy was to reduce the water content of the grout mix. By lowering the water/cement ratio, the porosity of the hardened grout is decreased. This results in higher thermal conductivity. Lowering the water/cement ratio also improves such properties as permeability, strength, and durability. The addition of a liquid superplasticizer (high range water reducer) to the grout mixes enabled reduction of water/cement ratio while retaining pumpability. Superplasticizers are commonly used in the concrete and grouting industry to improve rheological properties.

  7. Analytical evaluation of thermal conductance and heat capacities of one-dimensional material systems

    SciTech Connect (OSTI)

    Saygi, Salih

    2014-02-15

    We theoretically predict some thermal properties versus temperature dependence of one dimensional (1D) material nanowire systems. A known method is used to provide an efficient and reliable analytical procedure for wide temperature range. Predicted formulas are expressed in terms of Bloch-Grneisen functions and Debye functions. Computing results has proved that the expressions are in excellent agreement with the results reported in the literature even if it is in very low dimension limits of nanowire systems. Therefore the calculation method is a fully predictive approach to calculate thermal conductivity and heat capacities of nanowire material systems.

  8. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    2014-03-31

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  9. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  10. Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998

    SciTech Connect (OSTI)

    Allan, M.L.; Philippacopoulos, A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

  11. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    SciTech Connect (OSTI)

    Bieler, Thomas R. Kang, Di Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar Wright, Neil T.; Ciovati, Gianluigi Myneni, Ganapati Rao; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.

    2015-12-04

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  12. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  13. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOE Patents [OSTI]

    Haney, Steven J.; Stulen, Richard H.; Toly, Norman F.

    1985-01-01

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  14. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOE Patents [OSTI]

    Haney, S.J.; Stulen, R.H.; Toly, N.F.

    1983-05-03

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  15. Thermal conductivity of semitransparent materials

    SciTech Connect (OSTI)

    Fine, H.A.; Jury, S.H.; McElroy, D.L.; Yarbrough, D.W.

    1981-01-01

    The three-region approximate solution for coupled conductive and radiative heat transfer and an exact solution for uncoupled conductive and radiative heat transfer in a grey semitransparent medium bounded by infinite parallel isothermal plates are employed to establish the dependence of the apparent thermal conductivity of semitransparent materials on other material properties and boundary conditions. An application of the analyses which uses apparent thermal conductivity versus density data to predict the dependence of apparent thermal conductivity on temperature is demonstrated. The predictions for seven sets of R-11 fiberglass and rock wool insulations agree with published measured values to within the limits of experimental error (+- 3%). Agreement for three sets of R-19 fiberglass insulations was, however, not good.

  16. THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998

    SciTech Connect (OSTI)

    ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.

  17. Temperature, thermal-conductivity, and heat-flux data,Raft River...

    Open Energy Info (EERE)

    conductivity; United States; USGS Authors Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer and M.H. Published Open-File Report - U. S. Geological...

  18. Quick estimating for thermal conductivity

    SciTech Connect (OSTI)

    Sastri, S.R.S.; Rao, K.K. )

    1993-08-01

    Accurate values for thermal conductivity--an important engineering property used in heat transfer calculations of liquids--are not as readily available as those for other physical properties. Therefore, it often becomes necessary to use estimated data. A new estimating method combines ease of use with an accuracy that is generally better than existing procedures. The paper discusses how to select terms and testing correlations, then gives two examples of the use of the method for calculation of the thermal conductivity of propionic acid and chlorobenzene.

  19. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  20. Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from -75°C to 300°C

    SciTech Connect (OSTI)

    Urquhart, Alexander; Bauer, Stephen

    2015-05-19

    The thermal properties of halite have broad practical importance, from design and long-term modeling of nuclear waste repositories to analysis and performance assessment of underground natural gas, petroleum and air storage facilities. Using a computer-controlled transient plane source method, single-crystal halite thermal conductivity, thermal diffusivity and specific heat were measured from -75°C to 300°C. These measurements reproduce historical high-temperature experiments and extend the lower temperature extreme into cryogenic conditions. Measurements were taken in 25-degree increments from -75°C to 300°C. Over this temperature range, thermal conductivity decreases by a factor of 3.7, from 9.975 to 2.699 W/mK , and thermal diffusivity decreases by a factor of 3.6, from 5.032 to 1.396 mm²/s. Specific heat does not appear to be temperature dependent, remaining near 2.0 MJ/m³K at all temperatures. This work is intended to develop and expand the existing dataset of halite thermal properties, which are of particular value in defining the parameters of salt storage thermophysical models. The work was motivated by a need for thermal conductivity values in a mixture theory model used to determine bulk thermal conductivity of reconsolidating crushed salt.

  1. Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from -75°C to 300°C

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urquhart, Alexander; Bauer, Stephen

    2015-05-19

    The thermal properties of halite have broad practical importance, from design and long-term modeling of nuclear waste repositories to analysis and performance assessment of underground natural gas, petroleum and air storage facilities. Using a computer-controlled transient plane source method, single-crystal halite thermal conductivity, thermal diffusivity and specific heat were measured from -75°C to 300°C. These measurements reproduce historical high-temperature experiments and extend the lower temperature extreme into cryogenic conditions. Measurements were taken in 25-degree increments from -75°C to 300°C. Over this temperature range, thermal conductivity decreases by a factor of 3.7, from 9.975 to 2.699 W/mK , and thermal diffusivitymore » decreases by a factor of 3.6, from 5.032 to 1.396 mm²/s. Specific heat does not appear to be temperature dependent, remaining near 2.0 MJ/m³K at all temperatures. This work is intended to develop and expand the existing dataset of halite thermal properties, which are of particular value in defining the parameters of salt storage thermophysical models. The work was motivated by a need for thermal conductivity values in a mixture theory model used to determine bulk thermal conductivity of reconsolidating crushed salt.« less

  2. THERMAL CONDUCTIVITY ANALYSIS OF GASES

    DOE Patents [OSTI]

    Clark, W.J.

    1949-06-01

    This patent describes apparatus for the quantitative analysis of a gaseous mixture at subatmospheric pressure by measurement of its thermal conductivity. A heated wire forms one leg of a bridge circuit, while the gas under test is passed about the wire at a constant rate. The bridge unbalance will be a measure of the change in composition of the gas, if compensation is made for the effect due to gas pressure change. The apparatus provides a voltage varying with fluctuations of pressure in series with the indicating device placed across the bridge, to counterbalance the voltage change caused by fluctuations in the pressure of the gaseous mixture.

  3. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  4. Los Alamos probes mysteries of uranium dioxide's thermal conductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mysteries of uranium dioxide's thermal conductivity Los Alamos probes mysteries of uranium dioxide's thermal conductivity New research is showing that the thermal conductivity of cubic uranium dioxide is strongly affected by interactions between phonons carrying heat and magnetic spins. August 4, 2014 Illustration of anisotropic thermal conductivity in uranium dioxide (UO2). Scientists are studying the thermal conductivity related to the material's different crystallographic directions, hoping

  5. 2-D Finite Element Heat Conduction

    Energy Science and Technology Software Center (OSTI)

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  6. Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance

    SciTech Connect (OSTI)

    Delmas, A.A.; Wilkes, K.E.

    1992-04-01

    A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

  7. Gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  8. One-Dimensional Heat Conduction

    Energy Science and Technology Software Center (OSTI)

    1992-03-09

    ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition,more » ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.« less

  9. Thermal conductivity of tubrostratic carbon nanofiber networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bauer, Matthew L.; Saltonstall, Chris B.; Leseman, Zayd C.; Beechem, Thomas E.; Hopkins, Patrick E.; Norris, Pamela M.

    2016-01-01

    Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modificationmore » of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.« less

  10. Thermal conductivity of tubrostratic carbon nanofiber networks

    SciTech Connect (OSTI)

    Bauer, Matthew L.; Saltonstall, Chris B.; Leseman, Zayd C.; Beechem, Thomas E.; Hopkins, Patrick E.; Norris, Pamela M.

    2016-01-01

    Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modification of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.

  11. Effective thermal conductivity in thermoelectric materials

    SciTech Connect (OSTI)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  12. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    SciTech Connect (OSTI)

    Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plates effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  13. Thermal conductance of metallic interface in vacuum

    SciTech Connect (OSTI)

    Mortazavi, P.; Shu, D.

    1985-01-01

    In most heat transfer applications, the deposited heat is transferred by any of the following classical methods: conduction, convection, radiation, or any combinations of these three. Depending on how critical the nature is of the designed equipment, the response time must be short enough in order to safeguard the proper performance of the devices. For instance, currently at the National Synchrotron Light Source (NSLS), various hardware equipment are being designed to intercept or to stop intense radiation beams induced by insertion devices such as wiggler and undulators. Due to the nature of some of these designs, the deposited high flux thermal load must be transferred across unbonded contact surfaces. Since any miscalculation would result in the disintegration of exposed material and therefore cause substantial problems, a true actual conductance measurement of the material in question is highly desirable. In the following three sections, background summary, the method of measurement, and the obtained results are discussed.

  14. Anisotropy of heat conduction in Mo/Si multilayers

    SciTech Connect (OSTI)

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-08-28

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.

  15. THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

    SciTech Connect (OSTI)

    ALLAN,M.

    1998-05-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  16. Hot wire needle probe for thermal conductivity detection

    SciTech Connect (OSTI)

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  17. Anisotropic thermal conductivity of thin polycrystalline oxide samples

    SciTech Connect (OSTI)

    Tiwari, A.; Boussois, K.; Nait-Ali, B.; Smith, D. S.; Blanchart, P.

    2013-11-15

    This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for such anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.

  18. Continuous Processing of High Thermal Conductivity Polyethylene...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of Technology (MIT) - Cambridge, MA A new, continuous manufacturing ...

  19. Controlling thermal conductance through quantum dot roughening...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Controlling thermal conductance through quantum dot roughening at interfaces. Citation Details ... Publication Date: 2011-01-01 OSTI Identifier: 1110382 Report ...

  20. Continuous Processing of High Thermal Conductivity Polyethylene...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conductivity polyethylene fibers and sheets will be developed to replace metals and ceramics in heat-transfer devices. Project innovations include using massively parallel...

  1. Process for fabricating composite material having high thermal conductivity

    DOE Patents [OSTI]

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  2. Thermal conductivity measurements of Summit polycrystalline silicon.

    SciTech Connect (OSTI)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  3. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  4. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G. Blancard, C.; Combis, P.; Videau, L.

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  5. Increased thermal conductivity monolithic zeolite structures

    DOE Patents [OSTI]

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  6. Error and uncertainty in Raman thermal conductivity measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas Edwin Beechem; Yates, Luke; Graham, Samuel

    2015-04-22

    We investigated error and uncertainty in Raman thermal conductivity measurements via finite element based numerical simulation of two geometries often employed -- Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materialsmore » under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter -- termed the Raman stress factor -- is derived to identify when stress effects will induce large levels of error. Together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.« less

  7. Error and uncertainty in Raman thermal conductivity measurements

    SciTech Connect (OSTI)

    Thomas Edwin Beechem; Yates, Luke; Graham, Samuel

    2015-04-22

    We investigated error and uncertainty in Raman thermal conductivity measurements via finite element based numerical simulation of two geometries often employed -- Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materials under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter -- termed the Raman stress factor -- is derived to identify when stress effects will induce large levels of error. Together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.

  8. Voltage tunability of thermal conductivity in ferroelectric materials

    DOE Patents [OSTI]

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  9. Hot wire thermal conductivity measurements in high temperature refractories

    SciTech Connect (OSTI)

    Dils, R.R.; Allen, J.D.; Richmond, J.C.; McNeil, M.B.

    1982-01-01

    In the hot wire thermal conductivity test, a wire embedded in the material to be tested is heated with constant power input, and the temperature is measured at short time intervals. The thermal conductivity is computed from the known power input to the wire and the measured rate of increase in the wire temperature after about 700 s of heating. A finite-difference computer simulation of the hot wire test was developed to evaluate the effects of several variables in the properties of the materials tested and in the test procedures on the measured thermal conductivity. Equations relating the radiant heat transfer in a material to its optical properties were developed and a radiant heat transfer component was developed for the finite-difference simulation. Equations were derived to compute the spectral optical properties of a test material from the measured spectral normal-hemispherical transmittance of a sample of the material of known thickness that is thin enough to have a measurable transmittance over the wavelength range of about 500 to 20,000 nm, and the spectral near-normal hemispherical reflectance of a sample of the material thick enough to be completely opaque, over the same wavelength range. The optical extinction coefficient, and the ratio of the scattering coefficient, to the absorption coefficient, of MinK 2000 and K3000 brick were evaluated from their measured spectral transmittances and reflectances, and used to compute the radiant heat transfer component in these materials. The hot wire test measures an average thermal conductivity for all directions away from the wire in a plane normal to the wire. Extensive tests were made of MinK 2000 and K3000, and the measured values are compared to the guarded hot plate thermal conductivity, which is unidirectional normal to the face of a brick. 67 references, 31 figures, 23 tables.

  10. Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungstengraphene layered structure

    SciTech Connect (OSTI)

    Jagannadham, K.

    2014-09-01

    Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungstengraphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungstengraphenecopper samples were heated at different temperatures up to 900?C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900?C to identify the formation of tungsten carbide film by reaction of tungsten with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650?C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900?C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.

  11. Local measurement of thermal conductivity and diffusivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hurley, David H.; Schley, Robert S.; Khafizov, Marat; Wendt, Brycen L.

    2015-12-01

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness formore » extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representative of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agree closely with literature values. Lastly, a distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.« less

  12. Local measurement of thermal conductivity and diffusivity

    SciTech Connect (OSTI)

    Hurley, David H.; Schley, Robert S.; Khafizov, Marat; Wendt, Brycen L.

    2015-12-01

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representative of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agree closely with literature values. Lastly, a distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.

  13. Local measurement of thermal conductivity and diffusivity

    SciTech Connect (OSTI)

    Hurley, David H.; Schley, Robert S.; Khafizov, Marat; Wendt, Brycen L.

    2015-12-15

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representatives of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agreed closely with the literature values. A distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.

  14. Modeling heat conduction and radiation transport with the diffusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat conduction and radiation transport with the diffusion equation in NIF ALE-AMR This ... IOPscience Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in ...

  15. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to design ...

  16. Thermal conductivity and diffusion-mediated localization in Fe1...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Thermal conductivity and diffusion-mediated localization in Fe1-xCrx alloys from first principles Citation Details In-Document Search Title: Thermal conductivity ...

  17. Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests

    SciTech Connect (OSTI)

    N.S. Brodsky

    2002-07-17

    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

  18. Frostless heat pump having thermal expansion valves

    DOE Patents [OSTI]

    Chen, Fang C.; Mei, Viung C.

    2002-10-22

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  19. Microscale Heat Conduction Models and Doppler Feedback

    SciTech Connect (OSTI)

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  20. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect (OSTI)

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  1. List of Solar Thermal Process Heat Incentives | Open Energy Informatio...

    Open Energy Info (EERE)

    List of Solar Thermal Process Heat Incentives Jump to: navigation, search The following contains the list of 211 Solar Thermal Process Heat Incentives. CSV (rows 1 - 211) Incentive...

  2. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under ...

  3. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  4. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    SciTech Connect (OSTI)

    White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY

    2011-06-10

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

  5. High thermal conductivity connector having high electrical isolation

    DOE Patents [OSTI]

    Nieman, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  6. T I ENHANCING THERMAL CONDUCTIVITY OF FLUIDS WITH NANOPARTICLES...

    Office of Scientific and Technical Information (OSTI)

    JAM 1 1 1935 b T I ENHANCING THERMAL CONDUCTIVITY OF FLUIDS WITH NANOPARTICLES* Stephen U. ... THERMAL CONDUCTIVITY OF FLUIDS WITH NANOPARTICLES Stephen U. S. Choi 1 and Jeffrey A. ...

  7. T I ENHANCING THERMAL CONDUCTIVITY OF FLUIDS WITH NANOPARTICLES...

    Office of Scientific and Technical Information (OSTI)

    ... particles have been conducted since Maxwell's theoretical work was published more than ... Maxwell's model shows that the effective thermal conductivity of suspensions that contain ...

  8. Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ

    DOE Patents [OSTI]

    Poppendiek, Heinz F.

    1982-01-01

    A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.

  9. Apparent thermal conductivity measurements by an unguarded technique

    SciTech Connect (OSTI)

    Graves, R.S.; Yarbrough, D.W.; McElroy, D.L.

    1983-01-01

    An unguarded longitudinal heat-flow apparatus for measuring the apparent thermal conductivity (lambda/sub a) of insulations was tested with mean specimen temperatures from 300 to 330/sup 0/K on samples up to 0.91 m wide, 1.52 m long, and 0.15 m thick. Heat flow is provided by a horizontal electrically heated Nichrome screen sandwiched between test samples that are bounded by temperature controlled copper plates and 9 cm of mineral fiber insulation. A determinate error analysis shows lambda/sub a/ measurement uncertainty to be less than +- 1.7% for insulating materials as thin as 3 cm. Three-dimensional thermal modeling indicates negligible error in lambda/sub a/ due to edge loss for insulations up to 7.62 cm thick when the temperature difference across the sample is measured at the sceen center. System repeatability and reproducibility were determined to be +- 0.2%. Differences of lambda/sub a/ results from the screen tester and results from the National Bureau of Standards were 0.1% for a 10-kg/m/sup 3/ Calibration Transfer Standard and 0.9% for 127-kg/m/sup 3/ fibrous glass board (SRM 1450b). Measurements on fiberglass and rock wool batt insulations showed the dependence of lambda/sub a/ on density, temperature, temperature difference, plate emittance, and heat flow direction. Results obtained for lambda/sub a/ as a function of density at 24/sup 0/C differed by less than 2% from values obtained with a guarded hot plate. These results demonstrate that this simple technique has the accuracy and sensitivity needed for useful lambda/sub a/ measurements on thermal insulating materials.

  10. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect (OSTI)

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  11. Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Ying; Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G; Qiao, Rui

    2015-01-01

    Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. Wemore » show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.« less

  12. Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects

    SciTech Connect (OSTI)

    Liu, Ying; Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G; Qiao, Rui

    2015-01-01

    Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. We show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.

  13. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect (OSTI)

    Williams, Colin F.; Sass, John H.

    1996-01-24

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates

  14. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    SciTech Connect (OSTI)

    Jaworske, D.A.; Perry, W.D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  15. Enhancing through thickness thermal conductivity of ultra-thin composite laminates. Final report

    SciTech Connect (OSTI)

    Ramani, K.; Vaidyanathan, A.

    1994-12-31

    The materials used in electronic applications have specific requirements for stiffness, thermal conductivity, and electromagnetic shielding making the choice of materials used very important. Electronic components are very sensitive to heat, hence the heat dissipation or cooling of the various components is necessary to prevent failure. Thus, any material used in the electronic industry must have a high thermal conductivity in addition to a specified thermal expansion, stiffness and strength properties. The purpose of this project was to design and manufacture composite panels which would conduct heat from an electronic chip attached to the top surface to a cooling liquid flowing at its lower surface. To maximize the heat conducted from the chip to the cooling liquid, the composite must have a high through thickness thermal conductivity. Further, design restrictions on the thickness of the composite panel had to be taken into account. It was found that the presence of excess resin adversely affects the conductivity of a woven fabric composite due to which the through thickness conductivity of the 400 {micro}m thick panel was better than the 500 {micro}m thick panel. The through thickness conductivity of the panel with short fibers alone was better than that of the woven cloth panel. The finite element model developed for a priori prediction of the through thickness thermal conductivity of the composite panels is a very powerful tool that can save enormous prototyping times an associates coats.

  16. Experimental investigation of the thermal conductivity of porous adsorbents. Master's thesis

    SciTech Connect (OSTI)

    Secary, J.J.

    1989-01-01

    The thermal conductivities of Praseodymium-Cerium-Oxide (PCO) and Saran Carbon have been experimentally investigated using a steady-state heat transfer technique. The investigated substances are used as adsorbents in adsorption compressors being developed for spaceborne refrigeration applications. The objectives of the investigation were to determine the thermal conductivities and establish their temperature dependency. Data were collected for the PCO over a temperature range of 300 C to 600 C, and O (zero) C to 200 C for the Saran Carbon. The thermal conductivities were found to have a strong temperature dependency. In particular, the results for the PCO showed a temperature dependency indicative of some thermal radiation effects.

  17. Testing of thermally enhanced cement ground heat exchanger grouts

    SciTech Connect (OSTI)

    Kavanaugh, S.P.; Allan, M.L.

    1999-07-01

    Optimal performance of closed-loop, ground-source heat pumps (ground-coupled heat pumps) is dependent upon the thermal properties of the backfill in the annual region between the ground heat exchanger (GHEX) tubes and the outer bore wall. Equally important is the protection of groundwater aquifers from contaminants that may flow from the surface of other aquifers through poorly sealed boreholes. Conventional cement and bentonite-based grouts have relatively low thermal conductivities. Loop requirements often increase beyond the allotted budget in applications where regulatory bodies require the entire heat exchanger length to be grouted. This paper reports on the results of four mixes of thermally enhanced cementitious grouts. Four grouts were evaluated in a test stand to minimize the impact of external factors typically present in field tests. The test stand accepts up to 6 in. (15 cm) ground heat exchangers in a 10 ft (3 m) test section. Controlled testing is performed in either the cooling mode (loop above 85 F [29 C]) or heating mode (loop at 32 F [0 C]), and the temperature of the outer bore wall is held constant with a groundwater source. Results indicate cement grouts that are enhanced with low-cost additives have thermal conductivities three to four times as large as conventional high-solids bentonite grouts. This would result in reduced heat exchanger lengths compared to those grouted with bentonite. There appears to be no measurable increase in overall borehole resistance due to separation of the colder tubes from the grout in the heating mode. This discussion does not include pumpability, permeability, and material handling issues, which must be thoroughly investigated before any grout can be recommended for use.

  18. Duality of the Interfacial Thermal Conductance in Graphene-based Nanocomposites

    SciTech Connect (OSTI)

    Liu, Ying; Huang, Jingsong; Yang, Bao; Sumpter, Bobby G; Qiao, Rui

    2014-01-01

    The thermal conductance of graphene-matrix interfaces plays a key role in controlling the thermal transport properties of graphene-based nanocomposites. Using classical molecular dynamics simulations, we found that the interfacial thermal conductance depends strongly on the mode of heat transfer at the graphene-matrix interfaces: if heat enters graphene from one side of its basal plane and immediately leaves the graphene through the other side, the corresponding interfacial thermal conductance, G(across), is large; if heat enters graphene from both sides of its basal plane and leaves the graphene at a position far away on its basal plane, the corresponding interfacial thermal conductance, G(non-across), is small. For a single-layer graphene immersed in liquid octane, G(across) is ~150 MW/m2K while Gnon-across is ~5 MW/m2K. G(across) decreases with increasing multi-layer graphene thickness (i.e., number of layers in graphene) and approaches an asymptotic value of 100 MW/m2K for 7-layer graphenes. G(non-across) increases only marginally as the graphene sheet thickness increases. Such a duality of the interface thermal conductance for different probing methods and its dependence on graphene sheet thickness can be traced ultimately to the unique physical and chemical structure of graphene materials. The ramifications of these results in areas such as experimental measurement of thermal conductivity of graphene and the design of graphene-based thermal nanocomposites are discussed.

  19. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  20. Experimental and numerical study of the effective thermal conductivity...

    Office of Scientific and Technical Information (OSTI)

    to describe interface resistance of particles in modern TIMs, aka particulate composites. ... Country of Publication: United States Language: English Subject: Thermal Conductivity; ...

  1. Abnormal thermal conductivity in tetragonal tungsten bronze Ba...

    Office of Scientific and Technical Information (OSTI)

    temperature interval. Substitution of Sr for Ba brings about a significant decrease in thermal conductivity at x???3 accompanied by development of a low-temperature...

  2. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    Broader source: Energy.gov [DOE]

    Project to develop and validate a continuous manufacturing process for polyethylene fibers and sheets yielding a thermal conductivity value greater than 60 W/m.K.

  3. First-principles prediction of phononic thermal conductivity...

    Office of Scientific and Technical Information (OSTI)

    There has been great interest in two-dimensional materials, beyond graphene, for both ... SILICENE; THERMAL CONDUCTIVITY; TRANSPORT THEORY; TWO-DIMENSIONAL SYSTEMS; VISIBLE ...

  4. Glass-like thermal conductivity in high efficiency thermoelectric materials

    Broader source: Energy.gov [DOE]

    Discusses strategies to design thermoelectric materials with extremely low lattice thermal conductivity through modifications of the phonon band structure and phonon relaxation time.

  5. Electrical and thermal conductivity of low temperature CVD graphene...

    Office of Scientific and Technical Information (OSTI)

    temperature CVD graphene: the effect of disorder Citation Details In-Document Search Title: Electrical and thermal conductivity of low temperature CVD graphene: the effect of ...

  6. High thermal conductivity lossy dielectric using co-densified...

    Office of Scientific and Technical Information (OSTI)

    Title: High thermal conductivity lossy dielectric using co-densified multilayer configuration Systems and methods are described for loss dielectrics. A method of manufacturing a ...

  7. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation Advanced Heat Transfer ... Concepts for Concentrating Solar Power (CSP) Generation funding ...

  8. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOE Patents [OSTI]

    Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

    1997-12-02

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

  9. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOE Patents [OSTI]

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.

    1997-01-01

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  10. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  11. Nanoparticles for heat transfer and thermal energy storage

    DOE Patents [OSTI]

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  12. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    SciTech Connect (OSTI)

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; Hales, Jason D.

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.

  13. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; Hales, Jason D.

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctlymore » predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  14. Contributions of anharmonic phonon interactions to thermal boundary conductance.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.; Norris, Pamela M.; Duda, John C.

    2010-05-01

    Continued reduction of characteristic dimensions in nanosystems has given rise to increasing importance of material interfaces on the overall system performance. With regard to thermal transport, this increases the need for a better fundamental understanding of the processes affecting interfacial thermal transport, as characterized by the thermal boundary conductance. When thermal boundary conductance is driven by phononic scattering events, accurate predictions of interfacial transport must account for anharmonic phononic coupling as this affects the thermal transmission. In this paper, a new model for phononic thermal boundary conductance is developed that takes into account anharonic coupling, or inelastic scattering events, at the interface between two materials. Previous models for thermal boundary conductance are first reviewed, including the Diffuse Mismatch Model, which only consdiers elastic phonon scattering events, and earlier attempts to account for inelastic phonon scattering, namely, the Maximum Transmission Model and the Higher Harmonic Inelastic model. A new model is derived, the Anharmonic Inelastic Model, which provides a more physical consideration of the effects of inelastic scattering on thermal boundary conductance. This is accomplished by considering specific ranges of phonon frequency interactions and phonon number density conservation. Thus, this model considers the contributions of anharmonic, inelastically scattered phonons to thermal boundary conductance. This new Anharmonic Inelastic Model shows excellent agreement between model predictions and experimental data at the Pb/diamond interface due to its ability to account for the temperature dependent changing phonon population in diamond, which can couple anharmonically with multiple phonons in Pb.

  15. Measurement of thermal conductivity in proton irradiated silicon

    SciTech Connect (OSTI)

    Marat Khafizov; Clarissa Yablinsky; Todd Allen; David Hurley

    2014-04-01

    We investigate the influence of proton irradiation on thermal conductivity in single crystal silicon. We apply laser based modulated thermoreflectance technique to extract the change in conductivity of the thin layer damaged by proton irradiation. Unlike time domain thermoreflectance techniques that require application of a metal film, we perform our measurement on uncoated samples. This provides greater sensitivity to the change in conductivity of the thin damaged layer. Using sample temperature as a parameter provides a means to deduce the primary defect structures that limit thermal transport. We find that under high temperature irradiation the degradation of thermal conductivity is caused primarily by extended defects.

  16. Firearm suppressor having enhanced thermal management for rapid heat dissipation

    DOE Patents [OSTI]

    Moss, William C.; Anderson, Andrew T.

    2014-08-19

    A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.

  17. The effects of heat conduction on the vaporization of liquid invading superheated permeable rock

    SciTech Connect (OSTI)

    Woods, Andrew, W.; Fitzgerald, Shaun D.

    1996-01-24

    We examine the role of conductive and convective heat transfer in the vaporization of liquid as it slowly invades a superheated permeable rock. For very slow migration, virtually all of the liquid vaporizes. As the liquid supply rate increases beyond the rate of heat transfer by thermal conduction, a decreasing fraction of the liquid can vaporize. Indeed, for sufficiently high flow rates, the fraction vaporizing depends solely on the superheat of the rock, and any heat transfer from the superheated region is negligible. These results complement earlier studies of vaporization under very high injection rates, in which case the dynamic vapour pressure reduces the mass fraction vaporizing to very small values.

  18. Composite material having high thermal conductivity and process for fabricating same

    DOE Patents [OSTI]

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  19. Composite material having high thermal conductivity and process for fabricating same

    DOE Patents [OSTI]

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  20. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    SciTech Connect (OSTI)

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M.

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3ω technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  1. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOE Patents [OSTI]

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  2. Thermal Conductivity Measurements of Bulk Thermoelectric Materials (Prop. 2004-067)

    SciTech Connect (OSTI)

    Wang, Hsin; Porter, Wallace D; Sharp, J

    2006-01-01

    Thermal conductivity is an important material property of the bulk thermoelectrics. To improve ZT a reduced thermal conductivity is always desired. However, there is no standard material for thermoelectrics and the test results, even on the same material, often show significant scatter. The scatter in thermal conductivity made reported ZT values uncertain and sometime unrepeatable. One of the reasons for the uncertainty is due to the microstructure differences resulting from sintering, heat treatment and other processing parameters. They selected commonly used bulk thermoelectric materials and conducted thermal conductivity measurements using the laser flash diffusivity and differential scanning calorimeter (DSC) systems. Thermal conductivity was measured as a function of temperature of temperature from room temperature to 500 K and back to room temperature. The effect of thermal cycling on the bulk thermoelectric was studied. Comnbined with measurements on electrical resistivity and Seebeck coefficient, they show the use of a ZT map in selecting thermoelectrics. The commercial bulk material showed very good consistency and reliability compared to other bulk materials. The goal is to develop a thermal transport properties database for the bulk thermoelectrics and make the information available to the research community and industry.

  3. Passive Solar Building Design and Solar Thermal Space Heating Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's Nov. 30, 2010, presentation about passive solar building design, and solar thermal space heating technologies and applications. It's one in a series of Webinars to support state and local projects funded by Sustainable Energy Resources for

  4. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks

    2011-06-01

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  5. Thermal conductivity of III-V semiconductor superlattices

    SciTech Connect (OSTI)

    Mei, S. Knezevic, I.

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivities in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.

  6. Assessing the RELAPS-3D Heat Conduction Enclosure Model

    SciTech Connect (OSTI)

    McCann, Larry D.

    2008-09-30

    Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.

  7. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    SciTech Connect (OSTI)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.

  8. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less

  9. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    SciTech Connect (OSTI)

    Lee, Sangwook; Yang, Fan; Suh, Joonki; Yang, Sijie; Lee, Yeonbae; Li, Guo; Sung Choe, Hwan; Suslu, Aslihan; Chen, Yabin; Ko, Changhyun; Park, Joonsuk; Liu, Kai; Li, Jingbo; Hippalgaonkar, Kedar; Urban, Jeffrey J.; Tongay, Sefaattin; Wu, Junqiao

    2015-10-16

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Lastly, our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.

  10. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Sangwook; Yang, Fan; Suh, Joonki; Yang, Sijie; Lee, Yeonbae; Li, Guo; Sung Choe, Hwan; Suslu, Aslihan; Chen, Yabin; Ko, Changhyun; et al

    2015-10-16

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phononmore » dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Lastly, our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.« less

  11. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect

    SciTech Connect (OSTI)

    Liu, Jun Choi, Gyung-Min; Cahill, David G.

    2014-12-21

    We use pump-probe metrology based on the magneto-optic Kerr effect to measure the anisotropic thermal conductivity of (001)-oriented MoS{sub 2} crystals. A ?20?nm thick CoPt multilayer with perpendicular magnetization serves as the heater and thermometer in the experiment. The low thermal conductivity and small thickness of the CoPt transducer improve the sensitivity of the measurement to lateral heat flow in the MoS{sub 2} crystal. The thermal conductivity of MoS{sub 2} is highly anisotropic with basal-plane thermal conductivity varying between 85110 W?m{sup -1}?K{sup -1} as a function of laser spot size. The basal-plane thermal conductivity is a factor of ?50 larger than the c-axis thermal conductivity, 2.00.3?W?m{sup -1}?K{sup -1}.

  12. Finite element model for heat conduction in jointed rock masses

    SciTech Connect (OSTI)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points.

  13. Heat conduction in partial vacuum. Final technical progress report

    SciTech Connect (OSTI)

    Thomas, J R

    1980-09-01

    Methods developed for computing conduction heat losses from evacuated solar collectors are reported. Results of such calculations are given, including the minimum vacuum necessary to effectively eliminate conduction. Experiments performed at Owens-Illinois, Inc. to assess helium penetration rates into evacuated collectors are analyzed, and estimates are given as to the likely penetration rate of atmospheric helium. Conclusions are drawn as to the probable effect of helium penetration on the lifetimes of evacuated solar collectors.

  14. High thermal conductivity lossy dielectric using a multi layer configuration

    DOE Patents [OSTI]

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  15. Thermal project to heat Paluxy oil

    SciTech Connect (OSTI)

    Mickey, V.

    1984-05-01

    A steam injection project aimed at encouraging low gravity crude to the surface is reported for the Devil's River (Paluxy) field in Val Verde County, Texas. By using natural gas produced in the field from the 9000-ft Strawn Formation steam can be produced economically for injection into the 300- to 350-ft Paluxy Formation where 17 gravity crude is found. Petro Imperial conducted a thermal pilot test on its Glasscock Ranch lease 32 miles southwest of Sonora. Steam and oxygen were injected in a huff-and-puff mode on 2 of the 11 wells--each for ca 15 hr. The wells responded with a 6 bopd flow rate that declined in a few hours subsequent to the steam injection. A permit has been granted that will allow steam injection through a central location in a 5-spot pattern.

  16. Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluid Containment Materials | Department of Energy Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials National Renewable Energy Laboratory logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL), with support from the University of Wisconsin and Sandia National Laboratories, under the National

  17. Tuning thermal conductivity in homoepitaxial SrTiO{sub 3} films via defects

    SciTech Connect (OSTI)

    Brooks, Charles M.; Wilson, Richard B.; Cahill, David G.; Schäfer, Anna; Schubert, Jürgen; Mundy, Julia A.; Holtz, Megan E.; Muller, David A.; Schlom, Darrell G.

    2015-08-03

    We demonstrate the ability to tune the thermal conductivity of homoepitaxial SrTiO{sub 3} films deposited by reactive molecular-beam epitaxy by varying growth temperature, oxidation environment, and cation stoichiometry. Both point defects and planar defects decrease the longitudinal thermal conductivity (k{sub 33}), with the greatest decrease in films of the same composition observed for films containing planar defects oriented perpendicular to the direction of heat flow. The longitudinal thermal conductivity can be modified by as much as 80%—from 11.5 W m{sup −1}K{sup −1} for stoichiometric homoepitaxial SrTiO{sub 3} to 2 W m{sup −1}K{sup −1} for strontium-rich homoepitaxial Sr{sub 1+δ}TiO{sub x} films—by incorporating (SrO){sub 2} Ruddlesden-Popper planar defects.

  18. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    SciTech Connect (OSTI)

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D.; Nagaraj, B.A.

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  19. Mode dependent lattice thermal conductivity of single layer graphene

    SciTech Connect (OSTI)

    Wei, Zhiyong; Yang, Juekuan; Bi, Kedong; Chen, Yunfei

    2014-10-21

    Molecular dynamics simulation is performed to extract the phonon dispersion and phonon lifetime of single layer graphene. The mode dependent thermal conductivity is calculated from the phonon kinetic theory. The predicted thermal conductivity at room temperature exhibits important quantum effects due to the high Debye temperature of graphene. But the quantum effects are reduced significantly when the simulated temperature is as high as 1000 K. Our calculations show that out-of-plane modes contribute about 41.1% to the total thermal conductivity at room temperature. The relative contribution of out-of-plane modes has a little decrease with the increase of temperature. Contact with substrate can reduce both the total thermal conductivity of graphene and the relative contribution of out-of-plane modes, in agreement with previous experiments and theories. Increasing the coupling strength between graphene and substrate can further reduce the relative contribution of out-of-plane modes. The present investigations also show that the relative contribution of different mode phonons is not sensitive to the grain size of graphene. The obtained phonon relaxation time provides useful insight for understanding the phonon mean free path and the size effects in graphene.

  20. Heat transmission between a profiled nanowire and a thermal bath

    SciTech Connect (OSTI)

    Blanc, Christophe; Heron, Jean-Savin; Fournier, Thierry; Bourgeois, Olivier

    2014-07-28

    Thermal transport through profiled and abrupt contacts between a nanowire and a reservoir has been investigated by thermal conductance measurements. It is demonstrated that above 1?K the transmission coefficients are identical between abrupt and profiled junctions. This shows that the thermal transport is principally governed by the nanowire itself rather than by the resistance of the thermal contact. These results are perfectly compatible with the previous theoretical models. The thermal conductance measured at sub-Kelvin temperatures is discussed in relation to the universal value of the quantum of thermal conductance.

  1. Thermal conductivity of high performance carbon nanotube yarn-like fibers

    SciTech Connect (OSTI)

    Mayhew, Eric; Prakash, Vikas

    2014-05-07

    In the present paper, we present results of thermal conductivity measurements in free standing carbon nanotube (CNT) yarn-like fibers. The measurements are made using a T-type experimental configuration utilizing a Wollaston-wire hot probe inside a scanning electron microscope. In this technique, a suspended platinum wire is used both as a heater and a thermal sensor. A low frequency alternating current source is used to heat the probe wire while the third harmonic voltage across the wire is measured by a lock-in amplifier. The conductivity is deduced from an analytical model that relates the drop in the spatially averaged temperature of the wire to that of the sample. The average thermal conductivity of the neat CNT fibers and the CNT polymer composite fibers is found to be 448?W/m-K and 225?W/m-K, respectively. These values for conductivity are amongst the highest measured for CNT yarn-like fibers fabricated using a dry spinning process from vertically aligned CNT arrays. The enhancement in thermal conductivity is understood to be due to an increase in the CNT fiber elastic stiffness during the draw and twist operations, lower CNT thermal contact resistance due to increase in CNT contact area, and better alignment of the CNT fibrils along the length of the fiber.

  2. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  3. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect (OSTI)

    La Lone, B. M. Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-15

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  4. Thermal conductivity in nanocrystalline-SiC/C superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Habermehl, S.; Serrano, J. R.

    2015-11-17

    We reported the formation of thin film superlattices consisting of alternating layers of nitrogen-doped SiC (SiC:N) and C. Periodically terminating the SiC:N surface with a graphitic C boundary layer and controlling the SiC:N/C thickness ratio yield nanocrystalline SiC grains ranging in size from 365 to 23 nm. Frequency domain thermo-reflectance is employed to determine the thermal conductivity, which is found to vary from 35.5 W m-1 K-1 for monolithic undoped α-SiC films to 1.6 W m-1 K-1 for a SiC:N/C superlattice with a 47 nm period and a SiC:N/C thickness ratio of 11. A series conductance model is employed tomore » explain the dependence of the thermal conductivity on the superlatticestructure. Our results indicate that the thermal conductivity is more dependent on the SiC:N/C thickness ratio than the SiC:N grain size, indicative of strong boundary layerphonon scattering.« less

  5. Thermal conductivity in nanocrystalline-SiC/C superlattices

    SciTech Connect (OSTI)

    Habermehl, S.; Serrano, J. R.

    2015-11-17

    We reported the formation of thin film superlattices consisting of alternating layers of nitrogen-doped SiC (SiC:N) and C. Periodically terminating the SiC:N surface with a graphitic C boundary layer and controlling the SiC:N/C thickness ratio yield nanocrystalline SiC grains ranging in size from 365 to 23 nm. Frequency domain thermo-reflectance is employed to determine the thermal conductivity, which is found to vary from 35.5 W m-1 K-1 for monolithic undoped α-SiC films to 1.6 W m-1 K-1 for a SiC:N/C superlattice with a 47 nm period and a SiC:N/C thickness ratio of 11. A series conductance model is employed to explain the dependence of the thermal conductivity on the superlatticestructure. Our results indicate that the thermal conductivity is more dependent on the SiC:N/C thickness ratio than the SiC:N grain size, indicative of strong boundary layerphonon scattering.

  6. Esimation of field-scale thermal conductivities of unsaturatedrocks from in-situ temperature data

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2006-06-26

    A general approach is presented here which allows estimationof field-scale thermal properties of unsaturated rock using temperaturedata collected from in situ heater tests. The approach developed here isused to determine the thermal conductivities of the unsaturated host rockof the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST wasdesigned to obtain thermal, hydrological, mechanical, and chemical (THMC)data in the unsaturated fractured rock of Yucca Mountain. Sophisticatednumerical models have been developed to analyze these THMC data. However,though the objective of those models was to analyze "field-scale" (of theorder of tens-of-meters) THMC data, thermal conductivities measured from"laboratory-scale" core samples have been used as input parameters.While, in the absence of a better alternative, using laboratory-scalethermal conductivity values in field-scale models can be justified, suchapplications introduce uncertainties in the outcome of the models. Thetemperature data collected from the DST provides a unique opportunity toresolve some of these uncertainties. These temperature data can be usedto estimate the thermal conductivity of the DST host rock and, given thelarge volume of rock affected by heating at the DST, such an estimatewill be a more reliable effective thermal conductivity value for fieldscale application. In this paper, thus, temperature data from the DST areused to develop an estimate of the field-scale thermal conductivityvalues of the unsaturated host rock of the DST. An analytical solution isdeveloped for the temperature rise in the host rock of the DST; and usinga nonlinear fitting routine, a best-fit estimate of field-scale thermalconductivity for the DST host rock is obtained. Temperature data from theDST show evidence of two distinct thermal regimes: a zone below boiling(wet) and a zone above boiling (dry). Estimates of thermal conductivityfor both the wet and dry zones are obtained in this paper. Sensitivity ofthese estimates

  7. Lattice thermal conductivity of filled skutterudites: An anharmonicity perspective

    SciTech Connect (OSTI)

    Geng, Huiyuan, E-mail: genghuiyuan@hit.edu.cn; Meng, Xianfu; Zhang, Hao; Zhang, Jian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-28

    We report a phenomenological model to calculate the high-temperature lattice thermal conductivity of filled skutterudite antimonides. The model needs no phonon resonant scattering terms. Instead, we assume that umklapp processes dominate the high-temperature phonon scattering. In order to represent the anharmonicity introduced by the filling atom, we introduce a Gaussian term into the relaxation time of the umklapp process. The developed model agrees remarkably well with the experimental results of RE{sub f}Co{sub 4}Sb{sub 12} and RE{sub f}Fe{sub 4}Sb{sub 12} (RE?=?Yb, Ba, and Ca) alloys. To further test the validity of our model, we calculate the lattice thermal conductivity of nanostructured or multi-filled skutterudites. The calculation results are also in good agreement with experiment, increasing our confidence in the developed anharmonicity model.

  8. Measurement of temperature-dependent thermal conductivity and viscosity of TiO{sub 2}-water nanofluids

    SciTech Connect (OSTI)

    Duangthongsuk, Weerapun; Wongwises, Somchai

    2009-04-15

    Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Many attempts have been made to investigate its thermal conductivity and viscosity, which are important thermophysical properties. No definitive agreements have emerged, however, about these properties. This article reports the thermal conductivity and dynamic viscosity of nanofluids experimentally. TiO{sub 2} nanoparticles dispersed in water with volume concentration of 0.2-2 vol.% are used in the present study. A transient hot-wire apparatus is used for measuring the thermal conductivity of nanofluids whereas the Bohlin rotational rheometer (Malvern Instrument) is used to measure the viscosity of nanofluids. The data are collected for temperatures ranging from 15 C to 35 C. The results show that the measured viscosity and thermal conductivity of nanofluids increased as the particle concentrations increased and are higher than the values of the base liquids. Furthermore, thermal conductivity of nanofluids increased with increasing nanofluid temperatures and, conversely, the viscosity of nanofluids decreased with increasing temperature of nanofluids. Moreover, the measured thermal conductivity and viscosity of nanofluids are quite different from the predicted values from the existing correlations and the data reported by other researchers. Finally, new thermophysical correlations are proposed for predicting the thermal conductivity and viscosity of nanofluids. (author)

  9. Measurements of the apparent thermal conductivity of multi-layer insulation between 20 K and 90 K

    SciTech Connect (OSTI)

    Hurd, Joseph A.; Van Sciver, Steven W.

    2014-01-29

    NASA has the need to efficiently store cryogenic propellants in space for long periods of time. One method to improve storage efficiency is to use multi-layer insulation (MLI), a technique that minimizes the boiling rate due to radiation heat transfer. Typically, the thermal performance of MLI is determined by measuring the rate of evaporation of liquid nitrogen from a calibrated cryostat. The main limitation with this method is that testing conditions are restricted by the boiling temperature of the LN{sub 2}, which may not match the requirements of the application. The Multi-Layer Insulation Thermal Conductivity Experiment (MIKE) at the National High Magnetic Field Laboratory is capable of measuring the effective thermal conductivity of MLI at variable boundary temperatures. MIKE uses cryo-refrigerators to control boundary temperatures in the calorimeter and a calibrated thermal link to measure the heat load. To make the measurements requested by NASA, MIKE needed to be recalibrated for the 20 K to 90 K range. Also, due to the expectation of a lower heat transfer rate, the heat load support rod material was changed to one with a lower thermal conductivity to ensure the temperature difference seen on the cold rod could be measurable at the estimated heat load. Presented are the alterations to MIKE including calibration data and heat load measurements on new load-bearing MLI supplied by NASA.

  10. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  11. Comparative thermal conductivity measurements at Sandia National Laboratories. [Pyroceram

    SciTech Connect (OSTI)

    Sweet, J.N.; Roth, E.P.; Moss, M.; Haseman, G.M.; Anaya, J.A.

    1986-06-01

    A detailed examination has been made on the use of the comparative method for measuring the thermal conductivity of solid materials. Existing data analysis methods are discussed and new techniques, based on generalized linear least squares methods, are presented. An error analysis is made to determine the potential accuracy, reproducibility, and repeatability of the technique. For the case in which the reference conductivity is known to a relative accuracy of +-5%, the overall relative accuracy of the measurement is shown to be about +-6%. Experimental data are presented for the conductivities of commonly used reference materials; Pyrex 7740, Pyroceram 9606, Inconel 718, and Armco iron. Data are also given for two potential reference materials: fused silica and 304 stainless steel.

  12. Thermal overinsulation and the behavior of hot water heating systems

    SciTech Connect (OSTI)

    Casier, Y.

    1982-01-01

    Supported by thermodynamic calculations and field experience G.D.F. disproved the theory that because of their high warm-up/cooldown inertia, hot-water central heating systems are inefficient for insulated dwellings that have low thermal losses, causing overheating in certain situations. With the proper choice of thermostat, water temperature, and piping design, a heating system that uses water as the heat carrier can be responsive to the needs of a tightly insulated residence.

  13. Continuous Processing of High Thermal Conductivity Fibers and Sheets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Professor Gang Chen, Carl Richard Soderberg Professor of Power Engineering 617-253-0006 (phone), 617-324-5545 (fax) gchen2@mit.edu U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Plastics are less expensive, lighter, and require less energy to process than metals; however, they have low thermal conductivity values (~0.3 W/mK) 

  14. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  15. EXACT SOLUTION OF HEAT CONDUCTION IN A TWO-DOMAIN COMPOSITE CYLINDER WITH AN ORTHOTROPIC OUTER LAYER.

    SciTech Connect (OSTI)

    C. AVILES-RAMOS; C. RUDY

    2000-11-01

    The transient exact solution of heat conduction in a two-domain composite cylinder is developed using the separation of variables technique. The inner cylinder is isotropic and the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary conditions of the first and second kinds at the outer surface of the orthotropic layer. These solutions are applied to heat flow calorimeters modeling assuming that there is heat generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter simulations are carried out assuming that the inner cylinder is filled with plutonium oxide powder. The first objective in these simulations is to predict the onset of thermal equilibrium of the calorimeter with its environment. Two types of boundary conditions at the outer surface of the orthotropic layer are used to predict thermal equilibrium. The procedure developed to carry out these simulations can be used as a guideline for the design of calorimeters. Another important application of these solutions is on the estimation of thermophysical properties of orthotropic cylinders. The thermal conductivities in the vertical, radial and circumferential directions of the orthotropic outer layer can be estimated using this exact solution and experimental data. Simultaneous estimation of the volumetric heat capacity and thermal conductivities is also possible. Furthermore, this solution has potential applications to the solution of the inverse heat conduction problem in this cylindrical geometry. An interesting feature of the construction of this solution is that two different sets of eigenfunctions need to be considered in the eigenfunction expansion. These eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner cylinder and the thermal diffusivity in the vertical direction of the outer cylindrical layer.

  16. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    SciTech Connect (OSTI)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small mass ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.

  17. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom

    2015-01-01

    The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small massmore » ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  18. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect (OSTI)

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  19. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  20. Conjugate natural convection heat transfer through a conductive partition separating two reservoirs at different temperatures

    SciTech Connect (OSTI)

    Kimura, Shigeo; Darie, Emanuel; Kiwata, Takahiro; Okajima, Atsushi

    1999-07-01

    A simple one-dimensional theory regarding the heat transfer through a thermally conductive partition that separates two fluid reservoirs at different temperatures has been developed. According to the theory a unique nondimensional (Biot number-like) parameter to characterize the problem is identified; the parameter is defined by the geometric aspect ratio of the partition, the fluid-to-partition thermal conductivity ratio and the Rayleigh number based on the temperature difference between the two reservoirs. The theory predicts the average temperatures of both sides of the partition and the overall Nusselt number. The theory has the strength due to its simplicity and the fact that the unique Biot number-like parameter contains all the conditions necessary to describe the problem. In order to test the proposed one-dimensional theory a series of experiments have been conducted using an apparatus that consists of two water chambers and a partition separating the two. The one chamber, which is filled with water, is heated by electric heaters and the other is cooled by a serpentine copper pipe. Three different materials, i.e., copper, stainless steel and ceramics, are employed for the partition. The heat transfer rates across the partition are measured by the electric power dissipated at the heaters. The reservoir temperatures and the partition temperatures are monitored by thermocouples. The Rayleigh number defined by the partition height and the temperature difference of the two reservoirs is around 10{sup 8}. a pH indicator method to visualize convecting flows shows a presence of velocity boundary layers along both sides of the vertical partition. The temperature measurements in the reservoirs show a strong temperature stratification in the core region, where the water is largely stagnant and sandwiched by two counter-advancing horizontal jets at the top and bottom. The experimentally-obtained average heat transfer rates and partition surface temperatures are well

  1. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    DOE Patents [OSTI]

    Klett, James W. [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  2. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  3. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  4. High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film

    SciTech Connect (OSTI)

    Liu, X.; Feldman, J. L.; Cahill, D. G.; Crandall, R. S.; Bernstein, N.; Photiadis, D. M.; Mehl, M. J.; Papaconstantopoulos, D. A.

    2009-01-23

    We measured the thermal conductivity {kappa} of an 80 {micro}m thick hydrogenated amorphous silicon film prepared by hot-wire chemical-vapor deposition with the 3{omega} (80-300 K) and the time-domain thermoreflectance (300 K) methods. The {kappa} is higher than any of the previous temperature dependent measurements and shows a strong phonon mean free path dependence. We also applied a Kubo based theory using a tight-binding method on three 1000 atom continuous random network models. The theory gives higher {kappa} for more ordered models, but not high enough to explain our results, even after extrapolating to lower frequencies with a Boltzmann approach. Our results show that this material is more ordered than any amorphous silicon previously studied.

  5. Estimation of host rock thermal conductivities using thetemperature data from the drift-scale test at Yucca Mountain,Nevada

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2003-11-25

    A large volume of temperature data has been collected from a very large, underground heater test, the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST was designed to obtain thermal, hydrological, mechanical, and chemical (THMC) data in the unsaturated fractured rock of Yucca Mountain. Sophisticated numerical models have been developed to analyze the collected THMC data. In these analyses, thermal conductivities measured from core samples have been used as input parameters to the model. However, it was not known whether these core measurements represented the true field-scale thermal conductivity of the host rock. Realizing these difficulties, elaborate, computationally intensive geostatistical simulations have also been performed to obtain field-scale thermal conductivity of the host rock from the core measurements. In this paper, we use the temperature data from the DST as the input (instead of the measured core-scale thermal conductivity values) to develop an estimate of the field-scale thermal conductivity values. Assuming a conductive thermal regime, we develop an analytical solution for the temperature rise in the host rock of the DST; and using a nonlinear fitting routine, we obtain a best-fit estimate of field-scale thermal conductivity for the DST host rock. The temperature data collected from the DST shows clear evidence of two distinct thermal regimes: a zone below boiling (wet) and a zone above boiling (dry). We obtain estimates of thermal conductivity for both the wet and dry zones. We also analyze the sensitivity of these estimates to the input heating power of the DST.

  6. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    SciTech Connect (OSTI)

    Gu, Xiaokun; Yang, Ronggui

    2015-01-14

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ?10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.

  7. Fourier heat conduction as a phenomenon described within the scope of the second law

    SciTech Connect (OSTI)

    Jesudason, Christopher G.

    2014-12-10

    unfortunately linked to mechanical reversibility, that has discouraged such an association. The modeling is based on an application of a 'recoverable transition', defined and developed earlier on ideas derived from thermal desorption of particles from a surface where the Fourier heat conduction process is approximated as a series of such desorption processes. We recall that the original Carnot engine required both adiabatic and isothermal steps to complete the zero entropy cycle, and this construct lead to the consequent deduction that any Second law statement that refers to heat-work conversion processes are only globally relevant. Here, on the other hand, we examine Fourier heat conduction from MD simulation and model this process as a zero-entropy forward scattering process relative to each of the atoms in the lattice chain being treated as a system where the Carnot cycle can be applied individually. The equations developed predicts the 'work' done to be equal to the energy transfer rate. The MD simulations conducted shows excellent agreement with the theory. Such views and results as these, if developed to a successful conclusion could imply that the Carnot cycle be viewed as describing a local process of energy-work conversion and that irreversible local processes might be brought within the scope of this cycle, implying a unified treatment of thermodynamically (i) irreversible, (ii) reversible, (iii) isothermal and (iv) adiabatic processes.

  8. Thermal conductivity of graphene mediated by strain and size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang; Huang, Baoling; Lindsay, Lucas

    2016-06-09

    Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due tomore » their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size.« less

  9. Evaluating the ignition sensitivity of thermal battery heat pellets

    SciTech Connect (OSTI)

    Thomas, E.V.

    1993-09-01

    Thermal batteries are activated by the ignition of heat pellets. If the heat pellets are not sensitive enough to the ignition stimulus, the thermal battery will not activate, resulting in a dud. Thus, to assure reliable thermal batteries, it is important to demonstrate that the pellets have satisfactory ignition sensitivity by testing a number of specimens. There are a number of statistical methods for evaluating the sensitivity of a device to some stimulus. Generally, these methods are applicable to the situation in which a single test is destructive to the specimen being tested, independent of the outcome of the test. In the case of thermal battery heat pellets, however, tests that result in a nonresponse do not totally degrade the specimen. This peculiarity provides opportunities to efficiently evaluate the ignition sensitivity of heat pellets. In this paper, a simple strategy for evaluating heat pellet ignition sensitivity (including experimental design and data analysis) is described. The relatively good asymptotic and small-sample efficiencies of this strategy are demonstrated.

  10. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  11. Angle Resolved Thermal Conductivity of CeCoIn5 along the Nodal...

    Office of Scientific and Technical Information (OSTI)

    Angle Resolved Thermal Conductivity of CeCoIn5 along the Nodal Direction Citation Details In-Document Search Title: Angle Resolved Thermal Conductivity of CeCoIn5 along the Nodal ...

  12. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    SciTech Connect (OSTI)

    Green, M.A.

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  13. Numerical investigation of CO{sub 2} emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe of variable thermal conductivity

    SciTech Connect (OSTI)

    Lebelo, Ramoshweu Solomon

    2014-10-24

    In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.

  14. Fourier analysis of conductive heat transfer for glazed roofing...

    Office of Scientific and Technical Information (OSTI)

    Journal Volume: 1605; Journal Issue: 1; Conference: ... sciences education and research towards global ... THEORY; HARMONICS; HEAT; MATERIALS; NATURAL CONVECTION; ...

  15. Atomistic study of porosity impact on phonon driven thermal conductivity: Application to uranium dioxide

    SciTech Connect (OSTI)

    Colbert, Mehdi; Ribeiro, Fabienne; Trglia, Guy

    2014-01-21

    We present here an analytical method, based on the kinetic theory, to determine the impact of defects such as cavities on the thermal conductivity of a solid. This approach, which explicitly takes into account the effects of internal pore surfaces, will be referred to as the Phonon Interface THermal cONductivity (PITHON) model. Once exposed in the general case, this method is then illustrated in the case of uranium dioxide. It appears that taking properly into account these interface effects significantly modifies the temperature and porosity dependence of thermal conductivity with respect to that issued from either micromechanical models or more recent approaches, in particular, for small cavity sizes. More precisely, it is found that if the mean free path appears to have a major effect in this system in the temperature and porosity distribution range of interest, the variation of the specific heat at the surface of the cavity is predicted to be essential at very low temperature and small sizes for sufficiently large porosity.

  16. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains

    SciTech Connect (OSTI)

    Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling

    2015-01-01

    High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented. We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.

  17. Integrated thermal solar heat pump system

    SciTech Connect (OSTI)

    Shaw, D.N.

    1980-04-08

    A compression module may comprise a hermetic helical screw rotary compressor having injection and ejection ports in addition to discharge and suction ports or may comprise a multiple cylinder, multiple level, reciprocating compressor. The module incorporates a subcooler coil and is connected to an outside air coil, a thermal energy storage coil, a direct solar energy supply coil, one or more inside coils for the space to be conditioned and a hot water coil through common, discharge manifold, suction manifold, liquid drain manifold and liquid feed manifold, by suitable solenoid operated control valves and check valves. The solenoid operated control valves are selectively operated in response to system operating parameters. Seal pots and positive displacement pumps may operate to force liquid refrigerant condensed at intermediate pressure to flow to the receiver which is pressurized at a pressure corresponding to the condensation temperature of the highest pressure condensing coil in the system. Alternatively, liquid refrigerant expansion may be used to reach a common receiver pressure for all condenser returns.

  18. High heating rate thermal desorption for molecular surface sampling

    DOE Patents [OSTI]

    Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2016-03-29

    A method for analyzing a sample having at least one analyte includes the step of heating the sample at a rate of at least 10.sup.6 K/s to thermally desorb at least one analyte from the sample. The desorbed analyte is collected. The analyte can then be analyzed.

  19. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction

    SciTech Connect (OSTI)

    Chen, Chun-Chung; Li, Zhen; Cronin, Stephen B. [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Shi, Li [Department of Mechanical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-02-24

    We measure thermal transport across a graphene/hexagonal boron nitride (h-BN) interface by electrically heating the graphene and measuring the temperature difference between the graphene and BN using Raman spectroscopy. Because the temperature of the graphene and BN are measured optically, this approach enables nanometer resolution in the cross-plane direction. A temperature drop of 60?K can be achieved across this junction at high electrical powers (14 mW). Based on the temperature difference and the applied power data, we determine the thermal interface conductance of this junction to be 7.4??10{sup 6}?Wm{sup ?2}K{sup ?1}, which is below the 10{sup 7}10{sup 8}?Wm{sup ?2}K{sup ?1} values previously reported for graphene/SiO{sub 2} interface.

  20. Thermal conductivity in large-J two-dimensional antiferromagnets: Role of phonon scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chernyshev, A. L.; Brenig, Wolfram

    2015-08-05

    Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates. It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ΘD≲T<< J.

  1. Heat diode effect and negative differential thermal conductance...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2013-06-27 OSTI Identifier: 1104390 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 87; ...

  2. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    SciTech Connect (OSTI)

    Jordan, Eric; Gell, Maurice

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  3. Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity

    SciTech Connect (OSTI)

    Wang, Yan; Gu, Chongjie; Ruan, Xiulin

    2015-02-16

    A low lattice thermal conductivity (κ) is desired for thermoelectrics, and a highly anisotropic κ is essential for applications such as magnetic layers for heat-assisted magnetic recording, where a high cross-plane (perpendicular to layer) κ is needed to ensure fast writing while a low in-plane κ is required to avoid interaction between adjacent bits of data. In this work, we conduct molecular dynamics simulations to investigate the κ of superlattice (SL), random multilayer (RML) and alloy, and reveal that RML can have 1–2 orders of magnitude higher anisotropy in κ than SL and alloy. We systematically explore how the κ of SL, RML, and alloy changes relative to each other for different bond strength, interface roughness, atomic mass, and structure size, which provides guidance for choosing materials and structural parameters to build RMLs with optimal performance for specific applications.

  4. Crossover behavior of the thermal conductance and Kramers’ transition rate theory

    SciTech Connect (OSTI)

    Velizhanin, Kirill A.; Sahu, Subin; Chien, Chih -Chun; Dubi, Yonatan; Zwolak, Michael

    2015-12-04

    Kramers’ theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive the heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Finally, not only does this shed new light on Kramers’ classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale.

  5. Crossover behavior of the thermal conductance and Kramers’ transition rate theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Velizhanin, Kirill A.; Sahu, Subin; Chien, Chih -Chun; Dubi, Yonatan; Zwolak, Michael

    2015-12-04

    Kramers’ theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive themore » heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Finally, not only does this shed new light on Kramers’ classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale.« less

  6. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOE Patents [OSTI]

    Brown, J.; Hirschfeld, D.; Liu, D.M.; Yang, Y.; Li, T.; Swanson, R.E.; Van Aken, S.; Kim, J.M.

    1992-04-07

    Compositions, having the general formula (Ca[sub x]Mg[sub 1[minus]x])Zr[sub 4](PO[sub 4])[sub 6] where x is between 0.5 and 0.99, are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850 C for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200 C to 1350 C to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used. 7 figs.

  7. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOE Patents [OSTI]

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  8. Resonant bonding leads to low lattice thermal conductivity (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Energy Frontier Research Centers (EFRC); Solid-State Solar-Thermal Energy ... Country of Publication: United States Language: English Subject: solar (photovoltaic), ...

  9. Reexamination of Basal Plane Thermal Conductivity of Suspended Graphene Samples Measured by Electro-Thermal Micro-Bridge Methods

    SciTech Connect (OSTI)

    Jo, Insun; Pettes, Michael; Lindsay, Lucas R; Ou, Eric; Weathers, Annie; Moore, Arden; Yao, Zhen; Shi, Li

    2015-01-01

    Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD), and that such a feature does not reveal the failure of Fourier s law despite the increase in the apparent thermal conductivity with length. The re-analyzed thermal conductivity of a single-layer CVD graphene sample reaches about ( 1680 180 )Wm-1K-1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about ( 880 60 ) and ( 730 60 ) Wm-1K-1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  10. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  11. Reexamination of Basal Plane Thermal Conductivity of Suspended Graphene Samples Measured by Electro-Thermal Micro-Bridge Methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jo, Insun; Pettes, Michael; Lindsay, Lucas R.; Ou, Eric; Weathers, Annie; Moore, Arden; Yao, Zhen; Shi, Li

    2015-05-18

    Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD), and that such a feature does not reveal the failure of Fourier s law despite the increase in the apparent thermal conductivity with length. The re-analyzed thermal conductivitymore » of a single-layer CVD graphene sample reaches about ( 1680 180 )Wm-1K-1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about ( 880 60 ) and ( 730 60 ) Wm-1K-1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.« less

  12. Thermal conductivity of configurable two-dimensional carbon nanotube architecture and strain modulation

    SciTech Connect (OSTI)

    Zhan, H. F.; Bell, J. M.; Gu, Y. T., E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George St., Brisbane, Queensland 4000 (Australia); Zhang, G. [Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632 (Singapore)

    2014-10-13

    We reported the thermal conductivity of the two-dimensional carbon nanotube (CNT)-based architecture, which can be constructed through welding of single-wall CNTs by electron beam. Using large-scale nonequilibrium molecular dynamics simulations, the thermal conductivity is found to vary with different junction types due to their different phonon scatterings at the junction. The strong length and strain dependence of the thermal conductivity suggests an effective avenue to tune the thermal transport properties of the CNT-based architecture, benefiting the design of nanoscale thermal rectifiers or phonon engineering.

  13. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling

    2015-01-01

    High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented.more » We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.« less

  14. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    SciTech Connect (OSTI)

    Vora, Heli; Nielsen, Bent; Du, Xu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York (United States)

    2014-02-21

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  15. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  16. Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the suns not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MITs heat storage materials are designed to melt at high temperatures and conduct heat wellthis makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MITs low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

  17. Thermal modeling of an indirectly heated E-beam gun

    SciTech Connect (OSTI)

    Jallouk, P.A.

    1994-12-31

    Uranium atomic vapor for the Atomic Vapor Laser Isotope Separation (AVLIS) process is produced by magnetically steering a high-power electron beam to the surface of the uranium melt. The electron beam is produced by a Pierce-type axial E-beam gun with an indirectly heated emitter (IDHE)-the industry standard for high-power melting and vaporization. AVLIS process design requirements for the E-beam gun are stringent, particularly in the areas of modularity, compactness, and lifetime. The gun assembly details are complex, geometric clearances are tight, and operating temperatures and stress levels are at the upper limits of acceptability. Detailed three-dimensional finite-element thermal models of the E-beam gun have been developed to address this challenging thermal packaging issue. These models are used in conjunction with design and testing activities to develop a gun exhibiting a high level of reliability for acceptable operation in a plant environment.

  18. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  19. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  20. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module | Department of Energy Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it. Approach A computational modeling of molten salt heat transfer fluid

  1. Assessment of Latent Heat Reservoirs for Thermal Management of...

    Office of Scientific and Technical Information (OSTI)

    During the early portion of the pulse, heating of the diode and its surrounding material ... Subject: 42 ENGINEERING; CAPACITY; FUSION HEAT; GALLIUM; HEAT FLUX; HEAT TRANSFER; ...

  2. Assessment of Latent Heat Reservoirs for Thermal Management of...

    Office of Scientific and Technical Information (OSTI)

    ... During the early portion of the pulse, heating of the diode and its surrounding material ... Subject: 42 ENGINEERING; CAPACITY; FUSION HEAT; GALLIUM; HEAT FLUX; HEAT TRANSFER; ...

  3. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    Turner, E. Bruce; Brown, Tim; Mardiat, Ed

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  4. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  5. Hot wire needle probe for in-reactor thermal conductivity measurement

    SciTech Connect (OSTI)

    JE Daw; JL Rempe; DL Knudson

    2012-08-01

    Thermal conductivity is a key property that must be known for proper design, test, and application of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are measured out-of-pile by Post Irradiated Examination (PIE) using a “cook and look” approach in hot-cells. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for simulation design codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses recent efforts to develop and evaluate an in-pile thermal conductivity sensor based on a hot wire needle probe. Testing has been performed on samples with thermal conductivities ranging from 0.2 W/m-K to 22 W-m-K in temperatures ranging from 20 °C to 600 °C. Thermal conductivity values measured using the needle probe match data found in the literature to within 5% for samples tested at room temperature, 5.67% for low thermal conductivity samples tested at high temperatures, and 10% for high thermal conductivity samples tested at high temperatures. Experimental results also show that this sensor is capable of operating in various test conditions and of surviving long duration irradiations.

  6. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect (OSTI)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  7. Thermodynamic approach to the relaxation of viscosity and thermal conductivity

    SciTech Connect (OSTI)

    Biro, T. S.; Van, P.; Molnar, E.

    2008-07-15

    A novel higher order theory of relaxation of heat and viscosity is proposed based on corrections to the traditional treatment of the relativistic energy density. In the framework of generalized Bjorken scaling solution to accelerating longitudinal flow we point out that the energy flux can be consequently set to zero in the stationary case, independently of the choice of a specific local rest frame, like the Landau-Lifshitz or Eckart one. We investigate and compare several cooling and reheating scenarios for the quark gluon plasma within this approach.

  8. Assessing the Thermal Environmental Impacts of an Groundwater Heat Pump in Southeastern Washington State

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Waichler, Scott R.; Mackley, Rob D.; Horner, Jacob A.

    2012-04-01

    A thermal analysis of a large-scale (e.g., 1900 gpm), open-loop ground source heat pump (GSHP) installed on the Pacific Northwest National Laboratory (PNNL) campus in southeastern Washington State has been performed using a numerical modeling approach. Water temperature increases at the upgradient extraction wells in the system and at the downgradient Columbia River are potential concerns, especially since heat rejection to the subsurface will occur year-round. Hence, thermal impacts of the open-loop GSHP were investigated to identify operational scenarios that minimized downgradient environmental impacts at the river, and upgradient temperature drift at the production wells. Simulations examined the sensitivity of the system to variations in pumping rates and injected water temperatures, as well as to hydraulic conductivity estimates of the aquifer. Results demonstrated that both downgradient and upgradient thermal impacts were more sensitive to injection flow rates than estimates of hydraulic conductivity. Higher injection rates at lower temperatures resulted in higher temperature increases at the extraction wells but lower increases at the river. Conversely, lower pumping rates and higher injected water temperatures resulted in a smaller temperature increase at the extraction wells, but higher increases at the river. The scenario with lower pumping rates is operationally more efficient, but does increase the likelihood of a thermal plume discharging into the Columbia River. However, this impact would be mitigated by mixing within the hyporheic zone and the Columbia River. The impact under current operational conditions is negligible, but future increases in heat rejection could require a compromise between maximizing operational efficiency and minimizing temperature increases at the shoreline.

  9. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    SciTech Connect (OSTI)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P.A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F.P.

    2012-06-15

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of {approx}100 m{sup 2}/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 Degree-Sign C. The thermal conductivity ({kappa}) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased ({approx}60%) compared to that of NiO single crystal. This strong reduction in {kappa} with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery. - Graphical abstract: Highly efficient phonon scattering by surfactant-free NiO nanostructures obtained by solution combustion of a mixture of nickel (II) nitrate hexahydrate (oxidizer) and urea (fuel) at various temperatures. Highlights: Black-Right-Pointing-Pointer Fast synthesis of surfactant-free NiO nanoparticles with controllable size. Black-Right-Pointing-Pointer High specific surface area for NiO nanoparticles with size range from 3 to 7 nm. Black-Right-Pointing-Pointer Strong reduction of the thermal conductivity with decreasing particle size. Black-Right-Pointing-Pointer NiO as nanoinclusions in high performance materials for energy conversion.

  10. Thermal desorption treatability test conducted with VAC*TRAX Unit

    SciTech Connect (OSTI)

    1996-01-01

    In 1992, Congress passed the Federal Facilities Compliance Act, requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) treatment standards. In response to the need for mixed-waste treatment capacity, where off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed waste with treatment options and develop a strategy for treatment of mixed waste. DOE-AL manages nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment units (MTUs) to treat waste at the sites where the wastes are generated. Treatment processes used for mixed wastes must remove the hazardous component (i.e., meet RCRA treatment standards) and contain the radioactive component in a form that will protect the worker, public, and environment. On the basis of the recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (DOE-GJPO) include thermal desorption (TD), evaporative oxidation, and waste water evaporation.

  11. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; et al

    2015-03-05

    The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffusemore » mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.« less

  12. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    SciTech Connect (OSTI)

    Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.

    2015-03-05

    The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  13. Current methods to handle wall conduction and room internal heat transfer

    SciTech Connect (OSTI)

    Davies, M.G.

    1999-07-01

    This paper reviews methods of handling wall conduction and room internal heat exchange adopted by ASHRAE (1993 Handbook of Fundamentals and later developments), CIBSE (1986 Guide and current proposals), and the CEN/TC89/WG6 proposals to calculate heating and cooling loads and related topics.

  14. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  15. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    SciTech Connect (OSTI)

    Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-07-21

    The thermal conductivity of uranium dioxide (UO2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO2, as a function of defect concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].

  16. Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity

    SciTech Connect (OSTI)

    Du, Shiyu; Andersson, Anders D.; Germann, Timothy C.; Stanek, Christopher R.

    2012-05-02

    Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

  17. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    DOE Patents [OSTI]

    Zhang, Zhiqiang; Lockwood, Frances E.

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  18. Basal-plane thermal conductivity of few-layer molybdenum disulfide

    SciTech Connect (OSTI)

    Jo, Insun; Ou, Eric; Shi, Li; Pettes, Michael Thompson; Wu, Wei

    2014-05-19

    We report the in-plane thermal conductivity of suspended exfoliated few-layer molybdenum disulfide (MoS{sub 2}) samples that were measured by suspended micro-devices with integrated resistance thermometers. The obtained room-temperature thermal conductivity values are (4450) and (4852) W m{sup ?1} K{sup ?1} for two samples that are 4 and 7 layers thick, respectively. For both samples, the peak thermal conductivity occurs at a temperature close to 120?K, above which the thermal conductivity is dominated by intrinsic phonon-phonon scattering although phonon scattering by surface disorders can still play an important role in these samples especially at low temperatures.

  19. Thermally conductive alumina/organic composites for photovoltaic concentrator cell isolation

    SciTech Connect (OSTI)

    Beavis, L.C.; Panitz, J.K.G.; Sharp, D.J.

    1988-01-01

    Electrophoretically deposited styrene-acrylate films were studied. These yield marginally useful thermal conductivities of 0.1--0.2 watts/meter-Kelvin, but have useful dielectric strengths over 2500 volts for 40 micrometer thick coatings. Thin, 25 micrometer, coatings of anodically grown Al/sub 2/O/sub 3/ films were also investigated. These films have thermal conductivities of approximately 6--8 watts/meter-Kelvin. Although these Al/sub 2/O/sub 3/ films have greater thermal conductivity than the polymer films, they exhibit porosity which typically limits their dielectric strength to less than 1000 volts. In the current study we have determined that styrene-acrylate can be electrophoretically deposited in porous anodic aluminum oxide films to form an alumina-organic composite with improved electrical breakdown strengths as well as higher thermal conductivity than styrene-acrylate films. 7 refs., 2 tabs.

  20. Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS 2 Thermal Battery Cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; Lechman, Jeremy B.; Schunk, P. Randall

    2016-06-11

    The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less

  1. Thermal Conductivity in Nanoporous Gold Films during Electron-Phonon Nonequilibrium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hopkins, Patrick E.; Norris, Pamela M.; Phinney, Leslie M.; Policastro, Steven A.; Kelly, Robert G.

    2008-01-01

    The reduction of nanodevices has given recent attention to nanoporous materials due to their structure and geometry. However, the thermophysical properties of these materials are relatively unknown. In this article, an expression for thermal conductivity of nanoporous structures is derived based on the assumption that the finite size of the ligaments leads to electron-ligament wall scattering. This expression is then used to analyze the thermal conductivity of nanoporous structures in the event of electron-phonon nonequilibrium.

  2. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    SciTech Connect (OSTI)

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermal conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.

  3. Convective heat transfer with buoyancy effects from thermal sources on a flat plate

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1991-06-01

    An experimental study is carried out on the thermal interaction between two finite-size heat sources, located on a flat plate that is well insulated on the back. Both the horizontal and the vertical orientations of the surface are studied by measuring the flow velocities, the temperature field, and the local heat flux. The investigation is directed at the pure natural convection circumstance (no forced flow velocity) and the buoyancy-dominated mixed-convection circumstance (presence of a relatively small forced flow velocity). Large temperature gradients occur in the vicinity of the heat sources, resulting in a substantial diffusion of heat along the plate length. However, the effect of conduction is found to be highly localized. The orientation of the surface has a very strong effect on the interaction of the wakes from the heat sources for the circumstances considered. An upstream source is found to have a very strong influence on the temperature of a downstream source in the vertical surface orientation but has a much weaker influence in the horizontal orientation. In the latter circumstance the presence of a small forced flow velocity may actually increase the temperature of a downstream source by tilting the wake from the upstream source toward the downstream source. 25 refs.

  4. Reduced thermal conductivity in niobium-doped calcium-manganate compounds for thermoelectric applications

    SciTech Connect (OSTI)

    Graff, Ayelet; Amouyal, Yaron

    2014-11-03

    Reduction of thermal conductivity is essential for obtaining high energy conversion efficiency in thermoelectric materials. We report on significant reduction of thermal conductivity in niobium-doped CaO(CaMnO{sub 3}){sub m} compounds for thermoelectric energy harvesting due to introduction of extra CaO-planes in the CaMnO{sub 3}-base material. We measure the thermal conductivities of the different compounds applying the laser flash analysis at temperatures between 300 and 1000 K, and observe a remarkable reduction in thermal conductivity with increasing CaO-planar density, from a value of 3.7 W·m{sup −1}K{sup −1} for m = ∞ down to 1.5 W·m{sup −1}K{sup −1} for m = 1 at 400 K. This apparent correlation between thermal conductivity and CaO-planar density is elucidated in terms of boundary phonon scattering, providing us with a practical way to manipulate lattice thermal conductivity via microstructural modifications.

  5. Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paschinger, W.; Rogl, Gerda; Grytsiv, A.; Michor, H.; Heinrich, P. R.; Mueller, H.; Puchegger, S.; Klobes, B.; Hermann, Raphael P.; Reinecker, M.; et al

    2016-06-21

    Here, in this study, novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450°C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni–Sn–Sb and in the quaternary Ba–Ni–Sb–Sn systems. Phase equilibria in the Ni–Sn–Sb system at 450°C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba–Ni–Sn–Sb skutterudite system is perfectly suited to study the influence of filler atomsmore » on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the “rattling behaviour” consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10-6 K-1 for Ni4Sb8.2Sn3.8 and 13.8 × 10-6 K-1 for Ba0.92Ni4

  6. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  7. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  8. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect (OSTI)

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  9. Full-size solar dynamic heat receiver thermal-vacuum tests

    SciTech Connect (OSTI)

    Sedgwick, L.M.; Kaufmann, K.J.; Mclallin, K.L.; Kerslake, T.W.

    1991-01-01

    The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.

  10. ROTATING SOLAR JETS IN SIMULATIONS OF FLUX EMERGENCE WITH THERMAL CONDUCTION

    SciTech Connect (OSTI)

    Fang, Fang; Fan, Yuhong; McIntosh, Scott W.

    2014-07-01

    We study the formation of coronal jets through numerical simulation of the emergence of a twisted magnetic flux rope into a pre-existing open magnetic field. Reconnection inside the emerging flux rope in addition to that between the emerging and pre-existing fields give rise to the violent eruption studied. The simulated event closely resembles the coronal jets ubiquitously observed by the X-Ray Telescope on board Hinode and demonstrates that heated plasma is driven into the extended atmosphere above. Thermal conduction implemented in the model allows us to qualitatively compare simulated and observed emission from such events. We find that untwisting field lines after the reconnection drive spinning outflows of plasma in the jet column. The Poynting flux in the simulated jet is dominated by the untwisting motions of the magnetic fields loaded with high-density plasma. The simulated jet is comprised of ''spires'' of untwisting field that are loaded with a mixture of cold and hot plasma and exhibit rotational motion of order 20 km s{sup –1} and match contemporary observations.

  11. Size effects on the thermal conductivity of amorphous silicon thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas Edwin Beechem; Braun, Jeffrey L.; Baker, Christopher H.; Elahi, Miraz; Artyushkova, Kateryna; Norris, Pamela M.; Leseman, Zayd Chad; Gaskins, John T.; Hopkins, Patrick E.; Giri, Ashutosh

    2016-04-01

    In this study, we investigate thickness-limited size effects on the thermal conductivity of amorphous silicon thin films ranging from 3 to 1636 nm grown via sputter deposition. While exhibiting a constant value up to ~100 nm, the thermal conductivity increases with film thickness thereafter. The thickness dependence we demonstrate is ascribed to boundary scattering of long wavelength vibrations and an interplay between the energy transfer associated with propagating modes (propagons) and nonpropagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to occur at a frequency of ~1.8 THz via simple analytical arguments. These results provide empirical evidencemore » of size effects on the thermal conductivity of amorphous silicon and systematic experimental insight into the nature of vibrational thermal transport in amorphous solids.« less

  12. Thermal conductivity prediction of magnetic composite sheet for near-field electromagnetic absorption

    SciTech Connect (OSTI)

    Lee, Joonsik; Nam, Baekil; Ko, Frank K.; Kim, Ki Hyeon

    2015-05-07

    The magnetic composite sheets were designed by using core-shell structured magnetic fillers instead of uncoated magnetic fillers to resolve concurrently the electromagnetic interference and thermal radiation problems. To predict the thermal conductivity of composite sheet, we calculated the thermal conductivity of the uncoated magnetic fillers and core-shell structured fillers. And then, the thermal conductivity of the magnetic composites sheet filled with core-shell structured magnetic fillers was calculated and compared with that of the uncoated magnetic fillers filled in composite sheet. The magnetic core and shell material are employed the typical Fe-Al-Si flake (60??m??60??m??1??m) and 250?nm-thick AlN with high thermal conductivity, respectively. The longitudinal thermal conductivity of the core-shell structured magnetic composite sheet (2.45?W/mK) enhanced about 33.4% in comparison with that of uncoated magnetic fillers (1.83?W/mK) for the 50 vol. % magnetic filler in polymer matrix.

  13. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermalmore » conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.« less

  14. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measure the thermophysical properties of heat transfer fluids and storage materials to ... measure the melting point, boiling point, heat capacity, density, viscosity, and phase- ...

  15. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    SciTech Connect (OSTI)

    Mamand, S.M.; Omar, M.S.; Muhammad, A.J.

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  16. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    SciTech Connect (OSTI)

    Cheaito, Ramez; Gorham, Caroline S.; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacement damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.

  17. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less

  18. Modeling the Influence of Interaction Layer Formation on Thermal Conductivity of UMo Dispersion Fuel

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    The Global Threat Reduction Initiative Program continues to develop existing and new plate- and rod-type research and test reactor fuels with maximum attainable uranium loadings capable of potentially converting a number of the worlds remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of an even higher density fuel type consisting of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel plate and can be influenced by interaction layer formation between the fuel and matrix, porosity that forms during fabrication of the fuel plates, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation and conductivity, fuel particle size, and volume fraction of fuel dispersed in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be important in determining the overall conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the fuel particle distribution by minimizing interaction layer formation and preserving the higher thermal conductivity matrix.

  19. Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides

    SciTech Connect (OSTI)

    Chen, Xi [University of Texas at Austin] [University of Texas at Austin; Girard, S. N. [University of Wisconsin, Madison] [University of Wisconsin, Madison; Meng, F. [University of Wisconsin, Madison] [University of Wisconsin, Madison; Lara-Curzio, Edgar [ORNL] [ORNL; Jin, S [University of Wisconsin, Madison] [University of Wisconsin, Madison; Goodenough, J. B. [University of Texas at Austin] [University of Texas at Austin; Zhou, J. S. [University of Texas at Austin] [University of Texas at Austin; Shi, L [University of Texas at Austin] [University of Texas at Austin

    2014-01-01

    Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitu- tion of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1 xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50 200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1 xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1 xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.

  20. Thermal Properties Capability Development Workshop Summary to Support the Implementation Plan for PIE Thermal Conductivity Measurements

    SciTech Connect (OSTI)

    Braase, Lori; Papesch, Cynthia; Hurley, David

    2015-04-01

    The Department of Energy (DOE)-Office of Nuclear Energy (NE), Idaho National Laboratory (INL), and associated nuclear fuels programs have invested heavily over the years in infrastructure and capability development. With the current domestic and international need to develop Accident Tolerant Fuels (ATF), increasing importance is being placed on understanding fuel performance in irradiated conditions and on the need to model and validate that performance to reduce uncertainty and licensing timeframes. INL’s Thermal Properties Capability Development Workshop was organized to identify the capability needed by the various nuclear programs and list the opportunities to meet those needs. In addition, by the end of fiscal year 2015, the decision will be made on the initial thermal properties instruments to populate the shielded cell in the Irradiated Materials Characterization Laboratory (IMCL).

  1. Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindsay, Lucas R.; Parker, David S.

    2015-10-01

    We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric powermore » factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.« less

  2. Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor

    SciTech Connect (OSTI)

    Lindsay, Lucas R.; Parker, David S.

    2015-10-01

    We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric power factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.

  3. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  4. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect (OSTI)

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600?C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600?C. TiN film deposited at 600?C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600?C on Si(111) wafer but the film deposited at 500?C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600?C. Nitride film of tungsten deposited at 600?C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500?C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600?C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  5. Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry

    SciTech Connect (OSTI)

    Feser, Joseph P. [Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716 (United States); Liu, Jun; Cahill, David G. [Department of Materials Science and Engineering, and Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-10-15

    We previously demonstrated an extension of time-domain thermoreflectance (TDTR) which utilizes offset pump and probe laser locations to measure in-plane thermal transport properties of multilayers. However, the technique was limited to systems of transversely isotropic materials studied using axisymmetric laser intensities. Here, we extend the mathematics so that data reduction can be performed on non-transversely isotropic systems. An analytic solution of the diffusion equation for an N-layer system is given, where each layer has a homogenous but otherwise arbitrary thermal conductivity tensor and the illuminating spots have arbitrary intensity profiles. As a demonstration, we use both TDTR and time-resolved magneto-optic Kerr effect measurements to obtain thermal conductivity tensor elements of <110> ?-SiO{sub 2}. We show that the out-of-phase beam offset sweep has full-width half-maxima that contains nearly independent sensitivity to the in-plane thermal conductivity corresponding to the scanning direction. Also, we demonstrate a Nb-V alloy as a low thermal conductivity TDTR transducer layer that helps improve the accuracy of in-plane measurements.

  6. Thermal conductance measurements of bolted copper joints for SuperCDMS

    SciTech Connect (OSTI)

    Schmitt, R.; Tatkowski, Greg; Ruschman, M.; Golwala, S. R.; Kellaris, N.; Daal, M.; Hall, Jeter C.; Hoppe, Eric W.

    2015-09-01

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Results obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  7. A robust and well shielded thermal conductivity device for low temperature measurements

    SciTech Connect (OSTI)

    Toews, W. H.; Hill, R. W.

    2014-04-15

    We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

  8. Thermal conductivities of Wilsonville solvent and Wilsonville solvent/Illinois No. 6 coal slurry. [Wilsonville solvent

    SciTech Connect (OSTI)

    Wilson, J.H.; Mrochek, J.E.; Johnson, J.K.

    1984-01-01

    Thermal conductivities of a Wilsonville solvent and of a slurry prepared from this solvent and Illinois No. 6 coal have been measured at temperatures from 295 up to 500 K. With increasing temperature, the thermal conductivity varied from 1.23 to 1.02 mW cm/sup -1/ K/sup -1/ (296 to 438 K) and from 1.51 to 1.02 mW cm/sup -1/ K/sup -1/ (295 to 505 K) for the solvent and the slurry, respectively. At room temperature, measurements on toluene were accurate to within 3% of literature values. 18 references, 9 figures, 7 tables.

  9. Thermal conductance measurements of bolted copper joints for SuperCDMS

    SciTech Connect (OSTI)

    Schmitt, R. L.; Tatkowski, G; Ruschman, M.; Golwala, S.; Kellaris, N.; Daal, M.; Hall, J.; Hoppe, E. W.

    2015-05-22

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Results obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  10. In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity.

    SciTech Connect (OSTI)

    Girard, S. N.; He, J.; Li, C.; Moses, S.; Wang, G.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G.

    2010-07-26

    We show experimentally the direct reduction in lattice thermal conductivity as a result of in situ nanostructure generation within a thermoelectric material. Solid solution alloys of the high-performance thermoelectric PbTe-PbS 8% can be synthesized through rapid cooling and subsequent high-temperature activation that induces a spontaneous nucleation and growth of PbS nanocrystals. The emergence of coherent PbS nanostructures reduces the lattice thermal conductivity from {approx}1 to {approx}0.4 W/mK between 400 and 500 K.

  11. Thermal effects on transducer material for heat assisted magnetic recording application

    SciTech Connect (OSTI)

    Ji, Rong Xu, Baoxi; Cen, Zhanhong; Ying, Ji Feng; Toh, Yeow Teck

    2015-05-07

    Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kinds of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.

  12. Soliton mechanism of the uranium nitride microdynamics and heat conductivity at high temperatures

    SciTech Connect (OSTI)

    Semenov, V. A.; Dubovsky, O. A. Orlov, A. V.

    2011-12-15

    The microdynamics of soliton waves and localized modes of nonlinear acoustic and optical oscillations in uranium nitride has been investigated. It is shown that, upon heating, the energies of solitons in the gap between the optical and acoustic phonon bands increase, while the energies of local modes decrease. The experimentally observed quasi-resonance features, which are shifted in the gap with a change in temperature, can be manifestations of the revealed soliton waves and local modes. The microdynamics of uranium nitride heat conductivity with the stochastic generation of the observed solitons and local modes at remote energy absorption have been investigated. The temperature dependence of the heat conductivity coefficient has been determined from the temperature gradient and energy flux within the standard approach (which is to be generalized).

  13. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    SciTech Connect (OSTI)

    Sonigra, Dhiren E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R. E-mail: ajit.kulkarni@iitb.ac.in

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O?9Al{sub 2}O{sub 3}?38TiO{sub 2}?39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  14. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  15. Optimizing the transverse thermal conductivity of 2D-SiCf/SiC composites, I. Modeling

    SciTech Connect (OSTI)

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2002-12-31

    For potential fusion applications, considerable fabrication efforts have been directed to obtaining transverse thermal conductivity (Keff) values in excess of 30 W/mK (unirradiated) in the 800-1000°C temperature range for 2D-SiCf/SiC composites. To gain insight into the factors affecting Keff, at PNNL we have tested three different analytic models for predicting Keff in terms of constituent (fiber, matrix and interphase) properties. The tested models were: the Hasselman-Johnson (H-J) “2-Cylinder” model, which examines the effects of fiber-matrix (f/m) thermal barriers; the Markworth “3-Cylinder” model, which specifically examines the effects of interphase thickness and thermal conductivity; and a newly-developed Anisotropic “3-Square” model, which examines the potential effect of introducing a fiber coating with anisotropic properties to enhance (or diminish) f/m thermal coupling. The first two models are effective medium models, while the third model is a simple combination of parallel and series conductances. Model predictions suggest specific designs and/or development efforts directed to optimize the overall thermal transport performance of 2D-SiCf/SiC.

  16. Electron-phonon coupling and thermal conductance at a metal-semiconductor interface: First-principles analysis

    SciTech Connect (OSTI)

    Sadasivam, Sridhar; Fisher, Timothy S.; Waghmare, Umesh V.

    2015-04-07

    The mechanism of heat transfer and the contribution of electron-phonon coupling to thermal conductance of a metal-semiconductor interface remains unclear in the present literature. We report ab initio simulations of a technologically important titanium silicide (metal)–silicon (semiconductor) interface to estimate the Schottky barrier height, and the strength of electron-phonon and phonon-phonon heat transfer across the interface. The electron and phonon dispersion relations of TiSi{sub 2} with C49 structure and the TiSi{sub 2}-Si interface are obtained using first-principles calculations within the density functional theory framework. These are used to estimate electron-phonon linewidths and the associated Eliashberg function that quantifies coupling. We show that the coupling strength of electrons with interfacial phonon modes is of the same order of magnitude as coupling of electrons to phonon modes in the bulk metal, and its contribution to electron-phonon interfacial conductance is comparable to the harmonic phonon-phonon conductance across the interface.

  17. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2016-04-14

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations on the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm3 and T = 15,625 to 500,000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which exhibits the correct behaviors of continuum lowering and pressure ionization. The thermal conductivities (κQMD) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalizedmore » Coulomb logarithm [(lnΛ)QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Furthermore, hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted –20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  18. Asymptotic regimes for the electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G. Blancard, C.

    2015-04-15

    We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester–Thellung–Kubo–Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann–Franz law is obtained in the degenerate case.

  19. Heat Flow in VC-2A and VC-2B, and Constraints on the Thermal...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Heat Flow in VC-2A and VC-2B, and Constraints on the Thermal Regime of the Valles Caldera, New...

  20. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2008, DOE issued the Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  1. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GMs shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  2. Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature

    SciTech Connect (OSTI)

    Belkerk, B. E.; Bensalem, S.; Soussou, A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.; Al Brithen, H.

    2014-12-01

    In this paper, we report on investigation concerning the substrate-dependent thermal conductivity (k) of Aluminum Nitride (AlN) thin-films processed at low temperature by reactive magnetron sputtering. The thermal conductivity of AlN films grown at low temperature (<200 °C) on single-crystal silicon (Si) and amorphous silicon nitride (SiN) with thicknesses ranging from 100 nm to 4000 nm was measured with the transient hot-strip technique. The k values for AlN films on SiN were found significantly lower than those on Silicon consistently with their microstructures revealed by X-ray diffraction, high resolution scanning electron microscopy, and transmission electron microscopy. The change in k was due to the thermal boundary resistance found to be equal to 10 × 10{sup −9} Km{sup 2}W{sup −1} on SiN against 3.5 × 10{sup −9} Km{sup 2}W{sup −1} on Si. However, the intrinsic thermal conductivity was determined with a value as high as 200 Wm{sup −1}K{sup −1} whatever the substrate.

  3. A Reduced-Boundary-Function Method for Convective Heat Transfer With Axial Heat Conduction and Viscous Dissipation

    SciTech Connect (OSTI)

    Zhijie Xu

    2012-07-01

    We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.

  4. A Reduced-Boundary-Function Method for Convective Heat Transfer with Axial Heat Conduction and Viscous Dissipation

    SciTech Connect (OSTI)

    Xu, Zhijie

    2012-07-01

    We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.

  5. Effects of subconduction band excitations on thermal conductance at metal-metal interfaces

    SciTech Connect (OSTI)

    Hopkins, Patrick E.; Beechem, Thomas E.; Duda, John C.; Smoyer, Justin L.; Norris, Pamela M.

    2010-01-04

    Increased power densities combined with the decreased length scales of nanosystems give rise to large thermal excitations that can drastically affect the electron population near the Fermi surface. In light of such conditions, a model is developed for electron thermal boundary conductance (eTBC) that accounts for significant changes in the electron and hole populations around the Fermi level that occur at heightened temperatures. By including the contribution of subconduction band electrons to transport and evaluating the transmission coefficient based upon the total number of available states, an extension of eTBC predictions to high temperatures is made possible.

  6. Optic phonon bandwidth and lattice thermal conductivity: The case of Li2X ( X=O , S, Se, Te)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m-1K-1), BeTe (370 W/m-1K-1) and cubic BAs (3150 W/m-1K-1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carryingmore » acoustic phonons in Li2Se and Li2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  7. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOE Patents [OSTI]

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  8. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    SciTech Connect (OSTI)

    Su-Jong Yoon; Piyush Sabharwall; Eung-Soo Kim

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  9. Thermal conductivity studies of novel nanofluids based on metallic silver decorated mesoporous silica nanoparticles

    SciTech Connect (OSTI)

    Tadjarodi, Azadeh; Zabihi, Fatemeh

    2013-10-15

    Graphical abstract: - Highlights: Metallic silver was decorated in mSiO{sub 2} with grafted hemiaminal functional groups. Synthesized nanoparticles were used for preparation of glycerol based nanofluids. The effect of temperature, weight fraction of mSiO{sub 2} and concentration of silver nanoparticles on thermal conductivity of nanofluids was investigated. - Abstract: In the present study, the mesoporous structure of silica (mSiO{sub 2}) nanoparticles as well as hemiaminal grafted mSiO{sub 2} decorated by metallic silver (Ag/mSiO{sub 2}) has been used for the preparation of glycerol based nanofluids. Structural and morphological characterization of the synthesized products have been carried out using Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), UVvis spectroscopy, inductively coupled plasma (ICP) and N{sub 2} adsorptiondesorption isotherms. The thermal conductivity and viscosity of the nanofluids have been measured as a function of temperature for various weight fractions and silver concentrations of mSiO{sub 2} and Ag/mSiO{sub 2} nanoparticles, respectively. The results show that the thermal conductivity of the nanofluids increase up to 9.24% as the weight fraction of mSiO{sub 2} increases up to 4 wt%. Also, increasing the percent of the silver decorated mSiO{sub 2} (Ag/mSiO{sub 2}) up to 2.98% caused an enhancement in the thermal conductivity of the base fluid up to 10.95%. Furthermore, the results show that the nanofluids have Newtonian behavior in the tested temperature range for various concentrations of nanoparticles.

  10. High thermal conductivity lossy dielectric using co-densified multilayer configuration

    DOE Patents [OSTI]

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-06-17

    Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.