Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Photovoltaic-thermal collectors  

DOE Patents [OSTI]

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

2

A solar concentrating photovoltaic/thermal collector .  

E-Print Network [OSTI]

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

3

Impact of Ageing on Thermal Efficiency of Solar Thermal Collectors  

Science Journals Connector (OSTI)

Today it is common practice to calculate the performance of solar thermal systems or solar collectors based on the results of a thermal performance test carried out with a new solar collector. However, for an int...

Elke Streicher; Stephan Fischer…

2009-01-01T23:59:59.000Z

4

SunShot Initiative: Low-Cost Solar Thermal Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Cost Solar Thermal Collector Low-Cost Solar Thermal Collector to someone by E-mail Share SunShot Initiative: Low-Cost Solar Thermal Collector on Facebook Tweet about SunShot Initiative: Low-Cost Solar Thermal Collector on Twitter Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Google Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Delicious Rank SunShot Initiative: Low-Cost Solar Thermal Collector on Digg Find More places to share SunShot Initiative: Low-Cost Solar Thermal Collector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

5

Project Profile: Low-Cost Solar Thermal Collector | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermal Collector Project Profile: Low-Cost Solar Thermal Collector SunTrough Energy logo SunTrough, under the Baseload CSP FOA, is developing a new class of solar...

6

A solar concentrating photovoltaic / thermal collector J.S. Coventry  

E-Print Network [OSTI]

A solar concentrating photovoltaic / thermal collector J.S. Coventry Centre for Sustainable Energy solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban of both photovoltaic and solar thermal power generation. Some of the recent projects in Australia

7

Thermal Efficiency of Solar Collector Made from Thermoplastics  

Science Journals Connector (OSTI)

Abstract Thermoplastics solar collectors have been used to replace a typical metal collector because their mechanical and physical properties make the volume production of lightweight, low cost and corrosion resistance. Effect of thermal conductivity and collector area was observed for four type of themoplastics based i.e PVC-B (PVC: Polyvinyl Chloride-Blue), PB (PB: Polybutene), PP-R (PP-R: Polypropylene Random Copolymer) and PVC-CB: (Polyvinyl Chloride-Carbon Black). The collector area of 2 m2 were prepared as for solar collector. The position of collector panel to south orientation and angle of 140 to the horizontal, which was the collector slope obtaining highest annual efficiency in Thailand, were implemented. Data was collected by data logger from 9.00-16.00 am throughout the day in which temperature reached a sufficient level according to standard test method of ASHRAE 93 77. The mass flow rate of water in collector was 0.02 (kg.s-1). The results of the differing thermal conductivity materials have indicated that there is no different of the materials on collector thermal efficiency. The collector efficiency was depends on the areas of the panel. This suggestion that one material should not only be chosen over another in term of its ability to transfer heat to the liquid within the panel but also collector area.

Warunee Ariyawiriyanan; Tawatchai Meekaew; Manop Yamphang; Pongpitch Tuenpusa; Jakrawan Boonwan; Nukul Euaphantasate; Pongphisanu Muangchareon; Supachat Chungpaibulpatana

2013-01-01T23:59:59.000Z

8

Chapter 3 - Solar Energy Collectors  

Science Journals Connector (OSTI)

Abstract Chapter 3 gives a review of solar collectors which are the main components of any solar system. The review includes various types of stationary and sun-tracking collectors. The stationary collectors include flat-plate collectors (FPCs), under which glazing materials, collector absorbing plates, and collector construction are presented; compound parabolic collectors (CPCs) and evacuated tube collectors (ETCs). The sun-tracking concentrating collectors section cover parabolic trough collectors (PTCs), which include parabola construction and tracking mechanisms; Fresnel collectors; parabolic dish reflector and heliostat field collector. This review is followed by the optical and thermal analysis of both \\{FPCs\\} and concentrating collectors. The analysis for \\{FPCs\\} includes both water and air type systems whereas the analysis for concentrating collectors includes the CPC and the PTC. The analysis of flat-plate water collectors starts with an analysis of the absorbed solar radiation followed by collector energy losses, temperature distribution between the tubes, collector efficiency factor, heat removal factor, flow factor, and thermal efficiency. This is followed by practical considerations concerning FPCs. Subsequently, concentrating collectors are considered which include optical and thermal analysis of a CPC and optical and thermal analysis of PTCs. The chapter includes also the second law analysis of solar thermal systems and includes minimum entropy generation rate, optimum collector temperature, and non-isothermal collector analysis.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

9

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

10

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

11

SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR AND AN AIR-  

E-Print Network [OSTI]

SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR simultaneously equipped with air-source heat pumps and photovoltaic collectors is constantly increasing. In addition to electricity, the photovoltaic collector produces heat which can be used to increase

Boyer, Edmond

12

Thermal efficiency of single-pass solar air collector  

SciTech Connect (OSTI)

Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

13

PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR  

E-Print Network [OSTI]

increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612

14

Collector Field Maintenance: Distributed Solar Thermal Systems  

Science Journals Connector (OSTI)

This paper reports on recent operation and maintenance experiences with distributed solar thermal systems. Although some information on system-...

E. C. Boes; E. C. Cameron; E. L. Harley

1986-01-01T23:59:59.000Z

15

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors  

E-Print Network [OSTI]

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

Mayer, Alexandre

16

Thermal Load based Adaptive Tracking for Flat Plate Solar Collectors  

Science Journals Connector (OSTI)

Abstract The energy output of solar-thermal systems using flat plate collectors can be improved by tracking. Tracking is well known as a path for increasing the amount of solar radiation received by the collector; additionally the paper proposes a new concept that considers the inverse tracking as a viable option for protecting the collectors against overheating. An analysis of the thermal energy output and conversion efficiency is done considering forward tracking in three different days with different radiation profile (cloudy, sunny and mixed days), followed by an analysis of the inverse tracking concept. The in-field data show that there is a limiting angle below which inverse tracking is not effective and this value is estimated at 40° as compared with the optimal orientation. A logical scheme is proposed based on four different programs for forward tracking, inverse tracking, maximum inverse tracking or fixing the collector; this decisional scheme covers a broad range of functional situations having as central concept the production of thermal energy only when needed, for satisfying the demand, decreasing the energy consumption for forced circulation and supporting the systems reliability and safety.

Mircea Neagoe; Ion Visa; Bogdan G. Burduhos; Macedon D. Moldovan

2014-01-01T23:59:59.000Z

17

Compendium of information on identification and testing of materials for plastic solar thermal collectors  

SciTech Connect (OSTI)

This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

1980-07-31T23:59:59.000Z

18

Cogenerating Photovoltaic and Thermal Solar Collector  

E-Print Network [OSTI]

cell, 25% max ­ Steam power plant, 50% max · Data Centers in the U.S. ­ Demand increases as internet.2% of the nations electricity consumption · Load equivalent to 5 1000 MW power plants · Over 2.2 billion dollars applications #12;First Prototype Spring 2008 #12;#12;Experimental Results · Thermal power generated ­ 1.4 KW

Su, Xiao

19

Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector  

Science Journals Connector (OSTI)

We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with...

Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

2014-01-01T23:59:59.000Z

20

A prototype photovoltaic/thermal system integrated with transpired collector  

SciTech Connect (OSTI)

Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

2011-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Exergetic optimization of solar collector and thermal energy storage system  

Science Journals Connector (OSTI)

This paper deals with the exergetic optimization of a solar thermal energy system. This consists of a solar collector (SC) and a rectangular water storage tank (ST) that contains a phase change material (PCM) distributed in an assembly of slabs. The study takes into account both conduction and convection heat transfer mode for water in the SC, and also the phase change process for the PCM in the ST. An analytical solution for the melting process in the PCM is also presented. The results of the study are compared with previous experimental data, confirming the accuracy of the model. Results of a numerical case study are presented and discussed.

F. Aghbalou; F. Badia; J. Illa

2006-01-01T23:59:59.000Z

22

Off-peak summer performance enhancement for rows of fixed solar thermal collectors using reflective surfaces.  

E-Print Network [OSTI]

??The possibility of increasing the efficiency of fixed solar thermal collectors without greatly adding to the cost or complexity of the overall solar collection system… (more)

Armenta, Casiano

2011-01-01T23:59:59.000Z

23

Hydrogen Crack Growth Resistance of Thermal Power Plant Material Collector  

Science Journals Connector (OSTI)

Abstract The influence of electrolytical hydrogenation on fracture toughness, corrosion crack-growth resistance and fracture micromechanisms of operated 12Cr1MoV steel of thermal power plant superheater collector has been studied. Compact tension specimens were cut from perforated surface of thermal power plant superheater collector dismounted after 178,500 hours of operation. Corrosion crack-growth resistance under tension of previously hydrogenated compact specimens with fatigue cracks was studied. Due to the increased concentration of hydrogen in solution an additional buffer was being created that prevents hydrogen leakage from the specimen through the fracture surface during the experiment. The hydrogenation causes the significant decrease of critical stress intensity factor Kc, during the experiment in 0.1 N NaOH solution as compared with critical stress intensity factor K of non-hydrogenation 12Cr1MoV steel obtained by the 5% secant line method and in comparison with critical stress intensity factor Kc, determined through the J-integral. The areas of ductile crack growth in hydrogenated and non-hydrogenated specimens were found to have similar material fracture micromechanisms with dimples creation of different shape and size. But on the ductile crack growth area in hydrogenated specimens material intergranular fracture mechanisms were found caused by the hydrogen embrittlement which are similar to areas without ridges with the products corrosion traces.

V. Iasnii; P. Maruschak; O. Yasniy; Y. Lapusta

2014-01-01T23:59:59.000Z

24

Automated solar collector installation design including ability to define heterogeneous design preferences  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2014-04-29T23:59:59.000Z

25

Automated solar collector installation design including ability to define heterogeneous design preferences  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2013-01-08T23:59:59.000Z

26

Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof  

DOE Patents [OSTI]

Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O'Brien, James E.

2013-03-05T23:59:59.000Z

27

Outdoor and Indoor Testing to Increase the Efficiency and Durability of Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

This paper presents the test performed on the solar thermal flat plate collector and the effect of saline aerosol on the solar thermal conversion; an assembly of testing rigs developed ... presented; the rigs all...

Daniela Ciobanu; Ion Visa; Anca Duta…

2014-01-01T23:59:59.000Z

28

Experiments on solar absorption using a greenhouse-effect gas in a thermal solar collector  

Science Journals Connector (OSTI)

This paper investigates an augmentation to the thermal solar absorption of solar collectors by introducing a greenhouse gas between the glazing and the absorber part of the solar collector. Experiments are designed and conducted to compare the effect of adding the gas on the efficiency of the collector without that addition. The maximum temperature rise of the absorber the time of heat retention before reaching room temperature and the energy conversion efficiency in heating up water for domestic use were all studied.

Abdul Hai M. B. Alami

2010-01-01T23:59:59.000Z

29

EVACUATED TUBE COLLECTORS SIMPLIFY SOLAR THERMAL SYSTEM LAYOUT  

Science Journals Connector (OSTI)

SUMMARY Evacuated tube collectors (ETC's) differ quite markedly in their behaviour from the more familiar flat plate solar collectors. The consequences in cost of the entire system are investigated for a typical residential dwelling, making full use of the advantages offered by ETC's. A significant saving in initial cost as well as in maintenance costs can be realised. KEYWORDS Evacuated tube collectors; solar system layout; freeze protection; overheat protection.

C.W.J. van Koppen; P. Verhaart

1986-01-01T23:59:59.000Z

30

Analyzing the efficiency of a photovoltaic-thermal solar collector based on heat pipes  

Science Journals Connector (OSTI)

The structure of a photovoltaic/thermal solar collector based on aluminum heat pipes and ... , along with the results from analyzing its efficiency. Its optimum mode of operation is shown...

S. M. Khairnasov

2014-01-01T23:59:59.000Z

31

Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

The paper is a review on the state-of-the-art on colored materials (absorbers and glazings) for solar thermal flat plate collectors obtained world-wide. The ... input for novel, market-acceptable flat plate solar

Luminita Isac; Alexandru Enesca…

2014-01-01T23:59:59.000Z

32

Thermal Analysis of Compound—Parabolic Concentrating Solar Energy Collectors  

Science Journals Connector (OSTI)

Despite the vast attention devoted recently to the design and development of effective collectors for harnessing solar energy at medium and high temperatures (>100° ... in the design of the compound parabolic con...

B. Norton; D. E. Prapas

1987-01-01T23:59:59.000Z

33

Thermal solar collector with VO2 absorber coating and thermochromic glazing – Temperature matching and triggering  

Science Journals Connector (OSTI)

Abstract Overheating is a common problem both with the use of active and passive solar energy in thermal solar energy systems and in highly glazed buildings, even in central European latitudes. In solar thermal collectors, the elevated temperatures occurring during stagnation result in reduced lifetime of the collector materials. They lead to water evaporation, glycol degradation and stresses in the collector with increasing vapor pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. The temperature of degradation of glycols is above 160–170 °C. However, it would be preferable to limit the temperature of the collector to approximately 100 °C, avoiding likewise the evaporation of the used water-glycol mixture. Additionally, the elevated temperatures lead to degradation of the materials that compose the collector, such as sealing, thermal insulation and the selective absorber coating. A new way of protecting solar thermal systems without any mechanical device (e.g. for shading or for pressure release) is proposed. A durable inorganic thermochromic material, which exhibits a change in optical properties at a transition temperature T t , is vanadium dioxide (VO2). At 68 °C, VO2 undergoes a reversible crystal structural phase transition accompanied by a strong variation in optical properties. Therefore, a dynamical switching of the thermal emittance ? th can be achieved by VO2. By doping the material with tungsten, it is possible to lower the transition temperature making it suitable as a glazing coating. The possibility of using the switch in emittance of the absorber coating in order to trigger the transition of a thermochromic coating on the glazing of the solar collector has been studied. An analytical approach yielded the required transition temperature of such a switching glazing. The fascinating optical properties of these switchable films elucidate the way towards novel intelligent thermal solar collector materials.

Antonio Paone; Mario Geiger; Rosendo Sanjines; Andreas Schüler

2014-01-01T23:59:59.000Z

34

Thermal and Hydraulic Design of a Solar Collector Field for a Primary School Pool  

Science Journals Connector (OSTI)

Abstract The methodology and results of the thermal and hydraulic design for a solar heating field of an elementary school's semi-olympic pool is presented. Improved flat solar collectors with copper tube and aluminum fins were used. From own experiences, many Mexican solar fields do not operate correctly because of their poor flow balance (irrigation), may be due to lack of attention given to this aspect. That's why the research of this work focuses on studying the behavior of the pressure drop in a hydraulic arrangement, particularly of this facility, in which all collector batteries are connected in parallel. Previously two solar collectors were sent to a specialized laboratory for certification tests, obtaining the optimum water flow value for maximum thermal efficiency. The results show an optimum range between 4 and 11 L/min. On the other hand, the development of a thermal model based on a temporal energy balance, allowed us to determine that the optimum solar heating area is around 338 m2, using 195 flat-coated solar collectors, with copper tube and aluminum fin. For this heating system a water volume/solar collection area relation, called REVA, of 1.45m3/m2 was obtained. Referred to the hydraulic design and using the program EPANET 2.0 it was found that in the proposed arrangement, 192 solar collectors were irrigated with the optimal range and only 2 solar collectors were below the lower range at 3 L/min.

Rubén Dorantes; Georgina García; Carlos Salazar; Heber Oviedo; Humberto González; Raúl Alanis; Edgar Salazar; Ignacio R. Martín-Dominguez

2014-01-01T23:59:59.000Z

35

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect (OSTI)

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

36

Collector/Receiver Characterization (Fact Sheet), Thermal Systems...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coolant, at near-ambient temperature and low pressure, is pumped to the receiver. Because heat loss is extremely low, optical efficiency can be determined independent of thermal...

37

A dynamic thermal performance model for flat-plate solar collectors based on the thermal inertia correction of the steady-state test method  

Science Journals Connector (OSTI)

Abstract In determining the dynamic thermal performance of a flat-plate solar collector, when the instantaneous solar irradiance changes sharply at one moment, most of the existing models cannot accurately predict the momentary thermal characteristics of outlet temperature and useful heat gain. In the present study, an analytical model in the form of series expansion is put forward to depict the momentary thermal characteristics of flat-plate solar collectors. The analytical model reveals that, instantaneous useful heat gain of a solar collector at one moment consists of the steady-state useful heat gain and corresponding thermal inertia correction. The model is then validated by the experimental data. It indicates that the analytical model can properly predict the dynamic thermal performance of the solar air collector. Besides, the model pertains to other types of solar thermal collectors, if they can be tested by the steady-state test method.

Jie Deng; Yupeng Xu; Xudong Yang

2015-01-01T23:59:59.000Z

38

Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 2: Performance analysis  

Science Journals Connector (OSTI)

Abstract This paper is the second of two companion papers focused on energy modeling and performance analysis of building-integrated photovoltaic thermal (PV/T) systems with corrugated unglazed transpired solar collectors (UTCs). In Part 1, energy models are presented for two configurations: UTC only and UTC with PV panels. The models predict the energy output of the system for different weather and system design conditions and are validated using measured data from an outdoor test facility. In this paper (Part 2), the system performance is evaluated based on data drawn from the literature and simulations with Computational Fluid Dynamics (CFD) and energy models. The analysis includes parameters that are unique for this system, such as the corrugation geometry and the collector orientation. Validated, high resolution CFD simulations are used to study the impact of plate orientation and incident turbulence intensity, based on the comparison of exterior and interior Nusselt (Nu) number and the cavity exit air temperature, as well as the PV surface temperature when \\{UTCs\\} are integrated with PV panels. It is found that for configurations with UTC only, both exterior and interior convective heat transfer is enhanced in the ‘vertical’ installation, while similar results were obtained for increased incident turbulence intensity levels. However, only minor influences from these two parameters are observed for \\{UTCs\\} with PV panels. The energy model is used to investigate the optimal geometry for both configurations. It is found that parameters such as slope length and corrugation wavelength have the most significant impact on UTC performance while the wavelength and PV panel height have the largest effect for \\{UTCs\\} with PV panels.

Siwei Li; Panagiota Karava

2014-01-01T23:59:59.000Z

39

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents [OSTI]

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

1997-12-02T23:59:59.000Z

40

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents [OSTI]

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

Christensen, Craig B. (Boulder, CO); Kutscher, Charles F. (Golden, CO); Gawlik, Keith M. (Boulder, CO)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimization of angle of inclination of the hybrid photovoltaic-thermal solar collector using particle swarm optimization algorithm  

Science Journals Connector (OSTI)

In this paper a mathematical model is used to determine the solar radiation incident on an inclined surface and the optimum slope angles for each month season and year are calculated for solar hybrid collectors. We recommend on how the collected energy can be increased by varying the tilt angle. First we esteem the global solar radiation on a horizontal surface of a thermal photovoltaic hybrid collector (PVT) for a clear sky. The data set of the solar radiation at Ghardaïa (Algeria) measured during 2013 was used to analyze the models of global solar radiation estimation. The models of performance are evaluated by using the coefficient of correlation (R2) the absolute average error skew (mean absolute error MABE) average quadratic error (mean square error RMSE) the percentage of the average error (MPE) and the percentage of average absolute error. Then the anisotropic and isotropic models that provide the most accurate estimation of the total solar radiation has been used to determine the optimum collector slope. Particle swarm optimization method was applied to obtain the tilt angle setting of the tilt angle of PVT collector. The objective was to improve the efficiency of PVT collector. The results show that these models used are very well designed. The coefficient of correlation (R2) varies from 0. 90 to 0. 99. For the percentage of errors of prediction (MABE and RMSE) lowered by 0.1 it is observed also that the angle of inclination of PVT collector takes different values during the year and that the collector received more solar energy compared to collector without optimal angle.

2014-01-01T23:59:59.000Z

42

On the feasibility of colored glazed thermal solar collectors based on thin film interference filters  

Science Journals Connector (OSTI)

Glazed thermal solar collectors, typically equipped with black, optical selective absorber sheets, exhibit good energy conversion efficiency. However, the black color, and sometimes the visibility of tubes and corrugations of the metal sheets, limit the architectural integration into buildings. In order to overcome this drawback, interference filters are considered as a promising approach. Multilayered thin film stacks deposited on the cover glass can produce a colored reflection hiding the black absorber without a great loss of energy. These interference filters are designed and optimized by numerical simulation. Such coatings are deposited by vacuum processes (e.g. magnetron sputtering) and also via the SolGel method. Optical measurements, such as real-time laser-reflectometry and spectrophotometry, are suitable to determine film thicknesses and optical constants of individual layers, and to measure color coordinates and solar transmittance for the multilayer stacks. Advantages and disadvantages of the different coating processes are discussed.

A. Schüler; C. Roecker; J.-L. Scartezzini; J. Boudaden; I.R. Videnovic; R.S.-C. Ho; P. Oelhafen

2004-01-01T23:59:59.000Z

43

10 MWe solar thermal central receiver pilot plant. Collector subsystem functional test plan  

SciTech Connect (OSTI)

This Phase II Collector Subsystem Functional Test Plan presents the functional testing to be performed to demonstrate the readiness of the Collector Subsystem for the Integrated Acceptance Tests. The functional testing will be performed with the collector subsystem as a stand-alone subsystem. In this context, all heliostat operational commands will be issued from the Heliostat Array Controller (HAC) and heliostat responses will be verified by visual means and from the HAC status displays.

Not Available

1981-11-17T23:59:59.000Z

44

Estimation of Damage to the Collector of a Water Economizer by Thermal Fatigue Cracks  

Science Journals Connector (OSTI)

We study defects formed on the outer and inner surfaces of the input collector of water economizer of a TPP-312 boiler at the...

R. Ya. Kosarevych; O. Z. Student; Ya. D. Onyshchak; A. D. Markov…

2004-01-01T23:59:59.000Z

45

3D Thermal-structural Analysis of an Absorber Tube of a Parabolic Trough Collector and the Effect of Tube Deflection on Optical Efficiency  

Science Journals Connector (OSTI)

Abstract In this paper deformation rate of an absorber tube of a parabolic trough collector due to a 3D solar flux density distribution is studied theoretically. Three dimensional temperature distribution and tube thermal expansion due to non-uniform solar flux over the tube are determined numerically. The local concentration ratio for the parabolic trough collectors, which is a key boundary condition in the thermal analysis is computed by Monte Carlo Ray Tracing method for different conditions. The governing equations of thermo-elastic constitutive are solved in three dimensions for steady state thermal and static structural analysis with appropriate boundary condition using Finite Volume and Finite Element numerical codes. Thermal stresses and strain are determined for two types of collectors; first one is a constructed collector and second one is under construction at Shiraz (Iran) solar thermal power plant. Results of the local concentration ratio, flux density, temperature distribution and thermal expansions are determined for the designed conditions. Appropriate flow rate and convection coefficient for each season are found in order to decrease tube bending, prevent optical efficiency drop of collectors, keep high factor of safety, and reduce cyclic daily amplitude motion which lead to longer life time of absorber tube.

S.M. Akbarimoosavi; M. Yaghoubi

2014-01-01T23:59:59.000Z

46

Solar collector mounting and support apparatus  

SciTech Connect (OSTI)

A solar collector system is described of the type having a movable surface for receiving solar radiation having improved means for rotatably supporting the movable surface and for rotating the collector surface. A support axle for the collector includes a ball at one end which is carried within a cylindrical sleeve in the solar collector to support the weight of the collector. A torque transmitting arm comprising a flexible flat strip is connected at one end to the axle and at the other end to the collector surface. An improved rotational drive mechanism includes a first sprocket wheel carried on the axle and a second sprocket wheel supported on a support pylon with a drive chain engaging both sprockets. A double acting piston also supported by the pylon is coupled to the chain so that the chain may be driven by a hydraulic control system to rotate the collector surfaces as required. An improved receiver tube support ring is also provided for use with the improved mounting and support apparatus to improve overall efficiency by reducing thermal losses.

Hutchison, J.A.

1981-12-22T23:59:59.000Z

47

Life cycle analysis of a building-integrated solar thermal collector, based on embodied energy and embodied carbon methodologies  

Science Journals Connector (OSTI)

Abstract The present study is a life cycle analysis of a patented building-integrated solar thermal collector which was developed/experimentally tested at the University of Corsica, in France, with the concept “integration into gutters/no visual impact”. Three configurations (reference and two alternatives) are evaluated. The life-cycle impact assessment methodologies of embodied energy (EE)/embodied carbon (EC), two databases and multiple scenarios are adopted. The results reveal that the reference system can considerably improve its environmental performance by utilizing collectors connected in parallel. The Energy Payback Time of the reference system decreases to less than 2 years by parallel connection while it is around 0.5 years if recycling is also adopted. The EE of the systems is around 3 GJprim/m2 and it is reduced to around 0.4–0.5 GJprim/m2 by recycling. The EC of the configurations is approximately 0.16 t CO2.eq/m2 without recycling and around 0.02–0.03 t CO2.eq/m2 with recycling. CO2.eq emissions are strongly related with electricity mix. A reduction 28–96% in CO2.eq emissions of the systems is achieved by adopting configurations with “double collector surface/output”. Concerning indicator of sustainability, the system with parallel connection shows a value of 0.78. The findings of the present investigation could be utilized for the design of building-integrated solar thermal systems as well as for research purposes.

Chr. Lamnatou; G. Notton; D. Chemisana; C. Cristofari

2014-01-01T23:59:59.000Z

48

Solar collector  

SciTech Connect (OSTI)

A solar collector is disclosed which is tiltable about a horizontal axis so as to vary the angle at which solar radiation is received by the collector. The solar collector, which uses air as the heat transfer medium, has connected to it a pair of fixed, well-insulated air transfer passages which penetrate through into the interior of the collector at the lateral sides thereof aligned with the horizontal axis about which the collector is pivoted. The air transfer passages are insulated and are gasketed to the sides of the collector so as to improve the efficiency of the solar energy system by avoiding losses of heat from the heat transfer fluid during transfer of the fluid from the collector to the space being heated.

Stevenson, S.

1981-06-30T23:59:59.000Z

49

Internal absorber solar collector  

DOE Patents [OSTI]

Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

Sletten, Carlyle J. (106 Nagog Hill Rd., Acton, MA 01720); Herskovitz, Sheldon B. (88 Hammond St., Acton, MA 01720); Holt, F. S. (46 Emerson Rd., Winchester, MA 01890); Sletten, E. J. (Chestnut Hill Rd. R.F.D. Rte. #4, Amherst, NH 03031)

1981-01-01T23:59:59.000Z

50

Solar collector overheating protection  

Science Journals Connector (OSTI)

Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a switching fluid with an index of refraction comparable to that of the prismatic structure. Thermal heat can be harvested via extra fluid channels in the solar absorber or directly via the switching fluid near the prisms. The light reducing effect of prismatic structures is demonstrated for a typical day and a season cycle of the Earth around the Sun. The switchability and the light reducing effect are also demonstrated in a prototype solar collector.

M. Slaman; R. Griessen

2009-01-01T23:59:59.000Z

51

Linear concentrating solar collector  

SciTech Connect (OSTI)

The present invention relates to a segment of a linear concentrating solar collector which includes two plates distanced from each other and extending parallel to each other; a member connects the plates to each other and holes are bored in each of the plates in a parallel manner along a parabolic curve. A member passes through the holes each holding a small strip made of a reflecting material all strips together forming a parabolic surface. The invention relates also to a collector comprising at least two of each segments and an absorber extending along the focus line of the entire collector. The collector is advantageously provided with horizontal and/or vertical members which ascertains that the collector can follow the position of the sun.

Aharon, N. B.

1985-08-06T23:59:59.000Z

52

SOLAR COLLECTORS, SELECTIVE SURFACES, AND HEAT ENGINES  

Science Journals Connector (OSTI)

SOLAR COLLECTORS, SELECTIVE SURFACES, AND HEAT...Tabor NATIONAL PHYSICAL LABORATORY OF ISRAEL SOLAR COLLECTORS, SELECTIVE SURFACES, AND HEAT...I should be working on the conversion of solar energy to power by thermal means instead...

H. Tabor

1961-01-01T23:59:59.000Z

53

Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 1: Model development and validation  

Science Journals Connector (OSTI)

Abstract Building-integrated photovoltaic–thermal (BIPV/T) systems with unglazed transpired solar collectors (UTCs) can provide a key solution for on-site electricity and thermal energy generation. Although the energy saving potential of this technology is significant, no systematic thermal analysis model has been developed for optimal system design and integration with building operation. This paper is the first of two companion papers focused on modeling and performance analysis of BIPV/T systems with UTC. In Part 1, energy models are presented for two configurations: UTC only and UTC with PV panels, to predict the cavity exit air temperature and plate surface temperature with weather (incident solar radiation, ambient air temperature, dew point temperature and wind speed) and design (airflow rate or suction velocity and geometry) parameters used as inputs. Nusselt number and effectiveness correlations, representing both the exterior and interior convective heat transfer processes, have been obtained from experimentally validated, three-dimensional, Reynolds-Averaged Navier–Stokes (RANS), Computational Fluid Dynamics (CFD) simulations, using high resolution grids and the ReNormalization Group Methods k–? (RNG k–?) turbulence closure model. The energy models were validated with measurements in an outdoor test-facility. Good agreement was observed between the model prediction and the experimental data, with the root mean square error (RMSE) being within 1 °C for the UTC-only model and within 2 °C for the model of UTC with PV modules. In the companion paper, Part 2, the effects of important parameters on system performance are demonstrated based on information from the literature and simulations using CFD and energy models. The optimal geometry is investigated for both configurations and the performance curves, under different levels of solar radiation, wind speed and suction velocity, are presented to provide guidelines for system design.

Siwei Li; Panagiota Karava; Sam Currie; William E. Lin; Eric Savory

2014-01-01T23:59:59.000Z

54

Hydrodynamic analysis of direct steam generation solar collectors  

SciTech Connect (OSTI)

Direct steam generation collectors are considered with the aim to improve the performance of a parabolic trough collector leading to a reduction of operating costs of solar electric generation systems. In this study a hydrodynamic steady state model is developed and linked with a thermal model to optimize the performance of once-through direct steam generation solar collectors. The hydrodynamic model includes flow pattern classification and a pressure drop model. Flow pattern maps for typical DSG collectors with horizontal and inclined absorber tubes are generated to investigate the variation of flow conditions with radiation level, tube diameter, tube length and flow rate. Two-phase flow frictional pressure drop correlations for the range of operating conditions in a DSG collector are selected from the wide range of published correlations by comparison with experimental data for typical steam-water flow conditions in a DSG collector. Pressure drop is calculated for different operating conditions for both horizontal and inclined solar absorber tubes. Alternative operational strategies are evaluated to achieve optimum performance of a direct steam generation collector at different radiation levels.

Odeh, S.D.; Behnia, M.; Morrison, G.L.

2000-02-01T23:59:59.000Z

55

Solar collector  

DOE Patents [OSTI]

The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1982-01-01T23:59:59.000Z

56

Solar-collector manufacturing activity, July through December, 1981  

SciTech Connect (OSTI)

Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

None

1982-03-01T23:59:59.000Z

57

Desiccant cooling using unglazed transpired solar collectors  

SciTech Connect (OSTI)

The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

Pesaran, A.A. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Wipke, K. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States)

1992-05-01T23:59:59.000Z

58

Solar collector  

SciTech Connect (OSTI)

The disclosure is a solar collector consisting of glass rods enclosed in a housing and mounted vertically on a roof or other elevated place to gather solar rays. The collector is fixed, with no tracking device or other moving parts. The glass rods are 6 mm or smaller in diameter, and there can be several thousand, depending on the sizes of the rods and collector. The upper ends of the rods are inclined at an angle of thirty degrees from horizontal, with the inclined surfaces occupying a plane which faces south so as to obtain maximum exposure to the winter sun. Solar rays striking the inclined ends of the rods are refracted into the rods. The rays travel down through the rods, with a predominantly parallel path of propagation being established by repeated reflections off the inside walls of the rods. The rays are emitted from the lower perpendicular ends of the rods as parallel rays of incoherent light which are directed into beam concentrators.

Clegg, J.E.

1985-01-08T23:59:59.000Z

59

Radiant energy collector. [Patent application  

DOE Patents [OSTI]

A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses.

McIntire, W.R.

1980-02-14T23:59:59.000Z

60

Double-duty collector  

SciTech Connect (OSTI)

The design of a liquid solar collector that helps heat an indoor pool and household water is described. Collector design and specifications and installation of the collector are discussed.

Hill, L.; Yates, D.

1983-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thin film solar energy collector  

DOE Patents [OSTI]

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

62

Research and Development of a Low Cost Solar Collector  

SciTech Connect (OSTI)

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

63

Ultracapacitor current collector  

DOE Patents [OSTI]

An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.

Jerabek, Elihu Calfin (Glenmont, NY); Mikkor, Mati (Ann Arbor, MI)

2001-10-16T23:59:59.000Z

64

Evaluation of solar collectors for heat pump applications. Final report  

SciTech Connect (OSTI)

The study was initiated to evaluate the potential utility of very low cost (possibly unglazed and uninsulated) solar collectors to serve as both heat collection and rejection devices for a liquid source heat pump. The approach consisted of exercising a detailed analytical simulation of the complete heat pump/solar collector/storage system against heating and cooling loads derived for typical single-family residences in eight US cities. The performance of each system was measured against that of a conventional air-to-air heat pump operating against the same loads. In addition to evaluation of solar collector options, the study included consideration of water tanks and buried pipe grids to provide thermal storage. As a supplement to the analytical tasks, the study included an experimental determination of night sky temperature and convective heat transfer coefficients for surfaces with dimensions typical of solar collectors. The experiments were conducted in situ by placing the test apparatus on the roofs of houses in the Denver, Colorado, area. (MHR)

Not Available

1980-08-01T23:59:59.000Z

65

Variable g value of transparent façade collectors  

Science Journals Connector (OSTI)

Transparent solar thermal collectors (TSTC) represent a new development. An adequate model is needed to predict their performance. This paper presents a collector model with an advanced calculation of the transmission of diffuse radiation and a connection to the building which allows analysis of the collector gains and of the g value, also called “solar factor”, “solar heat gain coefficient (SHGC)” or “total solar energy transmittance”. The model is implemented as a TRNSYS Type and a coupled simulation between a collector and a room is presented for different façade constructions. Façade areas with glazing and venetian blinds are simulated with a second new TRNSYS Type which introduces high modelling accuracy for façades with solar control systems. An HVAC system is presented together with a first estimate of possible reductions of primary energy. It indicates primary energy savings of about 30% by replacing opaque walls with transparent collectors. The g values prove to depend not only on the irradiation, but also on the operation of the solar collectors and vary e.g. between 0.04 and 0.21. Detailed modelling of active façades like TSTC is therefore essential for accurate predictions of the collector gain, the heating and cooling loads and the thermal comfort.

Christoph Maurer; Tilmann E. Kuhn

2012-01-01T23:59:59.000Z

66

SunShot Initiative: Collectors R&D for CSP Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collectors R&D for CSP Systems to Collectors R&D for CSP Systems to someone by E-mail Share SunShot Initiative: Collectors R&D for CSP Systems on Facebook Tweet about SunShot Initiative: Collectors R&D for CSP Systems on Twitter Bookmark SunShot Initiative: Collectors R&D for CSP Systems on Google Bookmark SunShot Initiative: Collectors R&D for CSP Systems on Delicious Rank SunShot Initiative: Collectors R&D for CSP Systems on Digg Find More places to share SunShot Initiative: Collectors R&D for CSP Systems on AddThis.com... Concentrating Solar Power Systems Components Collectors Receivers Power Block Thermal Storage Systems Analysis Competitive Awards Staff Photovoltaics Systems Integration Balance of Systems Collectors R&D for CSP Systems Collectors-whether for trough, tower (heliostat), linear Fresnel or dish

67

Biobriefcase aerosol collector  

DOE Patents [OSTI]

A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.

Bell, Perry M. (Tracy, CA); Christian, Allen T. (Madison, WI); Bailey, Christopher G. (Pleasanton, CA); Willis, Ladona (Manteca, CA); Masquelier, Donald A. (Tracy, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

2009-09-22T23:59:59.000Z

68

Cost goals for a residential photovoltaicthermal liquid collector system set in three northern locations  

E-Print Network [OSTI]

This study compares the allowable costs for a residential PV/T liquid collector system with those of both PV-only and side-by-side PV and thermal collector systems. Four types of conventional energy systems provide backup: ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

69

Solar Thermal Collector in Facades:.  

E-Print Network [OSTI]

??A venetian blind, which can be located in front or in between the façade panes, is proposed to do the task of a shading system… (more)

Cruz Lopez, P.B.

2011-01-01T23:59:59.000Z

70

Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications  

Science Journals Connector (OSTI)

...translucent thermal insulations for solar thermal applications Thomas Stegmaier...Denkendorf73770 Denkendorf, Germany Solar thermal collectors used at present consist...transparent thermal insulation|solar thermal collector| 1. Introduction...

2009-01-01T23:59:59.000Z

71

A Modified Efficiency Equation of Solar Collectors  

Science Journals Connector (OSTI)

Abstract This paper describes the derivation of a modified equation for solar collector efficiency that is expressed using the heating load term instead of the inlet fluid temperature term from the currently used linear collector efficiency equation. The parameters in the modified equation are estimated using test data measured for 14 days. In evaluation of the equation's validity, the calculated daily collector efficiency agrees well with the measured daily collector efficiency, with a correlation coefficient of 0.9110. The equation is also be expressed in another form by including the term for the shape of the hot water storage tank in the solar heating system. Collector efficiencies with parametric changes are calculated with the estimated parameters and compared with different global solar irradiance on solar collectors, daily average ambient temperature and heating loads per collector area. It would be necessary to estimate the parameters for better performance of the efficiency equation with more data from long-term system simulations at various operating conditions.

Kyoung-ho Lee; Nam-choon Baek

2014-01-01T23:59:59.000Z

72

Performance evaluation of the site built trickle solar collector system to heat swimming pool  

SciTech Connect (OSTI)

This report discusses the analysis and field experiment conducted to determine the thermal performance of a particular trickle water collector design. Specific areas examined include the effect of the aspect ratio, flow rate and tilt angle on the collector performance. The exact solar radiation on the sinusoidal absorber plate has to be theoretically calculated. The influence of various design parameters such as corrugation height and width, distance between cover and absorber, tilt angle, and flow rate on the performance is rather small. For a small temperature increase between fluid inlet and outlet the agreement between experimental and theoretical results appears to be reasonable. However, for the higher fluid inlet temperature, and for larger temperature increase, the actual collector efficiency deviates significantly to indicate the necessity of a correction factor such as fogging on the cover plate to the theoretical consideration.

Lee, J.H.; Park, W.H.; Park, K.S.

1985-01-01T23:59:59.000Z

73

Test results, Industrial Solar Technology parabolic trough solar collector  

SciTech Connect (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

74

Automated solar collector installation design  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2014-08-26T23:59:59.000Z

75

SunShot Initiative: Next-Generation Solar Collectors for CSP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Solar Collectors Next-Generation Solar Collectors for CSP to someone by E-mail Share SunShot Initiative: Next-Generation Solar Collectors for CSP on Facebook Tweet about SunShot Initiative: Next-Generation Solar Collectors for CSP on Twitter Bookmark SunShot Initiative: Next-Generation Solar Collectors for CSP on Google Bookmark SunShot Initiative: Next-Generation Solar Collectors for CSP on Delicious Rank SunShot Initiative: Next-Generation Solar Collectors for CSP on Digg Find More places to share SunShot Initiative: Next-Generation Solar Collectors for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

76

Electrochemically Stable Cathode Current Collectors for Rechargeable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Abstract:...

77

Simulation of thermal reset transitions in resistive switching memories including quantum effects  

SciTech Connect (OSTI)

An in-depth study of reset processes in RRAMs (Resistive Random Access Memories) based on Ni/HfO{sub 2}/Si-n{sup +} structures has been performed. To do so, we have developed a physically based simulator where both ohmic and tunneling based conduction regimes are considered along with the thermal description of the devices. The devices under study have been successfully fabricated and measured. The experimental data are correctly reproduced with the simulator for devices with a single conductive filament as well as for devices including several conductive filaments. The contribution of each conduction regime has been explained as well as the operation regimes where these ohmic and tunneling conduction processes dominate.

Villena, M. A.; Jiménez-Molinos, F.; Roldán, J. B. [Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s/n, 18071 Granada (Spain); González, M. B.; Campabadal, F. [Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra (Spain); Suñé, J.; Miranda, E. [Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra Cerdanyola del Vallès 08193 (Spain); Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avd. Fuentenueva s/n, 18071 Granada (Spain)

2014-06-07T23:59:59.000Z

78

Self-aligning solar collector  

SciTech Connect (OSTI)

A self-aligning solar energy collector which maintains its attitude facing the sun during the sun's daily and seasonal changes. Tension cables hold the collector in position, and are positioned so as to be out of equilibrium when off-axis solar radiation heat one cable more than another. Self-alignment is in both horizontal and vertical planes. Multiple collectors are also disclosed in a ganged or masterslave relationship.

Vandenberg, L.B.

1982-12-28T23:59:59.000Z

79

Performance characterisation and energy savings of uncovered swimming pool solar collectors under reduced flow rate conditions  

Science Journals Connector (OSTI)

The effects of reduced flow rates on the performance and effectiveness of domestic unglazed, uninsulated pool solar collector heaters are investigated. The study shows electrical energy savings in excess of 80% are achievable for typical solar collectors operating at flow rates reduced by up to 75% while collector efficiency is only reduced by approximately 10–15%. The reduction of electrical energy required for pumping and the increased COP of reduced flow through typical pool solar thermal collectors is shown to far outweigh the small loss of collector performance attributable to the change in flow rates. The ratio of thermal energy delivered to the electrical energy supplied was improved in the order of 400% for the collector tested.

L.N. Cunio; A.B. Sproul

2012-01-01T23:59:59.000Z

80

Solar collector assembly  

SciTech Connect (OSTI)

Individual collector cells are fitted together in series along a heat transfer medium tube. The cells have a cylindrical housing with mating interconnecting flanges at the ends, through which the tube also passes. The flanges may have sealing gaskets. The housing has a transparent front side and a reflective back side. The cross-sectional configuration of the front is arcuate, while that of the back is parabolic. The cells are fixed with respect to the tube axis, but can rotate about it to follow the sun. Parallel cell rows can be interconnected to rotate together. Interconnected, articulated cell rows are disclosed as a removable cover for a swimming pool.

Bogatzki, H.

1980-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Notes 07. Thermal analysis of finite length journal bearings including fluid inertia  

E-Print Network [OSTI]

in Refs. [12,13,18] Notes 7. THERMAL ANALYSIS OF FINITE LENGTH JOURNAL BEARINGS. Dr. Luis San Andr?s ? 2009 22 system. Table 1 details the geometry of the pressure dam bearing, as detailed in Ref. [18]. Please note that Al-Jughaiman?s publication... at the center of the control-volumes. Notes 7. THERMAL ANALYSIS OF FINITE LENGTH JOURNAL BEARINGS. Dr. Luis San Andr?s ? 2009 18 z=? L z=L Fs =0 (W=0) Midplane (symmetry line) Fw Fe Fn Fe ? Fw + Fn =0 TPTW ?x x=R? z TE Tn Tw Te Exit plane...

San Andres, Luis

2009-01-01T23:59:59.000Z

82

Integrated solar collector  

DOE Patents [OSTI]

A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

Tchernev, Dimiter I. (9 Woodman Rd., Chestnut Hill, MA 02167)

1985-01-01T23:59:59.000Z

83

Concentrating-collector mass-production feasibility. Volume I. Final report  

SciTech Connect (OSTI)

The Performance Prototype Trough (PPT) Concentrating Collector consists of four 80-foot modules in a 320-foot row. The collector was analyzed, including cost estimates and manufacturing processes to produce collectors in volumes from 100 to 100,000 modules per year. The four different reflector concepts considered were the sandwich reflector structure, sheet metal reflector structure, molded reflector structure, and glass laminate structure. The sheet metal and glass laminate structures are emphasized with their related structure concepts. A preliminary manufacturing plan is offered that includes: documentation of the manufacturing process with production flow diagrams; labor and material costs at various production levels; machinery and equipment requirements including preliminary design specifications; and capital investment costs for a new plant. Of five reflector designs considered, the two judged best and considered at length are thin annealed glass and steel laminate on steel frame panel and thermally sagged glass. Also discussed are market considerations, costing and selling price estimates, design cost analysis and make/buy analysis. (LEW)

Not Available

1981-11-02T23:59:59.000Z

84

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

85

Experimental Performance of a Solar Collector in Solar Chimney Power Plant System  

Science Journals Connector (OSTI)

Solar chimney power plant has been proposed as a device to economically generate electricity from solar energy in large scale in the future. There are many factors to influence on the performance of the solar collector. This paper describes details of ... Keywords: generate electricity, thermal storage material, pebbles, solar collector

Huilan Huang; Gang Li; Hua Zhang

2010-06-01T23:59:59.000Z

86

Exergy analysis of a rock bed thermal storage system  

Science Journals Connector (OSTI)

In this paper, a thermodynamic procedure is presented to analyse energy and exergy balances of a rock bed thermal storage system. The thermal behaviour is described by means of a control volume that includes three subsystems: the solar collectors, the fluid distribution system and the storage chamber. Solar-to-thermal energy conversion was obtained by means of a solar collector at a fixed airflow rate. The final purpose of the method is to determine how well the thermodynamic modelling fits the real data obtained experimentally from the prototype under normal operating conditions.

J.J. Navarrete-Gonzalez; J.G. Cervantes-de Gortari; E. Torres-Reyes

2008-01-01T23:59:59.000Z

87

Shenandoah parabolic dish solar collector  

SciTech Connect (OSTI)

The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

Kinoshita, G.S.

1985-01-01T23:59:59.000Z

88

Chapter 10 - Solar Thermal Power Systems  

Science Journals Connector (OSTI)

Abstract Chapter 10 deals with solar thermal power systems. Initially, the general design considerations are given followed by the presentation of the three basic technologies. These include the parabolic trough collector system, which includes a description of the PTC power plant and outlook of the technology; the power tower systems and the dish systems. This is followed by the thermal analysis of the basic cycles of solar thermal power plants. Subsequently, solar updraft tower systems are examined, which include the initial steps and first demonstration, and the thermal analysis. Finally, solar ponds are examined, which is a form of large solar collector and storage system that can be used for solar power generation and include practical design considerations, salty water transmission estimation, methods of heat extraction, description of two large experimental solar ponds, and applications of solar ponds.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

89

Radiation Incident on Tilted Collectors  

Science Journals Connector (OSTI)

For solar energy system design purposes, observations of solar radiation on a horizontal surface must be converted to values on a tilted energy collector. An empirical conversion relationship, introduced by Liu and Jordan (1960) and based on ...

P. J. Robinson

1981-12-01T23:59:59.000Z

90

Pv-Thermal Solar Power Assembly  

DOE Patents [OSTI]

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

91

Solar heat collector  

SciTech Connect (OSTI)

An evacuated double-tubing solar heat collector is described comprising: an inner tube having an open end and a closed end; a selective absorption film applied over an exterior surface of the inner tube; an outer tube having an open end and a closed end; the inner tube being constructed to be received within the outer tube; and a substantially continuous annular coil spring ring being substantially found in cross section and of a predetermined thickness. The coil spring ring is disposed between and engages an interior surface of the outer tube and the exterior surface of the inner tube for spacing and resiliently supporting the inner tube relative to the outer tube. The ring is freely rotatably positioned to be moved axially along the length of the inner tube due only to frictional forces exerted on the coil spring. The coil spring ring is positioned on the inner tube at approximately a middle position along the length of the inner tube by being initially positioned on the inner tube adjacent to the closed end thereof and rotated upon itself axially along the inner tube only by frictional engagement with the interior surface of the outer tube as the inner tube is inserted into the open end of the outer tube and moved to a fully inserted position within the outer tube. The open end of the inner tube and the open end of the outer tube are fused to form a junction and hermetically sealed.

Takeuchi, H.; Mikiya, T.

1987-03-17T23:59:59.000Z

92

Solar Keymark Testing of Solar Thermal Products  

Science Journals Connector (OSTI)

The Solar Keymark is the official CEN certification scheme for thermal solar collectors and factory made thermal solar systems. The Solar Keymark requires that the products fulfil the...

Harald Drück; Stephan Fischer…

2009-01-01T23:59:59.000Z

93

Performance analysis of wick-assisted heat pipe solar collector and comparison with experimental results  

Science Journals Connector (OSTI)

The performance of heat pipe solar collector is investigated theoretically and experimentally. The system employs wick-assisted heat pipe for the heat transfer from ... pipe temperature and also the thermal effic...

E. Azad

2009-03-01T23:59:59.000Z

94

NETL: Control Technology: Advanced Hybrid Particulate Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

95

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network [OSTI]

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors… (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

96

Collector for thermionic energy converter  

SciTech Connect (OSTI)

An improved collector is provided for a thermionic energy converter. The collector comprises a p-type layer of a semiconductor material formed on an n-type layer of a semiconductor material. The p-n junction is maintained in a forward biased condition. The electron affinity of the exposed surface of the p-type layer is effectively lowered to a low level near zero by the presence of a work function lowering activator. The dissipation of energy during collection is reduced by the passage of electrons through the p-type layer in the metastable conduction band state. A significant portion of the electron current remains at the potential of the fermi level of the n-type layer rather than dropping to the fermi level of the p-type layer. Less energy is therefore dissipated as heat and a higher net power output is delivered from a thermionic energy converter incorporating the collector.

Bell, R.L.

1981-07-21T23:59:59.000Z

97

Design of a solar thermal collector simulator.  

E-Print Network [OSTI]

??The recent increased interest in renewable energy has created a need for research in the area of solar technology. This has brought about many new… (more)

Bolton, Kirk G.

2009-01-01T23:59:59.000Z

98

The design of a pre-collector for cyclone collectors  

E-Print Network [OSTI]

Tests were conducted on small laboratory scale ID-3D and 2D-2D cyclones to demonstrate the reduction in emission concentrations resulting when a pre-cyclone collector is used to collect large trash particles prior to cyclone fine dust collection...

Mihalski, Karl Duane

2012-06-07T23:59:59.000Z

99

Low-cost evacuated-tube solar collector appendices. Final report  

SciTech Connect (OSTI)

A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

Beecher, D.T.

1980-05-31T23:59:59.000Z

100

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis  

Science Journals Connector (OSTI)

Abstract In this work, a methodology based on rigorous model fitting and sensitivity analysis is presented to determine the parameters describing the physicochemical behavior of commercial pouch Li-ion batteries of high-capacity (16 A h), utilized in electric vehicles. It is intended for a rapid estimation of the kinetic and transport parameters, state of charge and health of a Li-ion battery when chemical information is not available, or for a brand new system. A pseudo 2-D model comprised of different contributions reported in the literature is utilized to describe the mass, charge and thermal balances of the cell and porous electrodes; and adapted to the battery chemistry under study. The sensitivity analysis of key model parameters is conducted to determine confidence intervals, using Analysis of Variance (ANOVA) for non-linear models. Also individual multi-parametric sensitivity analysis is conducted to assess the impact of the model parameters on battery voltage. The battery is comprised of multiple cells in parallel containing carbon anodes and LiNi1/3Co1/3Mn1/3O2 (NMC) cathodes with maximum and cut-off voltages of 4.2 and 2.7 V, respectively. Mass and charge transfer limitations during the discharge/charge of the battery are discussed as a function of State of Charge (SOC). A thermal analysis is also conducted to estimate the temperature rise on the surface of the battery. This modeling methodology can be extended to the analysis of other chemistry types of Li-ion batteries, as well as the evaluation of other material phenomena including capacity fade.

Jorge Vazquez-Arenas; Leonardo E. Gimenez; Michael Fowler; Taeyoung Han; Shih-ken Chen

2014-01-01T23:59:59.000Z

102

Biobriefcase electrostatic aerosol collector  

DOE Patents [OSTI]

A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.

Bell, Perry M. (Tracy, CA); Christian, Allen T. (Madison, WI); Bailey, Christopher G. (Pleasanton, CA); Willis, Ladona (Manteca, CA); Masquelier, Donald A. (Tracy, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

2009-03-17T23:59:59.000Z

103

Management and exploitation of direct normal irradiance resources for concentrating solar collectors: Algeria as a case study  

Science Journals Connector (OSTI)

The use of concentrating solar collectors which are used in solar thermal power plant and concentrated photovoltaic systems implies that these systems only work with the direct normal irradiance (DNI). Unfortu...

Mohamed Salah Mecibah; Taqiy Eddine Boukelia…

2014-11-01T23:59:59.000Z

104

Solar Energy Education. Renewable energy: a background text. [Includes glossary  

SciTech Connect (OSTI)

Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

Not Available

1985-01-01T23:59:59.000Z

105

Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract This paper presents a dynamic simulation model of a novel prototype of a 6 kWe solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5 m2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230 °C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the year, remaining always close to 10%. On the other hand, the efficiency of the solar collectors is very high in summer (>50%) and significantly lower during the coldest winter days (down to 20%). Pay-back periods are extremely attractive in case of feed-in tariffs (about 5 years), whereas the profitability of the system is scarce when no public funding is available. A sensitivity analysis was also performed, in order to determine the combination of system/design parameters able to maximize the thermo-economic performance of the system. It was found that the system may be economically feasible for the majority of locations in the Mediterranean area (pay-back periods around 10 years), whereas the profitability is unsatisfactory for Central-Europe sites.

Francesco Calise; Massimo Dentice d’Accadia; Maria Vicidomini; Marco Scarpellino

2015-01-01T23:59:59.000Z

106

Solar collector construction and sealing arrangement  

SciTech Connect (OSTI)

A sealing arrangement is disclosed by which a glass panel cover may be installed with a weather-tight seal in a solar collector housing. The housing includes side walls, the upper edges of which are formed with a generally cylindrical groove which faces upwardly. The sealing arrangement includes an elongate resilient body formed with a generally cylindrical anchor section having a cross-section of a dimension just the same as or less than the cross-section dimension of the cylindrical groove, and a holding section formed integrally with the anchor section near the top thereof and having a generally U-shaped cross-section which faces inwardly of the housing.

Leflar, J.A.; Wardlow, W.C.

1985-02-12T23:59:59.000Z

107

Development of a Solar Assisted Drying System Using Double-Pass Solar Collector with Finned Absorber  

Science Journals Connector (OSTI)

The Solar Energy Research Group, Universiti Kebangsaan Malaysia, International Islamic University Malaysia and Yayasan FELDA has designed and constructed a solar assisted drying system at OPF FELDA Factory, Felda Bukit Sagu 2, Kuantan, Pahang. The drying system has a total of six double-pass solar collectors. Each collector has a length of 480 cm and a width of 120 cm. The first channel depth is 3.5 cm and the second channel depth is 7 cm. Longitudinal fins made of angle aluminium, 0.8 mm thickness were attached to the bottom surface of the absorber plate. The solar collectors are arranged as two banks of three collectors each in series. Internal manifold are used to connect the collectors. Air enters through the first channel and then through the second channel of the collector. An auxiliary heater source is installed to supply heat under unfavourable solar radiation condition. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 70–75 °C can be achieved at solar radiation range of 800–900 W/m2 and flow rate of 0.12 kg/s. The average thermal efficiency of a solar collector is approximately 37%.

M S M Azmi; M Y Othman; K Sopian; M H Ruslan; Z A A Majid; A Fudholi; J M Yasin

2012-01-01T23:59:59.000Z

108

Solar energy collector with collapsible supporting structure  

SciTech Connect (OSTI)

A solar energy collector formed of a black plastic material in a rigid, unitary, one-piece self-supporting construction. The collector is formed with inlet and outlet manifolds and a multiplicity of fluid flow passages extending therebetween. Each passage is provided with at least one flow restriction to provide a uniform distribution of flow through all passages. A series of such collectors are connected to form an array incorporated in a multipurpose, collapsible structure for heating swimming pool water.

Goodman, R.D.; Krueger, W.F.; Shaw, A.R.

1980-06-10T23:59:59.000Z

109

Tubular solid oxide fuel cell current collector  

DOE Patents [OSTI]

An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

Bischoff, Brian L. (Knoxville, TN); Sutton, Theodore G. (Kingston, TN); Armstrong, Timothy R. (Clinton, TN)

2010-07-20T23:59:59.000Z

110

Collectors R&D for CSP Systems  

Broader source: Energy.gov [DOE]

Collectors—whether for trough, tower (heliostat), linear Fresnel or dish systems—comprise up to 40% of the total system costs for concentrating solar power (CSP) technologies. The DOE SunShot CSP Program seeks to dramatically reduce the cost of the collector field while improving optical accuracy and ensuring durability. The SunShot Initiative funds research and development (R&D) on collector systems and related aspects within the industry, national laboratories and universities to achieve the following technical targets of collector subsystems toward the SunShot goals.

111

Ray Tracing of a Solar Collector Designed for Uniform Yearly Production  

Science Journals Connector (OSTI)

Abstract One of the problems with solar flat plate collectors for domestic water heating is that they produce more energy in the summer months, when the domestic hot water needs are lower than in winter months. This causes a significant difference between supply and demand and thus overheating during the summer. A method to avoid this problem is to design solar collector fields that offer a 100% of the water needs in the summer, but a small percentage during the winter, which is certainly not ideal. In this work, ray tracing is used to design a solar thermal collector that offers a more uniform production during the year. A novel geometry is chosen where the collector is split in two parts, a curved absorber and a mini parabolic concentrator. The concentrator is designed to concentrate the radiation during the midday hours of winter days and to not doing it in the midday hours of summer days. This increases the energy produced in winter and prevents the installation from overheating. In order to study the hours when this geometry will concentrate the solar radiation, ray tracing is used. As the solar collector has a design that allows the collector to be easily integrated into a facade, the simulations in the most useful architectural integration positions are simulated, those are horizontal positions, but vertical positions or any other position are suitable if the collector is installed on a roof. For each position, the amount of hours where the whole collector is working and the total radiation captured are calculated and compared with the solar radiation captured by an equivalent flat surface, which would corresponds to conventional flat plate collectors. Simulation results shows how for a concentrator designed to work properly in the 5 midday hours during the winter solstice it will not work during the 5 midday hours during the summer solstice, avoiding overheating.

David Rodriguez-Sanchez; Gary Rosengarten; Juan Francisco Belmonte Toledo; Maria Izquierdo Barrientos; Antonio Molina Navarro; Jose Antonio Almendros-Ibañez

2014-01-01T23:59:59.000Z

112

Development of an Advanced, Low-Cost parabolic Trough Collector...  

Office of Environmental Management (EM)

Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation This...

113

Project Profile: Next-Generation Parabolic Trough Collectors...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trough Collectors and Components for CSP Applications Project Profile: Next-Generation Parabolic Trough Collectors and Components for CSP Applications Abengoa logo Abengoa...

114

Method of making a current collector for a sodium/sulfur battery  

DOE Patents [OSTI]

This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

1987-03-10T23:59:59.000Z

115

Performance simulation of solar collectors made of concrete with embedded conduit lattice  

SciTech Connect (OSTI)

A solar collector made of a lattice of fluid conduits embedded within a thin concrete slab is investigated. Such a configuration can be constructed to withstand some mechanical strain by reinforcing the concrete with glass fibers. This collector can be integrated within construction elements of buildings and therefore offers means for low-cost solar energy collection. The geometry of such a collector as well as its characteristic parameters are different from the conventional flat-plate thin-fin collector. Its performance cannot therefore be accurately predicted by assuming a thin-fin behavior. It requires a different and somewhat more involved thermal analysis. In the present analysis, a numerical solution of a two-dimensional cross-sectional slice is expanded in the longitudinal direction by superpositioning such slices in tandem. A parametric study of the relative influence of various operational, geometrical and material parameters is presented. The study provides the tools for a feasibility study of such collectors. Transient characteristics of the collector's dynamic response during a typical summer day with continuous or intermittent radiation are also presented.

Sokolov, M.; Reshef, M. (Tel-Aviv Univ., Ramat-Aviv (Israel))

1992-01-01T23:59:59.000Z

116

Study of a solar air flat plate collector: use of obstacles and application for the drying of grape  

Science Journals Connector (OSTI)

In the solar air flat plate collector, the insufficiency of the thermal exchange between the fluid and the absorber obliges the user to enhance their optimization. This low thermal exchange does not allow these systems to obtain their best performance or the best thermal efficiency. In our experimental study, which consists of a solar energy simulation, we have sought to improve the efficiency–temperature rise couple of the flat plate solar collector by considering several types of obstacles disposed in rows in the dynamic air vein of the flat collector. Thus, we have proceeded to the application of the best two systems (WDL1) and (TL) for drying an agricultural product grape. By comparing with the collector without obstacles (WO), the thermal transfers and, consequently, the output temperature (TOC) and the collector efficiency (?) are clearly improved. The drying times obtained with the proposed systems are very interesting. The heat quantities obtained in the case of WDL1 are very important compared with the collector WO. However, the entry to the drying cupboard of this high temperature (TOC) in the vicinity of the solar midday must be limited to the maximal value demanded by the considered product.

A Abene; V Dubois; M Le Ray; A Ouagued

2004-01-01T23:59:59.000Z

117

Lightweight diaphragm mirror module system for solar collectors  

DOE Patents [OSTI]

A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

Butler, B.L.

1984-01-01T23:59:59.000Z

118

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

and solar thermal collectors; electrical storage, flowis disallowed; 5. a low storage, PV, and solar thermal priceand heat storage; heat exchangers for application of solar

Stadler, Michael

2008-01-01T23:59:59.000Z

119

Biomass Producer or Collector Tax Credit (Oregon)  

Broader source: Energy.gov [DOE]

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

120

Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design  

E-Print Network [OSTI]

11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows with same thermal behaviour). For heat conduction in walls, it results from electrical analogy

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Next-Generation Solar Collectors for CSP  

Broader source: Energy.gov [DOE]

This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

122

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network [OSTI]

Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors...

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

123

Convective Heat Transfer from Exposed Flat Horizontal Surface in Outdoorconditions at Low Wind Speeds: An Application to Flat Plate Solar Collector  

Science Journals Connector (OSTI)

Estimation of various heat losses in flat plate solar collectors is important for their thermal performance evaluation under different operating conditions. Upward heat losses have a major contribution in the ...

Suresh Kumar; S. C. Mullick

2009-01-01T23:59:59.000Z

124

Final test results for the Schott HCE on a LS-2 collector.  

SciTech Connect (OSTI)

Sandia National Laboratories has completed thermal performance testing on the Schott parabolic trough receiver using the LS-2 collector on the Sandia rotating platform at the National Solar Thermal Test Facility in Albuquerque, NM. This testing was funded as part of the US DOE Sun-Lab USA-Trough program. The receiver tested was a new Schott receiver, known as Heat Collector Elements (HCEs). Schott is a new manufacturer of trough HCEs. The Schott HCEs are 4m long; therefore, two were joined and mounted on the LS-2 collector module for the test. The Schott HCE design consists of a 70mm diameter high solar absorptance coated stainless steel (SS) tube encapsulated within a 125mm diameter Pyrex{reg_sign} glass tube with vacuum in the annulus formed between the SS and glass tube to minimize convection heat losses. The Schott HCE design is unique in two regards. First, the bellows used to compensate for the difference in thermal expansion between the metal and glass tube are inside the glass envelope rather than outside. Second, the composition of materials at the glass-to-metal seal has very similar thermal expansion coefficients making the joint less prone to breakage from thermal shock. Sandia National Laboratories provided both the azimuth and elevation collector module tracking systems used during the tests. The test results showed the efficiency of the Schott HCE to be very similar to current HCEs being manufactured by Solel. This testing provided performance verification for the use of Schott tubes with Solargenix trough collector assemblies at currently planned trough power plant projects in Arizona and Nevada.

Moss, Timothy A.; Brosseau, Douglas A.

2005-07-01T23:59:59.000Z

125

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990’s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

126

Linear Fresnel Collector Receiver: Heat Loss and Temperatures  

Science Journals Connector (OSTI)

Abstract For design and component specification of a Linear Fresnel Collector (LFC) cavity receiver, the prediction of temperature distribution and heat loss is of great importance. In this paper we present a sensitivity analysis for a range of geometry and material parameters. For the LFC receiver analysis we use two models developed at Fraunhofer ISE. One is a detailed model, combining the spatial distribution of reflected radiation via ray tracing with detailed convective simulations through computational fluid dynamics. The second one is a fast algorithm based on a thermal resistance model. It is applying a similar methodology as the well-known model for vacuum absorber, enhancing an absorber tube model by parameters describing the influence of the secondary mirror and cover glass. The thermal resistance model is described in detail. Obtained results indicate a significant effect of the secondary mirror temperature on heat loss for specific geometries.

A. Heimsath; F. Cuevas; A. Hofer; P. Nitz; W.J. Platzer

2014-01-01T23:59:59.000Z

127

Simulation of solar lithium bromide–water absorption cooling system with parabolic trough collector  

Science Journals Connector (OSTI)

Ahwaz is one of the sweltering cities in Iran where an enormous amount of energy is being consumed to cool residential places in a year. The aim of this research is to simulate a solar single effect lithium bromide–water absorption cooling system in Ahwaz. The solar energy is absorbed by a horizontal N–S parabolic trough collector and stored in an insulated thermal storage tank. The system has been designed to supply the cooling load of a typical house where the cooling load peak is about 17.5 kW (5 tons of refrigeration), which occurs in July. A thermodynamic model has been used to simulate the absorption cycle. The working fluid is water, which is pumped directly to the collector. The results showed that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 57.6 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

M. Mazloumi; M. Naghashzadegan; K. Javaherdeh

2008-01-01T23:59:59.000Z

128

U-153: EMC Data Protection Advisor Server and Collector Bugs...  

Broader source: Energy.gov (indexed) [DOE]

53: EMC Data Protection Advisor Server and Collector Bugs Let Remote Users Deny Service U-153: EMC Data Protection Advisor Server and Collector Bugs Let Remote Users Deny Service...

129

Characteristics of two thermionic converters with oxide collectors  

SciTech Connect (OSTI)

Thermionic converters built with selected metal oxide coatings on their collectors have given enhanced performance at interelectrode spacings greater than 0.25 mm. The capability of such converters to operate efficiently at large interelectrode spacings is of interest for in-core thermionic power systems. Performance data are reported from one converter built with a collector having a coating of molybdenum sublimed in oxygen and a second converter containing an oxidized zirconium collector. The molybdenum oxide collector converter demonstrated enhanced performance.

Smith, E.A.; Huffman, F.N.

1984-08-01T23:59:59.000Z

130

Experimental Study on Optical Properties of the Collector  

Science Journals Connector (OSTI)

Solar collector is one of the most important parts of solar chimney power plant. It plays an important role...

Wang Juan; Zhao Liang; Li Huashan

2009-01-01T23:59:59.000Z

131

Solar heat collectors. (Latest citations from the US Patent database). Published Search  

SciTech Connect (OSTI)

The bibliography contains selected patents concerning solar heat collector apparatus and systems. Building panels, air conditioning systems, chemical heat pumps, refrigeration systems, and controls are discussed. Applications include residential and commercial building space and water heating, greenhouse heating, and swimming pool heating. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

132

Project Profile: Improved Large Aperture Collector Manufacturing  

Broader source: Energy.gov [DOE]

Abengoa Solar, under the Solar Manufacturing Technology (SolarMat) program, will be investigating the use of an automotive-style high-rate fabrication and automated assembly techniques to achieve a substantial reduction in the deployment cost of their new SpaceTube advanced large aperture parabolic trough collector.

133

Pressure drops for direct steam generation in line-focus solar thermal systems  

E-Print Network [OSTI]

the focus of the solar collector, and then generate steam outside the collector in a large heat exchanger applicable to DSG in long horizontal pipes as required for the current work with a line-focus collector. #12Pressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham

134

Experimental study of integrated collector storage solar water heaters  

Science Journals Connector (OSTI)

Three Integrated Collector Storage Solar Water Heaters (ICSSWH) have been designed, constructed and experimentally studied in comparison to a Flat Plate Thermosiphonic Unit (FPTU). Each of the ICS experimental models consists of one cylindrical tank horizontally mounted in a stationary symmetrical Compound Parabolic Concentrating (CPC) reflector trough. The main objective is the design and construction of low cost solar water heaters with improved thermal performance and lower possible depths. The experimental models can be mounted on horizontal as well as on inclined roofs by adopting the lowest possible depth. The results show that these solar devices perform more than effectively all year long. This could contribute significantly on the development of ICS type solar water heaters.

M. Souliotis; D. Chemisana; Y.G. Caouris; Y. Tripanagnostopoulos

2013-01-01T23:59:59.000Z

135

NREL: Concentrating Solar Power Research - Collector R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collector R&D Collector R&D Featured Resource Learn more about NREL's capabilities in collector/receiver characterization. Collector research at NREL focuses on developing and testing the next generation of concentrating solar power (CSP) collectors that reduce delivered electricity costs by 50%. NREL's work involves improved reflector development, optical model development, optical measurement techniques, testing standards, and reliability assessments. NREL also works to upgrade and adapt optical tools to enhance laboratory testing capabilities. CSP collectors capture the sun's energy with mirrors that reflect and focus the sunlight onto a receiver, creating the heat that is used to generate electricity. Opportunities and Potential Impact Collectors-whether for parabolic trough, power tower, or dish

136

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

137

A Self-Biasing Pulsed Depressed Collector  

SciTech Connect (OSTI)

Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

2014-05-29T23:59:59.000Z

138

Solar collector for fluid heating system  

SciTech Connect (OSTI)

A solar collector for use in either an upfeed forced hot water heating system or a downfeed system features a pair of serpentine coils arranged in opposing flow relationship within a shallow insulated collector housing having a sealed glass closure panel. The two serpentine coils lie in spaced parallel planes within the housing, and the two coils are offset laterally so that their individual longitudinal loops overlap laterally by approximately one-half the width of each loop. The flow of heated fluid in each serpentine coil is controlled independently of the other coil by a temperature-responsive modulating valve connected in each coil close to the outlet end thereof within the housing. Efficiency of operation and practicality and economy of construction are featured.

Wilson, D.C.

1980-09-30T23:59:59.000Z

139

Optimization of solar flat collector inclination  

Science Journals Connector (OSTI)

Solar collectors need to be inclined at the optimum angle to maximize the receiving energy. In spite of many theoretical and experimental investigations on optimization of solar collector inclination, there is an inconsistency in presented results. In this paper, solar global radiation on a horizontal surface was estimated using a mathematical model and the results were compared with the recorded data from the Zahedan city meteorological station. Total received solar energy by a flat inclined collector was determined in a certain day, and searching for the angle which has the maximum incident energy was the general procedure in determination of daily optimum tilt angle. In case of operational limitation for daily tilt adjustment, this procedure is repeated for other specific period of time and monthly, seasonal, semi-annual and annual optimum tilt angles were determined. A MATLAB-based code is used to calculate the daily optimum tilt angle. The results were in good agreement with the obtained data of a new constructed device. Finally, in the case of stationary devices, some recommendations were presented with respect to their typical application.

Hamid Moghadam; Farshad Farshchi Tabrizi; Ashkan Zolfaghari Sharak

2011-01-01T23:59:59.000Z

140

Thin film absorber for a solar collector  

DOE Patents [OSTI]

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solar pumping installation for pumping liquid and solar collector construction  

SciTech Connect (OSTI)

A solar pumping system, comprises, a pumping housing which defines a pump chamber therein which is adapted to be positioned in the ground below ground water level. Displacer means in the form of, for example, a bladder, arranged within the pump chamber, is capable of displacing liquid out of the pump chamber in response to a pressurized medium acting thereon to expel the water out of the chamber and up to a level above the ground for use. A suction valve connected into the chamber permits the ground water to flow into the chamber and a discharge valve connected out of the chamber permits the outflow of the ground water during the action of the displacer means. The construction includes a solar collector having at least one hydride conduit which is adapted to be exposed to the sun for solar heating to act on the hydride to cause hydrogen to be formed, the pressure of which acts against the displacer means to displace the ground liquid out of the pump chamber. When the solar collector is shielded and the hydride is permitted to cool or is cooled rapidly by the circulation of water thereover, the pressure of the generated hydrogen decreases, permitting ground water to enter into the pumping chamber once again through the suction valves.

Seidel, A.; Wolf, D.

1984-03-27T23:59:59.000Z

142

Optimisation of Solar Collector Area for Solar Thermal Systems  

Science Journals Connector (OSTI)

Invariably solar energy systems are provided with an auxiliary energy source to meet the energy requirements of a system operating at a constant temperature. A technoeconomic analysis has been developed in thi...

N. K. Bansal; Aman Dang

1984-01-01T23:59:59.000Z

143

Study of ice and snow melting process on conductive asphalt solar collector  

Science Journals Connector (OSTI)

This paper investigates the snow melting process on asphalt pavements as solar collector by experiments and numerical simulation. A numerical simulation method was used to predict the general design requirements for snow melting system of asphalt pavements, and a type of experimental asphalt snow melting system has been built using the design parameters obtained from the preceding simulation. Graphite powders were used to improve the thermal conductivity of asphalt concrete and thus resulting in an improved efficiency of asphalt collector. A laboratory snow melting test was performed after real snowstorm events. The effects of thermal conductive asphalt concrete (CAC) on snow melting performance and asphalt pavement temperature distribution were evaluated. The heat transfer in the asphalt slabs and the heat requirement for the snow melting were analyzed. The results that are obtained show that asphalt solar collector (ASC) provides us a better alternative method for snow melting. The higher fluid temperature is a positive way to improve the performance of snow melting system. However, it is unnecessary to keep a too high fluid temperature so as to reduce the waste of energy. The non-uniform temperatures in the asphalt slabs are noticeable. Furthermore, the heat-transmission and the snow melting performance can be enhanced using CAC.

Mingyu Chen; Shaopeng Wu; Hong Wang; Jizhe Zhang

2011-01-01T23:59:59.000Z

144

Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector  

SciTech Connect (OSTI)

To fabricate LiFePO4 battery cathodes, highly conductive carbon fibers of 10-20 m in diameter have been used to replace a conventional aluminum (Al) foil current collector. This disperses the current collector throughout the cathode sheet and increases the contact area with the LiFePO4 (LFP) particles. In addition, the usual organic binder plus carbon-black can be replaced by a high temperature binder of <5 weight % carbonized petroleum pitch (P-pitch). Together these replacements increase the specific energy density and energy per unit area of the electrode. Details of the coating procedure, characterization and approach for maximizing the energy density are discussed. In a side-by-side comparison with conventional cathodes sheets of LFP on Al foil, the carbon fiber composite cathodes have a longer cycle life, higher thermal stability, and high capacity utilization with little sacrifice of the rate performance.

Martha, Surendra K [ORNL; Kiggans, Jim [ORNL; Nanda, Jagjit [ORNL; Dudney, Nancy J [ORNL

2011-01-01T23:59:59.000Z

145

Rim-drive cable-aligned heliostat collector system  

SciTech Connect (OSTI)

Disclosed is a heliostat collector apparatus comprising at least one heliostat suspended from a plurality of longitudinally extending linkage means. An enclosure structure is disposed adjacent the heliostat and provides a means for allowing th heliostat to be substantially protected from weathering. A first drive means is operatively connected to the heliostat to effect steering thereof in at least one of first and second predetermined directions. Finally, a frame member is adapted for supporting the heliostat at an inner portion thereof. The frame includes a plurality of outer expandable portions. Each one of the expandable portions is adapted to slidably engage a corresponding one of the plurality of linkage means. The expandable portions are further adapted to allow the heliostat to be slidably moved along the linkage means in directions away from and towards the enclosure structure and to substantially reduce stress acting on the heliostat during steering.

Dolan, J.E.; Sands, T.D.

1984-08-21T23:59:59.000Z

146

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

of a solar-thermal- assisted hvac system. Energy andsolar thermal collectors using flat reflective surfaces. Solar Energy,of a solar-assisted HVAC system with thermal storage. Energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

147

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

Mammoli, Andrea

2014-01-01T23:59:59.000Z

148

Connectable solar air collectors Solar Energy Centre Denmark  

E-Print Network [OSTI]

Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren �stergaard Jensen Miroslav Bosanac Solar Energy Centre Søren �stergaard Jensen and Miroslav Bosanac Solar Energy Centre, Danish Technological Institute

149

Department of Electrical Engineering Spring 2011 Glass Block Solar Collector  

E-Print Network [OSTI]

to the sponsor. The collector incorporated a solar panel that charged a battery unit. The battery poweredPENNSTATE Department of Electrical Engineering Spring 2011 Glass Block Solar Collector Overview Pittsburgh Corning, a leading manufacturer of architectural glass blocks, wanted to incorporate a solar

Demirel, Melik C.

150

Assessment of generic solar thermal systems for large power applications: analysis of electric power generating costs for systems larger than 10 MWe  

SciTech Connect (OSTI)

Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces); (2) one-axis tracking (with single-curvature reflecting surfaces); and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors were analyzed with Brayton-cycle engines, and one was analyzed with a Stirling-cycle engine. With these engine options, and the consideration of both thermal and electrical storage for the Brayton-cycle central receiver, 11 systems were formulated for analysis. Conceptual designs developed for the 11 systems were based on common assumptions of available technology in the 1990 to 2000 time frame. No attempt was made to perform a detailed optimization of each conceptual design. Rather, designs best suited for a comparative evaluation of the concepts were formulated. Costs were estimated on the basis of identical assumptions, ground rules, methodologies, and unit costs of materials and labor applied uniformly to all of the concepts. The computer code SOLSTEP was used to analyze the thermodynamic performance characteristics and energy costs of the 11 concepts. Year-long simulations were performed using meteorological and insolation data for Barstow, California. Results for each concept include levelized energy costs and capacity factors for various combinations of storage capacity and collector field size.

Apley, W.J.; Bird, S.P.; Brown, D.R.; Drost, M.K.; Fort, J.A.; Garrett-Price, B.A.; Patton, W.P.; Williams, T.A.

1980-11-01T23:59:59.000Z

151

Alignment method for solar collector arrays  

DOE Patents [OSTI]

The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

Driver, Jr., Richard B

2012-10-23T23:59:59.000Z

152

Low-cost evacuated-tube solar collector. Final report  

SciTech Connect (OSTI)

A prototype design for an evacuated tube air cooled solar collector module has been completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performance of the module. Antireflective coatings (porous aluminum oxide) which could be formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient than acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 400/sup 0/C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in ..cap alpha.. decreasing to about 0.73 and epsilon increasing to 0.14. The product cost studies indicate that module design changes are warranted to reduce product cost prior to tooling for production.

Not Available

1981-02-10T23:59:59.000Z

153

NREL: Concentrating Solar Power Research - Collector R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Storage R&D Thermal Energy Storage R&D Featured Resource Learn more about NREL's capabilities in thermal storage and advanced heat transfer fluids. Thermal energy storage (TES) research at NREL focuses on reducing the costs of thermal storage and electricity from concentrating solar power (CSP) plants. NREL's TES effort contributes to these goals through materials and systems development, analysis, and modeling. CSP systems may include TES-a means of storing thermal energy for later use-to generate electricity any time when it is most needed and valuable, whether during the day, night, or cloudy intervals. Opportunities and Potential Impact TES usually reduces the levelized cost of electricity (LCOE) compared to a system without storage because of better utilization of the power block.

154

Conductivity fuel cell collector plate and method of fabrication  

DOE Patents [OSTI]

An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

Braun, James C. (Juno Beach, FL)

2002-01-01T23:59:59.000Z

155

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

156

Transpired Solar Collector - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in regions away from the holes, which would reduce overall efficiency due to radiative loss of heat.DescriptionNREL researchers have discovered that high thermal-conductivity...

157

Flat plate solar collector with a cantilevered mirror  

SciTech Connect (OSTI)

The use of flat booster mirrors with flat plate collectors provides moderate solar flux concentration and enhanced performance especially when the mirrors are seasonally adjusted. Curved mirrors provide higher flux concentration and a practical system has been developed where the booster mirror is bent elastically. The system employs a single cantilever mirror which is located below a conventional flat plate collector. The mirror is clamped at the base of the collector panel and its free end is deflected upward; a smaller deflection is used in the fall and winter than in the spring and summer. The prototype system consists of a 0.9 by 2.5 m collector panel mounted on its side (horizontal fluid flow) and a 2.7 by 2.5 m elastic mirror. The mirror is made with aluminum sheet with an adherent aluminized acrylic film. The system has been designed for mounting on horizontal surfaces at latitudes of 10 to 50/sup 0/.

Cohen, S.; Larson, D.C.

1981-01-01T23:59:59.000Z

158

Project Profile: Advanced High Temperature Trough Collector Developmen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

collector was selected for the Andasol 1 and 2 plants in Spain, the Kuraymat plant in Egypt, and early Solar Millennium commercial projects in the United States. The NTPro design...

159

Numerical Simulation Study on Transpired Solar Air Collector  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Re newable Energy Resources and a Greener Future Vol.VIII-3-4 Numerical Simulation Study on Transpired Solar Air Collector Chongjie Wang Zhenzhong Guan Xueyi Zhao Delin Wang Professor...

Wang, C.; Guan, Z.; Zhao, X.; Wang, D.

2006-01-01T23:59:59.000Z

160

On the performance of the flat plate solar heat collector  

Science Journals Connector (OSTI)

A flat plate heat collector was constructed for the purpose of heating water by solar energy. It was erected facing south, tilted to the horizontal at the optimum tilt angle, and tested ... was found, for the dim...

M. K. Elnesr; A. M. Khalil

1965-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Self-Cleaning CSP Collectors, Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

Boston University is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

162

Central Receiver Plant evaluation: (2) THEMIS collector subsystem evaluation  

SciTech Connect (OSTI)

This report is part of the evaluation work carried out at Ecole Centrale on central receiver plants. The THEMIS collector subsystem is evaluated with emphasis given to the energy performance problems. The collector subsystem, the heliostat, and the operation modes are described. The mechanisms which contribute to the energy losses of the collector subsystem are discussed individually. Heliostat availability, reflectivity, geometrical effects (mirror shadowing and blocking, cosine factor, tower shadowing), beam focusing quality, beam pointing, spillage, propagation losses in the atmosphere between the mirrors and the receiver are successively evaluated. The overall collector efficiency is then estimated from two different points of view. The theoretical performance showing the physical limitation of the system, and the actual performance based on real experimental results, are separately discussed. The electricity consumption of the heliostat field is examined for plant parasitics analysis. The maintenance problems and the lessons learned on hardware behavior at the THEMIS site are also discussed. 19 refs., 7 figs.; 24 tabs.

Amri, A.; Izygon, M.; Tedjiza, B.

1988-01-01T23:59:59.000Z

163

The Actuality and Prospect of Solar Collector Technology in China  

Science Journals Connector (OSTI)

The development tendency and the future of the solar heater utilization product are going to determine the solar energy collector technology development. The vacuum tube solar water heater development direction i...

Luo Yunjun; Liu Airong

2009-01-01T23:59:59.000Z

164

Including fuel price elasticity of demand in net present value and payback time calculations of thermal retrofits: Case study of German dwellings  

Science Journals Connector (OSTI)

In the domestic heating sector a number of different mathematical models are used to evaluate the economic viability of thermal retrofit measures. Currently, however, none of these models incorporate the effect of fuel price elasticity of demand. This paper offers a method for incorporating a factor for fuel price elasticity into models for assessing the net present value and payback time of thermal retrofits of existing homes. A set of working equations is developed, and empirically tested in a case study, a housing estate retrofit project in Ludwigshafen, Germany. The value used in these equations for year-on-year price elasticity, ?0.476, is derived from further empirical studies. The inclusion of price elasticity is found to lower the net present value by 14–24% and lengthen the payback time by 5 years in some cases, and hundreds of years in others. It also shows CO2 saved over the technical lifetime of the retrofit measures to be 15–24% lower than anticipated. These findings have implications for government policy and investment decisions of businesses, private households and housing providers.

Ray Galvin; Minna Sunikka-Blank

2012-01-01T23:59:59.000Z

165

Analysis of solar collector array systems using thermography  

SciTech Connect (OSTI)

The use of thermography to analyze large solar collector array systems under dynamic operating conditions is discussed. The research has focused on thermographic techniques and equipment to determine temperature distributions, flow patterns, and air blockages in solar collectors. The results of this extensive study, covering many sites and types of collectors, illustrate the capabilities of infrared analysis as an analysis tool and operation and maintenance procedure when applied to large arrays. Thermographic analysis of most collector systems showed temperature distributions that indicated balanced flow patterns with both the thermographs and the hand-held unit. In three significant cases, blocked or broken collector arrays, which previously had gone undetected, were discovered. Using this analysis, validation studies of large computer codes could examine collector arrays for flow patterns or blockages that could cause disagreement between actual and predicted performance. Initial operation and balancing of large systems could be accomplished without complicated sensor systems not needed for normal operations. Maintenance personnel could quickly check their systems without climbing onto the roof and without complicated sensor systems.

Eden, A.

1980-01-01T23:59:59.000Z

166

Solar collector systems analysis using infrared scanning techniques  

SciTech Connect (OSTI)

Solar energy collector systems analysis using thermography is discussed. The research at the Solar Energy Research Institute (SERI) in this area has focused on infrared (IR) scanning techniques and equipment to determine temperature distributions, flow patterns, and air blockages in solar collectors. The results of this extensive study, covering many sites and types of collectors, illustrate the capabilities of IR analysis as an analysis tool and operation and maintenance procedure when applied to large arrays. Infrared analysis of most collector systems showed temperature distributions that indicated balanced flow patterns with both the thermographs and the hand-held unit. In three significant cases, blocked or broken collector arrays, which previously had gone undetected, were discovered. Using this analysis, validation studies of large computer codes could examine collector arrays for flow patterns or blockages that could cause disagreement between actual and predicted performance. Initial operation and balancing of large systems could be accomplished without complicated sensor systems not needed for normal operations. Maintenance personnel could quickly check their systems without climbing onto the roof and without complicated sensor systems.

Eden, A.

1980-08-01T23:59:59.000Z

167

Performance testing of the Acurex solar-collector Model 3001-03  

SciTech Connect (OSTI)

Results are summarized of tests conducted at the Collector Module Test Facility on an Acurex Model 3001-03 Parabolic Trough Concentrating Solar Collector. Test temperaure range was 100/sup 0/C to 300/sup 0/C. Tests were conducted with the collector axis oriented east-west and again with the collector axis oriented north-south. Three collectors were tested: one using polished aluminum mirrors, one using glass mirrors, and another using an aluminized acrylic film mirror.

Dudley, V.E.; Workhoven, R.M.

1982-03-01T23:59:59.000Z

168

Development of Non?Tracking Solar Thermal Technology  

Science Journals Connector (OSTI)

The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non?imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200?°?C and can be readily manufactured at a cost between $15 and $18 per square foot.

2011-01-01T23:59:59.000Z

169

Research on the compensation of the end loss effect for parabolic trough solar collectors  

Science Journals Connector (OSTI)

Abstract In this paper, an optical analysis on the end loss effect of parabolic trough solar collector (PTC) with horizontal north–south axis (PTC-HNSA) is performed, and a method to compensate its end loss effect is presented. The calculation formulae for the optical end loss ratio and the increased optical efficiency (the optical collection efficiency increment of PTC system after this compensation method is used) are derived; the daily optical end loss ratio, yearly optical end loss ratio, daily increased optical efficiency and yearly increased optical efficiency in different latitudes are calculated; the variation of optical end loss ratio and increased optical efficiency with trough’s length and latitude angles are analyzed and discussed. It is indicated through the analyses that this compensation method is very applicable for regions with the latitude over 25° (especially over 30°) and short trough collectors. In order to verify the feasibility of the compensation method, a five-meter PTC-HNSA experimental system was built. The increased thermal efficiency of the experimental system is measured, and the result that the experimental value (increased thermal efficiency) substantially agreed with the theoretical value (increased optical efficiency) is gained. All these works can offer some valuable references to the further study on high-efficiency trough solar concentrating systems.

Chengmu Xu; Zhiping Chen; Ming Li; Peng Zhang; Xu Ji; Xi Luo; Jiangtao Liu

2014-01-01T23:59:59.000Z

170

Copper corrosion and its relationship to solar collectors:a compendium.  

SciTech Connect (OSTI)

Copper has many fine qualities that make it a useful material. It is highly conductive of both heat and electricity, is ductile and workable, and reasonably resistant to corrosion. Because of these advantages, the solar water heating industry has been using it since the mid-1970s as the material of choice for collectors, the fundamental component of a solar water heating system. In most cases copper has performed flawlessly, but in some situations it has been known to fail. Pitting corrosion is the usual failure mode, but erosion can also occur. In 2000 Sandia National Laboratories and the Copper Development Association were asked to analyze the appearance of pin-hole leaks in solar collector units installed in a housing development in Arizona, and in 2002 Sandia analyzed a pitting corrosion event that destroyed a collector system at Camp Pendleton. This report includes copies of the reports and accounts of these corrosion failures, and provides a bibliography with references to many papers and articles that might be of benefit to the solar community. It consolidates in a single source information that has been accumulated at Sandia relative to copper corrosion, especially as it relates to solar water heaters.

Menicucci, David F.; Mahoney, Alan Roderick

2007-07-01T23:59:59.000Z

171

Optimum tilt angle and orientation for solar collectors in Syria  

Science Journals Connector (OSTI)

One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle) for the solar collector in the main Syrian zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle) maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of approximately 30% more than the case of a solar collector fixed on a horizontal surface.

Kamal Skeiker

2009-01-01T23:59:59.000Z

172

Tracking benefits for solar collectors installed in Bangalore  

Science Journals Connector (OSTI)

The amount of energy that can be extracted from the solar radiation by solar collectors or photovoltaic systems depends mainly on the installation angle of the collector (tilt angle) and the tracking method used to follow the Sun. In this paper the optimum tilt angle for Bangalore ( 12 ° 5 8 ? ) has been calculated under various tracking conditions. For a fixed tilt angle collector facing south the optimum tilt angle is estimated to be between 15° and 17° and is not very sensitive to radiation data type. Fixed tilt angle collectors and collectors tilted on a monthly basis produced only marginal benefit ( horizontal orientation. However for continuously tracked systems benefits are as high as 35%. At least three sets of solar radiation data are available for Bangalore from different sources. It has been shown that they have considerable differences in their direct and diffuse content. All these data have been used to quantify tracking benefits to understand their sensitivity. Limited amount of available in-house data indicates higher diffuse fraction in solar radiation than predicted by historic data and satellite models. Hence the benefits due to tilting are reduced.

Pascal Fahl; Ganapathisubbu S

2011-01-01T23:59:59.000Z

173

Thermal model of solar absorption HVAC systems  

SciTech Connect (OSTI)

This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

Bergquam, J.B.; Brezner, J.M. [California State Univ., Sacramento, CA (United States). Dept. of Mechanical Engineering; [Bergquam Energy Systems, Sacramento, CA (United States)

1995-11-01T23:59:59.000Z

174

Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint  

SciTech Connect (OSTI)

As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

Stynes, J. K.; Ihas, B.

2012-04-01T23:59:59.000Z

175

Fuel cell collector plate and method of fabrication  

DOE Patents [OSTI]

An improved molding composition is provided for compression molding or injection molding a current collector plate for a polymer electrolyte membrane fuel cell. The molding composition is comprised of a polymer resin combined with a low surface area, highly-conductive carbon and/or graphite powder filler. The low viscosity of the thermoplastic resin combined with the reduced filler particle surface area provide a moldable composition which can be fabricated into a current collector plate having improved current collecting capacity vis-a-vis comparable fluoropolymer molding compositions.

Braun, James C. (Juno Beach, FL); Zabriskie, Jr., John E. (Port St. Lucie, FL); Neutzler, Jay K. (Palm Beach Gardens, FL); Fuchs, Michel (Boynton Beach, FL); Gustafson, Robert C. (Palm Beach Gardens, FL)

2001-01-01T23:59:59.000Z

176

Next Generation Solar Collectors for CSP - FY13 Q1 | Department...  

Office of Environmental Management (EM)

Next Generation Solar Collectors for CSP - FY13 Q1 Next Generation Solar Collectors for CSP - FY13 Q1 This document summarizes the progress of this 3M project, funded by SunShot,...

177

On Integration of Mirror Collector and Stirling Engine for Solar Power System  

Science Journals Connector (OSTI)

In the current work, several types of solar collectors, i.e. parabolic, cylindrical, and mirrors, were designed and fabricated. The aim of this study is to integrate the optimum collector with Stirling engine in ...

B.F. Yousif; Ammar Al-Shalabi; Dirk G. Rilling

2011-01-01T23:59:59.000Z

178

Analyser av effektivitet til nyutviklet solfanger i polymermateriale = Analyses of the efficiency for a new polymer solar collector.  

E-Print Network [OSTI]

??In this thesis, variations in efficiency between two different solar collectors have been measured. Solar collector efficiency has been measured at different levels of flow.… (more)

Schakenda, Jeanette A.

2004-01-01T23:59:59.000Z

179

NREL Develops New Optical Evaluation Approach for Parabolic Trough Collectors (Fact Sheet)  

SciTech Connect (OSTI)

New analytical method makes it possible to carry out fast evaluation of trough collectors for design purposes.

Not Available

2012-08-01T23:59:59.000Z

180

A study of PV/T collector with honeycomb heat exchanger  

Science Journals Connector (OSTI)

This paper present a study of a single pass photovoltaic/thermal (PV/T) solar collector combined with honeycomb heat exchanger. A PV/T system is a combination of photovoltaic panel and solar thermal components in one integrated system. In order to enhance the performance of the system a honeycomb heat exchanger is installed horizontally into the channel located under the PV module. Air is used as the heat remover medium. The system is tested with and without the honeycomb at irradiance of 828 W/m2 and mass flow rate spanning from 0.02 kg/s to 0.13 kg/s. It is observed that the aluminum honeycomb is capable of enhancing the thermal efficiency of the system efficiently. At mass flow rate of 0.11 kg/s the thermal efficiency of the system without honeycomb is 27% and with honeycomb is 87 %. Throughout the range of the mass flow rate the electrical efficiency of the PV module improved by 0.1 %. The improved design is suitable to be further investigated as solar drying system and space heating.

F. Hussain; M. Y. H. Othman; B. Yatim; H. Ruslan; K. Sopian; Z. Ibarahim

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Analytical investigation of collector optimum tilt angle at low latitude  

Science Journals Connector (OSTI)

An analytical investigation on the optimum tilt angle for solar collectors at low latitude a case study of Universiti Teknologi PETRONAS (UTP) 4.39°N and 100.98°E Malaysia is presented in this work. The study employed Hay Davies Klucher and Reindl (HDKR) anisotropic sky model to evaluate the available hourly solar radiation on inclined surface using the location metrological data. The tilt angles considered were 0° to 30° in step of 3° with the inclusion of the location latitude angle. The study employed the ratio of global solar radiation on tilted surface to the global solar radiation on horizontal surface in the decision of the optimum tilt. The system equations were converted to MATLAB codes to solve for the optimum tilt angles. The results show that the optimum tilt varies monthly but gave zero degree for south facing collector for the months of April to August; thus the investigation also considered north facing orientation for the months of April to September. The optimum annual tilt angle for the location using the tilt to horizontal radiation ratio was found to be equal to the location latitude angle. Using the conventional average of the monthly optimum tilt angles the annual optimum tilt angle was found to be 9.75° for south facing collector. Considering seasonal optimum tilt angle for the location using the tilt to horizontal radiation ratio 18° facing south was found to be the optimum tilt angle for rainy season (September to March) and 15° facing north for dry season (April to August). Employing the average of monthly optimum tilt method the seasonal optimum tilt angle was found to be 17° for rainy season and 12° facing north dry season. The effect of dust on the collector was considered with reference to literature and the annual tilt angle of 15° facing south was recommended for the location in the case of large solar collector that cannot be monthly or seasonally adjusted.

Ogboo Chikere Aja; Hussain H. Al-Kayiem; Zainal Ambri Abdul Karim

2013-01-01T23:59:59.000Z

182

Experimental investigation of various designs of solar flat plate collectors: Application for the drying of green chili  

Science Journals Connector (OSTI)

This paper presents an experimental study by comparing between the thermal performance of three types of solar air flat plate collectors FPCs: (i) without obstacles (ii) with rectangular obstacles and (iii) with trapezoidal obstacles in the air flow duct. In order to determine the best performing model we have proceeded to reversing the flow direction in each collector and comparing the six obtained models under outdoor conditions. All collectors were designed constructed and tested in the University of Biskra (Algeria) in a stand facing south at an inclination angle equal to the local latitude. Thus we have proceeded to the application of the best system for the drying of the green chili. We have sought to determine the moisture content and loss of mass for the forced convection hot air drying of the product and their temperature dependence. In comparison with the recent literature at different air mass flow the highest efficiencies (77%) were obtained from the FPC with trapezoidal obstacles when the air was blown down at air flow rate 0.043?kg/s. In addition this study has allowed us to show that (i) for a same geometry the highest efficiencies were always obtained when the air was blown down in the solar air FPC and (ii) the use of obstacles in the air flow duct of the FPCs is an efficient method to improve their performances especially when the air is blown down. The obstacles ensure a good air flow under the absorber plate create the turbulence and reduce the dead zones in the collector.

Adnane Labed; Noureddine Moummi; Adel Benchabane

2012-01-01T23:59:59.000Z

183

Attraction of carbon investments to implement the solar energy thermal utilization projects  

Science Journals Connector (OSTI)

The possibilities for attracting investments of carbon funds to implement solar energy thermal projects using solar collectors under the Clean Development Mechanism are ... about 10% of the funds required for project

R. A. Zakhidov

2007-10-01T23:59:59.000Z

184

A Linear Parabolic Trough Solar Collector Performance Model  

E-Print Network [OSTI]

: 1 bar (winter) Pressure in solar collection loop: 10 bar (Summer), 5 bar (winter) Pressure in main chilled water loop : 1 bar (summer) TIC TIC TIC TIC Space Thermostat May 18,06 Parabolic Solar Trough Collector: 52.44 m^2 / 4 modules... & winter) Chilled/Heat Water Storage Current Existing Future Installation Current Installation TIC TIC EIC Temperature indicator controller Energy indicator controller Fig. 1 IW solar heating and cooling system 1.3 EES Model In order to understand...

Qu, M.; Archer, D.; Masson, S.

2006-01-01T23:59:59.000Z

185

Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries  

SciTech Connect (OSTI)

Rechargeable Mg batteries are attractive energy storage systems and could bring cost-effective energy solutions. Currently, however, no practical cathode current collectors that can withstand high voltages in Mg2+ electrolytes has been identified and therefore cathode research is greatly hindered. Here we identified that two metals, Mo and W, are electrochemically stable through formation of surface passive layers. The presented results could have significant impacts on the developments of high voltage Mg batteries.

Cheng, Yingwen; Liu, Tianbiao L.; Shao, Yuyan; Engelhard, Mark H.; Liu, Jun; Li, Guosheng

2014-01-01T23:59:59.000Z

186

Sloped-collector solar updraft tower power plant performance  

Science Journals Connector (OSTI)

Abstract A mathematical model describing fluid flow, heat transfer and pressure distribution inside a sloped-collector solar updraft tower power plant (SCSUTPP) is presented by assuming a steady compressible flow. Compared to conventional horizontal-collector solar updraft tower power plants (HCSUTPPs), the performance of SCSUTPP is comprehensively studied based on the mathematical model. The power outputs for SCSUTPP and HCSUTPP using the essential expression of driving force are respectively compared with those using the driving force expressions containing no integral, as proposed in literature. Results show that the expression containing no integral is accurate for HCSUCPP based on a compressible fluid model. The expression containing no integral is not accurate for predicting the driving force of SCSUTPP based on an incompressible fluid model when no variation of the atmospheric density with heights and no variation of difference of the atmospheric density and the density of the current inside the short SUT with heights are assumed. The gravitational effect has to be considered for predicting the SCSUTPP performance. The results show that the pressure potential and the power production of an SCSUCPP with a collector of 848 m height and a vertical SUT 123 m high lies between those for two \\{HCSUCPPs\\} respectively with vertical \\{SUTs\\} 547 m and 971 m high. This work lays a good foundation for accurate predication of potential power produced from SCSUTPP.

Xinping Zhou; Shuo Yuan; Marco Aurélio dos Santos Bernardes

2013-01-01T23:59:59.000Z

187

Macroscopic Subdivision of Silica Aerogel Collectors for Sample Return Missions  

SciTech Connect (OSTI)

Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large-scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller-scale cutting capabilities previously described [Westphal (2004), Ishii (2005a, 2005b)] for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis.

Ishii, H A; Bradley, J P

2005-09-14T23:59:59.000Z

188

Flow distribution in a solar collector panel with horizontally inclined absorber strips  

Science Journals Connector (OSTI)

The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontally inclined strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m2 solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured temperatures are compared to the temperatures determined by the CFD model and there is a good similarity between the measured and calculated results. Calculations with the CFD model elucidate the flow and temperature distribution in the collector. The influences of different operating conditions such as flow rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar collector fluid, and by increased collector tilt and inlet temperature, the flow distribution gets worse resulting in an increased risk of boiling in the upper part of the collector panel.

Jianhua Fan; Louise Jivan Shah; Simon Furbo

2007-01-01T23:59:59.000Z

189

Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric co-generators (STECGs) are an attractive means of supplying electric power and heat simultaneously and economically. Here we examine the effects of environmental factors on the conversion efficiencies of a new type of STECG comprising parabolic trough concentrators and thermoelectric modules (TEMs). Each TEM array was bonded with a solar selective absorber plate and directly positioned on the focal axis of the parabolic concentrator. Glass tubular collectors were not used to encase the TEMs. Although this makes the overall system simpler, the environmental effects become significant. Simulations show that the performance of such a system strongly depends on ambient conditions such as solar insolation, atmospheric temperature and wind velocity. As each of these factors increases, the thermal losses of the STECG system also increase, resulting in reduced solar conversion efficiency, despite the increased radiation absorption. However, the impact of these factors is relatively complicated. Although the electrical efficiency of the system increases with increasing solar insolation, it decreases with increasing ambient temperature and wind velocity. These results serve as a useful guide to the selection and installation of STECGs, particularly in Guangzhou or similar climate region.

Chao Li; Ming Zhang; Lei Miao; Jianhua Zhou; Yi Pu Kang; C.A.J. Fisher; Kaoru Ohno; Yang Shen; Hong Lin

2014-01-01T23:59:59.000Z

190

New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation  

SciTech Connect (OSTI)

A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.

Zhu, G.; Lewandowski, A.

2012-11-01T23:59:59.000Z

191

A theoretical study on area compensation for non-directly-south-facing solar collectors  

Science Journals Connector (OSTI)

Solar energy integrated with the building is an important approach for the synchronous development of solar energy and architecture. The energy gain of the solar collector integrated with the pitched roof has been greatly influenced by the roof azimuth and tilted angle. Investment cost of the collectors is mainly decided by the size of the collector area. Accordingly, it is significant for solar building design to economically determinate the area compensation of the solar collector at different azimuth and tilted angles. Take Kunming and Beijing as examples, area compensation for the flat-plate tube-fin solar collector used in southern regions and the evacuated tube collector with cylindrical absorbers used in northern regions in China have been theoretically calculated. The results to some extent show that the daily horizontal solar radiation, ambient temperature, the azimuth and tilted angle of the collector integrated into the roof have an influence on the area compensation. The azimuth angle and tilted angle of the roof are the main factors that influence the A/A0, which is defined as the collector area ratio of the non-south-facing collectors to the south-facing ones with the optimal tilted angle. Comparative studies found that the range of A/A0 for the evacuated tube collector used in the northern regions is close to that for the flat-plate tube-fin solar collector used in the southern regions. When the pitched roof tilted angle ? ? [25°, 45°] and the azimuth angle ??? ? 30°, the collectors can intercept a lot of solar radiant-energy. Considering the economic situations of the ordinary consumers in China, the optimal area compensation A/A0 ? 1.30 is recommended in this paper.

Sheng-Xian Wei; Li Ming; Xi-Zheng Zhou

2007-01-01T23:59:59.000Z

192

Equivalencing the Collector System of a Large Wind Power Plant: Preprint  

SciTech Connect (OSTI)

This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-01-01T23:59:59.000Z

193

Optimization of a hybrid solar energy collector system  

E-Print Network [OSTI]

OPTIMIZATION OF A HYBRID SOLAR ENERGY COLLECTOR SYSTEM A Thesis by ALAN M. SHI NEMAN Submitted to the Graduate College of Texas A&N University in partial fulfillment of the requirement for the degree MASTER OF SCIENCE May 1981 Major Subject...: Mechanical Engineering THE STRUCTURAL IMPACT OF COMMODITY FARM PROGRAMS ON FARMS IN THE SOUTHERN TEXAS HIGH PLAINS A Thesis by CHRISTINA KAY SHIRLEY Submitted to the Graduate College of Texas A&M University in par'tial fulfillment of the requirement...

Shinkman, Alan M.

1981-01-01T23:59:59.000Z

194

Besides these questions regarding the efficiency of condensation or thermal conduction in the inner flow, we note that there are other important questions regarding EC theory and implementation, including  

E-Print Network [OSTI]

Besides these questions regarding the efficiency of condensation or thermal conduction in the inner,12], but irradiation efficiency ~uncertain EC evaporation/condensation [13,14,15,16] between thermally-coupled disk setting to study accretion ­ a high mass supply rate (via Roche- lobe overflow [1,2]) avoids onset

California at Santa Cruz, University of

195

Cable tensioned membrane solar collector module with variable tension control  

DOE Patents [OSTI]

Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

Murphy, Lawrence M. (Lakewood, CO)

1985-01-01T23:59:59.000Z

196

Cable tensioned membrane solar collector module with variable tension control  

DOE Patents [OSTI]

Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

Murphy, L.M.

1984-01-09T23:59:59.000Z

197

Research at the Building Research Establishment into the Applications of Solar Collectors for Space and Water Heating in Buildings [and Discussion  

Science Journals Connector (OSTI)

...experimental low energy house laboratories, one using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies of the cost-effectiveness of solar collector applications to buildings...

1980-01-01T23:59:59.000Z

198

Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors  

SciTech Connect (OSTI)

A combined thermal power and cooling cycle is proposed which combines the Rankine and absorption refrigeration cycles. It can provide power output as well as refrigeration with power generation as a primary goal. Ammonia-water mixture is used as a working fluid. The boiling temperature of the ammonia-water mixture increases as the boiling process proceeds until all liquid is vaporized, so that a better thermal match is obtained in the boiler. The proposed cycle takes advantage of the low boiling temperature of ammonia vapor so that it can be expanded to a low temperature while it is still in a vapor state or a high quality two phase state. This cycle is ideally suited for solar thermal power using low cost concentrating collectors, with the potential to reduce the capital cost of a solar thermal power plant. The cycle can also be used as a bottoming cycle for any thermal power plant. This paper presents a parametric analysis of the proposed cycle.

Goswami, D.Y.; Xu, F. [Univ. of Florida, Gainesville, FL (United States). Solar Energy and Energy Conversion Lab.

1999-05-01T23:59:59.000Z

199

Energy-based Control of a Distributed Solar Collector Tor A. Johansena  

E-Print Network [OSTI]

Energy-based Control of a Distributed Solar Collector Field Tor A. Johansena Camilla Storaaa that the primary energy source, solar radiation, cannot be manipulated. The distributed solar collector eld may, Norway. Model-based control of the outlet temperature of a distributed solar col- lector eld is studied

Johansen, Tor Arne

200

Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report  

SciTech Connect (OSTI)

The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

Clifford, J E; Diegle, R B

1980-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector  

E-Print Network [OSTI]

The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

Hasan, Atiya

2007-01-01T23:59:59.000Z

202

Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater  

Science Journals Connector (OSTI)

A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.

X.Q. Kong; D. Zhang; Y. Li; Q.M. Yang

2011-01-01T23:59:59.000Z

203

Attaching solar collectors to a structural framework utilizing a flexible clip  

DOE Patents [OSTI]

Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged by the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.

Kruse, John S

2014-03-25T23:59:59.000Z

204

Development of 400/sup 0/F sealants for flat plate solar collector construction and installation. Final report, 1 October 1978-30 September 1979  

SciTech Connect (OSTI)

Twenty candidate sealants representing ten different polymer types were evaluated as potential solar collector sealants. Polymer types tested included epichlorohydrin rubber, EPDM rubber, silicone, polysulfide, acrylate rubber, and a fluoroelastomer. Initial screening of sealants consisted of measuring high temperature stability and adhesion retention. Several sealant compositions exhibited satisfactory performance in these tests and were selected for further evaluation. These materials were based on an EPDM rubber, a Viton fluoroelastomer, and silicone polymers. Further testing of these candidate materials included determination of adhesion retention under uv/water/heat conditions, fogging temperature, low temperature flexibility, and physical properties. Four silicone-based materials appeared to be suitable candidates for sealing solar collectors. These include Dow Corning 90-006-02 and 3120, General Electric 1200, and PR-1939 from Products Research and Chemical Corporation.

Morris, L.; Schubert, R.J.

1980-03-01T23:59:59.000Z

205

Thermal treatment  

Science Journals Connector (OSTI)

Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

Dr. P. White; Dr. M. Franke; P. Hindle

1995-01-01T23:59:59.000Z

206

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems  

Broader source: Energy.gov [DOE]

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

207

Ris Energy Report 5 Solar thermal 41 by the end of 2004 about 110 million m2  

E-Print Network [OSTI]

Risø Energy Report 5 Solar thermal 41 6.3.2 by the end of 2004 about 110 million m2 of solar ther be within the competence of the existing solar thermal industry. Solar thermal PETER AHM, PA ENERgy LTD- mal collectors were installed worldwide. Figure 24 il- lustrates the energy contribution from

208

Oil/gas collector/separator for underwater oil leaks  

DOE Patents [OSTI]

An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, Carl D. (Livermore, CA)

1993-01-01T23:59:59.000Z

209

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors’ knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; María José Montes; Manuel Valdes; José María Martínez-Val

2011-01-01T23:59:59.000Z

210

Solar Thermal Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Incentive Program Solar Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 50% of the project cost Program Info Funding Source Public Benefits Fund State Connecticut Program Type State Rebate Program Rebate Amount Calculated: $70 multiplied by the SRCC "C" rating multiplied by the number of collectors multiplied by the Shading Factor Provider Clean Energy Finance and Investment Authority Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. To participate in the residential solar hot water rebate, homeowners must first complete an energy assessment. Then, they must work with CEFIA

211

Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating system  

Science Journals Connector (OSTI)

Abstract In this investigation, a direct expansion solar assisted heat pump (DX-SAHP) water heating system using an optimized-channel roll-bond collector/evaporator was designed, fabricated and tested. Optimized fractal T-shape and honeycomb shaped channel patterns were adopted to improve the thermal performance of the roll-bond panel, which acts as both the evaporator for the heat pump system and the collector for solar thermal utilization. The performance of the studied water heating system using the south-faced, wall-mounted roll-bond panel with the new composite channel patterns was investigated experimentally. Results show that, under the experimental conditions, the roll-bond panel with optimized channel pattern shows better thermal properties, and the performance the DX-SAHP system is significantly enhanced by using the roll-bond panel with optimized channel pattern. Compared to the conventional parallel channel pattern, fractal T-shaped channel pattern enhanced COP of the system by 14.6%, and heating capacity by 17.3%. And the honeycomb shaped channel pattern further enhanced COP and heating capacity of the system by 5.9% and 6.2%.

Xiaolin Sun; Jingyi Wu; Yanjun Dai; Ruzhu Wang

2014-01-01T23:59:59.000Z

212

Efficiency of a parabolic trough collector as a water heater system in Yucatán, Mexico  

Science Journals Connector (OSTI)

The performance of a parabolic trough collector (PTC) manufactured in Merida Yucatán was evaluated under the ANSI/ASHRAE 93-1986 standard. The water heating system for testing with a constant flow limited to a maximum temperature of 55 °C was built; thus the tests were at low temperatures. Using water as working fluid it was found that the maximum efficiency of the collector was 5.43% with a flow rate of 0.022?kg/s at a direct solar irradiance with incidence angle 0°. The evaluation methodology and design of the system for testing the collector is reported in this paper.

N. Rosado Hau; M. A. Escalante Soberanis

2011-01-01T23:59:59.000Z

213

Software/firmware design specification for 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant  

SciTech Connect (OSTI)

This Collector Subsystem Software/Firmware Design Specification exists as a stand-alone document to provide a complete description of the software and firmware employed for the operation of the 10 MWe Solar Thermal Central Receiver Pilot Plant Collector Subsystem. The software/firmware systems have the capability to allow operator control of up to 2048 heliostats in the operation of the 10 MWe Solar Thermal Central Receiver Pilot Plant at Barstow, California. This function includes the capability of operator-commanded mode control, graphic displays, status displays, alarm generation, system redundancy and interfaces to the Operational Control System (OCS), the Data Acquisition System (DAS), and the Beam Characterization System (BCS) through the OCS. The operational commands will provide for the following: (a) safe beam movement whenever automatic beam movement is required; (b) single and multiple heliostat addressing; (c) emergency heliostat movement for high-wind conditions and receiver problems; and (d) recovery for full or partial power-loss conditions. The control hardware consists of a host computer, the Heliostat Array Controller (HAC), interfaced to a group of communication controllers, the Heliostat Field Controllers (HFCs), communicating with individual processors, the Heliostat Controllers (HCs), which monitor and command a single heliostat. The system consists of two HACs and 64 HFCs with up to 32 HCs per HFC.

Ladewig, T.D.

1982-01-01T23:59:59.000Z

214

Next-Generation Solar Collectors for CSP, Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

3M Company is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

215

Conduction and convection heat transfer in composite solar collector systems with porous absorber  

Science Journals Connector (OSTI)

Steady natural convection and conduction heat transfer has been studied in composite solar collector systems. The system consists of a glazing ... bounding wall isothermal at different temperatures, two horizontal

M. Mbaye; E. Bilgen

1993-01-01T23:59:59.000Z

216

Investigation of the fluid temperature field inside a flat-plate solar collector  

Science Journals Connector (OSTI)

An experimental study was conducted to investigate fluid temperature fields inside a flat-plate solar collector tube. The results show the highest fluid ... tube, whereas, the temperature field in the horizontal ...

Gurveer Sandhu; Kamran Siddiqui

2014-11-01T23:59:59.000Z

217

Heat power capacity of the internal source in light-transparent coatings of planar solar collectors  

Science Journals Connector (OSTI)

The results are presented of numerical determination of the heat power capacity of the internal source in light-transparent coatings of planar solar collectors; the power results from partial absorption ... of th...

R. R. Avezov; N. R. Avezova; S. L. Lutpullaev; K. A. Samiev…

2007-09-01T23:59:59.000Z

218

Experimental investigation on system with combination of ground-source heat pump and solar collector  

Science Journals Connector (OSTI)

This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by ...

Tao Hu ? ?; Jialing Zhu ???; Wei Zhang ? ?

2013-06-01T23:59:59.000Z

219

Critical evaluation of heat transfer coefficients applicable to solar chimney power plant collectors  

Science Journals Connector (OSTI)

A solar chimney power plant consists of a translucent collector ... and guides it into the base of a chimney at its centre. The buoyant air rises in the chimney, and electricity is generated through one or ... tu...

M. A. dos S. Bernardes; T. W. von Backström…

2009-01-01T23:59:59.000Z

220

Project Profile: Low-Cost Self-Cleaning Reflector Coatings for CSP Collectors  

Broader source: Energy.gov [DOE]

The Oak Ridge National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing self-cleaning, optically transparent coatings that can be applied to the surfaces of heliostats and collector mirrors in concentrating solar power (CSP) systems. The coatings can help to achieve the SunShot Initiative cost goals by reducing the time and costs associated with cleaning collector and heliostat mirror surfaces and increasing the reliability and efficiency of CSP systems.

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

3X compound parabolic concentrating (CPC) solar energy collector. Final technical report  

SciTech Connect (OSTI)

Chamberlain engineers designed a 3X compound parabolic concentrating (CPC) collector for the subject contract. The collector is a completely housed, 105.75 x 44.75 x 10.23-inch, 240-pound unit with six each evacuated receiver assemblies, a center manifold and a one-piece glass cover. A truncated version of a CPC trough reflector system and the General Electric Company tubular evacuated receiver have been integrated with a mass producible collector design suitable for operation at 250 to 450/sup 0/F. The key criterion for optimization of the design was minimization of the cost per Btu collected annually at an operating temperature of 400/sup 0/F. The reflector is a 4.1X design truncated to a total height of 8.0 inches with a resulting actual concentration ratio of 2.6 to 1. The manifold is an insulated area housing the fluid lines which connect the six receivers in series with inlet and outlet tubes extending from one side of the collector at the center. The reflectors are polished, anodized aluminum which are shaped by the roll form process. The housing is painted, galvanized steel, and the cover glass is 3/16-inch thick tempered, low iron glass. The collector requires four slope adjustments per year for optimum effectiveness. Chamberlain produced ten 3X CPC collectors for the subject contract. Two collectors were used to evaluate assembly procedures, six were sent to the project officer in Albuquerque, New Mexico, one was sent to Argonne National Laboratory for performance testing and one remained with the Company. A manufacturing cost study was conducted to estimate limited mass production costs, explore cost reduction ideas and define tooling requirements. The final effort discussed shows the preliminary design for application of a 3X CPC solar collector system for use in the Iowa State Capitol complex.

Ballheim, R.W.

1980-04-25T23:59:59.000Z

222

Solar swimming pool heating -- A copper collector after 26 years  

SciTech Connect (OSTI)

This paper is a progress report and a technology overview for a do-it-yourself solar swimming pool heater built by the author. Since March 1973 the heater has operated successfully day in day out for over 26 years, as a simple component in the pool circulation system, for three successive homeowners. The heater project was sponsored by the Copper Development Association (CDA), and used a copper flat plate collector design mounted on a small building, which provided both the roofing and the solar collection function. The heater was built in Pasadena, California, at 34.2 degrees north latitude and 118.2 degrees west longitude. A do-it-yourself manual was written so others could build such heaters, and about 100,000 copies of this manual have been distributed. The manual has helped many to get a better understanding of solar energy, has allowed many around the world to build similar swimming pool heater, and caused this author to get into the solar energy field.

Winter, F. de

1999-07-01T23:59:59.000Z

223

Investigation of the flow field inside flat-plate collector tube using PIV technique  

SciTech Connect (OSTI)

The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

Sookdeo, Steven [Department of Mechanical and Industrial Engineering, Concordia University, Montreal (Canada); Siddiqui, Kamran [Department of Mechanical and Industrial Engineering, Concordia University, Montreal (Canada); Department of Mechanical and Materials Engineering, University of Western Ontario, London (Canada)

2010-06-15T23:59:59.000Z

224

An improved absorption generator for solar-thermal powered heat pumps. Part 1: Feasibility  

SciTech Connect (OSTI)

Solar heated absorption chiller installations have been, typically, very expensive for their rating. The need to keep the liquid flowing within the collectors as cool as possible to enhance collector thermal efficiency, conflicts with the need to operate the absorption chiller at a higher temperature. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and much more efficient. In addition, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures and, therefore, a smaller chiller is required. The economic consequences of these benefits will be presented in Part 2.

Fineblum, S. [Megadyne Inc., Rochester, NY (United States)

1997-12-31T23:59:59.000Z

225

An improved absorption generator for solar-thermal powered heat pumps. Part 2: Energy and economics  

SciTech Connect (OSTI)

Solar heated absorption chiller installations have been very expensive for their rating. To enhance collector thermal efficiency the liquid flowing within the collectors must be kept as cool as possible. However, there is also a need to operate the absorption reported earlier. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and more efficient. As noted in Part 1, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures. Therefore, a smaller, less expensive chiller is required. The reduced investment in solar arrays and absorption chillers is estimated along with a range of paybacks.

Fineblum, S. [Megadyne Inc., Rochester, NY (United States)

1997-12-31T23:59:59.000Z

226

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

227

Analysis and optimization of a solar thermal collector with integrated storage.  

E-Print Network [OSTI]

??Solar energy, a topic popular in the United States during the oil embargo of the 1970?'s, has become a relevant topic once more with the… (more)

Bonadies, Monica

2010-01-01T23:59:59.000Z

228

Solar thermal collector system modeling and testing for novel solar cooker .  

E-Print Network [OSTI]

??Solar cookers are aimed at reducing pollution and desertification in the developing world. However, they are often disregarded as they do not give users the… (more)

Foley, Brian, S.B. (Brian M.). Massachusetts; Institute of Technology

2014-01-01T23:59:59.000Z

229

Thermal regimes in a primary fluid heated by solar energy in a linear collector  

Science Journals Connector (OSTI)

The steady-state heat transfer equation has been solved for the determination of temperature profiles in a diathermic oil flowing through a linear boiler placed on the focal line of cylindrical parabolic solar...

O. Barra; M. Conti; L. Correra; R. Visentin; E. Pugliese Caratelli

230

Solar thermal collector system modeling and testing for novel solar cooker  

E-Print Network [OSTI]

Solar cookers are aimed at reducing pollution and desertification in the developing world. However, they are often disregarded as they do not give users the ability to cook after daylight hours. The Wilson solar cooker is ...

Foley, Brian, S.B. (Brian M.). Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

231

Reliability evaluation for electrical collector systems of wind farm using the section enumeration technique  

Science Journals Connector (OSTI)

Topology has a significant effect on the reliability performance of an electrical collector system (ECS) of wind farms. Novel indices for the reliability of wind farm ECS are presented based on topological features of wind farm ECS in this paper. The concept of the section for a wind farm ECS is defined. The probability table of multistate capacity (PTMC) for a wind turbine generator (WTG) and the Probability Table of the Number of WTG in Up-state (PTNU) for a section can be created. Based on the PTMC and PTNU PTMC of a wind farm can be established using the state enumeration algorithm and the matrix operations. Therefore the reliability evaluation model considering effects of wind speed and component failures can be built. The proposed model not only considers the multi-failures of ECS components including failures of cable feeder WTG and wind turbine transformer (WTT) but also states of switching devices in failure disconnection and switching processes. Four wind farm ECS topologies i.e. radial topology single-sided ring topology double-sided ring topology and star topology are implemented. Case studies on the reliability evaluation of wind farm ECS are used to verify the feasibility and validity of the proposed technique.

Kaigui Xie; Hejun Yang; Bo Hu; David Yu

2013-01-01T23:59:59.000Z

232

Influence of circumferential solar heat flux distribution on the heat transfer coefficients of linear Fresnel collector absorber tubes  

Science Journals Connector (OSTI)

Abstract The absorber tubes of solar thermal collectors have enormous influence on the performance of the solar collector systems. In this numerical study, the influence of circumferential uniform and non-uniform solar heat flux distributions on the internal and overall heat transfer coefficients of the absorber tubes of a linear Fresnel solar collector was investigated. A 3D steady-state numerical simulation was implemented based on ANSYS Fluent code version 14. The non-uniform solar heat flux distribution was modelled as a sinusoidal function of the concentrated solar heat flux incident on the circumference of the absorber tube. The k–? model was employed to simulate the turbulent flow of the heat transfer fluid through the absorber tube. The tube-wall heat conduction and the convective and irradiative heat losses to the surroundings were also considered in the model. The average internal and overall heat transfer coefficients were determined for the sinusoidal circumferential non-uniform heat flux distribution span of 160°, 180°, 200° and 240°, and the 360° span of circumferential uniform heat flux for 10 m long absorber tubes of different inner diameters and wall thicknesses with thermal conductivity of 16.27 W/mK between the Reynolds number range of 4000 and 210,000 based on the inlet temperature. The results showed that the average internal heat transfer coefficients for the 360° span of circumferential uniform heat flux with different concentration ratios on absorber tubes of the same inner diameters, wall thicknesses and thermal conductivity were approximately the same, but the average overall heat transfer coefficient increased with the increase in the concentration ratios of the uniform heat flux incident on the tubes. Also, the average internal heat transfer coefficient for the absorber tube with a 360° span of uniform heat flux was approximately the same as that of the absorber tubes with the sinusoidal circumferential non-uniform heat flux span of 160°, 180°, 200° and 240° for the heat flux of the same concentration ratio, but the average overall heat transfer coefficient for the uniform heat flux case was higher than that of the non-uniform flux distributions. The average axial local internal heat transfer coefficient for the 360° span of uniform heat flux distribution on a 10 m long absorber tube was slightly higher than that of the 160°, 200° and 240° span of non-uniform flux distributions at the Reynolds number of 4 000. The average internal and overall heat transfer coefficients for four absorber tubes of different inner diameters and wall thicknesses and thermal conductivity of 16.27 W/mK with 200° span of circumferential non-uniform flux were found to increase with the decrease in the inner-wall diameter of the absorber tubes. The numerical results showed good agreement with the Nusselt number experimental correlations for fully developed turbulent flow available in the literature.

Izuchukwu F. Okafor; Jaco Dirker; Josua P. Meyer

2014-01-01T23:59:59.000Z

233

Variable pressure thermal insulating jacket  

DOE Patents [OSTI]

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

234

Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982  

SciTech Connect (OSTI)

The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

Loferski, J.J. (ed.)

1983-12-01T23:59:59.000Z

235

Pump apparatus including deconsolidator  

DOE Patents [OSTI]

A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

2014-10-07T23:59:59.000Z

236

Thermally stable compositions including 2,4,8,10-tetranitro-5H-pyrido[3',2':4,5][1,2,3]triazolo[1,2-a]benzotriazo- l-6-ium, inner salt  

DOE Patents [OSTI]

An explosive formulation including 2,4,8,10-tetranitro-5H-pyrido[3',2':4,5][1,2,3]triazolo[1,2-a]benzotriazo- l-6-ium, inner salt and a high temperature binder is disclosed together with a process of preparing 2,4,8,10-tetranitro-5H-pyrido[3',2':4,5][1,2,3]triazolo[1,2-a]benzotriazo- l-6-ium, inner salt.

Hiskey, Michael A. (Los Alamos, NM); Huynh, My Hang (Los Alamos, NM)

2010-01-26T23:59:59.000Z

237

CSP Plant Thermal-hydraulic Simulation  

Science Journals Connector (OSTI)

Abstract In the frame of the development of new solar plants and their innovative components, our research activities focus on theoretical elaborations and simulation to support basic design and assistance to manufacturing. The aim is to describe the use of Relap5 code [1] for analyzing the thermal-hydraulic behavior of a CSP Plant based on parabolic through collectors. Here a fluid dynamic simulation of the Test Plant, situated at Casaccia Research Center, will be evaluated. For the first simulation, the filling and draining phase of the circuit has been considered. It has been simulated a time period corresponding to the plant starting with the switch on of the pump, the filling of the circuit, a steady state condition and the pump switching off until the complete draining of the circuit. This studies have been performed in different collectors configurations and different logics of the operation valves in order to define the better system control and the better operating procedure.

V. Russo

2014-01-01T23:59:59.000Z

238

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

solar thermal technologies. ..Advances in solar thermal electricity technology”. Solar107 1. Introduction Solar thermal technologies have been

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

239

Solar Collector: A Novel Way of Harnessing the Sun's Energy The team analysed the prototype and different design alternatives.The goal of the Solar Collector is to better  

E-Print Network [OSTI]

Solar Collector: A Novel Way of Harnessing the Sun's Energy Overview The team analysed the prototype and different design alternatives.The goal of the Solar Collector is to better harness the solar energy by focusing the sun's energy through a series of curved reflective fins. A challenge the team

Demirel, Melik C.

240

Dynamic simulation of the thermal and electrical behavior of a thermionic converter coupled to a solar concentrator  

SciTech Connect (OSTI)

A mathematical simulation for the dynamic thermal and electrical behavior of a thermionic converter coupled to a solar concentrator, is presented. The thermionic device is a Cesium-filled thermionic diode operating in the ignited mode. The emitter of the device is made of polycrystalline Rhenium and the collector of the device of Molybdenum. The solar concentrator is a parabolic dish. The designed emitter and collector temperatures are 1,850 K and 928 K, respectively. However, due to changes in ambient conditions, the collector efficiency varies and so does the system efficiency. This fact makes it necessary to evaluate the design of the system not just for one hour with constant conditions but also for a whole operating day. The paper presents plots for the emitter and collector thermionic device temperatures and power and voltage for a constant resistance load as a function of time.

Perez, G. [CUAP-UAP, Puebla (Mexico). Centro de Investigaciones en Dispositivos Semiconductores; Estrada, C.A.; Cervantes, J.G. [UNAM, Temixco, Morelos (Mexico). Solar Energy Research Lab.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of beam limiting aperture and collector potential on multi-element focused ion beams  

SciTech Connect (OSTI)

A compact microwave driven plasma based multi-element focused ion beam system has been developed. In the present work, the effect of reduced beam limiter (BL) aperture on the focused ion beam parameters, such as current and spot size, and a method of controlling beam energy independently by introducing a biased collector at focal point (FP) are investigated. It is found that the location of FP does not change due to the reduction of BL aperture. The location of FP and beam size are found to be weakly dependent on the collector potential in the range from -8 kV to -18 kV.

Paul, Samit; Chowdhury, Abhishek; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur, Uttar Pradesh (India)

2012-02-15T23:59:59.000Z

242

History, current state, and future of linear Fresnel concentrating solar collectors  

Science Journals Connector (OSTI)

Abstract Linear Fresnel collectors are a type of concentrating solar power technology. In this paper, the technology’s technical features and aspects are first described via illustrations of various design concepts; then, the past low- and intermediate-temperature applications of linear Fresnel collectors are reviewed and their state-of-the-art applications in utility-scale electricity generation are presented; finally, the performance, technical challenges, and future outlook of linear Fresnel technology in the context of utility-scale power plants are summarized.

Guangdong Zhu; Tim Wendelin; Michael J. Wagner; Chuck Kutscher

2014-01-01T23:59:59.000Z

243

RIMS analysis of Ca and Cr in genesis solar wind collectors.  

SciTech Connect (OSTI)

RIMS depth profiles have been measured for Cr and Ca in Genesis solar wind collector made from Si and compared to such measurements for ion-implanted Si reference material. The presence of surface contamination has been shown to be a significant factor influencing the total Ca and Cr fluence measured in the Genesis collectors. A procedure to remove the contaminant signal from these depth profiles using the reference material implanted with a minor isotope demonstrated that 36% of the measured Ca fluence in our Genesis sample comes from terrestrial contamination.

Veryovkin, I. V.; Tripa, C. E.; Zinovev, A. V.; King, B. V.; Pellin, M. J.; Burnett, D. S.; Materials Science Division; Univ. of Newcastle; California Inst. of Tech.

2011-01-01T23:59:59.000Z

244

Water-trickle type solar collector with a massive concrete slab for heat storage and radiation (TMU solar system I)  

SciTech Connect (OSTI)

Experimental results are reported for a simple open type solar collector - a water-trickle type collector - used in combination with a massive concrete slab for energy storage. This relatively low cost system was installed on a typical Japanese house in Yokohama City and measurements were made of the interior temperature. The system showed considerable promise for application in Japan.

Ito, N. (Tokyo Metropolitan Univ., Japan); Matsuda, K.; Ishii, A.; Osawa, H.

1980-01-01T23:59:59.000Z

245

Mathematical analysis of the influence of the chimney height and collector area on the performance of a roof top solar chimney  

Science Journals Connector (OSTI)

Abstract Determination of the roof top solar chimney behaviour during the day time is essential for the proper designing and sizing. This paper presents a mathematical model and analysis of an inclined type roof top solar chimney. The thermal energy and fluid flow processes were simulated mathematically based on the energy and mass balances. The model was converted to a MATLAB computer program and solved by iteration method. The analysis was carried out at various collector areas (15, 150, and 600 m2) and various chimney heights (5, 10, and 15 m). The model was validated by comparing the results with the experimental measurements. The developed mathematical model was able to predict the dynamic behaviour of the system. The results demonstrated that the performance of the system is highly influenced by the solar intensity. The system becomes functional for space ventilation when the solar intensity is higher than 400 W/m2 with a 15 m2 collector area and 5 m chimney height, under Malaysia and similar weather conditions. As the wind speed increases from 1.5 to 6 m/s, it contributes to reduce the system performance by 25% at solar intensity of 900 W/m2.

Hussain H. Al-Kayiem; Sreejaya K.V.; Syed Ihtsham Ul-Haq Gilani

2014-01-01T23:59:59.000Z

246

Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer  

Science Journals Connector (OSTI)

In the typical electrode configuration, the active material layer is directly supported on a metallic ... collector. The interface between current collector and active material layer imposes additional charge tra...

Zhian Zhang; Zhiyong Zhang; Xiwen Wang; Jie Li…

2014-05-01T23:59:59.000Z

247

Analysis of a Possible 20A Electron Gun and Collector Design for the RHIC EBIS  

E-Print Network [OSTI]

Analysis of a Possible 20A Electron Gun and Collector Design for the RHIC EBIS Alexander Pikin of electron beam generation with the gun immersed in a magnetic field and subsequent purely magnetic compression of the electron beam, it makes sense to develop the new electron gun with immersed cathode

248

An experimental investigation on a solar still with an integrated flat plate collector  

Science Journals Connector (OSTI)

Abstract This work promotes the performance of the single basin solar still by means of preheating the saline water using an integrated flat plate collector arrangement. A conventional single slope single basin still and a single slope flat plate collector basin still (FPCB still) are fabricated with the same basin area of 1 m2. The FPCB still is fabricated similar to a conventional still, with the integration of a horizontal flat plate collector arrangement to form six small compartments in the basin. The projected space between the consecutive basins acts as an extended surface which increases the temperature of the basin as well as the flat plate collector where the saline water is preheated before it enters the basin. Due to separate compartments (absorber plate) in the basin, the mass of water reduces and the evaporation rate increases for the same depth of water in the basin. Experiments are carried out by varying the water depth in the basin and using the wick and energy storing materials in basins of both stills. The FPCB still gives about 60% higher distillate than the conventional still for the same basin condition. Economic analysis shows that the cost of distilled water for the FPCB still is lower than that for the conventional still.

T. Rajaseenivasan; P. Nelson Raja; K. Srithar

2014-01-01T23:59:59.000Z

249

A SOLAR STILL AUGMENTED WITH A FLAT-PLATE COLLECTOR AND A REFLECTOR  

E-Print Network [OSTI]

A SOLAR STILL AUGMENTED WITH A FLAT-PLATE COLLECTOR AND A REFLECTOR A. Saleh A. Badran Mechanical ­ Jordan Amman ­ Jordan e-mail: asaleh@philadelphia.edu.jo e-mail: badran@ju.edu.jo ABSTRACT A solar distillation system was built and tested to study the effect of increasing the solar radiation incident

250

Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite  

DOE Patents [OSTI]

In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process.

Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Johnson, Arvid C. (Lake in the Hills, IL); Moorhead, Arthur J. (Knoxville, TN)

1998-01-01T23:59:59.000Z

251

Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite  

DOE Patents [OSTI]

In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process. 4 figs.

Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Moorhead, A.J.

1998-07-28T23:59:59.000Z

252

Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump  

Science Journals Connector (OSTI)

A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an ... ambient temperature of 32.5°C and average solar intensity of 815 W/m2, ...

C. Lertsatitthanakorn; J. Jamradloedluk; M. Rungsiyopas…

2013-07-01T23:59:59.000Z

253

PSERC 97-12 "Thermal Unit Commitment Including  

E-Print Network [OSTI]

iteration to another. The complexity of a given iteration becomes linear in the number of generators instead of the coupling between generator time- spanning constraints and system-wide instantaneous constraints, su ers from combinatoric complexity as the number of generators increases. It is this feature

254

Thermal Unit Commitment Including Optimal AC Power Flow Constraints  

E-Print Network [OSTI]

iteration to another. The complexity of a given iteration becomes linear in the number of generators instead of the coupling between generator time- spanning constraints and system-wide instantaneous constraints, suers from combinatoric complexity as the number of generators increases. It is this feature that dooms

255

Active charge/passive discharge solar heating systems: thermal analysis  

SciTech Connect (OSTI)

The performance of active charge/passive discharge solar space-heating systems is analyzed. This type of system combines liquid-cooled solar collector panels with a massive integral storage component that passively heats the building interior by radiation and free convection. The TRNSYS simulation program is used to evaluate system performance and to provide input for the development of a simplified analysis method. This method, which provides monthly calculations of delivered solar energy, is based on Klein's Phi-bar procedure and data from hourly TRNSYS simulations. The method can be applied to systems using a floor slab, a structural wall, or a water tank as the storage component. Important design parameters include collector area and orientation, building heat loss, collector and heat-exchanger efficiencies, storage capacity, and storage to room coupling.

Swisher, J.

1981-01-01T23:59:59.000Z

256

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

257

Thermal storage studies for solar heating and cooling: applications using chemical heat pumps. Final report, September 15, 1979-April 15, 1980  

SciTech Connect (OSTI)

TRNSYS-compatible subroutines for the simulation of chemical heat pumps have been written, and simulations (including heating, cooling, and domestic hot water) have been performed for Washington, DC and Ft. Worth, Texas. Direct weekly comparisons of the H/sub 2/SO/sub 4//H/sub 2/O and CaCl/sub 2//CH/sub 3/OH cycles have been carried out. Projected performance of the NH/sub 4/NO/sub 3//NH/sub 3/ cycle has also been investigated, and found to be essentially identical to H/sub 2/SO/sub 4//H/sub 2/O. In all cases simulated, the solar collector is a fixed evacuated tube system, which is necessary because chemical heat pumps operate at higher solar collector temperatures (> 100/sup 0/C) than conventional solar systems. With standard residential loads, the chemical heat pumps performed surprisingly well. In the Ft. Worth climate, less than 45 m/sup 2/ of collectors were required to meet over 90% of the heating and cooling loads. In Washington, DC, the area required to meet the cooling load was smaller (as little as 20 m/sup 2/, depending on window shading), but was sufficient to meet only 50 to 60% of the heating load. However, gas-fired backup via the heat pump was quite effective in reducing fossil fuel consumption: the thermal COPs in the heating mode were in the range 1.6 to 1.7. Since chemical heat pumps are designed to reject heat at relatively high temperatures, they were also effective in providing domestic hot water, supplying ca. 70% of the DHW in summer, ca. 50% in winter, and nearly 100% in spring and fall.

Offenhartz, P O.D.

1981-04-01T23:59:59.000Z

258

Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale  

Science Journals Connector (OSTI)

Abstract This study is concerned with the results of a Life Cycle Assessment comparison between photovoltaic – silicon based modules and thin film modules – and solar thermal systems, as technologies which are usually installed for partially covering household energy demand. Several studies focused on energy and environmental performances of photovoltaic and solar thermal collectors, however they have been always analysed separately. This study proposes the comparison of different systems to exploit the solar energy, producing different energy types. The comparison was done referring to one square meter of roof surface occupied by the equipment. The environmental burdens were calculated according to the indicators proposed by Eco-indicator'95 method. The results showed that the system based on thermal solar collector obtained the major number of more favourable indicators: eight out of ten, in the case of no-recycling of materials after dismantling phase, and six out of ten in the case of recycling of materials after dismantling phase. The thin film modules and solar thermal collector showed the lowest values of energy payback time and \\{CO2eq\\} payback time. Results clearly show that photovoltaic and solar thermal collector can effectively provide comparable environmental and energy benefits as regard to domestic scale installation.

E. Carnevale; L. Lombardi; L. Zanchi

2014-01-01T23:59:59.000Z

259

A study of the utility of heat collectors in reducing the response time of automatic fire sprinklers located in production modules of Building 707  

SciTech Connect (OSTI)

Several of the ten production Modules in Building 707 at the Department of Energy Rocky Flats Plant recently underwent an alteration which can adversely affect the performance of the installed automatic fire sprinkler systems. The Modules have an approximate floor to ceiling height of 17.5 ft. The alterations involved removing the drop ceilings in the Modules which had been at a height of 12 ft above the floor. The sprinkler systems were originally installed with the sprinkler heads located below the drop ceiling in accordance with the nationally recognized NFPA 13, Standard for the Installation of Automatic Sprinkler Systems. The ceiling removal affects the sprinkler`s response time and also violates NFPA 13. The scope of this study included evaluation of the feasibility of utilizing heat collectors to reduce the delays in sprinkler response created by the removal of the drop ceilings. The study also includes evaluation of substituting quick response sprinklers for the standard sprinklers currently in place, in combination with a heat collector.

Shanley, J.H. Jr.; Budnick, E.K. Jr. [Hughes Associates, Inc., Wheaton, MD (United States)

1990-01-01T23:59:59.000Z

260

Thermovoltaic semiconductor device including a plasma filter  

DOE Patents [OSTI]

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F. (Clifton Park, NY)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a Fast Time-Resolved Aerosol Collector (Fast TRAC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yu Yu & James Cowin PNNL Fast Time-Resolved Aerosol Collector ......Fast TRAC...... Xiao-Ying Yu, Ali Hashim, Martin Iedema, and James Cowin Atmospheric Sciences, Chemical Sciences Pacific Northwest National Laboratory Richland, WA Research is supported by NOAA & DOE. *Patent Pending Xiao-Ying Yu & James Cowin PNNL Cloud Microstructures ≤ 1 m Want to know the aerosols at this resolution Aircraft flies at 150 m/s Need time resolution 1 m/150 m/s = 6 ms (!!!!!) Xiao-Ying Yu & James Cowin PNNL What is TRAC? - Time-Resolved Aerosol Collector * Uses an impactor * ~ 600 TEM samples * Flow rate: 1 l/min * Time resolution: ≥ 1 min* * Applications: Off-line analysis: - particle hygroscopicity, morphology, composition.. (6.5 in) 3 , 7 lb, 12 V, 8 W 0% 20% 40% 60%

262

Discovery of Non-random Spatial Distribution of Impacts in the Stardust Cometary Collector  

SciTech Connect (OSTI)

We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than {approx} 10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.

Westphal, A J; Bastien, R K; Borg, J; Bridges, J; Brownlee, D E; Burchell, M J; Cheng, A F; Clark, B C; Djouadi, Z; Floss, C; Franchi, I; Gainsforth, Z; Graham, G; Green, S F; Heck, P R; Horanyi, M; Hoppe, P; Horz, F P; Huth, J; Kearsley, A; Leroux, H; Marhas, K; Nakamura-Messenger, K; Sandford, S A; See, T H; Stadermann, F J; Teslich, N E; Tsitrin, S; Warren, J L; Wozniakiewicz, P J; Zolensky, M E

2007-04-06T23:59:59.000Z

263

Aerogel Keystones: Extraction Of Complete Hypervelocity Impact Events From Aerogel Collectors  

SciTech Connect (OSTI)

In January 2006, the Stardust mission will return the first samples from a solid solar-system body since Apollo, and the first samples of contemporary interstellar dust ever collected. Although sophisticated laboratory instruments exist for the analysis of Stardust samples, techniques for the recovery of particles and particle residues from aerogel collectors remain primitive. Here we describe our recent progress in developing techniques for extracting small volumes of aerogel, which we have called ''keystones,'' which completely contain particle impacts but minimize the damage to the surrounding aerogel collector. These keystones can be fixed to custom-designed micromachined silicon fixtures (so-called ''microforklifts''). In this configuration the samples are self-supporting, which can be advantageous in situations in which interference from a supporting substrate is undesirable. The keystones may also be extracted and placed onto a substrate without a fixture. We have also demonstrated the capability of homologously crushing these unmounted keystones for analysis techniques which demand flat samples.

Westphal, A J; Snead, C; Butterworth, A; Graham, G A; Bradley, J; Bajt, S; Grant, P G; Bench, G; Brennan, S; Piannetta, P

2003-11-07T23:59:59.000Z

264

Heat efficiency of “translucent cover-radiation absorbing heat-exchange panel” system of flat solar collectors  

Science Journals Connector (OSTI)

An analytic expression is proposed for determining the heat efficiency of the “translucent cover-radiation absorbing heat-exchange panel” system of flat solar collectors, and on its base the heat efficiency of th...

R. R. Avezov; N. R. Avezova

2008-09-01T23:59:59.000Z

265

Dynamic Performance Study on the Solar Collector/Evaporator of Direct Expansion Solar Assisted Heat Pump Systems  

Science Journals Connector (OSTI)

A dynamic simulation model is developed for predicting performance of the solar collector/evaporator of direct expansion solar assisted heat pump systems. In this model, ... meteorological and configuration param...

Li Hong; Yang Hongxing

2009-01-01T23:59:59.000Z

266

Advanced hybrid particulate collector and method of operation  

DOE Patents [OSTI]

A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

Miller, Stanley J. (Grand Forks, ND)

2003-04-08T23:59:59.000Z

267

High-resolution maps of solar collector performance using a climatological solar radiation model  

SciTech Connect (OSTI)

This paper will present a new methodology for producing estimates of the monthly and annual average performance of different types of flat-plate and concentrating solar collectors. The estimates are made on a uniform spatial grid with 40 km resolution. These estimates should be highly useful both to create maps to facilitate visualization of the solar resource, and as the basic data behind analytical studies of solar resources, deployment scenarios, CO{sub 2} mitigation strategies, and economic assessments. Their initial use of this methodology will be in the continental United States, where supporting data is available to evaluate the model outputs. In future years the authors hope to utilize this technique world-wide, especially in areas where the surface data are lacking. The National Renewable Energy Laboratory (NREL, Golden, CO) has developed the Climatological Solar Radiation (CSR) model to estimate climatological averages of daily-total solar radiation at a 40 km spatial resolution. The CSR model is operational and has been usefully applied to the US as well as several international areas. The model uses, as input, monthly climatological mean values of cloud cover, precipitable water vapor, aerosol optical depth, surface albedo, and total column ozone. These input parameters are available from various sources such as NASA and NCDC (National Climatic Data Center). The outputs from the original version of CSR are monthly mean daily total values of Global Horizontal, Direct Normal, and Diffuse radiation. Their latest revision of the model allows them to calculate the monthly mean output for the various collector types such as tilted flat-plate surfaces, one- and two-axis flat-plate collectors, and concentrating collectors.

George, R.L.; Maxwell, E.L.

1999-07-01T23:59:59.000Z

268

Performance of a double-effect absorption chiller driven by ICPC solar collectors  

SciTech Connect (OSTI)

This paper presents experimental data and analytical results describing the performance of a 70 kW (20 ton), water-fired, double-effect absorption chiller. The chiller is driven by a 106 m{sup 2} array of integrated compound parabolic concentrator (ICPC) solar collectors. For this project, an existing gas-fired chiller was modified to operate on hot water. The water was heated by an array of 336 evacuated ICPC tubes. Each tube has an effective area of 0.317 m{sup 2}. The chiller and collector array are part of a complete solar HVAC system that provides air conditioning and space heating for a 743 m{sup 2} (8,000 ft{sup 2}) commercial building in Sacramento, CA. The other components of the HVAC system are a high temperature storage tank, a cooling tower, a gas-fired back-up boiler and five 14 kW (4 ton) cooling/heating fan coil units. The experimental data are used to determine; (1) the efficiency of the collectors; (2) the coefficient of performance of the chiller; and (3) the overall energy balance on the system. Computer models have also been developed to predict the performance and to optimize the design and operating characteristics of the HVAC system.

Bergquam, J.B.; Duff, W.S.; Brezner, J.M.; Henkel, E.T.; Winston, R.; O'Gallagher, J.; Sethi, P.

1999-07-01T23:59:59.000Z

269

Emitter tests in an open thermionic converter with vapor injection through the collector  

SciTech Connect (OSTI)

Mo and Pt emitters and a Ni collector with 400 laser-bored holes were used in an ''open'' thermionic converter. The alkali vapor was introduced into the converter through the array of holes in the collector from an adjacent alkali metal reservoir with separately controlled temperature. The overall results from the open thermionic converter are comparable to results from enclosed converters. The results found with a Cs plasma are encouraging, with barrier indices down to below 1.8 eV, at emitter temperatures around 1500 K in the case of a Mo emitter. The output power density was around 3.5 W cm/sup -2/. In the case of a Pt emitter, both Cs and K plasmas were used, with power densities up to 5.7 and 1.8 W cm/sup -2/, respectively close to 1800 K. The structure of the laser-bored collector may have contributed to these results, as well as the efficient removal of impurities in the ''open'' converter.

Wriedt, S.; Moeller, K.; Holmlid, L.

1986-12-15T23:59:59.000Z

270

Development of a new flat stationary evacuated CPC-collector for process heat applications  

SciTech Connect (OSTI)

For the economical supply of solar process heat at temperatures between 120 and 150 C a new non-tracking, flat, low-concentrating collector has been developed. The new collector is an edge ray collector with a concentration of 1.8 and inert gas filling, existing of parallel mounted absorber-reflector units, aligned in east-west direction. The basic concept is the integration of an absorber tube and reflectors inside a low pressure enclosure. Asymmetrical reflectors below the headers with a concentration of 0.6X provide extra radiation and prevent longitudinal radiation losses. To suppress heat losses due to gas-convection inside, air or inert gas like krypton at a pressure below 10 mbar is used. A prototype, with an aperture area of 2.0 m{sup 2}, was tested in Munich and showed efficiencies of about 50% for krypton at 0.01 bar at a temperature of 150 C with a radiation of 1000 W/m{sup 2} (900 W/m{sup 2} direct, ambient temperature 20 C). (author)

Buttinger, Frank; Beikircher, Thomas; Proell, Markus; Schoelkopf, Wolfgang [Bavarian Center for Applied Energy Research (ZAE Bayern), Technology for Energy Systems and Renewable Energies, Walther-Meissner-Str. 6, 85748 Garching (Germany)

2010-07-15T23:59:59.000Z

271

An alternative methodology to treat solar radiation data for the optical efficiency estimate of different types of collectors  

Science Journals Connector (OSTI)

Abstract An alternative methodology to calculate the yearly optical efficiency of a generic solar power collector/converter for any chosen location is here proposed. The innovation is in considering the yearly direct normal irradiation (DNI) not as a series of temporal data with hourly or minute resolution, but rather, as a map of physical positions assumed by the sun during the year in the sky vault. A MATLAB® suite was developed to convert the temporal DNI information, which is usually available for a chosen location, into spatial DNI information. The suite allows creating a yearly direct solar irradiation density map as function of a generic pair of independent angular coordinates (e.g., azimuth and zenith). The yearly DNI density map can then easily be multiplied by the collector efficiency map to obtain its yearly optical efficiency. The main advantages of the proposed approach compared to conventional temporal ones are (i) reduced magnitude of computational effort, and (ii) ease in conducting collector optical optimization. The approach is tested on three cases—a generic flat collector and two linear collectors—to show its generality and potentialities. The developed methodology is applied to optimize the yearly optical efficiency of a linear Fresnel collector with different orientations and mirror layouts.

Marco Binotti; Giampaolo Manzolini; Guangdong Zhu

2014-01-01T23:59:59.000Z

272

Task 39 Exhibition – Assembly of Polymeric Components for a New Generation of Solar Thermal Energy Systems  

Science Journals Connector (OSTI)

Abstract IEA SHC Task 39 is dedicated to the development, optimization and deployment of materials and designs for polymer based solar thermal systems and components. To increase the confidence in polymeric solar thermal applications, Task 39 actively supports international research activities and seeks to promote successful applications and state-of-the-art products. For the SHC conference 2013, different polymeric components suitable for domestic hot water preparation and space heating were singled out for an exhibition. Promising polymeric collectors, air collectors, thermosiphons, storage tanks and other components from industrial partners all over the world were brought to Freiburg and assembled at the Fraunhofer-Institute for Solar Energy Systems ISE. The resulting SHC Task 39 Exhibition of polymeric components shows the feasibility of all-polymeric solar thermal systems and highlights their potential, especially as scalable and modular applications for building integration or as export products to sunny regions.

Michael Koehl; Sandrin Saile; Andreas Piekarczyk; Stephan Fischer

2014-01-01T23:59:59.000Z

273

Standard test method for isotopic analysis of uranium hexafluoride by double standard single-collector gas mass spectrometer method  

E-Print Network [OSTI]

1.1 This is a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples with 235U concentrations between 0.1 and 5.0 mass %. 1.2 This test method may be applicable for the entire range of 235U concentrations for which adequate standards are available. 1.3 This test method is for analysis by a gas magnetic sector mass spectrometer with a single collector using interpolation to determine the isotopic concentration of an unknown sample between two characterized UF6 standards. 1.4 This test method is to replace the existing test method currently published in Test Methods C761 and is used in the nuclear fuel cycle for UF6 isotopic analyses. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

274

Solar thermal organic rankine cycle for micro-generation  

Science Journals Connector (OSTI)

The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles the solar thermal cycle that harness solar energy and the power cycle which is the ORC that generates electricity. As for the solar thermal cycle heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

2012-01-01T23:59:59.000Z

275

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

power plants, solar thermal energy, geothermal energy, oceanpower plants, distributed solar thermal energy, geo/ocean-power plants [59]. Other LGH sources include solar thermal energy, geo-thermal energy, ocean

Lim, Hyuck

2011-01-01T23:59:59.000Z

276

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

natural gas and using solar thermal energy. There is a solarnatural gas or on solar thermal energy before it will switcha solar thermal system, strictly in terms of energy only.

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

277

Assess the Efficacy of an Aerial Distant Observer Tool Capable of Rapid Analysis of Large Sections of Collector Fields: FY 2008 CSP Milestone Report, September 2008  

SciTech Connect (OSTI)

We assessed the feasibility of developing an aerial Distant Observer optical characterization tool for collector fields in concentrating solar power plants.

Jorgensen, G.; Burkholder, F.; Gray, A.; Wendelin, T.

2009-02-01T23:59:59.000Z

278

Standard test method for isotopic abundance analysis of uranium hexa?uoride and uranyl nitrate solutions by multi-collector, inductively coupled plasma-mass spectrometry  

E-Print Network [OSTI]

Standard test method for isotopic abundance analysis of uranium hexa?uoride and uranyl nitrate solutions by multi-collector, inductively coupled plasma-mass spectrometry

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

279

Thermal conductivity of the electrode gap of a thermionic converter, filled with inert gases, at low pressures  

SciTech Connect (OSTI)

Experimental data is presented on the thermal conductivity of the electrode gap of a thermionic converter filled with He, Ar, and Xe in the pressure range 40--550 Pa. The need to account for the coefficients of thermal accommodation of the emitter-inert-gas-collector system in this range is shown. The accommodation coefficients for different temperature regimes are measured and expressions are obtained to calculate the heat flux transported by the inert gases in the electrode gap.

Modin, V.A.; Nikolaev, Y.V.

1985-11-01T23:59:59.000Z

280

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar collector  

SciTech Connect (OSTI)

A solar energy water heating unit is provided which heats water from a swimming pool by passing the water through a series of spiral hoses mounted on a supporting surface. The supporting surface is mounted on a platform raised from the ground and is cone-shaped to allow for at least a portion of each hose line to be exposed to the sun at all times of the day. The spiral hose lines are mounted in spiral grooves provided on the supporting surface. A pump pumps the water from the swimming pool to the inlet of the hose lines, which inlet is adjacent the lowermost edge of the supporting surface so that the water is always pumped upwardly to the outlet end of the hose lines adjacent the apex of the supporting surface.

Miller, R.L.

1983-05-31T23:59:59.000Z

282

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

283

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

284

Device for thermal transfer and power generation  

DOE Patents [OSTI]

A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

2011-04-19T23:59:59.000Z

285

The effect of cerium surface treated ferritic stainless steel current collectors on the performance of solid oxide fuel cells (SOFC)  

Science Journals Connector (OSTI)

Laboratory scale solid oxide fuel cells (“button” cells) were operated with untreated or cerium surface treated Fe–22Cr–0.5Mn (composition by weight percent, wt%) ferritic stainless steel current collectors attached to the cathode. After a brief stabilization (or “burn-in”) period, the power density of a cell with the untreated current collector rapidly decreased. By contrast, there was little degradation in power density during testing of cells with the cerium surface treated current collectors. The difference in degradation was attributed to differences in Cr build-up within the cathode. It should be emphasized that the duration of the tests were quite short and longer duration testing is required, however, this initial assessment indicates the treatment may benefit the performance of SOFC with steel interconnects.

D.E. Alman; C.D. Johnson; W.K. Collins; P.D. Jablonski

2007-01-01T23:59:59.000Z

286

Performance analysis of a solar-assisted heat pump with an evacuated tubular collector for domestic heating  

Science Journals Connector (OSTI)

Performance of a solar-assisted heat pump with an evacuated tubular collector has been analyzed both theoretically and experimentally. A domestic heating system has been designed, constructed and tested. The evacuated tubular solar collector has been used to achieve higher collector efficiencies. The effects of evaporation temperature on the heating capacity and performance of the system have been investigated. Evaporation temperature varies between 5.2 and 20.7 °C while storage tank temperature varies between 9 and 35 °C. The maximum value of the coefficient of performance of the solar assisted heat pump is obtained as 6.38 experimentally. The calculated and experimental results are seen to be in a good agreement. A cost analysis of the proposed system is made comparing with a non-solar heat pump system.

Ahmet Ça?lar; Cemil Yamal?

2012-01-01T23:59:59.000Z

287

Application of a solar desiccant/collector system for water recovery from atmospheric air  

Science Journals Connector (OSTI)

An integrated desiccant/solar collector system for production of fresh water from atmospheric air is described. The solar driven system provided about 1.5 l of fresh water per square meter per day. The system involves the absorption of water vapor from ambient air during the night and simultaneous desiccant regeneration and water vapor condensation during the day. To enhance the mass transfer surface, a thick corrugated layer of cloth was used as a bed to carry the liquid absorbent. In the nocturnal phase of operation, air is allowed to penetrate the desiccant bed. The airflow is driven by fans supported on one side of the desiccant/solar collector unit. In this study, the effects of different parameters on the absorption and regeneration processes are discussed, and operational conditions for the proposed equipment evaluated. Radiation intensity, ambient temperature, bed temperature and temperature of the glass surface were recorded. Also, the productivity of the system during the day and under the given operation conditions was plotted. A mathematical model was prepared and its output compared with the analyzed experimental data.

H.E Gad; A.M Hamed; I.I El-Sharkawy

2001-01-01T23:59:59.000Z

288

A new solar radiation data manual for flat?plate and concentrating collectors  

Science Journals Connector (OSTI)

A new solar radiation data manual is nearing completion by the National Renewable Energy Laboratory’s (NREL’s) Analytic Studies Division under the Solar Radiation Resource Assessment Project and the Photovoltaic Solar Radiation Research Task. These tasks are funded and monitored by the Photovoltaics Branch of the Department of Energy’s Office of Energy Efficiency and Renewable Energy. The new manual is entitled Solar Radiation Data Manual for Flat?Plate and Concentrating Collectors. For designers and engineers of solar energy related systems it gives the solar resource available for various types of collectors for 239 stations in the United States and its territories. The data in the manual are modeled using diffuse horizontal and direct beam solar radiation values from the National Solar Radiation Data Base (NSRDB). The NSRDB contains modeled (93%) and measured (7%) global horizontal diffuse horizontal and direct beam solar radiation for 1961–1990. This paper describes what is contained in the new data manual and how it was developed.

W. Marion; S. Wilcox

1994-01-01T23:59:59.000Z

289

The optimum tilt angle for flat-plate solar collectors in Iran  

Science Journals Connector (OSTI)

This paper aims at determining the optimum tilt angle for south facing flat-plate solar collectors in Iran. Solar radiation on a horizontal surface was estimated by applying an empirical method and employing meteorological data from 80 selected cities. A mathematical model was used for estimating the solar radiation at different tilt angles. Daily monthly seasonally bi-annually and yearly optimum tilt angles and solar radiations were determined for 80 selected cities. Recommendations were made on the optimum tilt angle adjustment for different places in the country in order to benefit the best solar radiation available. The averaged benefits of annual solar radiation for 80 cities were 21.3% for daily 21% for monthly 19.6% for seasonal 19.3% for bi-annual and 13.3% for yearly adjustments compared with the radiation on the horizontal collector. Based on these results adjusting tilt angles at least twice a year is recommended. Optimum tilt angles for cloudy sky cities with a low clearness index are lower than those for cities at the same latitude angle having a higher clearness index. In addition to latitude angle the climate conditions are also important for determining the optimum tilt angle.

Farzad Jafarkazemi; S. Ali Saadabadi; Hadi Pasdarshahri

2012-01-01T23:59:59.000Z

290

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

SciTech Connect (OSTI)

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

291

A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power  

Science Journals Connector (OSTI)

Abstract Linear Fresnel collector arrays present some relevant advantages in the domain of concentrating solar power because of their simplicity, robustness and low capital cost. However, they also present important drawbacks and limitations, notably their average concentration ratio, which seems to limit significantly the performance of these systems. First, the paper addresses the problem of characterizing the mirror field configuration assuming hourly data of a typical year, in reference to a configuration similar to that of Fresdemo. For a proper comparative study, it is necessary to define a comparison criterion. In that sense, a new variable is defined, the useful energy efficiency, which only accounts for the radiation that impinges on the receiver with intensities above a reference value. As a second step, a comparative study between central linear Fresnel reflectors and compact linear Fresnel reflectors is carried out. This analysis shows that compact linear Fresnel reflectors minimize blocking and shading losses compared to a central configuration. However this minimization is not enough to overcome other negative effects of the compact Fresnel collectors, as the greater dispersion of the rays reaching the receiver, caused by the fact that mirrors must be located farther from the receiver, which yields to lower efficiencies.

María J. Montes; Carlo Rubbia; Rubén Abbas; José M. Martínez-Val

2014-01-01T23:59:59.000Z

292

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

293

A water-trickle type solar collector with a massive concrete slab for heat storage and radiation /TMU solar system I/  

SciTech Connect (OSTI)

Experimental results are reported for a simple open type solar collector - a water trickle type collector - used in combination with a massive concrete slab for energy storage. This relatively low cost system was installed on a typical Japanese house in Yokohama City and measurements were made of the interior temperature. The system showed considerable promise for application in Japan.

Ito, N. (Tokyo Metropolitan University, Tokyo, Japan); Matsuda, K. (Kyushu Institute of Design, Kyushu, Japan); Ishii, A. (Ministry of Construction, Building Research Institute, Japan)

1980-01-01T23:59:59.000Z

294

Research at the Building Research Establishment into the Applications of Solar Collectors for Space and Water Heating in Buildings [and Discussion  

Science Journals Connector (OSTI)

...and the E.E.C. Solar space heating is...experimental low energy house laboratories...using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies...means of conserving energy in buildings. The...

1980-01-01T23:59:59.000Z

295

Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey  

Science Journals Connector (OSTI)

Thermal performance and economic feasibility of two types of central solar heating system with seasonal storage under four climatically different Turkey locations are investigated. The effects of storage volume and collector area on the thermal performance and cost are studied for three load sizes. The simulation model of the system consisting of flat plate solar collectors, a heat pump, under ground storage tank and heating load based on a finite element analysis and finite element code ANSYS™ is chosen as a convenient tool. In this study, the lowest solar fraction value for Trabzon (41°N) and the highest solar fraction value for Adana (37°N) are obtained. Based on the economic analysis, the payback period of system is found to be about 25–35 years for Turkey.

A. Ucar; M. Inalli

2005-01-01T23:59:59.000Z

296

Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada  

Science Journals Connector (OSTI)

This document presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto, Canada, were estimated. TRNSYS, a system simulation software tool, was used to model yearly performance of a conventional GSHP system as well as a proposed hybrid GSHP system. Actual yearly data collected from the site were examined against the simulation results. This study demonstrates that hybrid ground source heat pump system combined with solar thermal collectors is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground heat exchanger (GHX) length. Combining three solar thermal collectors with a total area of 6.81 m2 to a GSHP system will reduce GHX length by 15%. Sensitivity analysis was carried out for different cities of Canada and resulted that Vancouver, with mildest climate compared to other cities, was the best candidate for the proposed solar hybrid GSHP system with a GHX length reduction to solar collector area ratio of 7.64 m/m2. Overall system economic viability was also evaluated using a 20-year life-cycle cost analysis. The analysis showed that there is small economic benefit in comparing to the conventional GSHP system. The net present value of the proposed hybrid system based on the 20-year life-cycle cost analysis was estimated to be in a range of 3.7%–7.6% (or $1500 to $3430 Canadian dollar) lower than the conventional GSHP system depending on the drilling cost.

Farzin M. Rad; Alan S. Fung; Wey H. Leong

2013-01-01T23:59:59.000Z

297

Coaxial extrusion conversion concept for polymeric flat plate solar collectors. Final technical report, September 30, 1978-December 31, 1979  

SciTech Connect (OSTI)

This study investigated materials and processes for fundamental improvements in flat-plate solar collector cost and performance. The goal was to develop a process for direct conversion of inexpensive raw materials into a completed solar collector unit, without labor intensive assembly operations. It was thought that materials carefully matched to the process and end-use environment would substantially reduce collector costs, as compared to conventional industry practice. The project studied the feasibility of a cost-effective, glazed solar collector, with low labor input, utilizing a coaxial extrusion of compatible polymeric materials. This study evaluated all considered materials for the desired application. In addition, there was a trial extrusion of the leading candidate glazing and absorber materials, which resulted in successfully performing a coaxial extrusion of one cell. At the time the study was conducted, there were no materials available that met the necessary requirements for the specified utilization. It was recommended that, if potentially compatible materials become available, further investigation into the suitability of those materials be researched. Then, if a suitable material was found, proceeding into Phase II would be recommended.

Rhodes, R.O.; Chapman, N.J.; Chao, K.C.; Sorenson, K.F.

1980-01-01T23:59:59.000Z

298

Towards an improved architectural quality of building integrated solar thermal systems (BIST)  

Science Journals Connector (OSTI)

Architectural integration is a major issue in the development and spreading of solar thermal technologies. Yet the architectural quality of most existing building integrated solar thermal systems (BIST) is quite poor, which often discourages potential new users. In this paper, the results of a large web survey on architectural quality, addressed to more than 170 European architects and other building professionals are presented and commented. Integration criteria and design guidelines established and confirmed through the analysis of these results are proposed. Subsequently, a novel methodology to design future solar thermal collectors systems suited to building integration is described, showing a new range of design possibilities. The methodology focuses on the essential teamwork between architects and engineers to ensure both energy efficiency and architectural integrability, while playing with the formal characteristics of the collectors (size, shape, colour, etc.). Finally a practical example of such a design process conducted within the European project SOLABS is given; the resulting collector is described, and integration simulations are presented.

MariaCristina Munari Probst; Christian Roecker

2007-01-01T23:59:59.000Z

299

S O L A R A I R COLLECTORS: How Much Can You S  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . . . - . . . . . . . - . . . - . . . . . . . - . . . . . . . - . . - - . . . . . . . . . . . ..- a- c I S O L A R A I R COLLECTORS: How Much Can You S a v e ? A p r i l , 1985 DOE/CS/69097--T2 DE85 015762 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark,

300

Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors  

Office of Scientific and Technical Information (OSTI)

Solar Radiation Data Manual Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefuleness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply iots endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Use of charge-selective membranes for electrodialytic desalination of mineralized drainage collector waters  

SciTech Connect (OSTI)

The purpose of this work was to examine the possibility of desalination, without preliminary softening, of drainage collector waters of a medium degree mineralization, represented by a simulated solution of the same cation composition, with the use of single-charge-selective membranes. A cation-exchange membrane obtained by modification of the commercial MK-100 membrane with ethylenediamine (6), was used for this purpose. The modification was effected by treatment of the chlorosulfonated matrix with aqueous ethylenediamine solution at room temperature. The matrix, aminated on one side was then treated with concentrated NaOH solution to convert unreacted sulfonyl chloride groups into sulfo. The capacity of the modified MK-100M membrane for sulfo groups was 1.8 meq/g. The possibility of obtaining highly concentrated brines was examined at the same time.

Grebenyuk, V.D.; Veisov, B.K.; Chebotareva, R.D.; Braude, K.P.; Nefedova, G.Z.

1986-10-10T23:59:59.000Z

302

Cleaning strategies for parabolic-trough solar-collector fields; guidelines for decisions  

SciTech Connect (OSTI)

This report is intended to assist the owner or operator of a parabolic trough solar collector system to decide on a cleaning strategy (equipment, materials, procedures, and schedules). The guidelines are based on information obtained in past research studies, as well as interviews with vendors and users of cleaning and water treatment equipment. The basic procedure recommended utilizes high pressure portable washing equipment. However, since the cleaning problem is so site-specific, no single, detailed approach can be specified. A systematic procedure for evaluating the particular requirements of a site is therefore given. This will allow the solar energy system operator to develop a cleaning strategy which is cost-effective because it is suited to local conditions.

Bergeron, K.D.; Freese, J.M.

1981-06-01T23:59:59.000Z

303

Meals included in Conference Registrations  

E-Print Network [OSTI]

Meals included in Conference Registrations Meals included as part of the cost of a conference the most reasonable rates are obtained. Deluxe hotels and motels should be avoided. GSA rates have been for Georgia high cost areas. 75% of these amounts would be $21 for non- high cost areas and $27 for high cost

Arnold, Jonathan

304

Numerical study of heat loss from a non-evacuated receiver of a solar collector  

Science Journals Connector (OSTI)

Abstract Heat loss from receivers of solar collectors is a major reason for drop in their efficiency. Receiver pipes enclosed in glass tubes with evacuated annulus show considerable reduction in heat losses. However, manufacturing and maintenance costs for such receivers are high. An inexpensive alternative is a similar receiver with non-evacuated annulus. This paper presents a numerical study of heat loss from a non-evacuated receiver typically used in parabolic trough collectors, generating moderate temperatures and designed particularly for process heat applications. In order to come closer to the realistic situation, rather than assuming uniform temperature distribution on it, receiver pipe temperature has been assumed to be varying along the surface. Sinusoidal and square wave functions are employed in modeling, since actual temperature distributions on solar receiver pipes are combinations of these two functions. Main goal of the paper is to optimize the design of the non-evacuated solar receiver for minimum heat loss, by using CFD technique. Also effects on heat loss from receivers due to different parameters like average temperature (Ta) of the pipe, non-uniformity in the temperature (?) along its surface, hour angle (?), denoting position of the sun in the sky and radius ratio (RR) of radius of receiver pipe to that of outer glass tube have been studied. It is seen that as non-uniformity in temperature distribution increases in both types of temperature distribution, heat losses from receiver pipes decrease up to 10%. Also as hour angle increases from 0° to 90°, heat loss decreases by 20% in case of sinusoidal temperature distribution and 24% in case of square wave temperature distribution. The effect of radius ratio (RR) on heat loss has been studied. In present study, we found out that 1.375 is critical radius ratio for which heat losses from receiver are minimum

Ramchandra G. Patil; Dhanaji M. Kale; Sudhir V. Panse; Jyeshtharaj B. Joshi

2014-01-01T23:59:59.000Z

305

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

306

Role of self-propulsion of marine larvae on their probability of contact with a protruding collector located in a sea current  

E-Print Network [OSTI]

Settlement of marine larvae on a substrate is a fundamental problem of marine life. The probability of settlement is one of the quantitative characteristic of the settlement process. The probability of larval contact with a substrate is the upper bound of the probability of settlement. This work addresses the problem of contact probability and contact rate of marine invertebrate larvae with an isolated protruding collector located in an unbounded sea current. There are two common approaches to the problem of contact probability. In one, a collector induces certain cues, which help a larvae find the collector. In such a case, the larva moves towards the collector deliberately, using its navigation and propulsion devices. In the second approach, a larva moves towards a collector as a passive small particle. In this case, the cause of contact of a larva with a collector is a mechanical collision of a small moving body with a large obstacle. We considered a larva which does not know the location of the collector,...

Zilman, Gregory; Liberzon, Alex; Perkol-Finkel, Shimrit; Benayahu, Yehuda

2011-01-01T23:59:59.000Z

307

Development of a low-cost black-liquid solar collector, Phase II. Second semi-annual report, March 1, 1980-August 31, 1980  

SciTech Connect (OSTI)

Battelle's Columbus Laboratories (BCL) is continuing its research effort to develop an efficient, low-temperature, low-cost, flat-plate black-liquid solar collector. The research efforts during this second 6-month period of Phase II have been directed toward (1) evaluating the long-term durability of various plastic materials and solar collector designs, (2) obtaining sufficient outdoor performance data to design a full-scale demonstration of a black-liquid solar collector for a commercial application, (3) working closely with a company willing to commercialize black liquid plastic collectors, and (4) incorporating improved black liquids with the identified plastic collector designs. Besides conducting indoor weathering tests of various plastic materials, two outdoor automated test facilities have been operated. One unit has been in use since February 1980 at Battelle in Columbus, Ohio, and the other unit began operation in May 1980 at Ramada Energy Systems, Inc., a collector manufacturing company near Phoenix, Arizona. Since Ramada Energy Systems has been working with extruded polycarbonate panels, Battelle has been working to date with extruded acrylic panel designs. Other potential plastics for solar collectors are being evaluated by exposure testing.

Landstrom, D.K.; Talbert, S.G.; McGinniss, V.D.

1980-09-30T23:59:59.000Z

308

Thermomechanical measurements on thermal microactuators.  

SciTech Connect (OSTI)

Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements for thermal microactuators were not available for a single microactuator design, a comprehensive suite of thermal and mechanical experimental data was taken and compiled for model validation purposes. Three thermal microactuator designs were selected and fabricated using the SUMMiT V{sup TM} process at Sandia National Laboratories. Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal microactuators are reported, including displacement, overall actuator electrical resistance, force, temperature profiles along microactuator legs in standard laboratory air pressures and reduced pressures down to 50 mTorr, resonant frequency, out-of-plane displacement, and dynamic displacement response to applied voltages.

Baker, Michael Sean; Epp, David S.; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

2009-01-01T23:59:59.000Z

309

Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating  

Science Journals Connector (OSTI)

Abstract This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100 kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 20–25% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.

Hakan Aydin; Ho-Saeng Lee; Hyeon-Ju Kim; Seung Kyoon Shin; Keunhan Park

2014-01-01T23:59:59.000Z

310

Sponsorship includes: Agriculture in the  

E-Print Network [OSTI]

Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

Nebraska-Lincoln, University of

311

Application of solar thermal energy to buildings and industry  

SciTech Connect (OSTI)

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

312

Thermal Processes  

Broader source: Energy.gov [DOE]

Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

313

Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector with Parabolic Trough Concentrator  

Science Journals Connector (OSTI)

We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply ...

L. Miao; M. Zhang; S. Tanemura; T. Tanaka; Y. P. Kang…

2012-06-01T23:59:59.000Z

314

Interactions and Implications of a Collector Well with a River in an Unconfined Aquifer with Regional Background Flow  

E-Print Network [OSTI]

; Steward, 1999; Zhan, 1999; Zhan and Cao, 2000]. These wells are often placed near or under rivers, where they collect water from both the surface and aquifer that is naturally filtered through low permeability riverbank sediments. Seines et al. [1994... various conditions [Schafer, 1996; Zhan, 1999; Steward, 1999; Zhan and Cao, 2000; Stewart and Jin, 2001]. Radial collector wells are complex fluid collection systems that induce intricate flow dynamics as a result of their pumping because...

Dugat, William D., IV

2010-01-14T23:59:59.000Z

315

A survey on control schemes for distributed solar collector fields. Part I: Modeling and basic control approaches  

Science Journals Connector (OSTI)

This article presents a survey of the different automatic control techniques that have been applied to control the outlet temperature of solar plants with distributed collectors during the last 25 years. Different aspects of the control problem involved in this kind of plants are treated, from modeling and simulation approaches to the different basic control schemes developed and successfully applied in real solar plants. A classification of the modeling and control approaches is used to explain the main features of each strategy.

E.F. Camacho; F.R. Rubio; M. Berenguel; L. Valenzuela

2007-01-01T23:59:59.000Z

316

Latitude Based Model for Tilt Angle Optimization for Solar Collectors in the Mediterranean Region  

Science Journals Connector (OSTI)

Abstract This paper inspects the different parameters that intervene in the determination of the optimal tilt angle for maximum solar energy collection. It proposes a method for calculating the optimal tilt angle based upon the values of the daily global solar radiation on a horizontal surface. A computer program using the mathematical model to calculate the solar radiation incident on an inclined surface as a function of the tilt angle is implemented. Four years data of daily global solar radiation on a horizontal surface in 35 sites in different countries of the Mediterranean region is used. The program assumes a due south orientation of the collectors and it determines the optimal tilt angle for maximum solar radiation collection for sites in the Mediterranean region. A regression analysis using the results of the computer simulation is conducted to develop a latitude based tilt angle optimization mathematical model for maximum solar radiation collection for the sites. We tested both a linear and a quadratic model (of the form ax2+bx) for representing the relationship between the annual optimal tilt angle and the site's latitude. The quadratic model is better; it provides very high prediction accuracy. 99.87% of the variation in the annual optimal tilt angle is explained by the variability in site's latitude with an average residual angle of only 0.96° for all 35 sites studied. It also gives an average percentage decrease in the annual solar radiation of only 0.016% when compared with actual optimal tilt angles.

Hassane Darhmaoui; Driss Lahjouji

2013-01-01T23:59:59.000Z

317

Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy  

SciTech Connect (OSTI)

Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

2009-03-29T23:59:59.000Z

318

Appendix F Cultural Resources, Including  

Broader source: Energy.gov (indexed) [DOE]

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

319

Funding Opportunity Announcement: Concentrating Solar Power:...  

Broader source: Energy.gov (indexed) [DOE]

Projects can address challenges in any technical system of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power...

320

Thermal Insulation for Energy Conservation  

Science Journals Connector (OSTI)

The use of thermal insulations to reduce heat flow across the building ... decades. Materials available for use as building insulation include naturally occurring fibers and particles, man ... plastics, evacuated...

Dr. David W. Yarbrough Ph.D.; PE

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

322

Phase-change thermal energy storage: Final subcontract report  

SciTech Connect (OSTI)

The research and development described in this document was conducted within the US Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100{degree}C in low-temperature troughs to over 1500{degree}C in dish and central receiver systems. 12 refs., 119 figs., 4 tabs.

Not Available

1989-11-01T23:59:59.000Z

323

Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications  

Science Journals Connector (OSTI)

Abstract Low thermal emittance is the key factor of a solar collector. For high temperature solar thermal applications, low emittance is an important parameter, because the thermal radiative losses of the absorbers increase proportionally by T4. Our primary motivation for carrying out this work has been to lower the thermal emittance of stainless steel substrate (intrinsic emittance=0.12–0.13) by coating a thin film of high infrared (IR) reflecting tungsten (W). Tungsten thin films were deposited on stainless steel substrates using a glow discharge direct current magnetron sputtering system. Emittance as low as 0.03 was obtained by varying the thickness of W coating on stainless steel substrate. The influences of structural, morphological and electrical properties of the W coating on its emittance values are studied. The effect of substrate roughness on the emittance of W coating is also examined. Thermal stability of the W coatings is studied in both vacuum and air. In order to demonstrate the effect of W interlayer, solar selective coating of AlTiN/AlTiON/AlTiO tandem absorber was deposited on W coated stainless steel substrates, which exhibited absorptance of 0.955 and emittance of 0.08 with a thermal stability up to 600 °C in vacuum.

K.P. Sibin; Siju John; Harish C. Barshilia

2015-01-01T23:59:59.000Z

324

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

325

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

326

Ceramic thermal barrier coating for rapid thermal cycling applications  

DOE Patents [OSTI]

A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

Scharman, Alan J. (Hebron, CT); Yonushonis, Thomas M. (Columbus, IN)

1994-01-01T23:59:59.000Z

327

Thermal conductivity of the electrode gap of a therminonic converter, filled with inert gases, at low pressures  

SciTech Connect (OSTI)

This paper presents experimental data on the thermal conductivity of the electrode gap of a thermionic converter filled with He, Ar, and Xe in the pessure range 40-550 Pa. The need to account for the coefficients of thermal accomodation of the emitter-inert-gas-collector system in this range is shown. The accomodation coefficients for different temperature regimes are measured and expressions are obtained to calculate the heat flux transported by the inert gases in the electrode gap. A diagram of the experimental thermionic converter is shown.

Modin, V.A.; Nikolaev, Y.V.

1986-05-01T23:59:59.000Z

328

Project Profile: National Solar Thermal Test Facility  

Broader source: Energy.gov [DOE]

The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

329

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

6 Solar Thermal Collector Shipments by Type, Price, and Trade 6 Solar Thermal Collector Shipments by Type, Price, and Trade Total Shipments, 1974-2009 Trade, 1978-2009 Price of Total Shipments, 1986-2009 Number of U.S. Manufacturers by Type of Collector, 1974-2009 Average Annual Shipments per Manufacturer, 1974-2009 292 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 2 Collectors that generally operate in the temperature range of 140 degrees Fahrenheit to 180 degrees Fahrenheit but can also operate at temperatures as low as 110 degrees Fahrenheit. Special collectors-evacuated tube collectors or concentrating (focusing) collectors-are included in the medium-temperature category. 3 Collectors that generally operate at temperatures below 110 degrees Fahrenheit.

330

Thermal wake/vessel detection technique  

DOE Patents [OSTI]

A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

Roskovensky, John K. (Albuquerque, NM); Nandy, Prabal (Albuquerque, NM); Post, Brian N (Albuquerque, NM)

2012-01-10T23:59:59.000Z

331

Thermalization through parton transport  

E-Print Network [OSTI]

A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate alpha_s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.

Bin Zhang

2009-09-03T23:59:59.000Z

332

Green Energy Ohio - GEO Solar Thermal Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ohio - GEO Solar Thermal Rebate Program Ohio - GEO Solar Thermal Rebate Program Green Energy Ohio - GEO Solar Thermal Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 04/01/2009 State Ohio Program Type Non-Profit Rebate Program Provider Green Energy Ohio With funding from The Sierra Club, Green Energy Ohio (GEO) is offering rebates on residential properties in Ohio for solar water heating systems purchased after April 1, 2009. The rebates are based on the projected energy output from the solar collectors and are calculated at $30 per kBtu/day (based on SRCC rating for "Clear Day/C Interval"). The maximum amount is $2,400 per applicant. There are two parts to the application. PART I of the application collects

333

Bad bag detection systems installed on the COHPAC (Compact Hybrid Particulate Collector) at Alabama Power, E.C. Gaston Unit No.3  

SciTech Connect (OSTI)

In December of 1996, Alabama Power Company, a subsidiary of the Southern Company, began operating a baghouse in conjunction with an existing hot-side precipitator on the cold side of the air heaters. The concept combining an electrostatic precipitator and a baghouse is termed a COHPAC (Compact Hybrid Particulate Collector), an EPRI technology. The baghouse is installed on Unit No.3 which is a 280 Mwe pulverized coal fired unit. Unit No.3 shares a common stack with Unit No.4, so the baghouse treats 50% of the total stack flow. The installation has resulted in the ability of both boilers to operate without costly boiler load reductions, which were quite common prior to the installation of the COHPAC system because of stack capacity. To date, after nearly three years of operation the COHPAC system has meet and exceeded all performance expectations. The installation has consistently provided low outlet emissions (<0.01 lb/Mbtu) and low opacity levels. To date, there have not been any known bag failures and maintenance has been minimal. Testing has shown bag life to be finite but no data has been compiled on this type system showing the operating window that would ensure optimal performance. Mullen Burst tests have shown degradation in bag strength, which indicates that this degradation at some point could result in premature failure of the bags. The COHPAC system installed at E.G., Gaston includes over 2,000 bags corresponding to roughly 57,500 ft{sup 2} of collecting surface area. Current methods of finding damaged bags are quite laborious and time intensive. A system to monitor performance and locating damaged bags will be presented. Associated performance and overall historical operating data on Unit No.3 will also be presented.

Berry, M.S.; Harrison, W.; Corina, B.; Wilson, R.; Harrington, J.

1999-07-01T23:59:59.000Z

334

Performance contracting for parabolic trough solar thermal systems  

SciTech Connect (OSTI)

Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

Brown, H.; Hewett, R.; Walker, A. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Golden, CO (United States)

1997-12-31T23:59:59.000Z

335

Thermally-Activated Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermally-Activated Technologies Thermally-Activated Technologies Thermally-Activated Technologies November 1, 2013 - 11:40am Addthis Thermally-activated technologies include a diverse portfolio of equipment that transforms heat for useful purposes such as heating, cooling, humidity control, thermal storage, and shaft/electrical power. Thermally-activated technologies are essential for combined heat and power (CHP)-integrated systems that maximize energy savings and economic return. Thermally-activated technologies systems also enable customers to reduce seasonal peak electric demand and future electric and gas grids to operate with more level loads. Absorption Chillers Absorption cycles have been used for more than 150 years. Early equipment used a mixture of ammonia and water as an absorption working pair, with

336

Application and Continued Development of Thin Faraday Collectors as a Lost Ion Diagnostic for Tokamak Fusion Plasmas  

SciTech Connect (OSTI)

This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

F. Ed Cecil

2011-06-30T23:59:59.000Z

337

Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines  

Science Journals Connector (OSTI)

A comprehensive theoretical model is proposed for the performance evaluation of a solar chimney power plant (SCPP), and has been verified by the experimental data of the Spanish prototype. This model takes account of the effects of flow and heat losses, and the temperature lapse rates inside and outside the chimney. There is a maximum power output for a certain SCPP under a given solar radiation condition, due to flow and heat losses and the installation of the turbines. In addition, the design flow rate of the turbine in the SCPP system is found beneficial for power output when it is lower than that at the maximum power point. Furthermore, a limitation on the maximum collector radius exists for the maximum attainable power of the SCPP; whereas, no such limitation exists for chimney height in terms of contemporary construction technology.

Jing-yin Li; Peng-hua Guo; Yuan Wang

2012-01-01T23:59:59.000Z

338

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

339

Thermal Barrier Coatings for Gas-Turbine Engine Applications  

Science Journals Connector (OSTI)

...but in some industrial gas-turbine engines applications it can reach...shorter thermal-cycling lives than EB-PVD TBCs...extremely well in industrial gas-turbine engines, including “bucket...thermal” compressive residual stresses in...

Nitin P. Padture; Maurice Gell; Eric H. Jordan

2002-04-12T23:59:59.000Z

340

Advances in mesoscale thermal management technologies for microelectronics  

Science Journals Connector (OSTI)

This paper presents recent advances in a number of novel, high-performance cooling techniques for emerging electronics applications. Critical enabling thermal management technologies covered include microchannel transport and micropumps, jet impingement, ... Keywords: Mesoscale, Microelctronics, Thermal management

Suresh V. Garimella

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Why Granular Media Are, After All, Thermal  

E-Print Network [OSTI]

Granular media are considered "athermal", because the grains are too large to display Brownian type thermal fluctuations. Yet being macroscopic, every grain undergoes thermal expansion, possesses a temperature that may be measured with a thermometer, and consists of many, many internal degrees of freedom that in their sum do affect granular dynamics. Therefore, including them in a comprehensive approach to account for granular behavior entails crucial advantages. The pros and cons of thermal versus athermal descriptions are considered.

Yimin Jiang; Mario Liu

2014-07-27T23:59:59.000Z

342

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network [OSTI]

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

343

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

344

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

345

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

346

Thermal neutron shield and method of manufacture  

DOE Patents [OSTI]

A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

Metzger, Bert Clayton; Brindza, Paul Daniel

2014-03-04T23:59:59.000Z

347

Liquid cooled fiber thermal radiation receiver  

DOE Patents [OSTI]

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, B.L.

1985-03-29T23:59:59.000Z

348

Thermal cycler  

DOE Patents [OSTI]

A thermalcycler includes a first thermalcycler body section having a first face and a second thermalcycler body section having a second face. A cavity is formed by the first face and the second face. A thermalcycling unit is positioned in the cavity. A heater trace unit is connected to a support section, to the first thermalcycler body section, to the second thermalcycler body section, and to the thermalcycling unit. The first thermalcycler body section and the second thermalcycler body section are positioned together against the support section to enclose the thermalcycling unit and the heater trace unit.

Benett, William J.; Andreski, John T.; Dzenitis, John M.; Makarewicz, Anthony J.; Hadley, Dean R.; Pannu, Satinderpall S.

2014-07-15T23:59:59.000Z

349

Nanoscale thermal transport. II. 2003–2012  

SciTech Connect (OSTI)

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

350

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

351

Thermal Simulation of Advanced Powertrain Systems  

Broader source: Energy.gov [DOE]

Under this project, the Volvo complete vehicle model was modified to include engine and exhaust system thermal outputs and cooling system to enable WHR simulations from a system perspective.

352

Technical and Economical Performance of Parabolic Trough Collector Power Plant under Algerian Climate  

Science Journals Connector (OSTI)

Parabolic trough solar technology has been proven at nine commercial Solar Electric Generating System (SEGS) power plants that are operating in the California Mojave desert. Simulation using different models when planning this kind of projects and choose the best site for this technology minimizes the risks of these projects. For this purpose, a detailed performance model of the 30 MW SEGS VI parabolic trough power plant was created in the TRNSYS simulation environment using the Solar Thermal Electric Component model library. Both solar and power cycle performance were modeled, but natural gas-fired hybrid operation was not. Good agreement between model predictions and plant measurements was found, with errors usually less than 10%. Also, an economical study has been established to determine the best site, based on the cost of electricity generation. The result shows that Bechar's site is the best site for this technology because of its lowest levelzed electricity cost and its high irradiance level. While the model could be improved, it demonstrates the capability to perform detailed analysis for this technology.

Abdelkader Zaaraoui; Mohamed Lamine Yousfi; Noureddine Said

2012-01-01T23:59:59.000Z

353

Demonstration of a 50% Thermal Efficient Diesel Engine- Including HTCD Program Overview  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

354

Thermal instability in molecular clouds, including dust particles, Hall effect and ambipolar diffusion  

Science Journals Connector (OSTI)

......not significantly affect the diagram. By increasing to higher values, the diagram tends to isentropic mode. Therefore...and Hall diffusion to ideal MHD equations. We have also considered...instability. First, we considered MHD equations for partially ionized......

A. R. Khesali; S. M. Ghoreyshi; M. Nejad-Asghar

2012-03-01T23:59:59.000Z

355

Optimal Energy Management of Automotive Battery Systems Including Thermal Dynamics and Aging  

Science Journals Connector (OSTI)

Hybrid-electric vehicles (HEV) has been the subject of intensive research as a field of application of optimal control in the past decade. In particular, researchers have proven that energy management (or supe...

Antonio Sciarretta; Domenico di Domenico…

2014-01-01T23:59:59.000Z

356

Active charge/passive discharge solar heating systems: thermal analysis and performance comparisons  

SciTech Connect (OSTI)

This study analyzes the performance of active charge/passive discharge solar space heating systems. This type of system combines liquid-cooled solar collector panels with a massive integral storage component that passively heats the building interior by radiation and free convection. The TRNSYS simulation program is used to evaluate system performance and to provide input for the development of a simplified analysis method. This method, which provides monthly calculations of delivered solar energy, is based on Klein's Phi-bar procedure and data from hourly TRNSYS simulations. The method can be applied to systems using a floor slab, a structural wall, or a water tank as the storage component. Important design parameters include collector area and orientation, building heat loss, collector and heat-exchanger efficiencies, storage capacity, and storage-to-room coupling. Performance simulation results are used for comparisons with active and passive solar designs. Economic comparisons are based on these data and additional system features, such as cooling augmentation and integration of heating components with structural members.

Swisher, J.

1981-06-01T23:59:59.000Z

357

Cornell University Thermal Comfort Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Comfort Thermal Comfort Thermal comfort in the CUSD home is a top priority for our team. Accordingly, we designed a redundant HVAC system that would carefully manage the comfort of our decathletes and guests throughout the competition and the life of the house. The CUSD home's HVAC system was optimized for Washington, DC, with the cold Ithaca climate in mind. Our design tools included a schematic energy-modeling interface called TREAT, which was built off of the SuNREL platform. TREAT was used to passively condition the space. Our schematic energy modeling helped us properly size window areas, overhangs, and building mass distribution. We used a computation fluid dynamics (CFD) package called AirPak, to refine our design. The home was modeled in both

358

Diffractive laser beam homogenizer including a photo-active material and method of fabricating the same  

SciTech Connect (OSTI)

A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.

Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C

2014-05-20T23:59:59.000Z

359

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

360

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

362

Efficient Thermal Energy Distribution in Commercial Final Report  

E-Print Network [OSTI]

energy distribution. These include, but not limited to, 1) reducing thermal losses induced by air leakage through system components (i.e., duct, equipment), 2) decreasing thermal losses induced by heat conductionLBNL-41365 Efficient Thermal Energy Distribution in Commercial Buildings Final Report to California

363

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Date 1978 - 1985 Usefulness useful DOE-funding Unknown Exploration Basis Thermal gradient drilling also continued during this period, consisting of several holes including: The...

364

California PRC 25120, Definition for Thermal Powerplant | Open...  

Open Energy Info (EERE)

for the purposes of this division. 'Thermal powerplant' does not include any wind, hydroelectric, or solar photovoltaic electrical generating facility." Effective September 19,...

365

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

366

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

367

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stricker, Stefan

2014-01-01T23:59:59.000Z

368

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

369

The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation.  

E-Print Network [OSTI]

??Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation… (more)

Suardin, Jaffee Arizon

2009-01-01T23:59:59.000Z

370

Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector  

Science Journals Connector (OSTI)

Abstract In the present study, a V-cavity absorber with rectangular fins that can be used in the linear parabolic trough collector (PTC) system was proposed and investigated both theoretically and experimentally. The optical performance of the absorber was studied by means of Monte-Carlo ray-tracing (MCRT) method. An energy balance model and a more detailed three-dimensional numerical model were developed to analyze the flow and heat transfer characteristics. Moreover, an experimental setup was built to validate the theoretical analysis. A reasonable agreement between the theoretical and experimental results was achieved, which proves the feasibility and reliability of the models. The results show that the sunlight could be reflected repeatedly by the triangle shape and nearly no sunlight escapes. The absorber with rectangular fins has a better heat transfer performance with higher outlet temperature of heat transfer fluid (HTF), lower temperature of heating surface and lower heat loss than those of absorber without fins. The effects of heat flux distribution, mass flow rate and direct normal irradiance on the heat transfer performance were further discussed. In addition, the variations of the heat transfer coefficient along z axial direction with different mass flow rates were also calculated based on the numerical results.

X. Xiao; P. Zhang; D.D. Shao; M. Li

2014-01-01T23:59:59.000Z

371

Scattering Solar Thermal Concentrators (Fact Sheet)  

SciTech Connect (OSTI)

Pennsylvania State University is one of the 2012 SunShot CSP R&D awardee for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

372

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network [OSTI]

automotive industry optics biomedical technology environmental technology Plasma Technology Quote from: Pla-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer

Greifswald, Ernst-Moritz-Arndt-Universität

373

Chapter One - Design and Application of Thermal Insulation  

Science Journals Connector (OSTI)

Abstract This chapter covers the minimum requirements for thermal insulation of pipework, vessels, tanks, and other equipment. It is aimed at thermal insulation usage in the oil, gas, petrochemical, and other similar industries mainly for refineries, chemical, petrochemical, and natural gas processing plants. The chapter explains the fundamental requirements for insulation systems, including insulation materials of sufficient quality and thicknesses, weatherproofing, and finishing. Also, there is discussion on the design issues related to thermal insulation, including selection of the thermal insulation system, corrosion under thermal insulation, and the general applications of insulation. In addition, the characteristics and selection of insulation and accessory materials are presented.

Alireza Bahadori

2014-01-01T23:59:59.000Z

374

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

375

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

photovoltaics, solar thermal collectors, and energy storagecooling, solar electric and thermal equipment, and energysolar thermal collectors coupled to absorption chillers are an economic approach to energy

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

376

Thermal contact resistance  

E-Print Network [OSTI]

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

377

Solar Thermal Processes  

Science Journals Connector (OSTI)

The use of solar energy for desalination purposes was one of ... The process is based on the use of solar thermal energy to evaporate water, thus separating pure ... brine. In this chapter an overview of solar thermal

M.T. Chaibi; Ali M. El-Nashar

2009-01-01T23:59:59.000Z

378

Thermal Neutron Scattering  

Science Journals Connector (OSTI)

... of its title. It is not for the nuclear physicist, nor even for the neutron physicist, but for the student of solids and liquids. "Thermal ... physicist, but for the student of solids and liquids. "Thermal neutron ...

G. E. BACON

1968-11-09T23:59:59.000Z

379

Insulation products promote thermal efficiency  

SciTech Connect (OSTI)

The judicious use of thermal insulation products in non-residential buildings can provide a number of advantages including increased energy efficiency, lower first costs (by avoiding overside HVAC systems), improved fire safety and better acoustics. Thermal insulation products are those products which retard the flow of heat energy. Materials include glass, plastics, and organic materials such as wood fibers, vermiculite and perlite. Forms range from the familiar batts and blankets of glass fibers to foamed plastic, rigid boards, losse fill and systems combining two or more products, such as polystyrene boards covered with insulating plaster. The R values of selected insulation materials with a cost/sq. ft. of each material at R 10 are given. Costs cover both the material and installation and may vary depending on local conditions.

Chalmers, R.

1985-04-01T23:59:59.000Z

380

Thermal neutron detection system  

DOE Patents [OSTI]

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal Performance Benchmarking (Presentation)  

SciTech Connect (OSTI)

This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

Moreno, G.

2014-11-01T23:59:59.000Z

382

Multiwavelength Thermal Emission  

E-Print Network [OSTI]

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

383

Intentionally Including - Engaging Minorities in Physics Careers |  

Broader source: Energy.gov (indexed) [DOE]

Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of Physics Resources. Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the

384

Scramjet including integrated inlet and combustor  

SciTech Connect (OSTI)

This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

Kutschenreuter, P.H. Jr.; Blanton, J.C.

1992-02-04T23:59:59.000Z

385

Transmission line including support means with barriers  

DOE Patents [OSTI]

A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

386

A boron nitride nanotube peapod thermal rectifier  

SciTech Connect (OSTI)

The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

2014-06-28T23:59:59.000Z

387

Low thermal stress ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Glezer, Boris (Del Mar, CA); Bagheri, Hamid (San Diego, CA); Fierstein, Aaron R. (San Diego, CA)

1996-01-01T23:59:59.000Z

388

Energy Consumption of Personal Computing Including Portable  

E-Print Network [OSTI]

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

389

EE Regional Technology Roadmap Includes comparison  

E-Print Network [OSTI]

EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Roadmap with a strong linkage to utility programs Scan for Technologies 1. How does it address the NW Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

390

Video Topics Include Freshman Inquiry Course  

E-Print Network [OSTI]

Video Topics Include Freshman Inquiry Course Open Advisement/ Group Advisement Dinning Campus: End of Spring 2012, Commencement May 18: Grades available on MAX after 4:30pm AdvisementYouTubeVideoSeries I N S I D E T H I S I S S U E : YouTube Video Series 1 Mark Your Calendar 1 Exploring Major Tips 2

Hardy, Christopher R.

391

Including Ocean Model Uncertainties in Climate Predictions  

E-Print Network [OSTI]

Including Ocean Model Uncertainties in Climate Predictions Chris Brierley, Alan Thorpe, Mat Collins's to perform the integrations Currently uses a `slab' ocean #12;An Ocean Model Required to accurately model transient behaviour Will have its own uncertainties Requires even more computing power Create new models

Jones, Peter JS

392

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

and thermal equipment, and energy storage - collectivelysolar thermal collectors, and energy storage devices can be

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

393

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

photovoltaics, solar thermal collectors, and energy storagesolar electric and thermal equipment, and energy storage -

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

394

Analysis of Thermal Energy Collection from Precast Concrete Roof Assemblies.  

E-Print Network [OSTI]

??The development of precast concrete housing systems provides an opportunity to easily and inexpensively incorporate solar energy collection by casting collector tubes into the roof… (more)

Abbott, Ashley Burnett

2004-01-01T23:59:59.000Z

395

Wind Issues in Solar Thermal Performance Ratings: Preprint  

SciTech Connect (OSTI)

We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

Burch, J.; Casey, R.

2009-04-01T23:59:59.000Z

396

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

397

Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop  

SciTech Connect (OSTI)

Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

398

Development of a Technology Roadmap for Solar Thermal Cooling in Austria  

Science Journals Connector (OSTI)

Aim of the project was the development of a technology roadmap for solar thermal cooling in Austria involving the relevant market players. The main contents of the technology roadmap are the compilation of the initial position in terms of existing solar thermal cooling plants as well as relevant R&D results, identification of market potentials, technology development and the necessary measures for it. The technology developments are described in short term, medium term, and long term objectives as well as the connected market relevance for Austria and the economic development of this technology. Scenarios for a useful interaction with other sustainable thermal cooling technologies like cooling with district heating are analyzed to clarify the future position of solar thermal cooling in the Austrian energy supply. The market player of this technology reach from component manufactures (solar thermal collector, ab-/-adsorption chillers, ventilation systems, storages, control, etc.), business enterprises (hotels, breweries, laundries, supermarkets, etc.), building developers and consultancy engineers to research institutions, energy agencies and political decision makers. All of these groups were involved in the development of the technology roadmap by expert workshops and interviews.

Anita Preisler; Tim Selke; Hilbert Focke; Nicole Hartl; Georg Geissegger; Erich Podesser; Alexander Thür

2012-01-01T23:59:59.000Z

399

Optimization of non-evacuated receiver of solar collector having non-uniform temperature distribution for minimum heat loss  

Science Journals Connector (OSTI)

Abstract The present paper contains a numerical study of heat loss from a non-evacuated receiver typically used in parabolic trough collectors. To calculate temperature distributions on the receiver pipe (TP), an energy balance has been established over the entire cross-section of the receiver pipe at different fluid temperatures. In the energy balance, the flux distribution has been estimated by assuming normal incidence of solar insolation considering the sun as a point source. The temperature distributions of the receiver pipe are found, as per expectation, to be non-uniform. These temperature distributions have been fitted by sinusoidal and step functions and are used as temperature boundary conditions in a CFD study to optimize the size of the receiver. The mechanisms of heat loss that have been considered in this study are heat loss from (1) pipe to glass tube by conduction, convection and radiation and (2) glass tube to surrounding by convection (natural and forced) and radiation. The values of diameters of receiver pipe taken in this study are 33 mm, 48 mm, 60 mm, 70 mm, 89 mm and 102 mm. The radius ratio (RR) varied from 1.2 to 3 by changing diameter of glass tube. It is observed that, the critical value of RR for minimum heat loss is dependent upon receiver pipe diameter (DPo). The critical values of RR for pipe diameter (DPo) 33 mm, 48 mm, 60 mm, 70 mm, 89 mm and 102 mm are 1.5, 1.4, 1.375, 1.35, 1.3 and 1.25 respectively. The value of critical RR is lower for higher values of pipe diameter. The value of critical RR for a particular diameter of receiver is independent of receiver temperature and external wind velocity. Comparison of heat losses in non-uniform and uniform temperature cases shows that the values of heat losses in the two cases differ only by 1.5%.

Ramchandra G. Patil; Sudhir V. Panse; Jyeshtharaj B. Joshi

2014-01-01T23:59:59.000Z

400

Technical evaluation of a solar heating system having conventional hydronic solar collectors and a radiant panel slab. Final report  

SciTech Connect (OSTI)

A simple innovative solar heating design (Solar Option One) using conventional hydronic solar collectors and a radiant panel slab was constructed. An objective of hybrid solar design is to combine the relative advantages of active and passive design approaches while minimizing their respective disadvantages. A test house using the Solar Option One heating system was experimentally monitored to determine its energy based performance during the 1982-83 heating season. The test residence is located in Lyndonville, Vermont, an area which has a characteristically cold and cloudy climate. The two story residence has a floor area of about 1400 square feet and is constructed on a 720 square foot 5.5 inch thick floor slab. A 24 inch packed gravel bed is located beneath the slab and the slab-gravel bed is insulated by two inches of polystyrene insulation. The test building is of frame construction and uses insulation levels which have become commonplace throughout the country. The structure would not fall into the superinsulated category but was tightly constructed so as to have a low infiltration level. The building is sun-tempered in that windows were concentrated somewhat on the South side and all but avoided on the North. A solar greenhouse on the South side of the building was closed off from the structure permanently throughout the testing so as to better observe the solar heating invention without confounding variables. The monitoring equipment generated an internal gain of about 17,000 BTUs per day, roughly the equivalent of occupancy by two persons. A full description of the experimental testing program is given. System efficiency and performance are reported.

Starr, R.J.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Buildings Included on EMS Reports"  

Broader source: Energy.gov (indexed) [DOE]

Office of Legacy Management Office of Legacy Management Buildings Included on EMS Reports" "Site","Property Name","Property ID","GSF","Incl. in Water Baseline (CY2007)","Water Baseline (sq. ft.)","Water CY2008 (sq. ft.)","Water CY2009 (sq. ft.)","Water Notes","Incl. in Energy Baseline (CY2003)","Energy Baseline (sq. ft.)","CY2008 Energy (sq. ft.)","CY2009 Energy (sq. ft.)","Energy Notes","Included as Existing Building","CY2008 Existing Building (sq. ft.)","Reason for Building Exclusion" "Column Totals",,"Totals",115139,,10579,10579,22512,,,3183365,26374,115374,,,99476 "Durango, CO, Disposal/Processing Site","STORAGE SHED","DUD-BLDG-STORSHED",100,"no",,,,,"no",,,,"OSF","no",,"Less than 5,000 GSF"

402

Non-thermal radio astronomy  

Science Journals Connector (OSTI)

Abstract This presentation starts with Karl Jansky’s discovery of cosmic radio emission in 1933 and notes the striking similarities to Hess’s discovery of cosmic-rays in 1912. At first it was assumed that this radio emission was thermal but in 1939 Grote Reber discovered that it was stronger at longer wavelengths, requiring a non-thermal emission process. These discoveries had a revolutionary impact on astronomy and radio astronomy was born. The interpretation of this non-thermal radiation as synchrotron emission from high energy particles in the interstellar medium did not occur until the late 1940s but then it provided the link between radio astronomy and cosmic-ray research. Ginzburg, in particular, saw that cosmic-ray astrophysics was now possible using radio waves to trace sources of cosmic-rays. We discuss the discovery of extragalactic active galactic nuclei leading to the discovery of quasars and the first evidence for black holes in the nuclei of galaxies. We summarise the present status and future of some of the main radio telescopes used to image the non-thermal emission from external galaxies. Finally, we include a short description of the use of radio signals for the direct detection of cosmic-rays and UHE neutrinos.

R.D. Ekers

2014-01-01T23:59:59.000Z

403

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

404

Completion strategy includes clay and precipitate control  

SciTech Connect (OSTI)

This article describes the conditions which are necessary for a successful oil well completion in the Mississippi and Cherokee zones of South Central Kansas. Topics considered include paraffin precipitation, clay swelling and migration, and iron precipitation. Clays in these zones are sensitive to water-base treating fluids and tend to swell and migrate to the well bore, thereby causing permeability damage. The presence of iron in the Mississippi and Cherokee formations has been indicated by cuttings, core samples, and connate water samples.

Sandy, T.; Gardner, G.R.

1985-05-06T23:59:59.000Z

405

Jet-calculus approach including coherence effects  

Science Journals Connector (OSTI)

We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ‘‘incoherent’’ jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics.

L. M. Jones; R. Migneron; K. S. S. Narayanan

1987-01-01T23:59:59.000Z

406

Thermal sensor with an improved coating  

DOE Patents [OSTI]

The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

LaDelfe, Peter C. (Los Alamos, NM); Stotlar, Suzanne C. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

407

Thermal comfort during surgery  

E-Print Network [OSTI]

THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Industrial... Engineering THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Approved as to style and content by: airman of C it ee Head of Department Member Me er December 1978 ABSTRACT Thermal Comfort During Surgery (December 1978) David Harold...

Manning, David Harold

1978-01-01T23:59:59.000Z

408

Optical panel system including stackable waveguides  

DOE Patents [OSTI]

An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

2007-11-20T23:59:59.000Z

409

Critical point anomalies include expansion shock waves  

SciTech Connect (OSTI)

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

410

Complex shell model representation including antibound states  

Science Journals Connector (OSTI)

A generalization of the complex shell model formalism is presented that includes antibound states in the basis. These states, together with bound states, Gamow states, and the continuum background, represented by properly chosen scattering waves, form a representation in which all states are treated on the same footing. Two-particle states are evaluated within this formalism, and observable two-particle resonances are defined. The formalism is illustrated in the well-known case of Li11 in its bound ground state and in Ca70(g.s.), which is also bound. Both cases are found to have a halo structure. These halo structures are described within the generalized complex shell model. We investigated the formation of two-particle resonances in these nuclei, but no evidence of such resonances was found.

R. Id Betan; R. J. Liotta; N. Sandulescu; T. Vertse; R. Wyss

2005-11-30T23:59:59.000Z

411

Permanent magnet thermal energy system  

SciTech Connect (OSTI)

An improved rotary magnet thermal generator system of the type having an array of magnets in alternating disposition coaxially disposed about and parallel with the shaft of a motor driving the rotary array and having a copper heat absorber and a ferro-magnetic plate fixed on a face of the heat absorber, includes as efficiency improver a plurality of heat sink plates extending beyond the ferro-magnet plate into a plenum through a respective plurality of close-fitting apertures. In a further embodimetn the heat sink plates are in thermal contact with sinusoidally convoluted tubing that both increases surface area and provides for optional heating of gases and/or fluids at the same time.

Gerard, F.

1985-04-16T23:59:59.000Z

412

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

413

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

414

A mathematical model for the performance of the compressed-film, floating-deck, flat-plate solar-energy collector  

E-Print Network [OSTI]

A MATHEMATICAL MODEL FOR THE PERFORMANCE OP THE COMFR. . 'SSED-FILM PLOATING-DECK, PLAT-PLATE SOLAR-ENERGY COLI CTOR A Thesis HO-KAI CHAN Submitted to the Graduate Co1lege of Texas A&M University in partial fulfillment of 0he requirement... for the degree of FiASTER OP SCIENCE August 197~ MaJor SubJect: Chemical Engineering A MATHEMATICAL MODEL FOR THE PERFORMANCE OF THE COMPRESSED-FILM, FLOATING-DECK~ PLAT-PLATE SOLAR-ENERGY COLLECTOR A Thesis by HO-KAI CHAN Approved as to style...

Chan, Ho-Kai

2012-06-07T23:59:59.000Z

415

Oxygen-Release-Related Thermal Stability and Decomposition Pathways of LixNi0.5Mn1.5O4 Cathode Materials  

Science Journals Connector (OSTI)

(21, 22) Therefore, LixMn2O4 has been regarded as a thermally safer cathode material than layered materials, such as LixCoO2, LixNi0.8Co0.15Al0.05O2, and LixNi1/3Co1/3Mn1/3O2. ... The d- and o-LNMO cathodes were fabricated by slurry-casting 80% active material, 10% of carbon black (Chevron), and 10% of PVDF (Kureha) onto an Al foil current collector. ...

Enyuan Hu; Seong-Min Bak; Jue Liu; Xiqian Yu; Yongning Zhou; Steven N. Ehrlich; Xiao-Qing Yang; Kyung-Wan Nam

2013-12-10T23:59:59.000Z

416

Microelectromechanical (MEM) thermal actuator  

DOE Patents [OSTI]

Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

Garcia, Ernest J. (Albuquerque, NM); Fulcher, Clay W. G. (Sandia Park, NM)

2012-07-31T23:59:59.000Z

417

NANO REVIEW Open Access Thermal conductivity and thermal boundary  

E-Print Network [OSTI]

NANO REVIEW Open Access Thermal conductivity and thermal boundary resistance of nanostructures and the thermal transport prop- erties is a key point to design materials with preferred thermal properties with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity

Boyer, Edmond

418

Viscous sludge sample collector  

DOE Patents [OSTI]

A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

Beitel, George A [Richland, WA

1983-01-01T23:59:59.000Z

419

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm{sup 2} that is uniform over a 15-cm diameter with a total beam power of over 5 MW{sub t}. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m {times} 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm{sup 2} over and delivers a 6-mm diameter and total power of 16 kW{sub t}. A second furnace produces flux levels up to 1000 W/cm{sup 2} over a 4 cm diameter and total power of 60 kW{sub t}. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm{sup 2} over a 2.5 cm diameter and total power of 75 kW{sub t}. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. [Sandia National Labs., Albuquerque, NM (United States); Ghanbari, C.M. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

420

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm[sup 2] that is uniform over a 15-cm diameter with a total beam power of over 5 MW[sub t]. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m [times] 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm[sup 2] over and delivers a 6-mm diameter and total power of 16 kW[sub t]. A second furnace produces flux levels up to 1000 W/cm[sup 2] over a 4 cm diameter and total power of 60 kW[sub t]. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm[sup 2] over a 2.5 cm diameter and total power of 75 kW[sub t]. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. (Sandia National Labs., Albuquerque, NM (United States)); Ghanbari, C.M. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

422

Mechanical Engineering & Thermal Group  

E-Print Network [OSTI]

Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

Mojzsis, Stephen J.

423

SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE  

SciTech Connect (OSTI)

The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to stochastic hydrologic properties and flow processes.

C. Tsang

2004-09-22T23:59:59.000Z

424

FUTURE DIRECTIONS FOR THERMAL DISTRIBUTION STANDARDS  

SciTech Connect (OSTI)

This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

425

Thermal response of a series- and parallel-connected solar energy storage to multi-day charge sequences  

SciTech Connect (OSTI)

The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. (author)

Cruickshank, Cynthia A.; Harrison, Stephen J. [Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario (Canada)

2011-01-15T23:59:59.000Z

426

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

427

Tunable thermal link  

DOE Patents [OSTI]

Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

2014-07-15T23:59:59.000Z

428

Thermal Conductivity in Nanocrystalline Ceria Thin Films  

SciTech Connect (OSTI)

The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

2014-02-01T23:59:59.000Z

429

Neural network modelling of thermal stratification in a solar DHW storage  

SciTech Connect (OSTI)

In this study an artificial neural network (ANN) model is introduced for modelling the layer temperatures in a storage tank of a solar thermal system. The model is based on the measured data of a domestic hot water system. The temperatures distribution in the storage tank divided in 8 equal parts in vertical direction were calculated every 5 min using the average 5 min data of solar radiation, ambient temperature, mass flow rate of collector loop, load and the temperature of the layers in previous time steps. The introduced ANN model consists of two parts describing the load periods and the periods between the loads. The identified model gives acceptable results inside the training interval as the average deviation was 0.22 C during the training and 0.24 C during the validation. (author)

Geczy-Vig, P.; Farkas, I. [Department of Physics and Process Control, Szent Istvan University, Pater K. u. 1., H-2103 Goedoello (Hungary)

2010-05-15T23:59:59.000Z

430

Thermal well-test method  

DOE Patents [OSTI]

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

431

Advanced Devices for Cryogenic Thermal Management  

Science Journals Connector (OSTI)

This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space?based applications of interest to NASA DoD and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE?CTSW) constructed with high purity aluminum end?pieces and an Ultem support rod for the 6 K Mid?Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST); (b) a quad?redundant DTE?CTSW assembly for the 35 K science instruments (NIRCam NIRSpec and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM); (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO); and (d) three additional devices/subsystems developed during the AFRL?sponsored CRYOTOOL program which include a dual DTE?CTSW/dual cryocooler test bed a miniaturized neon cryogenic loop heat pipe (mini?CLHP) and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above this paper describes key aspects of the development efforts including concept definition design fabrication and testing. For the latter three this paper provides brief overview descriptions as key details are provided in a related paper.

D. Bugby; C. Stouffer; J. Garzon; M. Beres; A. Gilchrist

2006-01-01T23:59:59.000Z

432

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

433

Tuning thermal mismatch between turbine rotor parts with a thermal medium  

DOE Patents [OSTI]

In a turbine rotor, an aft shaft wheel and the final-stage wheel of the rotor are coupled together, including by a rabbeted joint. During shutdown and startup of the turbine, a thermal mismatch between the aft shaft wheel and final-stage wheel is avoided by respectively heating and cooling the aft shaft wheel to maintain the thermal mismatch within acceptable limits, thereby avoiding opening of the rabbeted joint and the potential for unbalancing the rotor and rotor vibration. The thermal medium may be supplied by piping in the aft bearing cavity into the cavity between the forward closure plate and the aft shaft wheel.

Schmidt, Mark Christopher (Niskayuna, NY)

2001-01-01T23:59:59.000Z

434

A multi-scale iterative approach for finite element modeling of thermal contact resistance  

E-Print Network [OSTI]

Surface topography has long been considered a key factor in the performance of many contact applications including thermal contact resistance. However, essentially all analytical and numerical models of thermal contact ...

Thompson, Mary Kathryn, 1980-

2007-01-01T23:59:59.000Z

435

Theory of delayed thermal fluorescence  

Science Journals Connector (OSTI)

A theory of nonradiative thermal activation involved in delayed thermal fluorescence has been developed from the viewpoint of the breakdown of the Born-Oppenheimer adiabatic approximation.

S. H. Lin

1971-01-01T23:59:59.000Z

436

Thermal insulations using vacuum panels  

DOE Patents [OSTI]

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

437

Thermally driven circulation  

E-Print Network [OSTI]

Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

Nelken, Haim

1987-01-01T23:59:59.000Z

438

Manipulation of Thermal Phonons  

E-Print Network [OSTI]

to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many...

Hsu, Chung-Hao

2013-03-28T23:59:59.000Z

439

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

440

Contact thermal lithography  

E-Print Network [OSTI]

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Neutron stars - thermal emitters  

E-Print Network [OSTI]

Confronting theoretical models with observations of thermal radiation emitted by neutron stars is one of the most important ways to understand the properties of both, superdense matter in the interiors of the neutron stars and dense magnetized plasmas in their outer layers. Here we review the theory of thermal emission from the surface layers of strongly magnetized neutron stars, and the main properties of the observational data. In particular, we focus on the nearby sources for which a clear thermal component has been detected, without being contaminated by other emission processes (magnetosphere, accretion, nebulae). We also discuss the applications of the modern theoretical models of the formation of spectra of strongly magnetized neutron stars to the observed thermally emitting objects.

Potekhin, A Y; Pons, J A

2014-01-01T23:59:59.000Z

442

Texas Thermal Comfort Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal comfort thermal comfort Too often, the systems in our houses are both physically and intellectually inaccessible. In the SNAP House, HVAC components are integrated into the overall structure, and act as an experiential threshold between public and private spaces. They are located in a central, structural chase that supports the clerestory and gives the systems a functional presence within the interior. Each individual component is contained within a single chase

443

Design of Coil Heat Exchanger for Remote-Storage Solar Water Heating System  

Science Journals Connector (OSTI)

A coil heat exchanger for hot water thermal storage was presented including the choice of the ... calculation of flow resistance. In this design, solar collector contour aperture area is 4.26...2, the volume of w...

Lv Cuiping; He Duanlian; Dou Jianqing

2009-01-01T23:59:59.000Z

444

High thermal expansion, sealing glass  

DOE Patents [OSTI]

A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

Brow, R.K.; Kovacic, L.

1993-11-16T23:59:59.000Z

445

Dynamic modelling for thermal micro-actuators using thermal networks  

E-Print Network [OSTI]

Dynamic modelling for thermal micro-actuators using thermal networks Beatriz L´opez-Wallea,1 and analytical calculations. Key words: Micro-actuators, Thermal modelling, Electrical analogy, Thermal network 1 and MicroMechatronic Systems Department (AS2M), 24 rue Alain Savary, 25000 Besan¸con, France Abstract

Paris-Sud XI, Université de

446

Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field  

Science Journals Connector (OSTI)

Abstract Nowadays, conventional coal or gas fired power plants are the dominant way to generate electricity in the world. In recent years there is a growth in the field of renewable energy sources in order to avoid the threat of climate change from fossil fuel combustion. Solar energy, as an environmental friendly energy source, may be the answer to the reduction of global CO2 emissions. This paper presents the concept of Solar Aided Power Generation (SAPG), a combination of renewable and conventional energy sources technologies. The operation of the 300 MW lignite fired power plant of Ptolemais integrated with a solar field of parabolic trough collectors was simulated using TRNSYS software in both power boosting and fuel saving modes. The power plant performance, power output variation, fuel consumption and CO2 emissions were calculated. Furthermore, an economic analysis was carried out for both power boosting and fuel saving modes of operation and optimum solar contribution was estimated.

G.C. Bakos; Ch. Tsechelidou

2013-01-01T23:59:59.000Z

447

Evaluation of Steelhead Kelt Passage into the Bonneville Dam Second Powerhouse Corner Collector Prior to the Juvenile Migration Seasons, 2007 and 2008  

SciTech Connect (OSTI)

This report documents the results of a steelhead kelt passage study conducted by the PNNL for the U.S. Army Corps of Engineers at Bonneville Dam in early spring 2007 and 2008. At the Second Powerhouse, a surface flow outlet called the corner collector (B2CC) may be an effective non-turbine passage route for steelhead kelt moving downstream in early spring before the main juvenile emigration season. The goal of this project was to inform management decisions regarding B2CC operations by estimating the number of kelt using the B2CC for downstream passage at Bonneville Dam prior to the juvenile spring migration season. We performed a hydroacoustic study from March 2 to April 10, 2007 and from March 13 to April 15, 2008.

Weiland, Mark A.; Kim, Jina; Nagy, William T.; Johnson, Gary E.

2009-09-01T23:59:59.000Z

448

Study of corrosion in multimetallic systems. Task 2 of solar collector studies for solar heating and cooling applications. Final technical progress report  

SciTech Connect (OSTI)

Corrosion measurements were made on candidate alloys of construction for non-concentrating solar collectors under simulated conditions of collector operation. Materials evaluated were aluminum alloys 1100, 3003, and 6061, copper alloy 122, Type 444 stainless steel, and 1018 plain carbon steel. The solutions used were equivolume mixtures of ethylene glycol and water, and propylene glycol and water. They were used without corrosion inhibitors but with addition of chloride, sulfate, and bicarbonate ions. The influences of dissolved oxygen, solution flow velocity, and heat transfer were evaluated. Corrosion morphologies investigated were general attack, pitting, crevice corrosion, and galvanic corrosion. Experimental results indicated that aluminum alloys can experience severe pitting and crevice corrosion at chloride concentrations approaching 50 ppM. The corrosion rate of copper exceeded about 100 ..mu..m/yr in ethylene glycol solutions and about 80 ..mu..m/yr in propylene glycol solutions. Crevice corrosion was not observed for copper, but severe galvanic corrosion occurred when it was coupled to T444 stainless steel. T444 steel corroded at rates of less than 1 ..mu..m/yr under all exposure conditions. During circulation at 100 C in the presence of air, ethylene glycol solutions acidified because of degradation of the glycol. The initial pH of propylene glycol solutions was already low, about 4.5. The inherent corrosivity of propylene glycol was somewhat less than that of ethylene glycol, although this difference was usually less than a factor of two in measured corrosion rates. It was concluded that he corrosion rates of aluminum alloys and copper were prohibitively high in uninhibited glycol solutions, and that corrosion inhibitors are definitely necessary in operating systems.

Diegle, R B

1980-04-11T23:59:59.000Z

449

Solar thermal propulsion status and future  

SciTech Connect (OSTI)

The status of solar absorber/thruster research is reviewed, and potential future applications and advanced solar thermal propulsion concepts are discussed. Emphasis is placed on two concepts, the windowless heat exchanger cavity and the porous material absorption concepts. Mission studies demonstrate greater than 50 percent increase in payload compared to chemical propulsion for a LEO-to-GEO mission. Alternative missions that have been considered for this concept include the Thousand Astronomical Unit mission, LEO-to-lunar orbit, and other SEI missions. It is pointed out that solar thermal propulsion is inherently simple and capable of moderate-to-high engine performance at moderate-to-low thrust levels. 15 refs.

Shoji, J.M.; Frye, P.E.; Mcclanahan, J.A. (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA (United States))

1992-03-01T23:59:59.000Z

450

Advanced wellbore thermal simulator GEOTEMP2 research report  

SciTech Connect (OSTI)

The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

Mitchell, R.F.

1982-02-01T23:59:59.000Z

451

Project Profile: Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

452

Factors affecting thermal infrared images at selected field sites  

SciTech Connect (OSTI)

A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL.

Sisson, J.B.; Ferguson, J.S.

1993-07-01T23:59:59.000Z

453

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

454

Thermal neutron capture gamma-rays  

SciTech Connect (OSTI)

The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

Tuli, J.K.

1983-01-01T23:59:59.000Z

455

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

456

Thermal ignition combustion system  

SciTech Connect (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

457

Thermal ignition combustion system  

SciTech Connect (OSTI)

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

458

Thermal test options  

SciTech Connect (OSTI)

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

459

Bernstein instability driven by thermal ring distribution  

SciTech Connect (OSTI)

The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

Yoon, Peter H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hadi, Fazal; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan)

2014-07-15T23:59:59.000Z

460

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents [OSTI]

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

462

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

463

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

464

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

465

Low thermal stress ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components, the metallic components having a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes there between. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component. 4 figs.

Glezer, B.; Bagheri, H.; Fierstein, A.R.

1996-02-27T23:59:59.000Z

466

Ambient variation-tolerant and inter components aware thermal management for mobile system on chips  

E-Print Network [OSTI]

, such as thermal conductivity and heat capacity of the package including cover, display and battery are measuredAmbient variation-tolerant and inter components aware thermal management for mobile system on chips:josephz@qti.qualcomm.com Abstract-- In this work we measure and study two key aspects of the thermal behavior of smartphones: 1

Simunic, Tajana

467

Thermal barrier coating  

DOE Patents [OSTI]

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

468

Thermal management of nanoelectronics  

E-Print Network [OSTI]

-state thermoelectric on- spot cooling, requiring efficient thermoelectric materials that can be integrated with the IC are further complicated by the fact that the material's ability to conduct heat deteriorates when at the packaging level but also at the nanoscale materials and device levels. THERMAL CHALLENGES AT NANOSCALE One

469

Thermal Reactor Safety  

SciTech Connect (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

470

Comparison of the Thermal Performance of a Solar Heating System with Open and Closed Solid Sorption Storage  

Science Journals Connector (OSTI)

Abstract The aim of this paper is to compare two solar heating systems with different solid sorption storage concepts; an open storage concept with material transport and external reactor and a closed sorption storage concept with the material reservoir as reactor. Both storage concepts are part of system concepts that have been investigated during national projects for a period of more than 3 years each. A TRNSYS model has been developed for each concept and the corresponding mathematical model is described. An emphasis is given on the model simplifications and thus its up- and downscaling possibilities. TRNSYS simulation studies were performed using similar boundary conditions. Hence the simulation results can be compared directly, thus the advantages and disadvantages of both concepts under investigation can be elaborated and assessed. TRNSYS simulations have been performed for each system concept using the properties of two different thermochemical storage materials (TCM). It is shown that the type of TCM has a significant influence on the systems fractional thermal energy savings. Using silica gel as TCM, both system concepts’ performances are only slightly better compared to a standard water-filled storage tank of the same size. The TCM zeolite 13 XBF, a binder free 13 X zeolite, leads to significantly better fractional thermal energy savings. Although the two systems under investigation behave differently, the fractional thermal energy savings are similar. High solar thermal fractions up to a complete solar coverage can be achieved for both storage concepts with moderate collector array and store sizes.

Florian Bertsch; Dagmar Jaehnig; Sebastian Asenbeck; Henner Kerskes; Harald Drueck; Waldemar Wagner; Werner Weiss

2014-01-01T23:59:59.000Z

471

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

472

Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)  

DOE Patents [OSTI]

Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

2014-12-16T23:59:59.000Z

473

Use of Heat From, and Thermal Management of, Photovoltaics  

Science Journals Connector (OSTI)

In flat plate PV/T collectors air or water are used for heat removal. Heat removal from concentrated photovoltaic systems has been accomplished using fluids such as air and water (Royne et al. 2003; Saki et al. 1...

Brian Norton

2014-01-01T23:59:59.000Z

474

Thermal conductor for high-energy electrochemical cells  

DOE Patents [OSTI]

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

475

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

476

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

477

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation ape030bennion2011o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management...

478

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management...

479

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

480

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

Note: This page contains sample records for the topic "thermal collectors include" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

482

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

483

Thermal Properties of Asymmetric Nuclear Matter  

E-Print Network [OSTI]

The thermal properties of asymmetric nuclear matter are investigated in a relativistic mean- field approach. We start from free space NN-interactions and derive in-medium self-energies by Dirac-Brueckner theory. By the DDRH procedure we derive in a self-consistent approach density- dependent meson-baryon vertices. At the mean-field level, we include isoscalar and isovector scalar and vector interactions. The nuclear equation of state is investigated for a large range of total baryon densities up to the neutron star regime, the full range of asymmetries from symmetric nuclear matter to pure neutron matter, and temperatures up to T~100 MeV. The isovector-scalar self-energies are found to modify strongly the thermal properties of asymmetric nuclear matter. A striking result is the change of phase transitions when isovector-scalar self-energies are included.

Fedoseew, Andreas

2014-01-01T23:59:59.000Z

484

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

485

LSPE Interim Stowage Thermal Constraints  

E-Print Network [OSTI]

-arm and thermal battery timers require operating temperatures at or above +40°F for reliable starting when·, ' LSPE Interim Stowage Thermal Constraints· Nl,;. ATM1080 PAGE 1 OF 13 DATE 15 December l97l constraints required for thermal integrity are defined. Prepared by:.:Z4·:..=..-~31!::..--.::..·~-:·::....-c

Rathbun, Julie A.

486

The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation  

E-Print Network [OSTI]

Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One...

Suardin, Jaffee Arizon

2009-05-15T23:59:59.000Z

487

Reactor Thermal-Hydraulics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

488

Nuclear Arms Control R&D Consortium includes Los Alamos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as...

489

DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.  

E-Print Network [OSTI]

(thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

Paris-Sud XI, Université de

490

Cylindrical thermal contact conductance  

E-Print Network [OSTI]

of the Mahr-Federal, Inc. respectively facilitated and provided the necessary surface metrology data of the test pieces. Mr. Claude Davis of Corning, Inc. obtained the thermophysical properties of the Ultra Low Expansion Titanium Silicate glass used... as thermal expansion standard. The engineers at National Instruments provided some much-needed advice and software for programming the data acquisition system. The TAMU Physics Machine Shop provided design advice and a couple of last...

Ayers, George Harold

2004-09-30T23:59:59.000Z

491

Thermally actuated thermionic switch  

DOE Patents [OSTI]

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

492

Low-temperature thermally regenerative electrochemical system  

DOE Patents [OSTI]

A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, R.O.; Brown, A.P.; Yao, N.P.

1982-04-21T23:59:59.000Z

493

Low temperature thermally regenerative electrochemical system  

DOE Patents [OSTI]

A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, Raouf O. (Tucson, AZ); Brown, Alan P. (Bolingbrook, IL); Yao, Neng-Ping (Clarendon Hills, IL)

1983-01-01T23:59:59.000Z

494